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Abstract. Model-based clustering is considered for Gaussian multivariate functional data as an
extension of the univariate functional setting. Principal components analysis is introduced and
used to define an approximation of the notion of density for multivariate functional data. An
EM like algorithm is proposed to estimate the parameters of the reduced model. Application
on climatology data illustrates the method.

Keywords. Multivariate functional data, density approximation, model-based clustering, EM
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1 Introduction

Functional data analysis or ”data analysis with curves” is an active topic in statistics with a wide
range of applications. New technologies allow to record data with accuracy and at high frequency
(in time or other dimension), generating large volume of data. In medicine one has growth curves
of children and patient’s state evolution, in climatology one records weather parameters over
decades, chemometric curves are analysed in chemistry and physics (spectroscopy) and special
attention is paid to the evolution of indicators coming from economy and finance. See Ramsay
and Silverman monograph [14] for more details.

The statistical model underlying data represented by curves is a real-valued stochastic process
with continuous time, X = {Xt}t∈[0,T ]. Most of the approaches dealing with functional data
consider the univariate case, i.e. Xt ∈ R, ∀t ∈ [0, T ], a path of X being represented by a single
curve. Despite its evident interest, the multidimensional case,

Xt = (X1(t), . . . ,Xp(t)) ∈ R
p, p ≥ 2

is, curiously, rarely considered in literature. In this case a path of X is represented by a set of
p curves. The dependency between these p measures provides the structure of X. One finds in
Ramsay and Silverman [14] a brief example of bivariate functional data, Xt = (X1(t),X2(t)) ∈
R

2, as a model for gait data (knee and hip measures) used in the context of functional principal



2 Clustering multivariate functional data

component analysis (FPCA) as an extension of the univariate case. For a more theoretical
framework, we must go back to the pioneer works of Besse [3] on random variables with values
into a general Hilbert space. Saporta [17] provides a complete analysis of multivariate functional
data from the point of view of factorial methods (principal components and canonical analysis).

In this paper we consider the problem of clustering multivariate functional data. Cluster
analysis aims to identify homogeneous groups of data without using any prior knowledge on
the group labels of data. The main difficulty in clustering functional data arises because of
the infinite dimensional space data belong. Consequently, most of clustering algorithms for
functional data consists in a first step of transforming the infinite dimensional problem into a
finite dimensional one and in a second step of using a model-based clustering method designed
for finite dimensional data. Examples of theses works in the case of univariate functional data
are numerous. A lot of them consider the k-means algorithm, applied on a B-spline fitting [1],
on defined principal points of curves [19] or on the truncated Karhunen-Loeve expansion [6].
[16] use also a k-means algorithm for clustering misaligned curves. As in the finite dimensional
setting, where Gaussian model-based clustering generalizes the k-means algorithm, some other
works introduce more sophisticated model-based techniques: [11] define an approach particularly
effective for sparsely sampled functional data, [15] propose a nonparametric Bayes wavelet model
for clustering of functional data based on a mixture of Dirichlet processes, [8] build a specific
clustering algorithm based on parametric time series models, [5] extend the high-dimensional
data clustering algorithm (HDDC, [4]) to the functional case. The case of multivariate functional
data is more rarely considered in literature: [18] and [9] use a k-means algorithm based on spe-
cific distances between multivariate functional data, whereas [12] consider Self-Organizing Maps
based on coefficients of multivariate curves into orthonormalized Gaussian basis expansions.

In the finite dimensional setting, model-based clustering algorithms consider that the data
arise from a mixture of density probability. This is not directly applicable to functional data
since the notion of density probability generally does not exist for functional random variable.
Consequently, model-based clustering algorithms previously cited assume a parametric distri-
bution on a finite series of coefficients characterizing the curves. In [10], the authors use the
density surrogate defined in [7] to build a model-based clustering for univariate functional data.
This density surrogate, based on the truncation of the Karhunen-Loeve expansion, relies on the
density probability of the first principal components [14] of the curves. This paper proposes an
extension of [10] to multivariate functional data. For this, we firstly propose principal component
analysis for multivariate functional data. Our model then assumes a cluster-specific Gaussian
distribution for the principal component scores. The number of first principal components as
well as the computation of the principal component scores are cluster specific.

