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Abstract

Borrowing ideas from Bayesian experimental design and active learning, we propose a
new strategy for optimal experimental design in the context of kinetic parameter estimation
in systems biology. We describe algorithmic choices that allow to implement this method in
a computationally tractable way and make it fully automatic. Based on simulation, we show
that it outperforms alternative baseline strategies, and demonstrate the benefit to consider
multiple posterior modes of the likelihood landscape, as opposed to traditional schemes
based on local and Gaussian approximations. An R package is provided to reproduce all
experimental simulations.

1 Introduction

Systems biology emerged a decade ago as the study of biological systems where interactions
between relatively simple biological species generate overall complex phenomena [27]. Quanti-
tative mathematical models, coupled with experimental work, now play a central role to ana-
lyze, simulate and predict the behavior of biological systems. For example, ordinary differential
equation- (ODE) based models, which are the focus of this work, have proved very useful to
model numerous regulatory, signaling and metabolic pathways [44, 48, 7], including for exam-
ple the cell cycle in budding yeast [15], the regulatory module of nuclear factor κB (NF-κB)
signaling pathway [24, 34], the MAP kinase signaling pathways [40] or the caspase function in
apoptosis [21].

Such dynamical models involve unknown parameters, such as kinetic parameters, that one
must guess from prior knowledge or estimate from experimental data in order to analyze and
simulate the model. Setting these parameters is often challenging, and constitutes a bottleneck
in many modeling project [25, 48]. On the one hand, fixing parameters from estimates obtained
in vitro with purified proteins may not adequately reflect the true activity in the cell, and is
usually only feasible for a handful of parameters. On the other hand, optimizing parameters to
reflect experimental data on how some observables behave under various experimental conditions
is also challenging, since some parameters may not be identifiable, or may only be estimated
with a large errors, due to the frequent lack of systematic quantitative measurements covering
all variables involved in the system; many authors found, for example, that finding parameters
to fit experimental observations in nonlinear models is a very ill-conditioned and multimodal
problem, a phenomenon sometimes referred to as sloppiness [8, 11, 10, 46, 4, 23, 38]. When the
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system has more than a few unknown parameters, computational issues also arise to efficiently
sample the space of parameters [35, 36], which has been found to be very rugged and sometimes
misleading in the sense that many sets of parameters that have a good fit to experimental data
are meaningless from a biological point of view [20].

Optimizing the experiments to be conducted in order to better estimate a system’s param-
eters therefore provides a promising direction to alleviate the difficulty of the task, and has
already been the subject of much research in systems biology [30]. Some authors have proposed
strategies involving random sampling of parameters near the optimal one, or at least coherent
with available experimental observations, and systematic simulations of the model with these
parameters in order to identify experiments that would best reduce the uncertainty about the
parameters [17, 19, 42]. A popular way to formalize and implement this idea is to follow the
theory of Bayesian optimal experimental design (OED) [14, 33]. In this framework, approxi-
mating the model by a linear model (and the posterior distribution by a normal distribution)
leads to the well-known A-optimal [6, 43] or D-optimal [18, 31, 22] experimental designs, which
optimize a property of the Fisher information matrix (FIM) at the maximum likelihood es-
timator. FIM-based methods have the advantage to be simple and computationally efficient,
but the drawback that the assumption that the posterior probability is well approximated by a
unimodal, normal distribution is usually too strong. To overcome this difficulty at the expense
of computational burden, other methods involving a sampling of the posterior distribution by
Monte-Carlo Markov chain (MCMC) techniques have also been proposed [28, 32]. When the
goal of the modeling approach is not to estimate the parameters per se, but to understand and
simulate the system, other authors have also considered the problem of experimental design to
improve the predictions made by the model [13, 47, 45], or to discriminate between different
candidate models [29].

In this work we propose a new general strategy for Bayesian OED, and study its relevance
for kinetic parameter estimation in the context of systems biology. As opposed to classical
Bayesian OED strategies which select the experiment that most reduces the uncertainty in
parameter estimation, itself quantified by the variance or the entropy of the posterior parameter
distribution, we formulate the problem in a decision-theoretic framework where we wish to
minimize an error function quantifying how far the estimated parameters are from the true
ones. For example, if we focus on the squared error between the estimated and true parameters,
our methods attempts to minimize not only the variance of the estimates, as in standard A-
optimal designs [6, 43], but also a term related to the bias of the estimate. This idea is similar to
an approach that was proposed for active learning [39], where instead of just reducing the size of
the version space (i.e., the amount of models coherent with observed data) the authors propose
to directly optimize a loss function relevant for the task at hand. Since the true parameter
needed to define the error function is unknown, we follow an approach similar to [39] and
average the error function according to the current prior on the parameters. The results in a
unique, well-defined criterion that can be evaluated and used to select an optimal experiment.

