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dynamic poroelasticity, in the case of homogeneous straight beams made of isotropic material. The compression and
bending beam parameters are rigorously derived. They can either be computed, estimated under simplifying assumption
or even formulated analytically for beam of circular section. The procedure enables to specify clearly the different regimes
of behavior, according to the mechanical parameters of the porous material, the compressibility of the saturating fluid, the
nature of the flow boundary conditions on the beam periphery, the frequency range of oscillations and the viscous or
visco-inertial character of the fluid flow at the pore level.

The paper is organized as follows. Section 2 briefly recalls the description of saturated poroelastic materials and
introduces the poroelastic beam problem. Section 3 is devoted to the physical analysis of the equilibrium of slender
poroelastic bodies, when the inner flow regime is dominated by viscosity. In Section 4, the poroelastic beam behavior is
derived through the asymptotic expansion method. The results are discussed in Section 5 and illustrated in Section 6
where an exact poroelastic description is given for beams of flat and of circular section. The situation of visco-inertial flow
is addressed in Section 7.

2. Setting of the poroelastic beam problem

2.1. Governing equations of the poroelastic material

The pore sizes of the medium are assumed to be much smaller than the dimension h of the beam section and the
viscosity of the saturating fluid is low enough to allow fluid displacement relatively to the solid. This enables to adopt the
phenomenological Biot (1956) description (see also Coussy, 2004) in the form derived by homogenization (Sanchez-
Palencia, 1980; Auriault, 1980) (see also Auriault et al., 2009). Thus, considering isotropic poroelastic materials the
behavior of the saturated porous material is governed by the following set ( _ stands for time derivative, and n for time
convolution):

divðS Þ ¼ ð1�fÞrs
€uþfrf

€u f ð1Þ

S ¼ s�apI , s ¼ l divðuÞIþ2me ðuÞ ð2Þ

f divð _u f� _u Þ ¼�a divð _u Þ�
_p

M
, ð3Þ

fð _u f� _u Þ ¼�
KðtÞ
Z n½rf

€uþgradðpÞ�: ð4Þ

These equations express the dynamic equilibrium (1), the conservation of fluid mass (3), the poroelastic constitutive law
(2) and the dynamic Darcy’s law (4) with the following notations:

� f is the porosity, rs, rf and rm ¼ ð1�fÞrsþfrf are the densities of the materials forming the porous skeleton, the
saturating fluid and the saturated porous medium.
� a¼ 1�Kb=Ks is Biot’s coefficient (frar1);

1

M
¼
a�f

Ks
þ

f
K f

is Biot’s bulk modulus. In these expressions, Ks, Kb and K f are respectively the bulk moduli of the material forming the
porous media, of the empty (or drained) porous media and of the fluid.
� l and m stand for the Lamé coefficients of the dry porous media, E¼ 2mð1þnÞ for its Young modulus and n¼ l=2ðlþmÞ

for the Poisson ratio ðlþ2m¼ 2ð1�nÞðlþmÞÞ. We will also use the ‘‘consolidation’’ modulus Ac defined by

1

Ac
¼

1

M
þ

a2

lþ2m

and the modulus A defined by

1

A
¼

1

M
þ

a2

lþm
:

� u and uf are the solid and fluid displacements (i.e. the mean displacement over the volume of the pores). The Darcy
velocity is fð _u f� _u Þ.
� e ðuÞ is the strain tensor; S, s and p represent respectively the tensor of total stress of effective stress (i.e. mean stress in

the solid skeleton) and the interstitial pressure.
� Z is the fluid viscosity and KðtÞ is the impulse flux response or the memory permeability function (in units of m 2). Its