The paper is organized as follows. In the second section we introduce the model for multi-
variate functional data and present the principal components analysis of X. Section 3 defines
an approximation of the probability density for multivariate functional random variable. The
model-based clustering approach and parameters estimation by the mean of an EM-like algo-
rithm are presented in Section 4. Numerical examples on weather data illustrating our approach
are presented in Section 5.

COMPSTAT 2012 Proceedings



Julien JACQUES and Cristian PREDA 3

2 Principal component analysis for multivariate functional

data

Principal component analysis for multivariate functional data has already been suggested in [14]
and [2]. In [14] the authors propose to concatenate the functions into a single long function for
each observation and then perform FPCA for the concatenated functions. In [2], they propose
to not summarize the curves with real principal components as in FPCA, but with functional
ones. For this, they carry out a classical multivariate PCA for each value of the domain on which
the functions are observed and suggest some interpolation method to build functional principal
components. Our approach is similar to [14] but by allowing the use of different basis for the
different dimensions of the multivariate curves.

Let Ω be a population space of statistical units (subjects, regions, etc.) and sn = {ω1, ω2, . . . , ωn}
be a random sample of size n drawn from Ω. Let X be a random variable defined on Ω associat-
ing to ω ∈ Ω a set of p curves, p ≥ 2, each one defined on the finite interval [0, T ], 0 < T < ∞,
i.e

X(ω) = {(Xω,1(t), . . . ,Xω,p(t)), t ∈ [0, T ]}.

The observation of X on the sample sn provides the set {X(ω1), . . . ,X(ωn)} of multivariate
curves called multivariate functional data. From the sn curves, one can be interested in optimal
representation of curves in a reduced dimensional function space (principal component analysis),
or in clustering, by determining an optimal partition of X with respect to some distance or
homogeneity criterion. In order to address these two questions in a formal way, we need the
hypothesis that considers X = (X1, . . . ,Xp) such that Xℓ, ℓ = 1, . . . , p are L2([0, T ])-valued
random variables and X is a L2 continuous stochastic process,

lim
h→0

E
[
‖X(t + h) − X(t)‖2

]
= lim

h→0

∫ T

0

p
∑

ℓ=1

E
[
(Xℓ(t + h) − Xℓ(t))

2
]

= 0.

Let denote by µℓ = {µℓ(t) = E[Xℓ(t)], t ∈ [0, T ]} the mean function of Xℓ and by

µ = (µ1, . . . µp) = E[X],

the mean function of X. The covariance operator of X is defined as an integral operator C with
kernel

C(t, s) = E [(X(t) − µ(t)) ⊗ (X(s) − µ(s))] ,

where ⊗ is the tensor product on R
p. Thus, C(t, s) is a p × p matrix with elements

C(t, s)[i, j] = Cov(Xi(t),Xj(s)), i, j = 1, . . . p.

The covariance operator of X, C : {L2([0, T ])}p → {L2([0, T ])}p is defined by

f
C

7−→ g, g(t) =

∫ T

0
C(t, s)f(s)ds, t ∈ [0, T ],

where f = (f1, . . . , fp) and g = (g1, . . . , gp) are elements of {L2([0, T ])}p.

@ COMPSTAT 2012



4 Clustering multivariate functional data

Principal components analysis of X

Under the hypothesis of L2-continuity, C is an Hilbert-Schmidt operator, i.e compact, self-
adjoint and such that

∑

j≥1 λ2
j < +∞. The spectral analysis of C provides a countable set

of positive eigenvalues {λj}j≥1 associated to an orthonormal basis of eigen-functions {fj}j≥1,
fj = (fj,1, . . . , fj,p), called principal factors:

Cfj = λjfj, (1)

with λ1 ≥ λ2 ≥ . . . and 〈fi, fj〉{L2([0,T ])}p =

∫ T

0

p
∑

ℓ=1

fi,ℓ(t)fj,ℓ(t) = δi,j with δi,j = 1 if i = j and 0

otherwise.