In the rest of this paper, we provide a rigorous derivation of this criterion, and discuss
different computational strategies to evaluate it efficiently. The criterion involves an average over
the parameter space according to a prior distribution, and we illustrate through simulations that
MCMC-based simulations over the full parameter space are more efficient than local sampling
around a mode of the distribution. We implemented the criterion in the context of an iterative
experimental design problem, where a succession of experiments with different costs is allowed
and the goal is to reach the best final parameter estimation given a budget to be spent, a problem
that was made popular by the DREAM 6 and DREAM 7 Network Topology and Parameter
Inference Challenge [1, 2, 3]. We demonstrate the relevance of our new OED strategy on a small
simulated network in this context, and illustrate its behavior on the DREAM7 challenge. The
method is fully automated, and we provide an R package to reproduce all simulations.
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2 Methods

2.1 A new criterion for Bayesian OED

In this section we propose a new, general criterion for Bayesian OED. We consider a system
whose behavior and observables are controlled by an unknown parameter θ∗ ∈ Θ ⊂ R

p that we
wish to estimate. For that purpose, we can design an experiment e ∈ E , which in our application
will include which observables we observe, when, and under which experimental conditions. The
completion of the experiment will lead to an observation o, which we model as a random variable
generated according to the distribution o ∼ P (o|θ∗; e). Note that although θ∗ is unknown, the
distribution P (o|θ; e) is supposed to be known for any θ and e, and amenable to simulations; in
our case, P (o|θ; e) typically involves the dynamical equations of the system if the parameters
are known, and the noise model of the observations.

Our goal is to propose a numerical criterion to quantify how ”good” the choice of the
experiment e is for the purpose of evaluating θ∗. For that purpose, we assume given a loss
function ℓ such that ℓ(θ, θ∗) measures the loss associated to an estimate θ when the true value is
θ∗. A typical loss function is the squared Euclidean distance ℓ(θ, θ∗) = ‖θ−θ∗‖2, or the squared
Euclidean distance in after a log transform for positive parameters ℓ(θ, θ∗) =

∑p
i=1 log(θi/θ

∗
i )

2.
We place ourselves in a Bayesian setting, where instead of a single point estimate the knowledge
about θ∗ at a given stage of the analysis is represented by a probability distribution π over Θ.
The quality of the information it provides can be quantified by the average loss, or risk:

Eθ∼π(θ) ℓ(θ, θ
∗) =

∫

ℓ(θ, θ∗)π(θ) dθ .

Once we choose an experiment e and observe o, the knowledge about θ∗ is updated and encoded
in the posterior distribution

P (θ|o; e) =
P (o|θ; e)π(θ)

∫

θ
′ P (o|θ′ ; e)π(θ′)dθ′

, (1)

whose risk is now:

Eθ∼P (θ|o;e) ℓ(θ, θ
∗) =

∫

θ

ℓ(θ, θ∗)
P (o|θ; e)π(θ)

∫

θ
′ P (o|θ′ ; e)π(θ′)dθ′

dθ .

The above expression is for a particular observation o. This observation is actually generated
according to P (o|θ∗; e). Accordingly, the average risk of the experiment e if the true parameter
is θ∗ is:

Eo∼P (o|θ∗;e)Eθ∼P (θ|o;e) ℓ(θ, θ
∗) .

Finally, θ∗ being unknown, we average the risk by taking account of the current state of knowl-
edge, and thus according to π. The expected risk associated to the choice of e when the current
knowledge about θ∗ is encoded in the distribution π is thus:

R(e;π) = Eθ
′∼π(θ′ )Eo∼P (o|θ′ ;e)Eθ∼P (θ|o;e) ℓ(θ, θ

′

)

=

∫

θ,θ
′

ℓ(θ, θ
′

)

∫

o

P (o|θ; e)π(θ)P (o|θ
′

; e)π(θ
′

)
∫

θ”
P (o|θ”; e)π(θ”)dθ”

dθ dθ
′

.
(2)

The expected risk R(e;π) of a candidate experiment e given our current estimate of the
parameter distribution π is the criterion we propose in order to assess the relevance of performing
e. In other words, given a current estimate π, we propose to select the best experiment to
perform as the one that minimizes R(e;π). We describe in the next section more precisely how
to use this criterion in the context of sequential experimental design where each experiment has
a cost.
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Note that the criterion R(e;π) is similar but different from classical Bayesian OED criteria,
like the variance criterion used in A-optimal design. Indeed, taking for example the square
Euclidean loss as loss function ℓ(θ, θ∗) = ‖θ − θ∗‖2, and denoting by πe the mean posterior
distribution that we expect if we perform experiment e, standard A-optimal design tries to
minimize the variance of πe, while our criterion focuses on:

Eθ∼πe
ℓ(θ, θ∗) = ‖Eθ∼πe

[θ]− θ∗‖2 +Var(πe) .

