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using the homogenization method. It was shown that when the

uniform elastic tensors as and am and with constant densities qs

Fig. 1. A period of a composite material with connected high-rigidity solid s and
soft inclusion m.
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high-rigidity solid is connected, and when both stiffness and wave
celerity contrasts of the constituents are Oðe2Þ, the propagation of
long waves induces local resonance within the soft medium. This
phenomenon leads to a frequency dependent effective tensorial
density different from the real scalar density. At macroscopic scale,
the description generalizes the Newtonian mechanics by introduc-
ing non local effect in time. In this situation, waves become disper-
sive and frequency band-gaps occur around a series of local
resonance frequencies (in the limit of the long wavelength
assumption). To clearly distinguish this phenomena from the cut-
off frequencies induced by diffraction in periodic lattices, we use
the term of inner-resonance cut-off frequency. Such materials,
named nowadays as ‘‘metamaterials’’, are of prime interest for
wave insulation or filtering.

More recently, the subject has received new interest. The
theoretical mathematical study of the local elastic resonance mech-
anism has been investigated in the work of Zhikov (2000) and Ávila
et al. (2005) (for fiber composites) followed in the same line by Bab-
ych et al. (2008) and Smyshlyaev (2009), providing results on the
convergence of the asymptotic approach. For reticulated structures
experiencing global vibrations, inner dynamic phenomena due to
local resonance in bending have also been evidenced (Boutin
et al., 2010). Experiments on contrasted composites made of epoxy
matrix–duraluminium cylinders (Vasseur et al., 1998) or made of
epoxy matrix- embedding lead spheres coated by silicon rubber
(Liu et al., 2000, 2005; She et al., 2003) clearly demonstrate the exis-
tence of band gaps related to local resonance. The reader is referred
to Milton and Willis (2007), where such modifications of the New-
ton’s second law are investigated and where different physical con-
texts about metamaterials are given.

The aim of this paper is to investigate the possible microstruc-
tures of heterogeneous media in which the propagation of long
wave coincides with the resonance frequency (ies) of a (or several)
component of the period. In Section 2, we recall and comment the
main results of Auriault and Bonnet (1985) for bi-composites. In
Section 3, the equivalent macroscopic models of three-component
materials (hard inclusion coated with a soft material within a con-
nected stiff material) are established for arbitrary geometries. The
macroscopic model is similar to the two-constituent model and
presents a series of inner-resonance cut-off frequencies on the con-
dition that the stiffness contrast within soft and stiff material is
Oðe2Þ. Further, when the soft medium is of smaller density than
the other components by an order eq; q P 1, the coated hard inclu-
sion behaves as a 3D spring-mass system, and the inner-resonance
cut-off frequencies are related to the few actual degrees of free-
dom. Finally, these results are illustrated and discussed in the case
of stratified composites by considering macroscopic P waves which
propagate and are polarized in the plane layer direction. The stiff
layers undergo an in plane compression vibration whereas the soft
layers experience a shear forced vibration which propagate per-
pendicularly to the layers.
2. Composite made of connected high-rigidity solid and soft

inne
medium

As in Auriault and Bonnet (1985) and Smyshlyaev (2009), we
consider a two component X-periodic composite made of a
connected high-rigidity solid s and of a soft medium m which is
connected or not connected. However, the analysis remains valid
provided that the stiff component is connected in the wave propa-
gation direction, see Section 4 where analytical results are pre-
sented. For the sake of simplicity, when non connected, the soft
medium shows a single inclusion in the period, as in Fig. 1. Media
s and m, which for simplicity are assumed as homogeneous, with
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and qm, occupy the domains Xs and Xm, respectively. The concen-
tration of constituents are respectively ci ¼ jXij=jXj, i = s, m. The
interface between Xm and Xs is denoted Cs.

2.1. Heterogeneity scale description and estimations

Under an acoustic perturbation, the medium satisfies the Navier
equation in Xs and Xm, with standard conditions on the interface
Cs, i.e. the continuity of normal stress vector and of displacement:

divXðrÞ ¼ q
@2u
@t2 ; ð1Þ

r ¼ a : eXðuÞ within X ð2Þ

and

ðrs � rmÞ � ns ¼ 0; ð3Þ
us � um ¼ 0 over Cs: ð4Þ

In the above equations, X ¼ ðX1;X2;X3Þ is the physical space vari-
able, r is the stress, e is the deformation and u is the displacement.
Variables indexed by m or s refer respectively to medium m or s. ns

is the unit normal vector exterior to Xs. Let us make dimensionless
the above equations by using l as the characteristic length. We con-
sider low frequencies x such that the corresponding wavelength Ks

in medium s is large with respect to l. We have

Ks

2p
¼ 1

x

ffiffiffiffiffiffiffiffiffiffi
j as j
qs

s
and L ¼ O Ks

2p

� �
;

which yields

qsx
2 ¼ e2 j as j

l2 :

Therefore, it comes

Pl ¼
qs

@2us
@t2

��� ���
j divXðrsÞ j

¼ O qsx2l2

j as j

 !
¼ Oðe2Þ;

where the dimensionless number Pl is evaluated by using the char-
acteristic length l. We consider a high contrast between the wave
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celerities of the stiff medium and that of the soft medium, of the or- divyðas : ðeyðuð1Þs Þ þ exðUð0Þs ÞÞÞ ¼ 0 within Xs;

2.2.2. Resolution in the soft medium
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der e:

Cm

Cs
¼

ffiffiffiffi
Q

p
¼ OðeÞ; Q ¼ j am j qs

j as j qm
¼ Oðe2Þ:

This implies that the wavelength in medium m is of the order of
magnitude of l

Km

2p
¼ 1

x

ffiffiffiffiffiffiffiffiffiffiffiffi
j am j
qm

s
¼ OðlÞ:

Therefore, the investigated situation involves two interacting
dynamic phenomena, one at macro-scale carried trough the stiff
medium, and one at micro-scale occurring in the soft medium.

In the sequel, the densities are assumed to be of the same order
of magnitude and consequently

qs

qm
¼ Oð1Þ; j am j

j as j
¼ Oðe2Þ:

It can be deduced from the previous assumptions that the displace-
ments in the solid and the matrix are of similar order of magnitude

us ¼ OðumÞ:

Finally, the dimensionless equations at the heterogeneity scale, that
describe the wave propagation at constant angular frequency x
take the form (the time dependance expðixtÞ simplifies by linearity
and is systematically omitted)

divyðas : eyðusÞÞ ¼ �e2x2qsus within Xs; ð5Þ
divyðam : eyðumÞÞ ¼ �x2qmum within Xm ð6Þ

and

ðrs � e2rmÞ � ns ¼ 0; ð7Þ
us � um ¼ 0 over Cs; ð8Þ

where y ¼ X=l. To lighten the writing, notations for the other quan-
tities are kept identical whatever in dimensionless or physical form.

2.2. Homogenization process

The homogenization process consists in introducing two
dimensionless space variables, y ¼ X=l and x ¼ X=L with x ¼ ey,
and to look for the displacement in the form of the following
asymptotic expansion

u ¼ uð0Þðx; yÞ þ euð1Þðx; yÞ þ e2uð2Þðx; yÞ þ � � � ; ð9Þ

where the uðiÞðx; yÞ are y-periodic functions. Introducing expansion
(9) into the local dimensionless set (5)–(8) and equating like powers
of e yield successive boundary value problems to be investigated on
the period. Let us briefly recall the results developed in Auriault and
Bonnet (1985) and Auriault (1994) (the periodicity conditions sys-
tematically apply for media occupying connected domains and are
not explicitly mentioned in the sequel).