The principal components Cj of X are zero-mean random variables defined as the projections
of X on the eigenfunctions of C,

Cj =

∫ T

0
〈X(t) − µ(t), fj(t)〉Rpdt =

∫ T

0

p
∑

ℓ=1

(Xℓ(t) − µℓ(t))fj,ℓ(t)dt.

Let recall that, as in the univariate setting, the principal components {Cj}j≥1 are zero-mean
uncorrelated random variables with variance V(Cj) = λj, j ≥ 1.

The following Karhunen-Loeve expansion holds [17],

X(t) = µ(t) +
∑

j≥1

Cjfj(t),

and the approximation of order q of X, q ∈ N
∗,

X(q)(t) = µ(t) +

q
∑

j=1

Cjfj(t),

is the best approximation of this form under the mean square criterion.

Estimation and computational methods

Let consider the random sample of size n, sn = {ω1, ω2, . . . , ωn}, and denote by xi = (xi1, . . . , xip)
′ =

X(ωi)
′. The estimators for µ and C are

µ̂ =
1

n

n∑

i=1

xi,

and

Ĉ(t, s) =
1

n − 1

n∑

i=1

(xi(t) − µ̂(t)) ⊗ (xi(s) − µ̂(s)).

COMPSTAT 2012 Proceedings
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Approximation into a finite basis of functions

Often in practice, data are observed at discrete time points and with some noise. In order to
get the functional feature of data, smoothing and interpolation methods are used considering
the true curve belongs to a finite dimensional space spanned by some basis of functions. This
approximation reduces also the eigen-analysis problem (1) to one in finite dimensional setting.

Let assume that each curve xiℓ (1 ≤ ℓ ≤ p) can be expressed as a linear combination of basis
functions Φℓ = (φℓ1, . . . , φℓqℓ

):

xiℓ(t) =

qℓ∑

j=1

ξiℓjφℓj(t).

This can be written with the matrix formulation

xi = Φa′
i

with

Φ =







φ11 . . . φ1q1 0 . . . 0
0 . . . 0 φ21 . . . φ2q2 0 . . . 0

. . .
0 . . . 0 φp1 . . . φpqp







and

ai = (ξi11, . . . , ξi1q1 , ξi21, . . . , ξi2q2, . . . , ξip1, . . . , ξipqp).

For a set of n sample paths x = (x1, . . . ,xn)′ of X, we have

x = ÃΦ′ (2)

with Ã the n ×
∑p

ℓ=1 qℓ-matrix, whose rows are the ai which contain the basis expansion coef-
ficients of the xi.

Under the previous basis expansion assumption, the covariance matrix estimator Ĉ(t, s) is

Ĉ(t, s) =
1

n
(x(t) − µ̂(t))′(x(s) − µ̂(s)) =

1

n
Φ(t)A′AΦ′(s),

with A = (In − 1In(1/n, . . . , 1/n))Ã.
From Equation (1), each principal factor fj admits the same basis expansion as the observed
curve (see Equation (3)):

fj = Φb′
j

with b = (bj11, . . . , bj1q1 , bj21, . . . , bj2q2, . . . , bjp1, . . . , bjpqp).

With these assumptions and notations

Cfj =

∫ T

0
C(t, s)fj(s)ds =

∫ T

0

1

n
Φ(t)A′AΦ′(s)fj(s)ds (3)

=

∫ T

0

1

n
Φ(t)A′AΦ′(s)Φ(s)b′

jds =
1

n
Φ(t)A′A

∫ T

0
Φ′(s)Φ(s)ds

︸ ︷︷ ︸

W

b′
j (4)
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6 Clustering multivariate functional data

where W =
∫ T
0 Φ′(s)Φ(s)ds is the symmetric block-diagonal

∑p
ℓ=1 qℓ ×

∑p
ℓ=1 qℓ-matrix of the

inner products between the basis functions.
The eigen-analysis problem (1) is then

1

n
Φ(t)A′AWb′

j = λjΦ(t)b′
j

which becomes, since it should be true for all t

1

n
A′AWb′

j = λjb
′
j.

By defining uj = bjW
1/2, the eigen-analysis problem (1) can be approximated by the usual

PCA of the matrix 1√
n
AW1/2:

1

n
W1/2′A′AW1/2u′

j = λju
′
j.

