The aim of this paper is to investigate the filtration law in rigid porous matrices for steady-state slow flow of an incompressible viscous Newtonian fluid when the separation of scales is poor

ε = l L < 1. ( 2 
)
That can be encountered in two typical situations. The first one occurs when the porous medium is macroscopically heterogeneous, when the macroscopic characteristic length L associated to the macroscopic heterogeneities is not "very" large compared to the characteristic length l of the pores. For such media, length L can be estimated by L ≈ K/|∇K|, where K is the permeability. When the macroscopic gradient of the permeability ∇K is large, the ratio l/L may be not "very" small and the separation of scales is poor.

The second typical situation corresponds to large gradients of pressure which are applied to macroscopically homogeneous media, such as those encountered near wells. The macroscopic characteristic length L ≈ p/|∇p| associated to this gradient of pressure could be not "very" large compared to l. Again, the separation of scale ratio is not "very" small. The question under consideration is: how must the Darcy's law be modified when the separation of scales is poor?

To our knowledge, cases of poor separation of scales have received little attention in the literature. However, an important work is presented by [START_REF] Goyeau | Averaged momentum equation for flow through a nonhomogeneous porous structure[END_REF][START_REF] Goyeau | Numerical calculation of the permeability in a dentritic mushy zone[END_REF]. The authors investigate the permeability in a dendritic mushy zone, which is generally a nonhomogeneous porous structure. They make use of the volume averaging method to obtain corrector terms to Darcy's law. As recognized by the authors, the full solution is still out of reach. Even when the separation of scales is acceptable, some investigations need a corrector to Darcy's law: see, e.g., the study of dispersion in porous media [START_REF] Auriault | Taylor dispersion in porous media: analysis by multiple scale expansions[END_REF].

In the present paper, we use an upscaling technique, i.e. the method of multiple scale expansions to determine the macroscopic flow from its description at the pore scale. Heterogeneous systems, as for example porous media, may enable us to investigate an equivalent macroscopic continuous system if the condition of separation of scales (1) is verified [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Sanchez-Palencia | Non Homogeneous Media and Vibration Theory[END_REF]. The cases of poor separation of scales (2) will be investigated by introducing correctors to the case of good separation of scales. The method in use enables us investigating all possible situations of poor separation of scales.

The macroscopic equivalent model is obtained from the description at the heterogeneity scale by [START_REF] Auriault | Heterogeneous medium. Is an equivalent macroscopic description possible?[END_REF]: (i) assuming the medium to be locally periodic, without loss of generality: consider a right-angled parallelepipedic representative elementary volume (REV) of a random porous medium. Complete this REV by three plane symmetries with respect to three of its perpendicular faces. Both the so obtained periodic medium and the random medium obey similar macroscopic behaviours, with a possibly modified anisotropy. For an investigation of random porous media without the periodicity condition, see [START_REF] Murdoch | Macroscale balance relations for bulk, interfacial and common line systems in multiphase flows through porous media on the basis of molecular considerations[END_REF]. Nevertheless, the medium can be heterogeneous at the macroscopic scale; (ii) writing the local description in a dimensionless form; (iii) evaluating the dimensionless numbers with respect to the scale ratio ε; (iv) looking for the unknown fields in the form of asymptotic expansions in powers of ε; (v) solving the successive boundary-value problems that are obtained after introducing these expansions in the local dimensionless description. The macroscopic equivalent model is obtained from compatibility conditions which are the necessary conditions for the existence of solutions to the boundary-value problems. When considering the slow stationary flow of a Newtonian fluid, the method yields at the first order of approximation the well known Darcy's law.

In the present paper, we consider a poor separation of scales, i.e. when the parameter ε is not very small. In such a case, Darcy's law becomes a poor approximation for describing the flow, with a relative error O(ε). The method consists in looking for correctors to Darcy's law. In the paper we consider the two first correctors, which yield a modified flow law with a relative error O(ε 3 ). The porous medium is described and the pore scale behaviour is given in part 2. The upscaling is performed in part 3, which gives at the first order of approximation, i.e. the Darcy's law. First and second correctors are investigated. The second corrector shows a Brinkman term. For macroscopically homogeneous porous media and large gradients of pressure, the first corrector cancels out that points out the robustness of Darcy's law in this case. Finally, part 4 is devoted to an analytical example.