2.2.1. Resolution in the stiff and connected media
Eqs. (5) and (7) give at the first order

divyðas : eyðuð0Þs ÞÞ ¼ 0 within Xs;

ðas : eyðuð0Þs ÞÞ � ns ¼ 0 over Cs:

Therefore, the movement of medium s is a periodic rigid motion at
the first order of magnitude. Because medium s is connected, this
rigid motion reduces to a translation at the heterogeneity scale

uð0Þs ¼ Uð0Þs ðxÞ: ð10Þ

– At the following order, Eqs. (5) and (7) yield
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ðas : eyðuð1Þs Þ þ exðUð0Þs ÞÞ � ns ¼ 0 over Cs:

We obtain classically the solution of this elasto-static problem in the
form

uð1Þs ¼ vsðyÞ : exðUð0Þs Þ þ Uð1Þs ðxÞ; ð11Þ

where the tensor vsðyÞ depends only on the elastic properties and
on the geometry of medium s.– At the third order, Eqs. (5) and (7)
write

divyðas : ðeyðuð2Þs Þ þ exðuð1Þs ÞÞÞ þ divxðas : ðeyðuð1Þs Þ þ exðUð0Þs ÞÞÞ

¼ �x2qsU
ð0Þ
s ;

within Xs and

ðas : eyðuð2Þs Þ þ exðuð1Þs ÞÞ � ns ¼ ðam : eyðuð0Þm ÞÞ � ns over Cs:

After integration over Xs, the use of the divergence theorem and the
periodicity condition, it comes the following macroscopic relation
(i.e. independent on y)

divxðAeff
s : exðUð0Þs ÞÞ ¼ �x2csqsUð0Þs �

1
j X j

Z
Cs

ðam : eyðuð0Þm ÞÞ � nsdC;

ð12Þ

where Aeff
s is the effective elastic tensor of constituent s (i.e. as in the

absence of constituent m)

Aeff
s ¼ has : eyðvsÞ þ asis;

with the notations used herein and in the following

h�in ¼
1
j X j

Z
Xn

� dX; n ¼ s;m; and h�i ¼ 1
j X j

Z
X�

dX
The first order displacement in medium m is given by Eqs. (6)
and (8) at order 0

divyðam : eyðuð0Þm ÞÞ ¼ �x2qmuð0Þm within Xm; ð13Þ
uð0Þm ¼ Uð0Þs ðxÞ over Cs: ð14Þ

To study this elasto-dynamic problem with Dirichlet condition, we
put

uð0Þm ¼ v þ Uð0Þs :

The boundary value problem becomes

divyðam : eyðvÞÞ ¼ �x2qmðv þ Uð0Þs Þ within Xm; ð15Þ
v ¼ 0 over Cs: ð16Þ

Let us introduce the eigenvalue problem associated with the oper-
ator in the left hand member in (15), with the boundary conditions
(16)

divyðam : eyð/ÞÞ ¼ �k/ within Xm;

/ ¼ 0 over Cs:

The spectrum is discrete and positive (Courant and Hilbert, 1970)

0 6 k1 6 k2 6 k3 6 � � �

each eigenvalue ki being associated to a vectorial eigenfunction i/.
The series fi/g constitute an orthogonal basis on which v can be
decomposed. To this aim, note first that from the divergence theo-
rem, the periodicity condition and the zero motion condition over
Cs we haveZ

Xm

divyðam : eyði/ÞÞ:vdX ¼
Z

Xm

divyðam : eyðvÞÞ:i/dX:
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This equality, re-expressed with the balance equation of both field v

Oðjqeff ðxÞjÞ ¼ q
jAeff

s j :

Fig. 2. Wave number versus angular frequency (from Auriault and Bonnet, 1985).
Hatched areas: stopping bands. Dashed lines: non homogenizable areas. Solid lines:
passing bands.
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inne
and i/, reads (no summation on i on left hand side)

ki

Z
Xm

i/:vdX ¼ x2qm

Z
Xm

ðv þ Uð0Þs Þ:i/dX

Then, the orthogonality of the eigenfunctions enables us to write v
in the form

v ¼ uð0Þm � Uð0Þs ¼
X1
i¼1

Uð0Þs :hi/im
hki/k2im

i/
ki

x2qm
� 1
¼ aðy;xÞ � Uð0Þs : ð17Þ

Therefore, a solution of (15) and (16) exists when

x – xi ¼
ki

qm

� �1=2

; i ¼ 1;2; . . .

If x ¼ xi, the solution exists when the corresponding vectorial
eigenfunction i/ is orthogonal to Uð0Þ over Xm, i.e. if hi/im ¼ 0. When
this condition is not met, v is not bounded in the vicinity of xi. Its
components change their sign if ki is a single eigenvalue. Conse-
quently, the second order tensor a is possibly not bounded and
changing its sign at x ¼ xi.

2.2.3. Equivalent macroscopic description
We can now calculate the integral in the right hand member of

(12). It comes with (13) and (17)Z
Cs

ðam : eyðuð0Þm ÞÞ � nsdC ¼ �
Z

Xm

divyðam : eyðuð0Þm ÞÞdX

¼
Z

Xm

x2qmuð0Þm dX ¼
Z

Xm

x2qmðIþ aÞ � Uð0Þs dX:

Finally, we obtain the equivalent macroscopic behavior of the com-
posite material in the form

divxðAeff
s : exðUð0Þs ÞÞ ¼ �x2qeff ðxÞUð0Þs ; ð18Þ

where

qeff ðxÞ ¼ hqiIþ qmhaim; haim ¼
X1
i¼1

hi/im � hi/im
hki/k2im

1
xi
x

� �2 � 1
:

The effective density qeff is of tensorial character and depends on
the frequency. Note that the tensor haim depends on the frequency
and on the elastic properties, the density and the geometry of med-
ium m only.

Let us return to dimensional quantities. The macroscopic
description is obtained within an approximation OðeÞ

divXðAeff
s : eXðusÞÞ ¼ �x2qeff ðxÞ � us þOðeÞ: ð19Þ

qeff , as haim, is generally not bounded and changes its sign in the
vicinity of xi. These latter eigenfrequencies xi correspond to the
resonances of constituent m submitted to fixed boundary condition
over Cs (and periodic condition if Xm is connected and thus inter-
sects the boundary of the period). The macroscopic medium is dis-
persive and the wave celerity and wave length are of the order of

Ceff ¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAeff

s j
jqeff ðxÞj

s0@ 1A; Keff ¼ OðCeff =xÞ:

Let us consider, for simplicity, a composite with macroscopic elastic
and inertial isotropy. The wave number k ¼ x=Ceff is schematically
shown in Fig. 2 as a function of the pulsation x. Hatched areas cor-
respond to negative densities qeff , i.e., to stopping bands. On an
other hand, as qeff increases, the wavelength decreases. The separa-
tion of scales becomes worse, a macroscopic description no longer
exists and diffraction occurs. This situation is attained when
Keff ¼ OðlÞ, which means
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m jamj

According to the singularities of jqeff ðxÞj around xk, the ‘‘exclusion’’
band frequency Dxk is of the order of:

2
Dxk

xk
¼ O jAeff

s j
jamj

� hqi
qm

 !�1
0@ 1A ¼ O jamj

jasj

� �
:

This is shown by dashed lines in Fig. 2. In these regions, the separa-
tion of scales becomes poor or inexistent. When the separation of
scales is poor, diffraction occurs that can be investigated by analyz-
ing the correctors Boutin and Auriault, 1993. The values of x corre-
sponding to solid lines belong to passing bands. The wave filtering
role of the present composite material occurs for long wavelengths
(i.e. low frequencies). It is due to resonance effects. An analytical
example of wave propagation through bi-composite layered media
in the layer direction is given in Auriault and Bonnet (1985) (see
examples treated in Section 4).