The principal factors can finally be obtained by bj = (W1/2′)−1u′
j, and the principal component

scores, cj = AWb′
j . The principal components scores cj are also solutions of the eigenvalues

problem:

1

n
AWA′cj = λjcj .

3 Approximation of the density for multivariate functional

data

As the notion of probability density is not well defined for functional data, we can use an
approximation of the density based on the Karhunen-Loeve expansion, adapted here to the
multidimensional nature of the data:

X(t) − µ(t) =

∞∑

j=1

Cjfj(t).

From this expansion, we propose the following approximation of the density of X:

f
(q)
X

(x) =

q
∏

j=1

fCj
(cj(x)), (5)

where fCj
is the probability density function of the jth principal components Cj. Delaigle et al.

[7] show, for univariate functional data, that the approximation error, which decreases when q
grows, is under control.

4 A model based-clustering for multivariate functional data

The aim of model-based clustering is to identify homogeneous groups of data from a mixture
densities model. In this section, we build a mixture model based on the approximation (5) of the
density of X. In the following we suppose that X is such that each Xℓ is a zero-mean Gaussian
stochastic process (1 ≤ ℓ ≤ p). For each i = 1, . . . , n, let associate to the ith observation Xi of
X the categorical variable Zi indicating the group Xi belongs: Zi = (Zi,1, . . . , Zi,K) ∈ {0, 1}K

is such that Zi,g = 1 if Xi belongs to the cluster g, 1 ≤ g ≤ K, and 0 otherwise. The number K
of groups is assumed to be known.

COMPSTAT 2012 Proceedings
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The mixture model

Let assume that each couple (Xi,Zi) is an independent realization of the random vector (X,Z)
where X has an approximated density depending on its group belonging:

f
(qg)
X|Zg=1

(x; Σg) =

qg∏

j=1

fCj |Zg=1
(cj,g(x);λj,g)

where qg is the number of the first principal components retained in the approximation (5) for the
group g, cj,g(x) is the jth principal component score of X|Zg=1 for X = x, fCj |Zg=1

its probability

density and Σg the diagonal matrix of the principal components variances diag(λ1,g, . . . , λqg,g).
Conditionally on the group, the probability density fCj |Zg=1

of the jth principal component of

X is assumed to be the univariate Gaussian density with zero mean (the principal component
are centred) and variance λj,g. This assumption is satisfied when X|Zg=1 is a Gaussian process.

The vector Z = (Z1, . . . , ZK) is assumed to have multinomial distribution M1(π1, . . . , πK)
of order 1, with π1, . . . , πK the mixing proportions (

∑K
g=1 πg = 1). Under this model it follows

that the unconditional (approximated) density of X is given by

f
(q)
X

(x; θ) =

K∑

g=1

πg

qg∏

j=1

fCj |Zg=1
(cj,g(x);λj,g) (6)

where θ = (πg, λ1,g, . . . , λqg,g)1≤g≤K have to be estimated and q = (q1, . . . , qK). From this
approximated density, we deduce an approximated likelihood:

l(q)(θ;X) =

n∏

i=1

K∑

g=1

πg

qg∏

j=1

1
√

2πλj,g

exp

(

−
1

2

C2
i,j,g

λj,g

)

(7)

where Ci,j,g is the jth principal score of the curve Xi belonging to the group g.

Parameter estimation

In the unsupervised context the estimation of the mixture model parameters is not so straight-
forward as in the supervised context since the groups indicators Zi are unknown. On the one
hand, we need to use an iterative algorithm which alternate the estimation of the group indica-
tors, the estimation of the PCA scores for each group and then the estimation of the mixture
model parameters. On the other hand, the parameter q = (q1, . . . , qg) must be estimated by an
empirical method, similar to those used to select the number of components in usual PCA.

A classical way to maximise a mixture model likelihood when data are missing (here the
clusters indicators Zi) is to use the iterative EM algorithm [13]. In this work we use an EM
like algorithm including, between the standard E and M steps, a step in which the principal
components scores of each group are updated. Our EM like algorithm consists in maximizing
the approximated completed log-likelihood

L(q)
c (θ;X,Z) =

n∑

i=1

K∑

g=1

Zi,g



log πg +

qg∑

j=1

log fCj |Zg=1
(Ci,j,g)



 .