In other words, our criterion attempts to control both the bias and the variance of the posterior
distribution, while standard Bayesian OED strategies only focus on the variance terms. While
both criteria coincide with unbiased estimators, there is often no reason to believe that the
estimates used are unbiased.

2.2 Sequential experimental design

In sequential experimental design, we sequentially choose an experiment to perform, and observe
the resulting outcome. Given the past experiments e1, . . . , ek and corresponding observations
o1, . . . , ok, we therefore need to choose what is the best next experiment ek+1 to perform,
assuming in addition that each possible experiment e ∈ E has an associated cost Ce and we
have a limited total budget to spend.

We denote by πk the distribution on Θ representing our knowledge about θ∗ after the k-th
experiment and observation, with π0 representing the prior knowledge we may have about the
parameters before the first experiment. According to Bayes’ rule (1), the successive posteriors
are related to each other according to:

πi+1(θ) =
P (oi+1|θ; ei+1)πi(θ)

∫

θ
′ P (oi+1|θ

′ ; ei+1)πi(θ
′)dθ′

.

Although a global optimization problem could be written to optimize the choice of the k-th
experiment based on possible future observations and total budget constraint, we propose a
simple, greedy formulation where at each step we choose the experiment that most decreases
the estimation risk per cost unit. If the cost of all experiments were the same, this would simply
translate to:

ek+1 = argmin
e∈E

R(e;πk) .

To take into account the different costs associated with different experiments, we consider as a
baseline the mean risk when the knowledge about θ∗ is encoded in a distribution π over Θ:

R(π) = Eθ∼π(θ)Eθ
′
∼π(θ

′
) ℓ(θ, θ

′

) ,

and choose the experiment that maximally reduces the expected risk per cost unit according
to:

ek+1 = argmax
e∈E

R(πk)−R(e;πk)

Ce

. (3)

2.3 Evaluating the risk

The expected risk of an experiment R(e;π) (2) involves a double integral over the parameter
space and an integral over the possible observations, a challenging setting for practical evalua-
tion. Since no analytical formula can usually be derived to compute it exactly, we now present a
numerical scheme that we found efficient in practice. Since the distribution πk over the param-
eter space after the k-th experiment can not be manipulated analytically, we resort on sampling
to approximate it and estimate the integrals by Monte-Carlo simulations.

Let us suppose that we can generate a sample θ1, . . . , θN distributed according to π. Obtain-
ing such a sample itself requires careful numerical considerations discussed in the next section,
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but we assume for the moment that it can be obtained and show how we can estimate R(e;π)
from it of a given experiment e. For that purpose, writing

wij(e) =

∫

o

P (o|θi; e)P (o|θj ; e)
∑N

k=1 P (o|θk; e)
do

for 0 ≤ i, j ≤ N , we have the standard estimate of (2) by an empirical average:

RN (e;π) =
1

N2

N
∑

i,j=1

ℓ(θi, θj)wij(e) . (4)

We see that the quantity wij(e) measures how similar the observation profiles are under the two
alternatives θi and θj . A good experiment produces dissimilar profiles and thus low values of
wij(e) when θi and θj are far appart. The resulting risk is thus reduced accordingly.

For each i and j, the quantity wij(e) can in turn be estimated by Monte-Carlo simulations.
For each θi, a sample of the conditionnal distribution P (o|θi; e), denoted by oiu (u = 1, · · · ,M)
is generated. The corresponding approximation is:

wM
ij (e) =

1

M

M
∑

u=1

P (oiu|θj ; e)
∑N

k=1 P (oiu|θk; e)
, (5)

which can be interpreted as a weighted likelihood of the alternative when the observation is
generated according to θi.

In most settings, generating a sample oiu involves running a deterministic model, to be
performed once for each θi, and degrading the output according to a noise model independently
for each u. In our case, we used the solver proposed in [9] provided in the package [41] to
simulate the ODE systems. Thus, a large number M can be used if necessary at minimal cost.
Based on these samples, the approximated weights wM

ij can be computed from (5), from which
the expected risk of experiment e can be derived from (4).

Note that an appealing property of this scheme is that the same sample θi can be used to
evaluate all experiments. We now need to discuss how to obtain this sample.