2.3. Damping effect

We investigate here the influence of a slight damping by consid-
ering a viscoelastic behavior of the soft constituent. Hence am, in
the Fourier space is replaced by a complex viscoelastic tensor
am þ ibm. The eigenvalue problem reads now

divyððam þ ibmÞ : eyð/�ÞÞ ¼ �k�/� within Xm;

/� ¼ 0 over Cs:

When assuming j bm j�j am j, the viscoelastic eigenvalues fk�i g and
the eigenvectors fi/�g are deduced from the elastic case through an
asymptotic procedure. In this aim, let us write

k� ¼ kþ ek þ � � � ; /� ¼ /þ e/ þ � � �
The equation governing the first corrector is:

divyðam : eyðe/ÞÞ þ idivyðbm : eyð/ÞÞ ¼ �ðek/þ ke/Þ within Xm;e/ ¼ 0 over Cs:

Focusing on the kth elastic mode and its viscoelastic corrector, we
deduce from the usual integral transformation and the boundary
conditionsZ

Xm

divyðam : eyðk/ÞÞ � ke/dX ¼
Z

Xm

divyðam : eyðke/ÞÞ � k/dX

and, with the balance equation of both fields, we derive (no summa-
tion on k)

r-resonance cut-off frequencies in elastic composite materials. Int. J. Solids
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ek ¼ �i
heyðk/Þ : bm : eyðk/Þim ¼ �ik n ; n � 1:

macroscopic description which corresponds to the classical descrip-
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inne
k hkk/k2im
k k k

This result enables to determine k e/ from the equation governing
the first corrector at the heterogeneity scale (let us simply mention
that k e/ is purely imaginary and orthogonal to k/).

Finally, the effective density becomes complex-valued

qeff �ðxÞ ¼ hqiIþ qmha�im;

ha�im ¼
X1
i¼1

hk/�im � h
k
/�im

hkk
/�k2im

1
k�k

x2qm
� 1

and we obtain in the vicinity of xk

1
k�k

x2qm
� 1
� in�1

k ; qeff�ðxkÞ � hqiIþ iqmn�1
k bk; bk ¼ Oð1Þ:

Therefore, the consequence of a slight viscoelastic effect in medium
m is a damping of the resonance phenomena, that results in the reg-
ularization of the singularities of the effective density: j qeff�ðxÞ j is
bounded and presents a continuous phase inversion around the
eigenfrequencies. Note that replacing the stiff elastic medium by a
viscoelastic medium would modify Aeff

s without changing qeff .

2.4. Soft inclusion and different celerity ratio

In this section we consider moderate and extremely high celer-
ity contrast between the soft and the connected stiff media. We
have, as above

L ¼ O Ks

2p

� �
¼ O 1

x

ffiffiffiffiffiffiffiffiffiffi
j as j
qs

s !
hence; qsx

2 ¼ e2 j as j
l2

:

The contrast between the wave celerity of the stiff solid and that of
the soft medium is now

Q ¼ j am j qs

j as j qm
¼ OðepÞ; p ¼ 1 or p P 3:

Consequently, the order of magnitude of the wavelength in medium
m reads

Km

2p
¼ 1

x

ffiffiffiffiffiffiffiffiffiffiffiffi
j am j
qm

s
¼ Oðlep=2�1Þ:

It is either significantly higher (p ¼ 1) or lower (p P 3) than the het-
erogeneity size. As above, densities are assumed of the same order
of magnitude and, consequently, the contrast of the elastic proper-
ties are either moderate (p ¼ 1) or extremely high (p P 3)

j am j
j as j

¼ OðepÞ; p ¼ 1 or p P 3:

Following the same route as in Section 2.2 yields the equivalent
macroscopic models.

When p ¼ 1, the dimensionless equations that describe the
wave propagation at constant frequency are now in the form

divyðas : eyðusÞÞ ¼ �e2x2qsus within Xs;

divyðam : eyðumÞÞ ¼ �ex2qmum within Xm

and

ðrs � ermÞ � ns ¼ 0;
us � um ¼ 0 over Cs:

The difference with the previous case is that medium m is in a qua-
si-static state at the leading order and therefore it moves identically
to the stiff medium, i.e. uð0Þm ¼ Uð0Þs . We thus obtain the following
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tion of an elastic composite (with a soft component)

divXðAeff
s : eXðusÞÞ ¼ �x2hqius þOðeÞ;

where, as usual, the effective density is independent on the fre-
quency and is given by the scalar mean density hqi ¼ csqs þ cmqm.
In this case, inner-resonance cut-off frequencies are absent.

When p P 3, the dimensionless equations in medium s read

divyðas : eyðusÞÞ ¼ �e2x2qsus within Xs;

ðrs � eprmÞ � ns ¼ 0; over Cs:

This set enables to derive the equivalent macroscopic model at the
leading order, which corresponds to a medium constituted by con-
stituent s only.

divXðAeff
s : eXðusÞÞ ¼ �x2csqsus þOðeÞ;

At the leading order, the extremely soft medium m neither contrib-
utes to the overall elastic properties (which are then similar to
those of the stiff media with empty inclusions) nor to inertia (de-
spite the fact that its density is of the same order as that of medium
s). The reason lies in the fact that the large number of very small
wave lengths occurring in the soft medium domain leads in average
to a negligible inertia. Hence, the effective density qeff

s , which is gi-
ven by csqs, does not depend on the frequency. Cut-off frequencies
are absent, but the high dynamics within medium m results in an
apparent lightening of the medium.

2.5. Rigid inclusion embedded in a softer material

To be thorough, let us briefly consider the converse situation of
hard inclusions s embedded in a soft matrix m when Xm is con-
nected and Xs is not connected (in this section only). An equivalent
macroscopic model exists iff a separation of scales is present. In
this configuration, the macro-dynamics is governed by the soft ma-
trix and therefore

L ¼ O Km

2p

� �
;

which yields

1
x

ffiffiffiffiffiffiffiffiffiffiffiffi
j am j
qm

s
¼ e�1l; thus qmx2 ¼ e2 j am j

l2 :

The elastic wave celerity contrast is estimated as

Q ¼ j am j qs

j as j qm
¼ OðepÞ; p P 1:

Consequently, the wavelengths in both constituents are at least one
order higher than the heterogeneity size

Km

2p
¼ Oðe�1lÞ; Ks

2p
¼ 1

x

ffiffiffiffiffiffiffiffiffiffi
j as j
qs

s
¼ Oðe�1�p=2lÞ

and therefore this macro-dynamics situation is expected not to
introduce any inner dynamics phenomena.