Let θ(h) be the current value of the estimated parameter at step h, h ≥ 1.

@ COMPSTAT 2012



8 Clustering multivariate functional data

E step. As the group indicators Zi,g’s are unknown, the E step consists in computing the
conditional expectation of the approximated completed log-likelihood:

Q(θ; θ(h)) = Eθ(h) [L(q)
c (θ;X,Z)|X = x] =

n∑

i=1

K∑

g=1

ti,g



log πg +

qg∑

j=1

log fCj|Zg=1
(ci,j,g)





where ti,g is the probability for the multidimensional curve Xi to belong to the group g condi-
tionally to Ci,j,g = ci,j,g:

ti,g = Eθ(h) [Zi,g|X = x] ≃
πg
∏qg

j=1 fCj |Zi,g=1
(ci,j,g)

∑K
l=1 πl

∏ql

j=1 fCj |Zi,l=1
(ci,j,l)

. (8)

The approximation in (8) is due to the use of the approximation of the density of X by (5).

Principal score updating step. The computation of the principal component scores has
been described in Section 2. Here, the principal component scores Ci,j,g of the multidimensional
curve Xi in the group g, is updated depending on the current conditional probability ti,g com-
puted in the previous E step. This computation is carried out by weighting the importance of
each curve in the construction of the principal components with the conditional probabilities
Tg = diag(t1,g, . . . , tn,g). Consequently, the first step consists in centring the curve Xi within
the group g by subtraction of the mean curve computed using the ti,g’s: the basis expansion
coefficients matrix A in Equation (2) becomes Ag = (In − 1In(t1,g, . . . , tn,g))Ã, where In and 1In
are respectively the identity n × n-matrix and the unit n-vector. The jth principal component
scores Cj,g is then the jth eigenvector of the matrix AgWA′

gTg associated to the jth eigenvalue
λj,g.

Group specific dimension qg estimation step. The estimation of the group specific di-
mension qg is an open problem. Indeed, no likelihood criterion can be directly used since the
likelihood is directly function of the dimensions qg. In particular, growing qg leads to add in the
density approximation, above a given order, principal components with small variances, which
could artificially increase the approximated likelihood. The estimation of qg and the investiga-
tion of the behaviour of our algorithm when qg changed is a complete research subject, out of
the topic of this paper. In this work we simply propose to use, once the group specific princi-
pal component scores have been computed, classical empirical criteria as the proportion of the
explained variance in order to select each group specific dimension qg.

M step. The M step consists in computing the mixture model parameters θ(h+1) which max-
imizes Q(θ; θ(h)). It leads simply to the following estimators

π(h+1)
g =

1

n

n∑

i=1

ti,g, and λj,g
(h+1) = λj,g, 1 ≤ j ≤ qg

where λj,g is the variance of the jth principal component of the cluster g already computed in
the principal score updating step.

Since only an approximation of the density is available, we stop the EM like algorithm at the
convergence of the classification (same classification for a given number of consecutive steps).

COMPSTAT 2012 Proceedings
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5 Illustration: Canadian temperature and precipitation

In this illustrative application, the Canadian temperature and precipitation data (available in
the R package fda and presented in detail in [14]) are used to illustrate the main features
of the proposed multivariate functional clustering method. The dataset consists in the daily
temperature and precipitation at 35 different locations in Canada averaged over 1960 to 1994.
In this study, we compare the classification obtained using separately the temperature data
and the precipitation data with the classification obtained using both curves. Comparison with
other multivariate functional data custering methods will be carried out in order to be presented
during the COMPSTAT conference.

The results presented hereafter have been obtained with the following experimental setup:
the percentage of explained variance is fixed at 95%, the number of clusters at 4, and the
convergence of the algorithm at 3 identical consecutive classifications (with a maximum number
of iterations equal to 100).