Fourier transform KðoÞ defines the dynamic permeability.
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Under harmonic oscillations regime of frequency f ¼o=2p, the above governing equations take the form (by linearity of
the problem we can ignore the time-dependent term eiot in all the equations):

divðS Þ ¼�o2½ð1�fÞrsuþfrf uf �, ð5Þ

S ¼ s�apI , s ¼ l divðuÞIþ2me ðuÞ, ð6Þ

f divðuf�uÞ ¼�a divðuÞ�
p

M
, ð7Þ

iofðuf�uÞ ¼
KðoÞ
Z ½o2rf u�gradðpÞ�: ð8Þ

Following Auriault et al. (1985), at low frequencies (o-0) viscous effects dominate and KðoÞ-Kð0Þ ¼K, where K is the
intrinsic permeability that is of the order of the square of the typical size of the pores; at high frequencies (o-1) inertia
dominates: iorfKðoÞ=Z-f=t1, this leads to an ‘‘additional mass’’ effect quantified by the tortuosity t1Z1.

The transition from low to high-frequency occurs around the characteristic frequency f c ¼oc=2p where the viscous
terms, estimated by the low-frequency approximation, are of the same order as the inertial terms, using the high-
frequency approximation; hence:

oc ¼
fZ

Kð0Þrft1
¼

fZ
Krft1

A simple analytical form respecting the asymptotic features of KðoÞ has been proposed by Johnson et al. (1987);
expressions are also available for packing of spheres and polyhedrons (Boutin and Geindreau, 2010).

2.2. The (u,p) poroelastic formulation

The set (5)–(8) links the total stress and the interstitial pressure to the fields of the solid and fluid displacements.
However, the solid motion u and the pressure p are enough to describe the porous medium. The so-called (u,p) poroelastic
formulation is derived by eliminating uf and S in (5)–(8). This provides four scalar conservation equations (three in force,
one in mass) describing the porous medium with the four independent scalar variables fui,pg:

ðlþmÞgradðdivðuÞÞþmDðuÞ� a� iorfK

Z

� �
gradðpÞ ¼ �o2 rmþ

iorfK

Z rf

� �
u ð9Þ

div
K

ioZ gradðpÞ

� �
� a� iorfK

Z

� �
divðuÞ ¼

p

M
ð10Þ

Eq. (9) is similar to an elasto-dynamic equation with a coupling term of pressure gradient, and Eq. (10) is similar to a
transient diffusion equation of pressure with a coupling term of solid volume variation. Note the symmetry of the (u,p)
coupling.

In quasi-statics, the inertia induced by the whole motion is negligible, i.e. �o2rmu-0, and the pores scale flow is
dominated by viscosity regime, hence the pores scale flow inertia vanishes, i.e. iorfK=Z-0, or o=oc 51. This leads to the
usual quasi-static version of (9)–(10) where only elastic and viscous effects are taken into account:

divðS Þ ¼ ðlþmÞgradðdivðuÞÞþmDðuÞ�a gradðpÞ ¼ 0 ð11Þ

div
K

ioZ gradðpÞ

� �
�a divðuÞ ¼

p

M
ð12Þ

The derivation of the poroelastic beam behavior will be performed in this framework, using (11)–(12). However, in some
cases, the frequency range of both inertia effects may significantly differ, and visco-inertial flow can arise at the pore scale,
i.e. iorfK=Z¼ Oð1Þ, while the whole motion inertia remains negligible, i.e. o2rmu-0. This particular situation of visco-
inertial flow regime is treated in Section 7.

2.3. Poroelastic boundary conditions

The conditions at the boundary of a poroelastic medium can be the continuity of solid displacement, of flux, of total
stress and of pressure (all conditions can be expressed in terms of (u,p) variables through the poroelastic constitutive law,
and the dynamic Darcy law).