The dimensionless equations that describe the wave propaga-
tion at constant frequency at the heterogeneity scales are now

divyðas : eyðusÞÞ ¼ �e2þpx2qsus within Xs;

divyðam : eyðumÞÞ ¼ �e2x2qmum within Xm

and

ðrs � eprmÞ � ns ¼ 0;
us � um ¼ 0 over Cs:

The homogenization process is that of the classical case of a com-
posite material with rigid inclusions (Léné, 1978); it provides the
equivalent macroscopic model

r-resonance cut-off frequencies in elastic composite materials. Int. J. Solids
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divXðAeff : eXðuÞÞ ¼ �x2hqiuþOðeÞ;
Z

qrx
2urdX ¼ �

Z
rm � nr dX; ð26Þ
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where Aeff is the effective elastic tensor of medium m in presence of
rigid inclusions s, and the effective density is the scalar mean den-
sity (independent on x). Obviously, in absence of inner dynamics,
inner-resonance cut-off frequencies do not appear.

3. Three-component material

We now consider that, within the stiff connected solid, the soft
medium m itself contains an un-connected inclusion of stiffer
material r of boundary Cr, see Fig. 3. The composite material inves-
tigated in Liu et al. (2000, 2005) and Sheng et al. (2003) corre-
sponds to the particular case where Cs and Cr are concentric
spheres. In this section materials are assumed elastic. The study
of visco-elastic constituents could be addressed in the same man-
ner as for bi-composite, and the viscous dissipation would lead
qualitatively to effects of the same nature.

3.1. Heterogeneity scale description and estimations

Under an acoustic perturbation, the three-component compos-
ite satisfies the following equations

divXðrÞ ¼ q
@2u
@t2 ; ð20Þ

r ¼ a : eXðuÞ within X: ð21Þ

The boundary conditions are

ðrs � rmÞ � ns ¼ 0; ð22Þ
us � um ¼ 0 over Cs ð23Þ

and

ðrr � rmÞ � nr ¼ 0; ð24Þ
ur � um ¼ 0 over Cr: ð25Þ

We will also use the momentum and the moment of momentum
balances of inclusion r
Fig. 3. Three-component material. The period is constituted by stiff connected solid
m, and a soft medium m containing an un-connected inclusion of hard material r.
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Xr CrZ
Xr

qrx
2X ^ urdX ¼ �

Z
Cr

X ^ rm � nrdX; ð27Þ

where the origin of the space variable X is at the center of mass of
inclusion r and nr is the unit normal vector exterior to medium r.

The relative orders of magnitude of the elastic wave celerities of
media s and m are taken as above:

j am j qs

j as j qm
¼ Oðe2Þ;

while the wave celerity of inclusion r is assumed higher than in
medium m,

j am j qr

j ar j qm
¼ OðepÞ; p ¼ 1;2;3 . . .

With these estimates, since the stiff medium is connected, we have
again

L ¼ O Ks

2p

� �
¼ O 1

x

ffiffiffiffiffiffiffiffiffiffi
j as j
qs

s !
¼ e�1l; thus qsx

2 ¼ e2 j as j
l2

and the wavelengths in constituents m and r are respectively of the
order and significantly larger than the heterogeneity size

Km

2p
¼ 1

x

ffiffiffiffiffiffiffiffiffiffiffiffi
j am j
qm

s
¼ OðlÞ; Kr

2p
¼ 1

x

ffiffiffiffiffiffiffiffiffiffi
j ar j
qr

s
¼ Oðe�p=2lÞ:

Consequently, an inner-dynamics situation is expected within med-
ium m (that contains inclusion r).

In addition, assuming the densities to be of the same order of
magnitude

qm

qs
¼ qr

qs
¼ Oð1Þ

the contrasts of elastic properties are

j am j
j as j

¼ Oðe2Þ; j ar j
j as j

¼ Oðe2�pÞ; p P 1:

The displacements in the three components are of similar order of
magnitude. When using l as the characteristic length, the dimen-
sionless equations that describe the wave propagation at constant
frequency at the heterogeneity scales take the form (the notations
for the dimensionless physical quantities are kept unchanged).

divyðas : eyðusÞÞ ¼ �e2x2qsus within Xs; ð28Þ

divyðam : eyðumÞÞ ¼ �x2qmum within Xm; ð29Þ

divyðar : eyðurÞÞ ¼ �epx2qmur within Xr; ð30Þ

with the boundary conditions

ðrs � e2rmÞ � ns ¼ 0; ð31Þ
us � um ¼ 0 over Cs; ð32Þ

and

ðrr � eprmÞ � nr ¼ 0; ð33Þ
ur � um ¼ 0 over Cr; ð34Þ

and the dimensionless momentum and moment of momentum bal-
ances of medium r areZ

Xr

qrx
2 urdX ¼ �

Z
Cr

rm � nrdX; ð35ÞZ
Xr

qrx
2y ^ urdX ¼ �

Z
Cr

y ^ rm � nrdX: ð36Þ
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3.2. Homogenization process The series of orthogonal eigenvectors fiwg is associated to the
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Introducing asymptotic expansions (9) into the above dimen-
sionless heterogeneity scale model yields successive boundary va-
lue problems to be investigated.

3.2.1. Resolution in the stiff and connected media
It is clear that, at the three first orders, the momentum balance

(28) and the boundary condition (31) yield similar results to Sec-
tion 2.2 for medium s

uð0Þs ¼Uð0Þs ðxÞ; ð37Þ
uð1Þs ¼vsðyÞ : exðUð0Þs ÞþUð1Þs ðxÞ; ð38Þ

divxðAeff
s : exðuð0Þs ÞÞ¼�x2hqsiU

ð0Þ
s �

1
jX j

Z
Cs

ðam : eyðuð0Þm ÞÞ �nsdC: ð39Þ
3.2.2. Resolution in the hard inclusion

3.2.4. Equivalent macroscopic description

inne
Whatever p P 1, Eqs. (30) and (33) give at the first order for
inclusion r (without periodicity condition since Xr is not
connected)

divyðar : eyðuð0Þr ÞÞ ¼ 0 within Xr;

ðar : eyðuð0Þr ÞÞ � nr ¼ 0 over Cr:

Therefore, the movement of inclusion r is a rigid motion at the first
order of magnitude. However, since this medium is not connected, a
rotation Xð0Þ is now permitted in addition to the differential trans-
lation eUð0Þr (relatively to the stiff medium motion Uð0Þs ). Thus

uð0Þr ¼ Uð0Þs ðxÞ þ eUð0Þr ðxÞ þXð0Þr ðxÞ ^ y; ð40Þ

where the origin of axes y is at the center of mass of inclusion r.