Figure 1 presents the result for clustering of the Canadian weather stations using respectively
the temperature curves and the precipitation curves. For each clustering, four graphs are plotted:
the approximated likelihood and the approximation orders qk evolutions during the algorithm
iterations, the curves clustering and the geographical positions of the Canadian weather stations
according to their estimated group belonging. Figure 2 plots the same informations for the
clustering of multivariate (precipitation and temperature) curves.

On the one hand, the classification of the Canadian weather stations using the temperature
curves exhibits a distinction between the stations according to their latitude: the red group is
composed of the stations having the highest temperatures, located in the South of the Canada,
the black group is composed of stations of the North of Canada, with colder temperatures than
the red group, and the green group contains only one station, Resolute (N.W.T.), which is the
coldest and northernmost station. Let notice that even if we ask for four groups, the convergence
of the algorithm lead to three classes (the forth being empty).

On the other hand, the classification using the precipitation curves seems to be related to the
proximity of one of the Atlantic and Pacific oceans: if the larger group (the red one) is mainly
composed of continental stations, the blue group is composed of Atlantic stations and the green
and black groups contain essentially Pacific stations. Let notice that the black group, which
contains only one station, Prince Rupert (B.C.), is separated from the other Pacific stations,
because its precipitation curve is very atypical: the precipitation are by far the most important
among the precipitation of all the weather stations, mainly in autumn and winter.

Using both precipitation and temperature curves provides a finer description of the Cana-
dian weather stations. Indeed, we can show on Figure 2 four distinct groups of stations. The
green group is mostly made of northern continental stations, whereas Atlantic stations and
southern continental stations are mostly gathered in the black group. The red group mostly
contains Pacific stations and the last group (blue) contains only the northernmost station Reso-
lute (N.W.T.). We recall that all these results have been obtained without using the geographical
positions of the stations.

From an algorithmic point of view, we find that the approximated likelihood is globally
increasing during the iterations. Let remark also that this approximated likelihood can be par-
ticularly affected when the approximation orders move: on Figure 1, the approximated likelihood
decreases when one or several approximation orders decrease. Our last remark concerns these
approximations orders: it seems coherent and efficient, on this application, to allow different

@ COMPSTAT 2012



10 Clustering multivariate functional data

orders for each cluster.

6 Discussion

In this paper we propose a clustering procedure for multivariate functional data based on an
approximation of the notion of density of a multivariate random function. The main tool is
the principal component analysis of multivariate functional data, and the use of the probability
densities of the principal components scores. Assuming that the multivariate functional data are
sample of a multivariate Gaussian process, the resulting mixture model is an extrapolation of the
finite dimensional Gaussian mixture model to the infinite dimensional setting. In comparison
of usual clustering techniques, which mostly consist in approximating the functional data into
a finite basis and then using a clustering algorithm for finite dimensional data, our multivariate
functional clustering procedure has the advantage to take into account the dependency between
each univariate functional data composing the multivariate data. An EM like algorithm is
proposed for the parameter estimation, with a stopping criterion based on the convergence of
the classification. The interest of our model is illustrated by the clustering of Canadian weather
stations using multivariate functional data: the annual precipitation and temperature curves.
It appears that using both precipitation and temperature leads to a more precise classification
of the stations than using separately the precipitation curves or the temperature curves.

Some questions still remain open, and further research are to be undertaken to provide
answers. First of all, as previously discussed, the selection of the approximation orders is a great
challenge for which we actually use an empirical method. Moreover, since only an approximation
of the likelihood is available, usual questions which are the selection of the number of clusters
or the proofs of the convergence of the estimation algorithm are currently without response.
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Figure 1. Separate clustering of the Canadian weather stations using respectively the tempera-
ture curves (four top graphs) and the precipitation curves (four bottom graphs). For each group
of 4 graphs, we have from the top left to the bottom right: the likelihood evolution, the approx-
imation order evolution, the curves classification and the corresponding geographical positions
of the weather stations.
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Figure 2. Clustering of the Canadian weather stations using both the temperature and the
precipitation curves. The top four graphs represents the likelihood evolution (top left), ap-
proximation order evolution (top right) and the temperature curves and precipitation curves
classifications. The last graph represents the geographical positions of the Canadian weather
stations according to their estimated group belonging.
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