Local Flow Description and Estimations

Consider the flow of an incompressible Newtonian liquid through a porous medium. The porous medium is spatially strictly or locally periodic and consists of repeated unit cells (parallelepipeds), see Figure 1. There are two characteristic length scales in this problem: the characteristic microscopic length scale l of the pores and of the unit cell (we assume no separation of scales between these two characteristic lengths), and the macroscopic length scale that may be represented by either the macroscopic pressure drop scale or by the sample size scale. For simplicity, we assume both macroscopic length scales to be of similar order of magnitude, O(L). Moreover, we assume that the two length scales l and L are separated l L.

(3) The unit cell is denoted by and is bounded by ∂ , the fluid part of the unit cell is denoted by p , and the fluid-solid interface inside the unit cell is . Relatively to the porous matrix frame, the momentum balance for the incompressible viscous Newtonian liquid is

Γ Ω p Ω s
µ ∂ 2 v i ∂X j ∂X j - ∂p ∂X i = 0 in p , ( 4 
)
where v is the velocity vector relative to the matrix frame, p is the pressure and µ is the viscosity assumed as a constant. Gravitational acceleration is included in the pressure term. Equation ( 4) is completed by the incompressibility condition and the adherence condition on

∂v i ∂X i = 0 in p , ( 5 
)
v i = 0 on . ( 6 
)
The ratio between microscopic and macroscopic length scales is small (but not too small). The fundamental perturbation parameter ε is chosen to be

ε = l L , ε 1. ( 7 
)
To render dimensionless the system (4-6), we use the local length scale of a pore l as the characteristic length scale for the variations of the differential operators: we apply the so-called microscopic point of view [START_REF] Auriault | Heterogeneous medium. Is an equivalent macroscopic description possible?[END_REF]. Therefore, we introduce the small scale dimensionless space variable y = X/l. Since scales are separated, a second dimensionless space variable is defined, x = X/L = εy, which is well suited to describing the macroscopic variations. Other characteristic quantities are denoted by the subscript c, whereas dimensionless quantities are shown by an asterisk. When the porous medium is locally periodic, the period depends on the space variable x. Then, the system (4-6) defines a single dimensionless number Q which is the ratio of pressure to viscous forces. We obtain

Q = p c l µ c v c , (8) 
The estimate for Q comes from a phenomenological argument, i.e. the viscous flow is locally driven by a macroscopic pressure gradient

µ c v c l 2 = O p c L , (9) 
and thus

Q = O(ε -1 ). ( 10 
)
The dimensionless set that describes the flow is in the form

µ * ∂ 2 v * i ∂y j ∂y j -ε -1 ∂p * ∂y i = 0, ( 11 
)
∂v * i ∂y i = 0 in * p , ( 12 
)
v * i = 0 on * . ( 13 
)

Homogenization

Following the multiple scale expansion technique [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Sanchez-Palencia | Non Homogeneous Media and Vibration Theory[END_REF], the velocity v * and the pressure fluctuation p * are looked for in the form of asymptotic expansions of powers of ε

v * = v * 0 (x, y) + εv * 1 (x, y) + ε 2 v * 2 (x, y) + • • • , (14) p = p * 0 (x, y) + εp * 1 (x, y) + ε 2 p * 2 (x, y) + • • • , ( 15 
)
where the different terms of the asymptotic expansions are * -periodic with respect to variable y. Substituting these expansions in the set (11-13) gives, by identification of equal power of ε, successive boundary value problems to be investigated. The lowest order approximation of the pressure requires that ∂p * 0 ∂y i = 0, p * 0 = p * 0 (x).

(16)

darcy's law

We first recall the first order macroscopic flow description [START_REF] Sanchez-Palencia | Non Homogeneous Media and Vibration Theory[END_REF]. The first order approximation v * 0 of the velocity and the second order approximation p * 1 of the pressure are determined by the following set

µ * ∂ 2 v * 0 i ∂y j ∂y j - ∂p * 0 ∂x i - ∂p * 1 ∂y i = 0, ( 17 
)
∂v * 0 i ∂y i = 0 in * p , ( 18 
)
v * 0 i = 0on * , ( 19 
)
where v * 0 and p * 1 are * -periodic. The above system has a unique solution v * 0 which is a linear vector function of ∂p * 0 /∂x i [START_REF] Ene | Equations et phénomènes de surface pour l'écoulement dans un modèle de milieux poreux[END_REF][START_REF] Sanchez-Palencia | Non Homogeneous Media and Vibration Theory[END_REF])

v * 0 i = - k * ij (x, y) µ * ∂p * 0 ∂x j , ( 20 
)
where the tensor field k * depends on y, and possibly on x when the porous medium is macroscopically heterogeneous. From Equation ( 17), p * 1 can be put in the form

p * 1 = -a * j (x, y) ∂p * 0 ∂x j + p * 1 (x), a * i * p = 1 * p * p a * j dV * = 0. (21) 
Finally, the volume balance ( 12) gives at the second order