3.2.3. Resolution in the soft medium
Eqs. (29), (32) and (34) give at the order e0 an elasto-dynamic

boundary value problem for uð0Þm

divyðam : eyðuð0Þm ÞÞ ¼ �x2qmuð0Þm within Xm; ð41Þ
uð0Þm ¼ Uð0Þs ðxÞ over Cs; ð42Þ
uð0Þm ¼ Uð0Þs ðxÞ þ eUð0Þr ðxÞ þXð0Þr ðxÞ ^ y over Cr: ð43Þ

Let us introduce the auxiliary elasto-static problem

divyðam : eyðwð0Þm ÞÞ ¼ 0 within Xm; ð44Þ
wð0Þm ¼ Uð0Þs ðxÞ over Cs; ð45Þ

wð0Þm ¼ Uð0Þs ðxÞ þ eUð0Þr ðxÞ þXð0Þr ðxÞ ^ y over Cr: ð46Þ

Due to the linearity of the above system, we obtain

wð0Þm ðyÞ ¼ Uð0Þs ðxÞ þ lmðyÞ � eUð0Þr ðxÞ þ mmðyÞ �Xð0Þr ðxÞ; ð47Þ

where tensors lmðyÞand mmðyÞdepend only on the elastic properties
and on the geometry of medium m.

To investigate the boundary value problem (41)–(43), we put

uð0Þm ¼ v þwð0Þm :

The boundary value problem becomes

divyðam : eyðvÞÞ ¼ �x2qmðv þwð0Þm ðyÞÞ within Xm; ð48Þ
v ¼ 0 over Cs and Cr: ð49Þ

Let us introduce the eigenvalue problem associated with the oper-
ator in the left hand member in (48), with the boundary conditions
(49)

divyðam : eyðwÞÞ ¼ �gw within Xm;

w ¼ 0 over Cs and Cr:
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discrete and positive series of eigenvalues fgig. Following the same
reasoning as for the bi-composite, we deduce that

v ¼ uð0Þm �wð0Þm ¼
X1
i¼1

hwð0Þm � iwim
hkiwk2im

iw
gi

x2qm
� 1

: ð50Þ

Therefore, 48,49 have a solution when

x – xi ¼
gi

qm

� �1=2

; i ¼ 1;2 . . .

If x ¼ xi, the solution exists when the corresponding vectorial
eigenfunction iw is orthogonal to wð0Þm over Xm, i.e. if

hiw �wð0Þim ¼ 0:

When this condition is not met, v is not bounded in the vicinity of
xi. Finally we obtain

uð0Þm ¼ ½Iþ bðy;xÞ� � Uð0Þs ðxÞ þ ½lmðyÞ þ cðy;xÞ� � eUð0Þr ðxÞ

þ ½mmðyÞ þ dðy;xÞ� �Xð0Þr ðxÞ; ð51Þ

where b; c and d are second order tensors, depending on the fre-
quency and on the elastic properties, the density and the geometry
of medium m only. The expression of b and c (for d replace lm by mm

in c) are given by

bðyÞ ¼
X1
i¼1

hiwim � iw

hkiwk2im

1
xi
x

� �2 � 1
;

cðyÞ ¼
X1
i¼1

hlm � iwim � iw

hkiwk2im

1

ðxi
x Þ

2 � 1
The integral in the right hand member of (39) is calculated by
integrating (41) over medium m, then by using the divergence
theorem and finally Eq. (35)Z

Cs

ðam : eyðuð0Þm ÞÞ � nsdC ¼ �
Z

Xm

x2qmuð0Þm dX

�
Z

Cr

ðam : eyðuð0Þm ÞÞ � nsdC ¼ �
Z

Xm

x2qmuð0Þm dX�
Z

Xr

x2qru
ð0Þ
r dX:

Introducing (51) into (39) and into (35) and (36) at the e0 order
gives three equations for the equivalent macroscopic model of the
three-constituent material

divxðAeff
s : exðUð0Þs ÞÞ¼�x2 dðxÞ �Uð0Þs þeðxÞ � eUð0Þr þ fðxÞ �Xð0Þr

� 	
; ð52Þ

x2crqrðU
ð0Þ
s þ eUð0Þr Þ¼gðxÞ �Uð0Þs þhðxÞ � eUð0Þr þkðxÞ �Xð0Þr ; ð53Þ

x2Jr �Xð0Þr ¼ lðxÞ �Uð0Þs þmðxÞ � eUð0Þr þnðxÞ �Xð0Þr ; ð54Þ

where tensors dðxÞ; eðxÞ; fðxÞ are given by, respectively,

d ¼ hqiIþ qmhbim; e ¼ qmhlm þ cim þ crqrI;
f ¼ qmhmm þ dim:

Tensors gðxÞ;hðxÞ;kðxÞ are given by

fg;h;kg ¼ � 1
j X j

Z
Cr

ðam : eyðTÞ � nrdXÞ; T ¼ fb;lm þ c; mm þ dg:

Similarly, tensors lðxÞ;mðxÞ;nðxÞ are of the form

fl;m;ng ¼ �
Z

Cr

y ^ ðam : eyðTÞ � nrdXÞ; T ¼ fb;lm þ c; mm þ dg:

Jr is the inertial matrix of inclusion r.
Eqs. (53) and (54) are the reduced form of the dynamics of the

system constituted by the soft medium (in local dynamic regime)
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and the rigid inclusion (inducing additional inertial effect), which
ð0Þ

Consequently, the macroscopic description reads
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undergoes the uniform motion of the stiff medium. Hence, eUr

and Uð0Þr are linearly dependent on Uð0Þs through frequency depen-
dent tensors and can therefore be eliminated from (52).

After elimination, we obtain one equivalent macroscopic equa-
tion for the displacement Uð0Þs in the form

divxðAeff
s : exðUð0Þs ÞÞ ¼ �x2qeff ðxÞ � Uð0Þs : ð55Þ

Tensor Aeff
s is the effective elastic tensor of constituent s defined in

Section 2.2. This equation is similar to Eq. (18) for the two-constit-
uent material, but the frequency dependent effective density qeff , of
tensorial character, is different. Stopping bands are present in the
vicinity of the eigenfrequencies of the soft medium/inclusion sys-
tem. In dimensional form, the model becomes

divXðAeff
s : eXðusÞÞ ¼ �x2qeff ðxÞ � us þOðeÞ:
3.2.5. Pure translation resonating system

If the system constituted by the soft medium and the inclusion

presents three orthogonal common axes of symmetry (e. g. two cen-
tered ellipsoids or parallelepipeds with similar axes but with different
aspect ratio), the rotational and translational modes are uncoupled.
And since the system experiences a pure translation on its boundary,
the inclusion does not rotate. The description reads, in this case

divxðAeff
s : exðUð0Þs ÞÞ ¼ �x2 dðxÞ � Uð0Þs þ eðxÞ � eUð0Þr

� 	
;

x2crqrðU
ð0Þ
s þ eUð0Þr Þ ¼ gðxÞ � Uð0Þs þ hðxÞ � eUð0Þr :

The principal axes of tensors d; e;g;h, then of qeff , coincide with the
symmetry axes. The principal values qeff

J of the effective density
tensor are given by

qeff
J ¼ hqi þ qmhbimJ � ðqmhlm þ cimJ þ crqrÞ

gJ �x2crqr

hJ �x2crqr
:

3.3. Soft constituent of weak density

inne
We consider now a configuration where the soft medium is of
weak density, where the estimates of the contrast of the other
mechanical parameters are kept unchanged

qm

qs
¼ OðeqÞ; qr

qs
¼ Oð1Þ; j am j

j as j
¼ Oðe2Þ; j ar j

j as j
¼ Oðe2�pÞ;

q;p P 1:

Thus, the wavelengths in each constituents are significantly larger
than the heterogeneity size