Algorithm 1: NextExperiment

input : current distribution πk(θ), possible experiments E , N , M
output: Best experiment ek+1 ∈ E

1 begin

2 θ1, . . . , θN ← sample(πk(θ))
3 for e ∈ E do

4 for i = 1 to N do

5 oi1, . . . , o
i
M ← sample(P (o|θi; e))

6 Compute RN (e;π) from (4) and (5)

7 Choose eK+1 according to (3)

2.4 Sampling the parameter space

Sampling the parameter space according to πk, the posterior distribution of parameters after
the k-th experiment, is challenging because the likelihood function can exhibit multi-modality,
plateaus and abrupt changes as illustrated in Figure 1. Traditional sampling techniques tend
to get stuck in local optima, not accounting for the diversity of high likelihood areas of the
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x

y

log−likelihood

log−likelihood on a plane

Figure 1: Log likelihood surface for parameters living on a restricted area of a two dimensional
plane. For clarity, scale is not shown. Areas with low log-likelihood correspond to dynamics
that do not fit the data at all, while areas with high log-likelihood fit the data very well. The
surface shows multi-modality, plateaus and abrupt jumps which makes it difficult to sample
from this density. When parameters do not live on a plane, these curses have even higher effect.

parameter space [5]. In order to speed up the convergence of sampling algorithm to high
posterior density regions, we implemented a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton optimization algorithm using finite difference approximation for gradient estimation [37]
in order to identify several modes of the posterior distribution, and used these local maxima
as initial values for a Metropolis Hastings sampler, combining isotropic Gaussian proposal and
single parameter modifications [5]. Although finite difference approximation is known not to be
the most stable numerical method for gradient computation, it provided us with the best trade
off between computation, sample size, sample diversity and data fitting.

2.5 Enforcing regularity through the prior distribution

The prior distribution π0 plays a crucial role at early stages of the design, as it can penalize
parameters leading to dynamical behaviors that we consider unlikely. In addition to a large
variance log normal prior, we considered penalizing parameters leading to non smooth time tra-
jectories. This is done by adding to the prior log density a factor that depends on the maximum
variation of time course trajectories as follows. To each parameter value θ are associated trajec-
tories, Yi,t, which represent concentration values of the i-th species at time t. In the evaluation
of the log prior density at θ, we add a term proportional to

max
i,t

(Yi,t+1 − Yi,t)
2.

The advantage of this is twofold. First, it is reasonable to assume that variables we do not
observe in a specific design vary smoothly with time. Second, this penalization allows to avoid
regions of the parameter space corresponding to very stiff systems, which are poor numerical
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Figure 2: Gene network for DREAM7 Network Topology and Parameter Inference Challenge.
Promoting reactions are represented by green arrows and inhibitory reactions are depicted by
red arrows.

models of reality, and which simulation are computationally demanding or simply make the
solver fail.

3 Results

3.1 In silico network description

In order to evaluate the relevance of our new sequential Bayesian OED strategy in the con-
text of systems biology, we test it on an in silico network proposed in the DREAM7 Network
Topology and Parameter Inference Challenge which we now describe [3]. The network, repre-
sented graphically in Figure 2, is composed of 9 genes and its dynamics is governed by ordinary
differential equations representing kinetic laws involving 45 parameters. Promoting reactions
are represented by green arrows and inhibitory reactions are depicted by red arrows. For each
of the 9 genes, both protein and messenger RNA are explicitly modelled and therefore the
model contained 18 continuous variables. Promoter strength controls the transcription reaction
and ribosomal strength controls the protein synthesis reaction. Decay of messenger RNA and
protein concentrations is controlled through degradation rates. A complete description of the
underlying differential equations is found in Annex A. The complete network description and
implementations of integrators to simulate its dynamics are available from [3].

Various experiments can be performed on the network producing new time course trajectories
in unseen experimental conditions. An experiment consists in choosing an action to perform on
the system and deciding which quantity to observe. The possible actions are

• do nothing (wild type);

• delete a gene (remove the corresponding species);

• knock down a gene (increase the messenger RNA degradation rate by ten folds);
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• decrease gene ribosomal activity (decrease the parameter value by 10 folds).

These actions are coupled with 38 possible observable quantities

• messenger RNA concentration for all genes, at two possible time resolutions (2 possible
choices);

• protein concentration for a single pair of proteins, at a single resolution (resulting in
9 ∗ 8/2 = 36 possible choices).

Purchasing data consists in selecting an action and an observable quantities. In addition, it
is possible to estimate the constants (binding affinity and hill coefficient) of one of the 13
reactions in the system. Different experiments and observable quantities have different costs,
the objective being to estimate unknown parameters as accurately as possible, given a fixed
initial credit budget. The cost of the possible experiments are described 2 in Annex A.

For simulation purposes, we fix an unknown parameter value θ∗ to control the dynamics
of the systems, and the risk of an estimator is defined in terms of the loss function ℓ(θ, θ∗) =
∑p

i=1 log (θi/θ
∗
i )

2.
The noise model used for data corruption is heteroscedastic Gaussian: given the true signal

y ∈ R
+, the corrupted signal has the form max{0, y + z1 + z2}, where z1 and z2 are centered

normal variables with standard deviation 0.1 and (0.2× y), respectively.