∂v * 1 i ∂y i + ∂v * 0 i ∂x i = 0 in * p . ( 22 
)
By integrating over * p , we obtain

∂ v * 0 i ∂x i = 0, v * 0 i = - K * ij (x) µ * ∂p * 0 ∂x j , K * ij = 1 * * p k * ij dV * . ( 23 
)
Returning to dimensional quantities yields

∂ v 0 i ∂X i = 0, v 0 i = - K eff ij (X) µ ∂p 0 ∂X j , K eff ij = l 2 K * ij , ( 24 
)
which gives the first order approximation description of the fluid flow

∂ v i ∂X i = O ε ∂ v i ∂X i , v i = - K eff ij (X) µ ∂p ∂X j + O(ε v i ). ( 25 
)
The second relation in ( 25) stands for the Darcy's law. It is possible to show, [START_REF] Ene | Equations et phénomènes de surface pour l'écoulement dans un modèle de milieux poreux[END_REF][START_REF] Sanchez-Palencia | Non Homogeneous Media and Vibration Theory[END_REF], that the permeability K eff is a symmetrical tensor 25) gives a poor approximation of the behaviour. A better behaviour is obtained by introducing a corrector.

K eff ij = K eff ji . When ε is not small, Equation (

first corrector

The second order approximation v * 1 of the velocity and the third order approximation p * 2 of the pressure are determined by the following set

µ * ∂ 2 v * 1 i ∂y j ∂y j + 2µ * ∂ 2 v * 0 i ∂y j ∂x j - ∂p * 1 ∂x i - ∂p * 2 ∂y i = 0, ( 26 
)
∂v * 1 i ∂y i + ∂v * 0 i ∂x i = 0 in * p , ( 27 
)
v * 1 i = 0 on * , ( 28 
)
where v * 1 and p * 2 are * -periodic. By using the compatibility condition (23), balance (27) becomes

∂v * 1 i ∂y i + ∂(v * 0 i -φ -1 v * 0 i ) ∂x i = 0 in * p , ( 29 
)
where φ is the porosity. Introducing now the expressions ( 20) and ( 21) for v * 0 and p * 1 , respectively, changes ( 26) and ( 29) into

µ * ∂ 2 v * 1 i ∂y j ∂y j - ∂p * 2 ∂y i = 2 ∂k * ik ∂y j -a * k I ij ∂ 2 p * 0 ∂x j ∂x k + 2 ∂ 2 k * ik ∂y j ∂x j - ∂a * k ∂x i ∂p * 0 ∂x k + ∂p * 1 ∂x i , ( 30 
)
∂v * 1 i ∂y i - 1 µ * ∂(k * ij -φ -1 K * ij ) ∂x i ∂p * 0 ∂x j - 1 µ * (k * ij -φ -1 K * ij ) ∂ 2 p * 0 ∂x i ∂x j = 0 in * p .
(31)

The system (28-30-31) verifies the compatibility condition. The solution is in the form

v * 1 i = - k * ij µ * ∂p * 1 ∂x j - l * ij µ * ∂p * 0 ∂x j - n * ij k µ * ∂ 2 p * 0 ∂x j ∂x k , ( 32 
)
p * 2 = -a * j ∂p * 1 ∂x j -b * j ∂p * 0 ∂x j -d * jk ∂ 2 p * 0 ∂x j ∂x k + p * 2 (x), ( 33 
)
where tensor k * and vector a * are defined above and l * , n * , b * with b * = 0 and d * with d * = 0 are tensorial functions of x and y. When the porous medium is macroscopically homogeneous, l * ij = 0 and b * j = 0. The volume balance (12) gives at the third order

∂v * 2 i ∂y i + ∂v * 1 i ∂x i = 0 in * p . ( 34 
)
By integrating over * p , we obtain

∂ v * 1 i ∂x i = 0, ( 35 
) v * 1 i = - K * ij (x) µ * ∂p * 1 ∂x j - L * ij (x) µ * ∂p * 0 ∂x j - N * ij k (x) µ * ∂ 2 p * 0 ∂x j ∂x k , ( 36 
)
L * ij = l * ij , N * ij k = n * ij k .
Tensor N * can be calculated from tensor fields k * and a * without solving the boundary value problem (28-30-31), see relation ( 82) in Appendix A.