For rods unloaded on their current section (Fig. 1), with a perfectly pervious surface G (of normal n), the boundary
conditions read

S � n ¼ ½l divðuÞIþ2me ðuÞ� � n�apn ¼ 0 ð13Þ

p¼ 0 ð14Þ
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while, in case of perfectly impervious surface, we have instead of (14):

fioðuf�uÞ � n ¼
KðoÞ
Z
½o2rf u�gradðpÞ� � n ¼ 0

For more generality the perfectly pervious or impervious condition, can be replaced by a leakage boundary condition:
assuming the porous beam surface covered by a thin layer of thickness e and permeability k, the pressure drop from the
beam (p) to the external surface (p¼0) is related to the normal flux by v¼�ðk=ZÞðp=eÞ. From the flux continuity and
denoting kh=Ke¼ x (h is the characteristic size of the beam section) we obtain the following leakage condition:

x
h

p¼fioðuf�uÞ � n
Z

KðoÞ
i:e: in quasi� statics :

x
h

p¼�gradðpÞ � n ð15Þ

The dimensionless surface leakage coefficient x enables to treat boundaries neither perfectly pervious, that would
correspond to x¼1, nor perfectly impervious, x¼ 0.

Remark. Other type of condition could also be introduced, for instance when a thin elastic film is coated on the surface.
The film behaves as a deformable membrane fixed on the porous matrix. Hence, the fluid crossing the pores section
fðuf�uÞ � n induces a proportional tension in the membrane, that is balanced by the effective stress on the matrix, i.e.
fðuf�uÞ � n � n:s � n ¼ ap (since the total stress vanishes). Thus, in this configuration the boundary condition would read
in quasi-statics, where k is proportional to the membrane rigidity:

ap¼�
k
h

K
ioZ

gradðpÞ � n

This condition tends to impervious boundary at sufficiently low frequency, and to free flow at sufficiently large frequency.

2.4. Balance equations of forces and momentum in poroelastic beams

A rod is characterized by the fact that the axial dimension L is significantly larger than the typical dimension h of the
sectionS (Fig. 1). A direct consequence of this slender geometry is the specificity of the axial direction. This leads to split
any tensor A ¼ Aijðei � ejþej � eiÞ=2 (A ¼S for total stress; A ¼ s for effective stress; A ¼ e for strain) into reduced tensors
(here and in the sequel a1 denotes the axial direction, aa the directions in the plane of the section; Greek and Latin indices
respectively run from 2 to 3, and 1 to 3):

A ¼ Ana1 � a1þðAt � a1þa1 � AtÞ=2þA
s

ð16Þ

where An ¼ A11 is the scalar axial stress or strain, At ¼ A1aaa is the vector of the stress or strain exerted out of the plane of the
section, A

s
¼ Aabðaa � ebþeb � aaÞ=2 is the second rank tensor of the stress or strain in the plane of the section.

With these notations the balance equation (11) and the boundary conditions (13) may be split into the following axial
and in-plane balance (,x1

, divxa , ystands respectively for the derivative according to x1, for the in-plane divergence, y):

Sn,x1
þdivxa ðstÞ ¼ 0 in S ð17Þ

st � n ¼ 0 on G ð18Þ

st,x1
þdivxa

ðS
s
Þ ¼ 0 in S ð19Þ

S
s
� n ¼ 0 on G ð20Þ

Fig. 1. Beam made of poroelastic material.
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The balance equations of global forces acting on the section are derived by integrating (17) and (19) over S. The divergence
theorem and boundary conditions (18)–(20) yield:Z

S
divxa ðstÞ ds¼

Z
G
st � n dg¼ 0 and

Z
S

divxa
ðS

s
Þ ds¼

Z
G
S

s
� n dg¼ 0

Thus, inverting xa-integration and x1-derivate provides the following balance equations over the section (valid when the
beam is free of any surface and volume loading):

along a1 :
@

@x1

Z
S
Sn ds

� �
¼ 0, along e2,e3 :

@

@x1

Z
S
st ds

� �
¼ 0

Three global momentum equilibrium equations are also established considering separately the axial and in-plane
directions. First, multiply (17) by xa and integrate over S:Z