3.2 Performance on a 3-gene subnetwork

In order to assess the performance of our sequential OED strategy in a easily reproducible
setting, we first compare it to other strategies on a small network made of 3 genes. We take
the same architecture as in Figure 2, only considering proteins 6, 7 and 8. The resulting model
has 6 variables (the mRNA and protein concentrations of the three genes) whose behavior is
governed by 9 parameters. There are 50 possible experiments to choose from for this sub net-
work: 10 perturbations (wildtype and 3 perturbations for each gene) and 5 observables (mRNA
concentrations at two different time resolutions and each protein concentration at a single reso-
lution).. We compare three ways to sequentially choose experiments in order to estimate the 9
unknown parameters: (i) our new Bayesian OED strategy, including the multimodal sampling
of parameter space, (ii) the same strategy where we limit the sampling of the parameter space
by initializing the sampler with the first posterior local maximum found using local search,
and (iii) a random experimental design, where each experiment not done yet is chosen with
equal probability. The comparison of (i) and (ii) is meant to assess the importance of correctly
sampling the posterior probability in parameter space, as opposed to making the classical ap-
proximation of sampling near a unique mode only. The comparison to (iii) is meant to assess
the benefit, if any, of our OED strategy for parameter estimation in systems biology. Since all
methods involve randomness, we repeat each experiment 10 times with different pseudo-random
number generator seeds.

The results are presented in Figure 3, where we show, for each of the three methods, the
risk of the parameter estimation as a function of budget used. Here the risk is defined as the
loss between the true parameter θ∗ and the estimated mean of the posterior distribution. We
first observe that the random sampling strategy has the worst risk among the three strategies,
suggesting that optimizing the experiments to be made for parameter estimation outperforms a
naive random choice of experiments. Second, and more importantly, we see that exploring only
a single mode at each step of our Bayesian OED strategy leads to worse risks on average and
more variations between replicates than exploring the parameter space around several modes.
In particular, although sampling around a unique mode sometimes lead to good results, it also
sometimes lead to very bad results and overall generates strategies hard to reproduce and trust.
On the other hand, it is worth mentioning that in the case of multi-modal exploration, in 9
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Figure 3: Comparison of risk evolution between different strategies on a subnetwork. The figure
shows the true risk at each step of the procedure, i.e. the approximate posterior distribution
is compared to the true underlying parameter which is unknown during the process. The risk
is computed at the center of the posterior sample. The different lines represent 10 repeats of
the design procedure given the same initial credit budget and the points represent experiment
purchase. Active design is our strategy while random design consists in choosing experiments
randomly. Multimodal means that we explore several modes, i.e. combine several Markov chain
samples with different starting points. Unimodal means that we only consider one chain. The
latest strategy leads to highly variable results. Our active strategy outperforms the random
design, we choose experiments that leads to a better use of available credits, making it possible
to perform more experiments at the end.

among 10 random restarts, the same set of experiments (8 among 50) was chosen in possibly
different orders. The outlier curve in Figure 3 (left panel) corresponds to a simulation where
only one experiment differs from the other simulations. In summary, this small experiments
validates the relevance of our Bayesian OED strategy compared to random choice of experiment,
and highlights the importance of carefully sampling the parameter space around multiple modes.

3.3 Results on the full DREAM7 network

To illustrate the behavior of our OED strategy in a more realistic context, we then apply it to
the full network of Figure 2 following the setup of the DREAM7 challenge. At the beginning of
the experiment, we already have at hand low resolution mRNA time courses for the wild type
system. The first experiments chosen by the method are wild-type protein concentration time
courses for all genes. The detailed list of purchased experiments is found in Annex A. . This
makes sense since we have enormous uncertainty about proteins time courses, given that we do
not know anything about them. Once these protein time series are purchased, the suggestion for
the next experiment to carry out is illustrated in Table 1. Interestingly, the perturbations with
the lowest risk are related to gene 7 which is on the top of the cascade (see Figure 2). Moreover
it seemed obvious from Table 1 that we have to observe protein 8 concentration. Indeed, Figure
4 shows that there is a lot of uncertainty about protein 8 evolution when we remove gene 7.
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Risk Cost Experiment Observe proteins

771 1200 Delete gene 7 3-8

1196 850 Decrease gene 7 RBS activity 3-8

1290 750 Knock down gene 7 3-8

1957 850 Decrease gene 7 RBS activity 3-7

2254 850 Decrease gene 7 RBS activity 7-8

2554 1200 Delete gene 9 3-8

2867 750 Knock down gene 7 8-9

4647 1200 Delete gene 7 8-9

4798 850 Decrease gene 7 RBS activity 8-9

4928 850 Decrease gene 7 RBS activity 5-8

Table 1: Estimation of the expected risk at a certain stage of the experimentation, ten lowest
values. There is consistency in the type of experiment to be conducted (targeting gene 7 which
expression impacts on a big part of the network) and the quantities to measure (protein 8 almost
all the time and protein 3 quite often). Figure 4 illustrates this point further.