In dimensional form, we obtain

∂ v 1 i ∂X i = 0, ( 37 
)
v 1 i = - K ij (X) µ ∂p 1 ∂X j - L ij (X) µ ∂p 0 ∂X j - N ij k (X) µ ∂ 2 p 0 ∂X j ∂X k , ( 38 
)
L ij = l 2 L * ij , N ij k = l 2 LN * ij k

first corrected macroscopic behaviour

Let us introduce corrected macroscopic velocity and pressure in the form

v i = v 0 i + ε v 1 i + O(ε 2 v i ), p = p 0 + ε p 1 + O(ε 2 p ).
By adding term by term Equation (24 2 ) and Equation (38) multiplied by ε, we obtain a corrected Darcy's law in the form

v i = - 1 µ K eff ij + L eff ij ∂p ∂X j - N eff ij k µ ∂ 2 p ∂X j ∂X k + O ε 2 v i , ( 39 
)
with

∂ v i ∂X i = O ε 2 ∂ v i ∂X i . ( 40 
)
The corrected macroscopic behaviour is now within a relative error O(ε 2 ).

The effective parameters verify

K eff = O(l 2 ), L eff = εL = O l 3 L , N eff = εN = O(l 3 ) (41)
By construction tensor N is symmetrical about its last two indices. By following a similar route as for the permeability K, it is possible to show its antisymmetry about its two first indices (see the Appendix A)

N eff ij k = N eff ikj , N eff ij k = -N eff jik .
It is remarkable to note that for a flow through a macroscopically homogeneous porous medium, we have L eff ij = 0, and, due to the properties of tensor N eff , Equation ( 40) then reduces to

∂ ∂X i K eff ij µ ∂p ∂X j = O ε 2 ∂ v i ∂X i ,
which is similar to the first order approximation ( 23), but with a relative error O(ε 2 ). That shows the robustness of Darcy's law in this case. When the porous medium is macroscopically heterogeneous, tensor L eff does not generally cancel out. In such cases, the correction to Darcy's law is O(ε).

properties of the flow law

Let us first investigate the physical meaning of the volume averaged velocity v . Consider the identity

∂ ∂y i (y j v i ) ≡ y j ∂v i ∂y i + v j . ( 42 
)
Let v i = v * 0 i . By using the dimensional form of (18) and integrating (42) on * p , we obtain after some transformation

v * 0 i = 1 * i * pi v * 0 i dV * , ( 43 
)
where the right hand member represents a surface average, i.e., a flux. The surface * i is the cross-section of the period perpendicular to axis e i and * pi its part in * p . Therefore, v * 0 = v * 0 * is a Darcy's velocity. Let now

v i = v * 1
i . On the contrary to v * 0 , velocity v * 1 is not divergence free, see (27). Therefore its volume average is not a flux and we obtain for the corrected Darcy's flux

v i = - 1 µ K eff ij + L eff ij -L 1eff ij ∂p ∂X j - 1 µ (N eff ij k -N 1eff ij k ) ∂ 2 p ∂X j ∂X k + O(ε 2 v i ), (44) 
with

L 1eff ij = l 2 y i ∂k * kj ∂x k , N 1eff ij k = l 3 y i k * kj .
In case of macroscopic isotropy, third order tensors are scalar multiple of the permutation tensor. Since by construction, N eff and N 1eff are symmetrical with respect to their two last indices, they cancel out.

second corrector

In some cases, the second corrector of the velocity may be needed. The third order approximation of the velocity v * 2 and the forth order approximation of the pressure p * 3 are determined by the following set

µ * ∂ 2 v * 2 i ∂y j ∂y j + µ * ∂ 2 v * 0 i ∂x j ∂x j + 2µ * ∂ 2 v * 1 i ∂y j ∂x j - ∂p * 2 ∂x i - ∂p * 3 ∂y i = 0 in * p , ( 45 
)
∂v * 2 i ∂y i + ∂v * 1 i ∂x i = 0 in * p , ( 46 
) v * 2 i = 0 on * , ( 47 
)
where v * 2 and p * 3 are -periodic. By subtracting the compatibility condition (35), Equation ( 46) is changed into