Ks

2p
¼ e�1l; ;

Km

2p
¼ Oðe�q=2lÞ; Kr

2p
¼ Oðe�p=2lÞ:

In this case, the set of dimensionless governing equations is given
by (28)–(36) except for the momentum balance of medium m
(29) that becomes

divyðam : eyðumÞÞ ¼ �eqx2qmum within Xm;

As medium m is now locally in a quasi-static state, uð0Þm ðyÞ is simply
defined by (47)

uð0Þm ðyÞ ¼ wð0Þm ðyÞ ¼ Uð0Þs ðxÞ þ lmðyÞ � eUð0Þr ðxÞ þ mmðyÞ �Xð0Þr ðxÞ:

Furthermore, the negligible inertia of medium m impliesZ
Cs

ðam : eyðuð0Þm ÞÞ � ns dC ¼ �
Z

Cr

ðam : eyðuð0Þm ÞÞ � nsdC

¼ �
Z

Xr

x2qru
ð0Þ
r dX:
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divxðAeff
s : exðUð0Þs ÞÞ ¼ �x2ðhqiUð0Þs þ crqr

eUð0Þr Þ; ð56Þ
x2crqrðU

ð0Þ
s þ eUð0Þr Þ ¼ h0 � eUð0Þr þ k0 �Xð0Þr ; ð57Þ

x2Jr �Xð0Þr ¼m0 � eUð0Þr þ n0 �Xð0Þr ; ð58Þ

where tensors h0;k0;m0;n0 are independent of the frequency and in-
volve the elastic properties and the geometry of medium m only.
Their expressions are respectively

fh0;k0g ¼ � 1
j X j

Z
Cr

ðam : eyðTÞ � nrdX; T ¼ flm; mmg;

fm0;n0g ¼ �
Z

Cr

y ^ ðam : eyðTÞÞ � nrdX; T ¼ flm; mmg:

Eqs. (57) and (58) express the dynamics of the system constituted
by the soft medium (in local quasi-static regime) and the hard
inclusion (introducing the inertial effect), undergoing the uniform
motion of the stiff medium. Note that the soft medium/hard inclu-
sion system simply reduces to a six degrees of freedom (dof) oscil-
lator governed by the elasticity of domain m (of negligible mass)

and the inertia of inclusion r. After elimination of gUð0Þ r and Xð0Þr be-
tween the three above equations, we obtain once again the macro-
scopic equation in the form

divxðAeff
s : exðUð0Þs ÞÞ ¼ �x2qeff ðxÞ � Uð0Þs ; ð59Þ

This equation is formally similar to Eq. (18). The difference lies in
the finite number of eigenmodes (6 dof at the most) which gener-
ates the singularities of qeff . Hence, in the studied frequency range,
only a finite number of stopping bands occurs. The higher modes
involving the dynamics of medium m appear at significantly higher
frequencies, for which

Km

2p
¼ OðlÞ thuss

Ks

2p
¼ e�1þq=2l

and correspond to homogenizable situations if q ¼ 1, only.
The eigenmodes are evidenced simply when considering suffi-

ciently symmetric domains Xmand Xr to have uncoupled transla-
tional and rotational modes. Then k0 ¼ 0 (and m0 ¼ 0 also by
Maxwell–Betti reciprocity), the principal axes of the elastic tensor
h0 and of the effective density tensor qeff coincide, and their three
eigenvalues (index j) are simply related by

qeff
j ðxÞ ¼ hqi þ

crqr

ðxj

x Þ
2 � 1

; x2
j ¼

h0j
crqr

; j ¼ 1;2;3:

Note that if medium m presents a viscoelastic behavior character-
ized by a complex tensor a�m ¼ ð1þ inÞam;h

0
j have to be replaced

by h�j ¼ h0jð1þ inÞ in the previous expression.

4. Examples and discussion

To illustrate the three analyzed configurations, let us consider
highly contrasted stratified composites made of isotropic elastic
plates. The symmetric period of zero axial thickness
(fcs l

2 ;
cm l
2 ; crl; cm l

2 ; cs l
2 g, see Fig. 4) corresponds to the configuration

and material properties presented in Section 3.1 with q ¼ 1. The
bi-composite material (Section 2) and tri-composite material (Sec-
tion 3.3) will be obtained by taking cr ¼ 0 and qm ¼ 0 respectively.
In such stratified media, the stiff constituent is connected along
any directions in the plane of the layers and is able to carry long
compressional waves propagating in these directions (e.g. axial
direction e1). The soft layers are submitted to a shear forced vibra-
tion initiated by the stiff layers, which propagates in the direction
perpendicular to the layers. Further, the symmetry of the period
imposes that the motions (i) are polarized along e1, (ii) vary at
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the macroscale according to the axial variable x1 and (iii) depend at lmu00m þx2qmum ¼ 0;

with the boundary conditions

umðx1; y2 ¼ 0Þ ¼ Usðx1Þ; umðx1; y2 ¼
m Þ ¼ Usðx1Þ þ eU rðx1Þ

lmu0m x1;
cml ¼ x2qr

eU rðx1Þ
crl
:

We deduce that:

Fig. 4. Bi and tri-stratified composites under macroscopic compression wave. Note that within a plane wave, the motion of the stiff medium is uniform and coincide with the
macroscopic motion; conversely, the motion of the soft layer is non uniform due to the inner shear resonance and differ from the macroscopic motion, see (61).
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the local scale on the variable normal to the plate (say variable y2

along e2). As seen previously, the stiff layer works as in absence of
the soft medium, hence as an isolated plate with an in plane com-
pression Es=ð1� m2

s Þ, where Es is the Young modulus and ms the
Poisson ratio. Thus, the in-plane elastic compression coefficient
Aeff

s of the stratified composite is

Aeff
s ¼ cs

Es

1� m2
m

At the scale of the period the motion of the stiff medium is uniform
i.e. us ¼ Usðx1Þe1. Conversely, under the imposed motion Usðx1Þe1 at
its boundary, the soft medium experiences a non-uniform motion
umðx1; y2Þ. This latter is governed by the set (41)–(43). In the present
case it expresses the balance between the inertial vertical forces
and the shear forces involved in the non uniform field. The differen-
tial set reduces to a single equation that describes the shear forced
vibration which propagates in the direction perpendicular to the
layers (where lm denotes shear modulus, and ’ denotes the deriva-
tive d

dy2
):
Fig. 5. Effective normalized density of concrete/silicon stratified material versus normali
Dashed line: elastic case; bold line and normal line: real and imaginary part, respective
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c l

2

and the equilibrium condition of the rigid included plate of medium r:

� �

2 2
umðx1; y2Þ ¼ ðR sinðay1Þ þ cosðay1ÞÞUsðx1Þ; ð60Þ

eU rðx1Þ ¼ �1þ 1
C

1

1� T x2qr
lm

cr l
2a

0@ 1AUsðx1Þ; ð61Þ

where
zed frequency calculated from Eq. (64) with material properties defined in the text.
ly, in visco-elastic case (n ¼ 0:01).
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a ¼ x
ffiffiffiffiffiffiffi
qm

r
; T ¼ tan a

cml
� �

; C ¼ cos a
cml

� �
;