Figure 4: Corresponds to Table 1 figures. We plot trajectories from our posterior sample (protein
8 concentration was divided by 2 and we do not plot concentrations higher than 100). The
quantities with the highest variability are protein 8 and 3 concentrations. This is consistent with
the estimated risks in 1. There is quite a bit of uncertainty in protein 5 concentration, however
this is related to protein 8 uncertainty as protein 8 is an inhibitor of protein 5. Moreover, mRNA
concentration have much lower values and are not as informative as proteins concentrations.
Red dots shows the data we purchased for this experiment after seeing these curve and in
accordance with results in Table 1.

Moreover, our criterion determines that it is better to observe protein 3 than protein 5, which
makes sense since the only protein which affects protein 5 evolution is protein 8 (see Figure 2).
Therefore uncertainty about protein 5 time course is tightly linked to protein 8 time course,
and observing protein 3 brings more information than observing protein 5. This might not be
obvious when looking at the graph in Figure 4 and could not have been foreseen by a method

10



1e−03

1e+00

1e+03

p_
de

gr
ad

at
io

n_
ra

te
pr

o1
_s

tr
en

gt
h

pr
o2

_s
tr

en
gt

h
pr

o3
_s

tr
en

gt
h

pr
o4

_s
tr

en
gt

h
pr

o5
_s

tr
en

gt
h

pr
o6

_s
tr

en
gt

h
pr

o7
_s

tr
en

gt
h

pr
o8

_s
tr

en
gt

h
pr

o9
_s

tr
en

gt
h

r1
_h

r1
_K

d
r1

0_
h

r1
0_

K
d

r1
1_

h
r1

1_
K

d
r1

2_
h

r1
2_

K
d

r1
3_

h
r1

3_
K

d
r2

_h
r2

_K
d

r3
_h

r3
_K

d
r4

_h
r4

_K
d

r5
_h

r5
_K

d
r6

_h
r6

_K
d

r7
_h

r7
_K

d
r8

_h
r8

_K
d

r9
_h

r9
_K

d
rb

s1
_s

tr
en

gt
h

rb
s2

_s
tr

en
gt

h
rb

s3
_s

tr
en

gt
h

rb
s4

_s
tr

en
gt

h
rb

s5
_s

tr
en

gt
h

rb
s6

_s
tr

en
gt

h
rb

s7
_s

tr
en

gt
h

rb
s8

_s
tr

en
gt

h
rb

s9
_s

tr
en

gt
h

V
al

ue

p3 p5 p8

20

40

60

80

100

10 20 30 40 10 20 30 40 10 20 30 40
Time

V
al

ue

Figure 5: Comparison of parameter variability and time course trajectory variability. This is a
sample from the posterior distribution after spending all the credits in the challenge. The top
of the figure shows parameter values on log scale, while the bottom shows prediction of protein
time courses for an unseen experiment. The range of some parameter values is very wide while
all these very different values lead to very similar protein time course predictions.

that considers uncertainty about each protein independently. At this point, we purchase protein
3 and 8 time courses for gene 7 deletion experiment and highlight in red in Figure 4 the profiles
of proteins 3 and 8 obtained from the system.

In addition to parameter estimation, one may be interested in the ability of the model with
the inferred parameters to correctly simulate time series under different experimental conditions.
Figure 5 represents a sample from the posterior distribution after all credits have been spent.
In addition, the corresponding trajectories for the unseen experiment described in Annex A are
shown. Both parameter values and protein time course for the unseen experiment are presented
. Some parameters, like p degradation rate or pro3 srenght, clearly concentrate around a
single value while others, like pro1 strength or pro2 strength, have very wide ranges with
multiple accumulation points. Despite this variability in parameter values, the protein time
course trajectories are very similar. It appears that protein 5 time course is less concentrated
than the two others. This is due to the hetroscedasticity of the noise model which was reflected
in the likelihood. Indeed, the noise model is Gaussian with standard deviation increasing with
the value of the corresponding concentration. Higher concentrations are harder to estimate due
to larger noise standard deviation.
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4 Discussion

Computational systems biology increasingly relies on the heavy use of computational resources
to improve the understanding of the complexity underlying cell biology. A widespread approach
in computational systems biology is to specify a dynamical model of the biological process under
investigation based on biochemical knowledge, and consider that the real system follows the same
dynamics for some kinetic parameter values. Recent reports suggest that this has benefits in
practical applications (e.g. [26]). Systematic implementations of the approach requires to deal
with the fact that most kinetic parameters are often unknown, raising the issue of estimating
these parameters from experimental data as efficiently as possible. An obvious sanity check
is to recover kinetic parameters from synthetic data where dynamic and noise model are well
specified, which is already quite a challenge.