∂v * 2 i ∂y i + ∂(v * 1 i -φ -1 v * 1 i ) ∂x i = 0. ( 48 
)
The above set now verifies the compatibility condition, that ensures the existence of a solution. Introducing the expressions (20), ( 32), ( 21) and ( 33) changes ( 45), ( 47) and ( 48) into a set which solution v * 2 and p * 3 can be put in the form

v * 2 i =- k * ij µ * ∂p * 2 ∂x j - l * ij µ * ∂p * 1 ∂x j - m * ij µ * ∂p * 0 ∂x j - n * ij k µ * ∂ 2 p * 1 ∂x j ∂x k - o * ij k µ * ∂ 2 p * 0 ∂x j ∂x k - p * ij kl µ * ∂ 3 p * 0 ∂x j ∂x k ∂x k , ( 49 
)
p * 3 i =-a * i ∂p * 2 ∂x i -b * i ∂p * 1 ∂x i -c * i ∂p * 0 ∂x i -d * ij ∂ 2 p * 1 ∂x i ∂x j -e * ij ∂ 2 p * 0 ∂x i ∂x j -f * ij k ∂ 3 p * 0 ∂x i ∂x j ∂x k , ( 50 
)
where m * , o * , p * , c * , e * and f * with c * = e * = f * = 0 are new tensorial functions of x and y. The volume balance (12) gives at the forth order

∂v * 3 i ∂y i + ∂v * 2 i ∂x i = 0 in * p . ( 51 
)
By integrating over * p , we obtain 53) is a Brinkman's term. To see this, consider a macroscopically homogeneous isotropic porous medium. To the second order of approximation, the macroscopic behaviour reduces to

∂ v * 2 i ∂x i = 0, (52) v * 2 i = - K * ij (x) µ * ∂p * 2 ∂x j - L * ij (x) µ * ∂p * 1 ∂x j - M * ij (x) µ * ∂p * 0 ∂x j - N * ij k µ * ∂ 2 p * 1 ∂x j ∂x k - O * ij k µ * ∂ 2 p * 0 ∂x j ∂x k - P * ij kl µ * ∂ 3 p * 0 ∂x j ∂x k ∂x l . ( 53 
v i = - K eff µ ∂p ∂X i - P eff µ ∂ 3 p ∂X i ∂X k ∂X k + O(ε 3 v i ), (54) 
with

∂ v i ∂X i = O ε 3 ∂ v i ∂X i ,
where K eff and P eff are scalars and

K eff = O(l 2 ), P eff = O(l 4 ).
After remembering that the third derivative term in ( 54) is much smaller than the first derivative term, flow law (54) can be put in the form

v i = - K eff µ ∂p ∂X j + P eff K eff ∂ 2 v i ∂X j ∂X j + O(ε 3 v i ),
which shows a Brinkman's correction term proportional to the Laplacian of the velocity. This term is of relative weight O(ε 2 ).

Analytical Example

We investigate a macroscopically heterogeneous porous medium which the pore system consists of "locally parallel" plane fissures with slowly varying thickness h(X 1 ): h * = h * (x 1 ). Median plane of the considered fissure is (e 1 , e 2 ) and the medium is periodic of constant period l in the e 3 direction, Figure 2. Two different pressures P 0 and P 1 are applied at X 1 = 0 and X 1 = L, respectively. Locally, the fissure is limited by two parallel planes X 3 = ±h/2, with arbitrary periodicity in the e 1 and e 2 directions. Therefore, the v * i 's and p * i 's are locally dependent on the dimensionless space variable y 3 , only. On an other hand, the only macroscopic dimensionless space variable present in the problem is x 1 .

darcy's law

We first obtain as above Consider now the boundary value problem for v * 0 and p * 1 on a period.

p * 0 = p * 0 (x 1 ). ( 55 
) X 1 X 3 h(X 1 ) l (a)
The boundary value problem reduces to

µ * ∂ 2 v * 0 1 ∂y 2 3 = dp * 0 dx 1 , µ * ∂ 2 v * 0 2 ∂y 2 3 = 0, µ * ∂ 2 v * 0 3 ∂y 2 3 = ∂p * 1 ∂y 3 , ∂v * 0 3 ∂y 3 = 0, v * 0 i ± h 2 = 0. ( 56 
)
The solution is in the form

v * 0 1 = - h * 2 8 - y 2 3 2 dp * 0 µ * dx 1 , v * 0 2 = v * 0 3 = 0, p * 1 = p * 1 (x 1 ), ( 57 
)
k * 11 = h * 2 8 - y 2 3 2 , k * 21 = k * 31 = 0 a * 1 = 0. ( 58 
)
Averaging over the period the volume balance of v * 1 , see (32 4 ) below, yields

d v * 0 1 dx 1 = 0, v * 0 1 = - K * 11 µ * d p * 0 dx 1 , K * 11 = h * 3 12 l * . ( 59 
) It is possible to show that k * 22 = k * 11 , K * 22 = K *
11 and the other components of k * and K * are zero valued.