The inner-resonance band gaps correspond to negative values or
eff

Fig. 6. Normalized phase velocity and attenuation per wavelength of Concrete/Silicon stratified material versus normalized frequency. Same legend as in Fig. 5. Note the quasi
coincidence of the phase velocities in elastic and viscoelastic cases.
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lm 2 2

R ¼
T þ x2qr

lm

cr l
2a

1� T x2qr
lm

cr l
2a

:

Consequently, for a general tri-composite as in Section 3.1, the
effective density reads,:

qeff ðxÞ ¼ csqs þ cmqm
TC
a cm l

2

þ R
1� C
a cm l

2

 !
þ crqr

C
1

1� T x2qr
lm

cr l
2a

: ð62Þ

Thus, the phase wave velocity and its normalized value are respec-
tively given by:

VðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

csEs

ð1� m2
mÞqeff ðxÞ

s
;

VðxÞ
Vð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqi

qeff ðxÞ

s
:

Fig. 7. Effective normalized density versus normalized frequency of concrete/silic
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very large values of the effective density q ðxÞ. Each band gap is
associated with a pole of qeff ðxÞdefined by the roots of:

tan a
cml
2

� �
cml
2a
¼ cmlm

x2crqr
:

For visco-elastic media, VðxÞ is complex and the phase velocity
VphaseðxÞ and the damping per wavelength f are respectively given
by:

VphaseðxÞ ¼
jVðxÞj2

ReðVðxÞÞ ; f ¼ �2p ImðVðxÞÞ
ReðVðxÞÞ :

For a tri-composite as in Section 3.3, one obtains (by taking the limit
a! 0 in (62))

qeff ðxÞ ¼ csqs þ
crqr

1� x
x0

� 	2 ; x0 ¼
ffiffiffiffiffiffiffi
lm

qr

r
2ffiffiffiffiffiffiffiffiffiffi

cmcr
p

l
ð63Þ
one/epoxy stratified material derived from Eq. (62). Same legend as in Fig. 5.
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and the pole x0 is related to the unique inner-resonance band gap Regarding tri-stratified composites as in Section 3.1, an epoxy layer
9 3 3

Fig. 8. Normalized phase velocity and attenuation per wavelength of concrete/silicon/epoxy stratified material versus normalized frequency. Same legend as in Fig. 5.
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(in the frequency range respecting the scale separation).
Finally, for a bi-composite as in Section 2 (i.e., taking cr ¼ 0 in

(62)),

qeff ðxÞ ¼ csqs þ cmqm
T

a cm l
2

ð64Þ

and the series of poles associated to the inner-resonance band gaps
satisfy:

cos a
cml
2

� �
¼ 0; i:e: x2

k ¼
ffiffiffiffiffiffiffi
lm

qm

r ð1þ 2kÞp
cml

:

In practice, bi-stratified composites could be realized with high per-
formance concrete (Es 	 6
 1010 Pa, qs 	 2:7
 103 kg=m3;

ms ¼ 0:2) and silicone (lm 	 5
 105 Pa, qm 	 1:2
 103 kg/m3).
Fig. 9. Effective normalized density versus normalized frequency of concrete/foam/epoxy
dashed line corresponds to the real part given by Eq. (63) in presence of damping. No
discrepancy around the second mode that is disregarded in (63).
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(lr 	 5
 10 Pa, qr 	 1:2
 10 kg/m ) can be inserted in the
silicone, and, to obtain composites as in Section 3.3, one can replace
the silicone by a polyurethane foam (lm 	 1:2
 105 Pa, qm 	
60 kg=m3).

Fig. 5 depicts the variation of qeff
j ðxÞ=hqi versus the normalized

angular frequency x=xc with xc ¼ x
ffiffiffiffiffi
qm
lm

q
csl=2, for a concrete/sili-

con bi-composite material where cs ¼ 1=3; cm ¼ 2=3 without or
with damping (n ¼ 0:01). For the same media, Fig. 6 presents the
normalized phase velocity Vphase=Vð0Þ and the damping per wave-
length f.

The importance of the resonating effect and the smoothing in-
duced by damping is clearly evidenced. For pure elastic constitu-
ents, the effective density defines the band gaps as the frequency
interval between null velocity (qeff ðxÞ ! 1) and infinite velocity
stratified material derived from Eq. (62). Same legend as in Fig. 5. Further, the bold
te the perfect agreement of both results for the fundamental mode and the slight
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(qeff ðxÞ ¼ 0). In the viscoelastic case, the phase velocity is almost – Finally, when the mean density of the whole resonating system

Fig. 10. Normalized phase velocity and attenuation per wavelength of concrete/silicon/epoxy stratified material versus normalized frequency. Same legend as in Fig. 5.
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identical to the elastic case one in the whole frequency range (ex-
cept in the very vicinity of band gaps). The main difference lies in
the attenuation effect that is very significant around the band gaps.
In practice this leads to enlarge the width of the band gap.

Figs. 7 and 8 display the same parameters for a concrete/silicon/
epoxy tri-composite material with cs ¼ cm ¼ cr ¼ 1=3 ; Figs. 9 and
10 correspond to the same tri-composite material except that sili-
con is replaced by foam. These different cases present the same
general trends. However the dynamic responses significantly differ
according to the considered media. Composite materials based on
3D cells exhibit phenomena of the same nature as those evidenced
on these stratified media, but their accurate description requires
dynamic calculations on the microstructure. Nevertheless, a rough
analysis is possible from simple approaches: the effective elastic
tensor Aeff

s can be assessed through a generalized self-consistent
approach Christensen and Lo, 1979 (by considering constituent s
only, provided that cs is not too weak, say cs P 0:1), and the funda-
mental frequency of the inner resonance can be approximated
from proper geometric simplifications (concentric spheres, ‘‘con-
centric’’ parallelepipeds, plates in cubes, . . .).

5. Conclusion

The above study evidences that the requirements for the occur-
rence of inner resonance phenomena in highly contrasted compos-
ite materials can be summarized as follows:

– The stiff constituent acts as the carrying structure for the long
wavelength. This entails (i) that this constituent must be con-
nected (at least along the wave propagation direction) and (ii)
that the frequency range is such that the wavelength in this con-
stituent is large with respect to the period size l;Ks=2pl ¼ e� 1.

– Within this frequency range, the soft medium – which can itself
contain hard unconnected inclusions - reaches its own resonant
states and acts as a resonating system.

– To actually have these very distinct roles of the constituents
(carrying and resonating), a stiffness contrast j am j = j as j¼
Oðe2Þ is necessary.

Please cite this article in press as: Auriault, J.-L., Boutin, C. Long wavelength

Struct. (2012), http://dx.doi.org/10.1016/j.ijsolstr.2012.07.002
(homogeneous or heterogeneous) is of the order of that of the
carrying structure, the composite material behaves as a
‘‘metamaterial’’.

The specificity of this situation lies in the fact that the effective
density differs from the real density. The composite material
shows generally a series of inner-resonance cut-off frequencies,
that may reduce to a few frequencies in some particular cases. Each
band gap is associated to an eigenvalue problem of the resonating
system with a homogeneous Dirichlet condition on the boundary
with the ‘‘carrying’’ medium, whatever its geometry is. If several
unconnected resonating domains are present in a period (a REV),
each of them introduces its own cut-off frequencies related to its
resonant states. Recall that, conversely to high-frequency band
gaps strictly related to the periodicity of the media, the band gaps
induced by inner-resonance at large wavelength occurs even in
non periodic media that present a REV.