In this paper we proposed a new general Bayesian OED strategy, and illustrated its relevance
on an in silico biological network. The method takes advantage of the Bayesian framework to
sequentially choose experiments to be performed, in order to estimate these parameters subject
to cost constraints. The method relies on a single numerical criterion and does not depend on a
specific instance of this problem. This is in our opinion a key point in order to reproducibly be
able to deal with large scale networks of size comparable to of a cell for example. Experimental
results suggest that the strategy has the potential to support experimental design in systems
biology.

As noted by others [8, 11, 4, 23, 38], the approach focusing on kinetic parameter estimation is
questionable. We also give empirical evidence that very different parameter values can produce
very similar dynamical behaviors, potentially leading to non-identifiability issues. Moreover,
focusing on parameter estimation supposes that the dynamical model represents the true un-
derlying chemical process. In some cases, this might simply be false. For example, hypotheses
underlying the law of mass action are not satisfied in the gene transcription process. However,
simplified models might still be good proxies to characterize dynamical behaviors we are in-
terested in. The real problem of interest is often to reproduce the dynamics of a system in
terms of observable quantities, and to predict the system behavior for unseen manipulations.
Parameters can be treated as latent variables which impact the dynamics of the system but
cannot be observed. In this framework, the Bayesian formalism described here is well suited to
tackle the problem of experimental design.

The natural continuity of this work is to adapt the method to treat larger problems. This
raises computational issues and requires to develop numerical methods that scale well with
the size of the problem. The main bottlenecks are the cost of simulating large dynamical
systems, and the need for large sample size in higher dimension for accurate posterior estimation.
Posterior estimation in high dimensions is known to be hard and is an active subject of research.
We compared two sampling strategies for a toy problem with 3 genes, and observed important
differences in performance between them. In particular, we observed that the common approach
which uses a single parameter estimate and measures dispersion of the likelihood around it
does not lead to consistently reproducible results. Although our Bayesian OED criterion is
independent of the model investigated, it is likely that a good sampling strategy to implement
may benefit from specific tuning in order to perform well on specific problem instances. As for
reducing the computational burden of simulating large dynamical systems, promising research
directions are parameter estimation methods that do not involve dynamical system simulation
such as [12] or differential equation simulation methods that take into account both parameter
uncertainty and numerical uncertainty such as the probabilistic integrator of [16].
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6 Data and source code

R packaged data and code to reproduce the simulation on the small network is available at
http://cbio.ensmp.fr/~epauwels/bed.1.0.tar.gz
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Annex A: DREAM7 network description

Kinetics

The complete network description and implementations of integrators to simulate its dynamics
are available from [3]. The dynamical equations governing the evolution of time concentration
are as follows, where the names of the different variables are represented in Figure 2.

[as1] =

(

[p1]
r1Kd

)r1h

1 +
(

[p1]
r1Kd

)r1h

[as2] =

(

[p1]
r2Kd

)r2h

1 +
(

[p1]
r2Kd

)r2h

[as3] =

(

[p4]
r5Kd

)r5h

1 +
(

[p4]
r5Kd

)r5h

[as5] =

(

[p8]
r13Kd

)r13h

1 +
(

[p8]
r13Kd

)r13h

[as6] =

(

[p9]
r9Kd

)r9h

1 +
(

[p9]
r9Kd

)r9h

[as7] =

(

[p6]
r12Kd

)r12h

1 +
(

[p6]
r12Kd

)r12h

[as9] =

(

[p6]
r11Kd

)r11h

1 +
(

[p6]
r11Kd

)r11h

[rs1a] =
1

1 +
(

[p2]
r4Kd

)r4h

[rs1b] =
1

1 +
(

[p6]
r8Kd

)r8h

[rs2] =
1

1 +
(

[p3]
r3Kd

)r3h

[rs3] =
1

1 +
(

[p5]
r7Kd

)r7h

[rs7] =
1

1 +
(

[p7]
r6Kd

)r6h

[rs8] =
1

1 +
(

[p9]
r10Kd

)r10h

[g1] = [as1] · [rs1a] · [rs1b]

[g2] = [as2] · [rs2]

[g3] = [as3] · [rs3]

[g4] = [as4] · [rs4]

[g5] = [as5]

[g6] = 1

[g7] = [as7] · [rs7]
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[g8] = [rs8]