first corrector

By using the above expressions for k * ij and a * i , the problem for v * 1 and p * 2 becomes

µ * ∂ 2 v * 1 1 ∂y 2 3 = dp * 1 dx 1 , µ * ∂ 2 v * 1 2 ∂y 2 3 = 0, µ * ∂ 2 v * 1 3 ∂y 2 3 = ∂p * 2 ∂y 3 , ∂v * 1 3 ∂y 3 = ∂ ∂x 1 k * 11 µ * dp * 0 dx 1 , v * 1 i ± h * 2 = 0, (60) 
which solution v * 1 is given by

v * 1 1 = - h * 2 8 - y 2 3 2 dp * 1 µ * dx 1 , v * 1 2 = 0, v * 1 3 = 1 µ * ∂ ∂x 1 h * 2 y 3 8 - y 3 3 6 + h * 3 24 dp * 0 dx 1 ,
and with (59)

v * 1 3 = 1 µ * ∂ ∂x 1 h * 2 y 3 8 - y 3 3 6 dp * 0 dx 1 , ( 61 
) p * 2 = h * 2 24 - y 2 3 2 dp * 0 dx 1 + p * 2 (x 1 ), (62) 
where we have considered that b * and d * are of zero volume average. By averaging we have

d v * 1 1 dx 1 = 0, v * 1 1 = - K * 11 µ * dp * 1 dx 1 , v * 1 2 = v * 1 3 = 0. ( 63 
)
Therefore we have L * = 0 and N * = 0. This latter result can be also obtained from (82). On the other hand, it is possible to show that v * 1 = v * 1 .

To the second order of approximation, the problem under consideration is described in dimensional form by

v 1 = - K eff 11 µ dp dX 1 , K eff 11 = h 3 12l , ∂ ∂X 1 K eff 11 µ dp dX 1 = O ε 2 ∂ ∂X 1 K eff 11 µ dp dX 1 , (64) 
which first relation stands for the classical Darcy's law. Due to the peculiar pore geometry under consideration, the first corrector does not account for the macroscopic heterogeneity of the medium. To point out its influence, we investigate the second corrector.

second corrector

The third order approximation v * 2 of the velocity and the fourth order approximation p * 3 of the pressure are determined by the following set

µ * ∂ 2 v * 2 i ∂y j ∂y j + µ * ∂ 2 v * 0 i ∂x j ∂x j + 2µ * ∂ 2 v * 1 i ∂y j ∂x j - ∂p * 2 ∂x i - ∂p * 3 ∂y i = 0 in * p , ( 65 
)
∂v * 2 i ∂y i + ∂v * 1 i ∂x i = 0 in * p , ( 66 
) v * 2 i = 0 on * , ( 67 
)
where v * 2 and p * 3 are -periodic.

In the present case, the above boundary value problem simplifies to

µ * ∂ 2 v * 2 1 ∂y 2 3 - ∂ 2 ∂x 2 1 h * 2 6 -y 2 3 dp * 0 dx 1 - dp * 2 dx 1 = 0, ( 68 
) µ * ∂ 2 v * 2 2 ∂y 2 3 = 0, µ * ∂ 2 v * 2 3 ∂y 2 3 - ∂p * 3 ∂y 3 = 0, (69) 
µ * ∂v * 2 3 ∂y 3 - ∂ ∂x 1 h * 2 8 - y 2 3 2 dp * 1 dx 1 = 0, v * 2 i ± h * 2 = 0. ( 70 
)
We are interested by v * 2

1 v * 2 1 = 1 µ * y 2 3 2 - h * 2 8 dp * 2 dx 1 + ∂ 2 ∂x 2 1 h * 2 y 2 3 8 - y 4 3 12 - 5h * 4 16 * 12 dp * 0 dx 1 .
By averaging the volume balance of v 3 , we obtain

v * 2 1 = - d 2 dx 2 1 h * 2 8 K * 11 µ * dp * 0 dx 1 - d dx 1 7h * 2 24 K * 11 µ * d 2 p * 0 dx 2 1 , - 7h * 5 720 µ * l * d 3 p * 0 dx 3 1 - K * 11 µ * dp * 2 dx 1 (71) v * 2 2 = v * 2 3 = 0, d v * 2 1 dx 1 = 0. ( 72 
)
Therefore we obtain

M * 11 = d 2 dx 2 1 h * 2 8 K * 11 , O * 111 = d dx 1 7h * 2 24 K * 11 , P * 1111 = 7h * 5 720l * .
Brinkman's coefficient P * 1111 can be also obtained from (89). It is possible to show that v * 2 = v * 2 . In practice, we solve successively problems (59), ( 63) and ( 71) for p * 0 , p * 1 and p * 2 , respectively, with appropriate macroscopic boundary conditions.