S
xaSn,x1

dsþ

Z
S

xa divxa ðstÞ ds¼ 0

Integrating the second integral by part and applying the divergence theorem yields:Z
S

divxa ðxastÞ ds�

Z
S
st � aa ds¼

Z
G

xaðst � nÞ dg�
Z

S
st � aa ds

and the integral over G vanishes because of the free boundary condition (18). Finally, inverting xa-integration and x1-
derivate leads to the two momentum of momentum balance equations:

along aa :
@

@x1

Z
S

xaSn ds

� �
�

Z
S
st � aa ds¼ 0

The global momentum of momentum balance in direction a1 is established by taking the vectorial product of (26) by the
position vector x ¼ xa � aa and integrating over the section:Z

S
x � st,x1

dsþe�1

Z
S

x � divxa
ðS

s
Þ ds¼ 0

The second integral reads (E is the third rank tensor expressing the vectorial product):

a1

Z
S
E1abxaSbg,yg ds

� �
¼ a1

Z
S
E1abxasbg,xg ds

� �
Integrating by part, then using the divergence theorem and the symmetry of S , and finally the free boundary condition
(20), show that this term vanishes:Z

S
E1abxasbg,xg ds¼

Z
G

x � ðs
s
� nÞ dG¼ 0

Consequently, along a1:

@

@x1

Z
S

x � st ds

� �
¼ 0

To sum up, denoting by Na1 and T ¼ Taaa the normal and shear forces, and by M ¼Maaa and M1a1 the bending and torsion
momentum respectively the balance equations of beams free of surface and volume loading are

along a1 :
@N

@x1
¼ 0, N¼

Z
S
Sn ds,

@M1

@x1
¼ 0, M1 ¼ a1 �

Z
S

x � st ds

along aa :
@M

@x1
�T ¼ 0, M ¼

Z
S

xSn ds,
@T

@x1
¼ 0, T ¼

Z
S
st ds

Remark. A similar treatment could be applied to the mass balance. However, this is unnecessary since we will show that
the pressure in the beam is not an independent variable, but a variable driven by the solid motions.

To go further, it is necessary to relate the forces and momentum to the solid motion (and the pressure). This is achieved
in the following sections by means of scaling and asymptotic expansions. We will establish the following constitutive
poroelastic beam laws that constitute the main result of the paper (see Section 4 for notations):

N¼cES
@U1

@x1
, cES ¼ E9S9�½ð1�2nÞa�2A

Z
S
z dS

Ma ¼�cEIa
@2Ua

@x2
1

, cEIa ¼ EIaþ½ð1�2nÞa�2A

Z
S

xac
a dS

M1 ¼ mIt
@O
@x1

C. Boutin / J. Mech. Phys. Solids 60 (2012) 1063–1087 1067



Author's personal copy

3. Scaling of the physics of poroelastic rod

The purpose of this section is to express mathematically the consequences of the slender geometry, and to specify the
physics through a scaling process. This is addressed considering homogeneous straight beams made of isotropic
poroelastic material and assuming the current beam section free of surface and volume forces. This formulation enables
the development of the asymptotic method presented in Section 4, that leads to the complete beam description under
quasi-static or dynamic loading.

3.1. Usual and scaled variables

The inverse of the slenderness naturally defines the small parameter e¼ h=L51, used in the expansions. Moreover, the
dimensionless spaces variables reflecting the characteristic sizes along a1 and aa are ðx1=L,x2=h,x3=hÞ (see Fig. 1).
Equivalently, ðx1,y2,y3Þ, where ya ¼ ðL=hÞxa ¼ e�1xa are the appropriate physical space variables. The usual gradient
r ¼ @xi

ei – that applies on jðxÞ – becomes for the same quantity j expressed with ðx1,yaÞ:

rj¼ ð@x1
a1þe�1@yaaaÞjðx1,yÞ

Similarly, the integrals are modified as (ds¼ dy2 dy3; dg¼ dyG):Z
S
jðxÞ dS¼ e2

Z
S
jðx1,yÞ ds,

Z
G
jðxÞdG¼ e

Z
G
jðx1,yÞ dg

and we will use the following notations:

9S9¼
Z

S
dx2 dx3, 9S09¼

Z
S

dy2 dy3 ¼ e�29S9, Ia ¼

Z
S

x2
a dx2 dx3, I0a ¼

Z
S

y2
a dy2 dy3 ¼ e�4Ia

In the sequel the problems are formulated in the main y-frame, i.e. the frame originated at the center of ‘‘mass’’ of section S

and orientated along its principal axis of inertia. Thus:Z
S

ya ds¼ 0,

Z
S

yayb ds¼ 0 for aab

Sections that present two orthogonal axis of symmetry will be referred as bi-symmetric. Finally, descriptions will be
designated as scaled when based on variables ðx1,yaÞ, and as usual when using variables ðx1,xaÞ (i.e. same length units in the
three directions, as in usual practice).