As the present work focuses on local resonance while the scale
separation is satisfied, the phenomena differs (i) from Rayleigh
scattering in usual composite materials (where wavelengths are
not very large compared to the period, hence when local dynamic
effects are weak) Boutin and Auriault, 1993, and (ii) from Bragg
scattering, which appears in high frequency phonic crystals (when
wavelengths are comparable to the period size). In this latter case,
the homogenization approach is inoperative, but periodic media
can be described through Floquet–Bloch approach (Turbe, 1982;
Allaire and Conca, 1998).

It is worth noticing that the situation of local resonance in
highly contrasted elastic composite materials evidenced by
Auriault and Bonnet (1985) belongs to the wider class of macro
phenomena evolving out of equilibrium local state. For instance,
similar mechanisms appear in double conductivity media
(Auriault, 1983) and double porosity media (Auriault and Boutin,
1994) and were experimentally proved in poroacoustics (Olny
and Boutin, 2003). In these latter cases, the difference with elastic
composites lies in the fact that the resonance concerns a diffusion
phenomenon (related to thermal transfer or mass transfer driven
by viscous effect). Undamped resonance (elastic cases) or damped
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resonance (diffusion cases) yield different macroscopic modeling Boutin, C., Auriault, J.-L., 1993. Rayleigh scattering in elastic composite materials.
Int. J. Eng. Sci. 31 (12), 1669–1689.
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(with or without inner-resonance cut-off frequencies respectively).
However, their common feature is that they lead at the macro-
scopic scale to a generalized Newtonian mechanics, in the sense
that the effective mass density (or thermal inertia, etc.) differs from
the real mass density and is frequency dependent.

References

Allaire, G., Conca, C., 1998. Bloch wave homogenization and spectral asymptotic
analysis. J. Math. Pures Appl. 77, 153–208.

Auriault, J.-L., 1983. Effective macroscopic description for heat conduction in
periodic composites. Int. J. Heat Mass Transf. 26 (6), 861–869.

Auriault, J.-L., 1991. Heterogeneous medium. Is an equivalent description possible?
Int. J. Eng. Sci. 29 (7), 785–795.

Auriault, J.-L., 1994. Acoustics of heterogeneous media: macroscopic behavior by
homogenization. Curr. Topics Acoust. Res. I, 63–90.

Auriault, J.-L., 2011. Heterogeneous periodic and random media. Are the equivalent
macroscopic descriptions similar? IJES 49, 806–808.

Auriault, J.-L., Bonnet, G., 1985. Dynamique des composites élastiques périodiques.
Arch Mech. 37 (4–5), 269–284 (in French).

Auriault, J.L., Boutin, C., 1994. Deformable porous media with double porosity. III
Acoustics. Transport in Porous Media 14, 143–162.

Auriault, J.-L., Boutin, C., Geindreau, C., 2009. Homogenization of Coupled
Phenomena in Heterogenous Media. ISTE and Wiley.

Ávila, A., Griso, G., Miara, B., 2005. Bandes phoniques interdites en élasticité
linéarisée. C.R. Acad. Sci. Paris, Ser. I 340, 933–938.

Babych, N.O., Kamotski, I.V., Smyshlyaev, V.P., 2008. Homogenization of spectral
problems in bounded domains with doubly high contrasts. Netw. Heterogen.
Media 3 (3), 413–436.

Bensoussan, A., Lions, J.-L., Papanicolaou, G., 1978. Asymptotic Analysis for Periodic
Structures. North Holland, Amsterdam.
Please cite this article in press as: Auriault, J.-L., Boutin, C. Long wavelength inne
Struct. (2012), http://dx.doi.org/10.1016/j.ijsolstr.2012.07.002
Boutin, C., Hans, S., Chesnais, C., 2010. Generalized beam and continua. Dynamics of
reticulated structures. In: Maugin, G.A., Metrikine, A.V. (Eds.), Mechanics of
Generalized Continua. Springer, New York, pp. 131–141.

Christensen, R.M., Lo, K.H., 1979. Solution for effective shear properties in three-
phase sphere and cylinder models. J. Mech. Phys. Solid 27, 315–330.

Courant, R., Hilbert, D., 1970. Methods of Mathematical Physics I. eighth ed..
Interscience publishers Inc., New York.

Léné, F., 1978. ‘Comportement macroscopique de matériaux élastiques comportant
des inclusions rigides ou des trous répartis périodiquement’. C.R. Acad. Sci.
Paris, Ser. IIB 286, 75–78.

Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P., 2000. Locally
resonant materials. Science 289, 1734–1736.

Liu, Z., Chan, C.T., Sheng, P., 2005. ‘Analytic model of phononic crystals with local
resonance’. Phys. Rev. B 71, 014103.

Milton, G.W., Willis, J.R., 2007. On modifications of Newton’s second law and linear
continuum elastodynamics. Proc. R. Soc. A 463, 855–880.

Olny, X., Boutin, C., 2003. Acoustic wave propagation in double porosity media.
J.A.S.A. 113 (6), 73–89.

Sanchez-Palencia, E., 1980. Non-Homogeneous Media and Vibration theory.
Springer-Verlag, Berlin.

Sheng, P., Zhang, X.X., Liu, Z., Chan, C.T., 2003. Locally resonant sonic materials.
Physica B 338, 201–205.

Smyshlyaev, V.P., 2009. ‘Propagation and localization of elastic waves in highly
anisotropic periodic composites via two-scale homogenization’. Mech. Mater.
41 (4), 434–447.

Turbe, N., 1982. Application of Bloch expansion to periodic elastic and viscoelastic
media. Math. Methods Appl. Sci. 4 (4–5), 433–449.

Vasseur, J.O., Deymier, P.A., Prantziskonis, G., Hong, G., 1998. Experimental evidence
for the existence of absolute acoustic band gaps in two-dimensional periodic
composite media. J. Phys.: Condens. Mater. 10, 6051–6064.

Zhikov, V.V., 2000. On an extension of the method of two-scale convergence and its
applications. Sbor. Math. 191 (7–8), 973–1014.
r-resonance cut-off frequencies in elastic composite materials. Int. J. Solids

http://dx.doi.org/10.1016/j.ijsolstr.2012.07.002

	IJSS2012.pdf
	Long wavelength inner-resonance cut-off frequencies in elastic composite materials
	1 Introduction
	2 Composite made of connected high-rigidity solid and soft medium
	2.1 Heterogeneity scale description and estimations
	2.2 Homogenization process
	2.2.1 Resolution in the stiff and connected media
	2.2.2 Resolution in the soft medium
	2.2.3 Equivalent macroscopic description

	2.3 Damping effect
	2.4 Soft inclusion and different celerity ratio
	2.5 Rigid inclusion embedded in a softer material

	3 Three-component material
	3.1 Heterogeneity scale description and estimations
	3.2 Homogenization process
	3.2.1 Resolution in the stiff and connected media
	3.2.2 Resolution in the hard inclusion
	3.2.3 Resolution in the soft medium
	3.2.4 Equivalent macroscopic description
	3.2.5 Pure translation resonating system

	3.3 Soft constituent of weak density

	4 Examples and discussion
	5 Conclusion
	References