Let us consider the corrected macroscopic behaviour. We introduce

v * 1 = v * 0 1 + ε v * 1 1 + ε 2 v * 2 1 + O(ε 3 ), p * = p * 0 + εp * 1 + ε 2 p * 2 + O(ε 3 ).
The flow in direction x 1 is described by

v * 1 = - K * 11 µ * 1 + ε 2 d 2 dx 2 1 h * 2 8 d p * dx 1 -ε 2 K * 11 µ * d dx 1 7h * 2 24 d 2 p * dx 2 1 -ε 2 7h * 5 720µ * l * d 3 p * dx 3 1 + O(ε 3 ), d v * 1 dx 1 = O(ε 3 ).

Conclusion

Flow law in porous media was studied by upscaling the pore scale description by using the method of asymptotic expansions. This method enables us to introduce correctors to Darcy's law which become nonnegligible in case of poor separation of scales. The two first correctors were investigated. Two main results are obtained. Firstly, the first corrector cancels out in the case of a macroscopically homogeneous porous medium submitted to a strong gradient of pressure. That points out the robustness of Darcy's law for such frequently encountered problems. Secondly, the second corrector introduces a Brinkman term. That shows that the Brinkman correction to Darcy's law is of relative order O(ε 2 ). This result deserves to be compared with Levy's investigation of Brinkman's law [START_REF] Levy | Fluid flow through an array of fixed particles[END_REF].

Appendix A. Tensor N tensor N eff verifies N eff ij k = N eff ikj
We have

N eff ij k ∂ 2 p ∂X j ∂X k = N eff ij k ∂ 2 p ∂X k ∂X j = N eff ikj ∂ 2 p ∂X j ∂X k ,
which is true whatever ∂ 2 p ∂X j ∂X k . Therefore, tensor N eff verifies

N eff ij k = N eff ikj . ( 73 
) tensor N eff requires that N eff ij k = -N eff jik
The 

i + k * kl -φ -1 K * kl = 0, d * = 0 in * p , ( 78 
) n * ikl = 0 on * , (79) 
Multiply ( 74) by n * ikl and integrate over * p . We have successively for the different terms, where we apply integration by parts, the divergence theorem and make use of ( 75), ( 76), ( 78) and ( 79 We have successively for the different terms, where we apply integration by parts, the divergence theorem and make use of ( 75), ( 76), ( 85) and ( 86 

Figure 1 .

 1 Figure 1. Schematic view of a period of the porous medium.

Figure 2 .

 2 Figure 2. Plane fissure: (a) Scheme in dimensional space variable X. (b) Scheme in dimensionless space variable y.

)

  As shown below the third derivative term in (53) corresponds to a Brinkman's term. Tensor P * can be calculated from tensor fields k * , a * , n * and d * , without solving the boundary value problem (45-47-48) , see relation (89) in Appendix B. The dimensional form is easily obtained by following the same route as in the previous subsection. When the medium is isotropic, third order tensors O

* and N * cancels out. When the medium is macroscopically homogeneous, L * and M * cancels out too. The third derivative term in (

  periodic tensor field k * im is the solution of the following boundary value problem

	∂ 2 k * im ∂y j ∂y j	-	∂a * m ∂y i	+ I im = 0,	(74)
	∂k * im ∂y i	= 0,	a * = 0 in * p ,	(75)
	k * im = 0 on * ,			(76)
	and the periodic tensor field n * ikl is the solution of the following boundary
	value problem				
	∂ 2 n * ikl ∂y j ∂y j	-	∂d * kl ∂y i	+ 2	∂k * il ∂y k	-a * k I il = 0,	(77)
	∂n * ikl						
	∂y						

  After adding term by term the two last equalities and using relation (76), we finally obtain* (N * mkl + N * kml )= 2 * p