[g9] = [as9]

d ([p1])

dt
= rbs1strength · [v1mrna]− p1degradationRate · [p1]

d ([p1])

dt
= rbs1strength · [v1mrna]− p1degradationRate · [p1]

d ([p2])

dt
= rbs2strength · [v2mrna]− p2degradationRate · [p2]

d ([p3])

dt
= rbs3strength · [v3mrna]− p3degradationRate · [p3]

d ([p4])

dt
= rbs4strength · [v4mrna]− p4degradationRate · [p4]

d ([p5])

dt
= rbs5strength · [v5mrna]− p5degradationRate · [p5]

d ([p6])

dt
= rbs6strength · [v6mrna]− p6degradationRate · [p6]

d ([p7])

dt
= rbs8strength · [v7mrna]− p7degradationRate · [p7]

d ([p8])

dt
= rbs7strength · [v8mrna]− p8degradationRate · [p8]

d ([p9])

dt
= rbs9strength · [v9mrna]− p9degradationRate · [p9]

d ([v1mrna])

dt
= pro1strength · [g1]− v1mrnaDegradationRate · [v1mrna]

d ([v2mrna])

dt
= pro2strength · [g2]− v2mrnaDegradationRate · [v2mrna]

d ([v3mrna])

dt
= pro3strength · [g3]− v3mrnaDegradationRate · [v3mrna]

d ([v4mrna])

dt
= pro4strength · [g4]− v4mrnaDegradationRate · [v4mrna]

d ([v5mrna])

dt
= pro5strength · [g5]− v5mrnaDegradationRate · [v5mrna]

d ([v6mrna])

dt
= pro6strength · [g6]− v6mrnaDegradationRate · [v6mrna]

d ([v7mrna])

dt
= pro7strength · [g9]− v7mrnaDegradationRate · [v7mrna]

d ([v8mrna])

dt
= pro9strength · [g7]− v8mrnaDegradationRate · [v8mrna]

d ([v9mrna])

dt
= pro8strength · [g8]− v9mrnaDegradationRate · [v9mrna]

With kinetic variables

[p1], [p2], [p3], [p4], [p5], [p6], [p7], [p8], [p9]

[v1mrna], [v2mrna], [v3mrna], [v4mrna], [v5mrna], [v6mrna], [v7mrna], [v8mrna], [v9mrna],

And kinetic parameters
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v1mrnaDegradationRate

v2mrnaDegradationRate

v7mrnaDegradationRate

v6mrnaDegradationRate

v5mrnaDegradationRate

v6mrnaDegradationRate

v7mrnaDegradationRate

v8mrnaDegradationRate

v9mrnaDegradationRate

p1degradationRate

p2degradationRate

p3degradationRate

p4degradationRate

p5degradationRate

p6degradationRate

p7degradationRate

p9degradationRate

p8degradationRate

pro1strength

pro2strength

pro3strength

pro4strength

pro5strength

pro6strength

pro7strength

pro8strength

pro9strength

rbs1strength

rbs2strength

rbs3strength

rbs4strength

rbs5strength

rbs6strength

rbs7strength

rbs8strength

rbs9strength

r1Kd, r1h

r2Kd, r2h

r3Kd, r3h

r4Kd, r4h

r5Kd, r5h

r6Kd, r6h

r7Kd, r6h

r8Kd, r7h

r9Kd, r9h

r10Kd, r10h

r11Kd, r11h

r12Kd, r12h

r13Kd, r13h

Among them, we suppose that we have

v1mrnaDegradationRate = v2mrnaDegradationRate = v3mrnaDegradationRate

=v4mrnaDegradationRate = v5mrnaDegradationRate = v6mrnaDegradationRate

=v7mrnaDegradationRate = v8mrnaDegradationRate = v9mrnaDegradationRate

=1,

and

p1degradationRate = p2degradationRate = p3degradationRate

=p4degradationRate = p5degradationRate = p6degradationRate

=p7degradationRate = p8degradationRate = p9degradationRate.

This makes a total of 45 parameters governing the behaviour of 18 kinetic variables.

Description of the experimental cost and challege experimental plan
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Perturbation Cost

Wildtype 0
(no perturbation)

Gene knockdown 350
(mrna degradation rate ×10)

Decrease ribosomal activity 450
(ribosomal strength /10)

Delete gene 800
(mrna and protein concentration = 0)

Concentration to observe Cost

Two proteins 300
(Resolution: 0.5s)

All mrna 500
(Resolution: 4s)

All mrna 1000
(Resolution: 2s)

Table 2: Description of the cost. Each participant begins with a 10000 initial credit budget. The
cost of each experiment was the sum of the costs of the corresponding molecular perturbation
and quantity to observe. Molecular perturbations could be performed on any of the genes.

Perturbation Observation

Wildtype mrna low resolution (free)

Wildtype pairwise protein time course for all proteins

Delete gene 7 Protein 3 and 8

Decrease ribosomal strength gene 9 All mrna at high resolution

Knockdown gene 7 Protein 8 and 9

Knockdown gene 6 Protein 3 and 8

Knockdown gene 4 Protein 3 and 7

Decrease ribowomal strength gene 6 All mrna at high resolution

Delete gene 9 Protein 2 and 3

Table 3: Successive experiments performed during the challenge.

Perturbation Observation

Divide r9Kd by 10 Proteins 3, 5 and 8
Multiply rbs3strength by 2 0.5s time resolution
Multiply rbs3strength by 10 from t = 0 to t = 20

Table 4: Unseen experiment.
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