	Multiply now (77) by k * im and integrate over * p . By following the same
	route, we obtain					
	* p	∂k * im ∂y j	∂n * ikl ∂y j	dV * = 2	* p	∂k * il ∂y k	k * im dV * -	p *	a * l k * km dV * .	(81)
	The two last relations yields tensor N * in the form
	* N * mkl = 2		* p	∂k * il ∂y k	k * im dV * -	* p	a * l k * km dV * +	p *	a * m k * kl dV * .	(82)
	Note that tensor N * can be determined from tensor fields k * and a * . We
	use expression (82) to demonstrate the antisymmetry of tensor N * . With
	the symmetry property (73) applied successively to N * mkl and N * kml , we have
	* N * mkl = 2		* p	∂k * ik ∂y l	k * im dV * -	* p	a * k k * lm dV * +	p *	a * m k * lk dV * ,
	* p * N * ∂ 2 k * im ∂y j ∂y j kml = 2	) ikl dV * -n * ikl N j dS * -∂k * im ∂y j im ∂k * ∂y j ∂ ∂y j n * ik dV * -ikl dV * = n * * p = δ * p * p ∂k * im ∂y l k * * p a * m k * lk dV * + * p lm dV ∂k * * p ∂k * im ∂y j ∂n * ikl ∂y j * p ∂k * im ∂y j ∂n * ikl dV * dV * a * k k * ik ∂y l k * im + ∂k * im ∂y l k * ik dV * ∂y j = - * p ∂k * im ∂y j ∂n * ikl ∂y j dV * , = 2 * p ∂(k * ik k * im ) ∂y l dV * = 2 p δ * k * ik k * im N l dS * = 0.	(83)
	* p Appendix B: Tensor P ∂a * m ∂y i n * ikl dV * = = The periodic tensor field p * * p δ * p iklm is the solution of the following boundary ∂(a * m n * ikl ) ∂y i dV * - * p ∂n * ikl a * m dV * ∂y i a * m n * ikl N i dS * + p * a * m (k * kl -φ -1 K * kl ) dV * value problem
	∂ 2 p * iklm ∂y j ∂y j	+ k * im I kl -	= ∂f * klm ∂y i	* p + 2 a * m k * kl dV * , ∂n * ikl ∂y m -d * lm I ik = 0,	(84)
	* p + n * n * ikl I im dV * = mkl -φ -1 N * mkl = 0 in * * n * mkl dV * = * N * mkl , p , p that yields by regrouping all terms ∂p * iklm ∂y i p * iklm = 0 on * .	(85) (86)
	* N * mkl = Multiply (74) written for k * * p ∂k * im ∂y j ∂n * ikl ∂y j in by p * dV * + iklm and integrate over * p * a * m k * kl dV * . p .	(80)

* .

  The two last relations yields tensor P * in the form * P * nklm = 2 * p

												)
	* p	∂ 2 k * in ∂y j ∂y j	p * iklm dV * =		* p	∂ ∂y j	∂k * in ∂y j	p * iklm dV * -	* p	∂k * in ∂y j	∂p * iklm ∂y j	dV *
								=	δ * p	∂k * in ∂y j	p * iklm N j dS * -	* p	∂k * in ∂y j	∂p * iklm ∂y j	dV *
								= -		* p	∂k * in ∂y j	∂p * iklm ∂y j	dV * ,
		* p	∂a * n ∂y i	p * iklm dV * =		* p	∂(a * n p * iklm ) ∂y i	dV * -	* p	∂p * iklm ∂y i	a * n dV *
								=	δ * p	a * n p * iklm N i dS * +	p *	a * n (n * mkl -φ -1 N * mkl ) dV *
								=		p *	a * n n * mkl dV * ,
			* p	p * iklm I in dV * =		p *	p * nklm dV * = * P * nklm ,
	that yields by regrouping all terms
	* P * mkln =	* p	∂k * in ∂y j	∂p * iklm ∂y j	dV * +	p *	a * n n * mkl dV * .	(87)
	Multiply now (84) by k * in and integrate over * p . By following the same
	route, we obtain						
	* p	∂k * in ∂y j	∂p * iklm ∂y j	dV * = 2		* p	∂n * ikl ∂y m	k * in dV * -	p *	d * lm k * nk dV *
									+		p *	k * im k * in I kl dV * .	(88)
							∂n * ikl ∂y m	k * in dV * -	* p	d * lm k * nk dV * +	p *	a * n n * mkl dV *
				+	p *	k * im k * in I kl dV * .	(89)
	Note that tensor P					

* can be determined from tensor fields k * , a * , n * and d * .