3.2. Beam kinematics and reduced tensors

Two facts constrain the beam kinematics: first, the geometry of straight, homogeneous, unloaded beam suggests that
the phenomena vary along the axis according to L and within the section according to h; second, the absence of tangential
forces on the contour G. Hence, denoting the normal of the straight beam boundary G by n ¼ na � aa, one has

ðS � nÞ � a1 ¼ ðs � nÞ � a1 ¼ s1ana ¼ 0 on G where s1a ¼ mðu1,xaþua,x1
Þ

Since u1,xa ¼Oðu1=hÞ and ua,x1
¼ Oðua=LÞ, the vanishing of s1a on G requires

O
u1

h

� �
¼O

ua

L

� �
i:e: Oðu1Þ ¼ eOðuaÞ

Thus, the normal motions associated to transverse motions are of one order inferior. Consequently, the motions are
expressed in the following rescaled form:

u ¼ eu1a1þuaaa with Oðu1Þ ¼OðuaÞ ð21Þ

Considering motions on the form (21), the reduced strain tensors (16) are of different order:

en ¼ eu1,x1
, et ¼ ½ðu1,yaþua,x1

Þ=2�aa, e
s
¼ e�1½ðua,ybþub,ya Þ=2�ðaa � abþab � aaÞ ð22Þ

and the effective stress tensor reads (where I
s
¼ e2 � e2þe3 � e3Þ:

sn ¼ 2menþlðtrðe s
ÞþenÞ, st ¼ 2met, s

s
¼ 2me

s
þlðtrðe

s
ÞþenÞI s

ð23Þ

Consequently, st is of zero order while sn and s
s

contain terms of order e�1 and e. Finally, the effect of pressure p is
significant when its magnitude is of the order of the isotropic part of the elastic stress sn and s

s
.
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3.3. Rescaled balance equations

Recall that, in this section, the current beam section is free of surface and volume forces. As for the physics in the
poroelastic media, the following situation is addressed (other situations are discussed in Section 5):

� The compressibility of both fluid and solid are assumed to be of the same order: Kf ¼OðKbÞ.
� The fluid flow in the pores is dominated by the viscous effects. This means that K¼Kð1þOðeÞÞ, which implies a low

frequency range, namely o=oc ¼OðeÞ, and vanishing inertial flow effect, i.e. iorfK=Z¼OðeÞ. According to the
asymptotic approach, and focusing on the leading order only, the OðeÞ inertia terms are disregarded.
� The fluid transfer trough permeability is balanced by both solid and fluid volume variations at the scale of the beam

section. This means that:

O
p

M

� �
¼
K

ioZ
O

p

h2

� �
¼ e2 K

ioZ
OðDxðpÞÞ

Hence the permeability has to be rescaled by a factor e2 and the balance equations (11)–(12) with the boundary conditions
are re-expressed in the rescaled form as follows:

ðSi1,x1
þe�1Sia,ya Þai ¼ 0 in S

S � n ¼ 0 on G

e2K
ioZ
ðe�2DyðpÞþp,x1x1

Þ�
p

M
�aðe�1ua,yaþu1,x1

Þ ¼ 0 in S

x
h
� pþgradðpÞ � n ¼ 0 on G

Conveniently, these equations are split into:

� The axial equilibrium of the section. It expresses the balance of the stress vector st under homogeneous boundary
conditions; the axial gradient of the effective normal stress Sn ¼ sn�ap acts as a forcing term:

Sn,x1
þe�1 divyðstÞ ¼ 0 in S ð24Þ

st � n ¼ 0 on G ð25Þ

� The in-plane equilibrium of the section. It expresses, (i) the balance of the in-plane total stress tensor S
s

– the axial
gradient of vector st being a forcing term – under homogeneous boundary conditions and (ii) the fluid mass balance –
where p,x1x1

and u1,x1
act as forcing terms – under leakage boundary conditions:

st,x1
þe�1 divyðS s

Þ ¼ 0 in S ð26Þ

S
s
� n ¼ 0 on G ð27Þ

e2K
ioZp,x1

�au1

� �
,x1

þdivy
K

ioZ grad
y
ðpÞ

� �
�e�1a divyðuaaaÞ�p=M¼ 0 in S ð28Þ

x
h
� pþgradðpÞ � n ¼ 0 on G ð29Þ

4. Derivation of beam behavior by asymptotic expansions

The aim is to determine the behavior of slender bodies, i.e. attained at small e. In this view, we seek for the variables in
the form of expansions in power of e. These latter must respect the beam kinematics (21), i.e. u ¼ eu1a1þuaaa. As a
consequence, a condensed form of the expansions can be specified in advance. Indeed, using the reduced strain tensors
(22) to express the reduced stress tensors (23) and inserting them into the balance and boundary equations (24)–(29) yield
to scaled problems expressed in function of u1, ua and p (of the same order than sn). The balance equations and boundary
condition contain either terms in odd power of e (axial balance, mass balance, in-plane boundary condition) or terms in
even power of e (in-plane balance, axial boundary condition). Since the terms of the equations ‘‘jump’’ from a factor e2, it is
sufficient to expand ui in even powers of e and p in odd power of e. Thus, the appropriate expansion reads

u ¼
X
i ¼ 0

e2i½u2i
a aaþeðu2iþ1

1 a1Þ�, ua ¼
X
i ¼ 0

e2iu2i
a , u1 ¼

X
i ¼ 0

e2iu2iþ1
1 , p¼ e

X
i ¼ �1

e2ip2iþ1 ð30Þ

C. Boutin / J. Mech. Phys. Solids 60 (2012) 1063–1087 1069
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Consequently, the axial (n) and in plane (s) – respectively out of plane (t) – reduced strain and stress tensors (22), (23) are
expanded in odd – respectively even – powers of e:

e
s
¼ e

X
i ¼ �1

e2ie 2i

s
, et ¼

X
i ¼ 0

e2ie2i
t , en ¼ e

X
i ¼ 0

e2ie2iþ1
n

s
s
¼ e

X
i ¼ �1

e2is2i

s
, st ¼

X
i ¼ 0

e2is2i
t , sn ¼ e

X
i ¼ �1

e2is2iþ1
n

Note that this type of expansions is usual when dealing with slender structures, see for instance Trabucho and Viano
(1996) and Boutin and Soubestre (2011).

4.1. Asymptotic solution

The asymptotic solution is derived by introducing expansions (30) in (24)–(29). Separating the terms of different order
leads to a series of problems to be solved successively. The comprehensive resolution require five steps developed here.
The two first steps demonstrate the validity of the Euler–Bernoulli kinematic for poroelastic beams. The third step provides
the stress–strain state in the section, and necessitates the resolution of in-plane pressure diffusion problems. The
poroelastic constitutive laws and the balance equations at the leading order are derived from the two next steps.

4.1.1. The first problem: uniform section translation

Eqs. ð26e�2 Þ, ð27e�1 Þ, ð28e�2 Þ, and ð29e�1 Þ govern the in-plane motion u0 ¼ u0
aaa and the pressure p�1.

divyðS�1

s
Þ ¼ 0 in S

S�1

s
� n ¼ 0 on G

divy
K

ioZ
grad

y
ðp�1Þ

� �
�

p�1

M
¼ 0 in S

x
h
:p�1þgradðp�1Þ � n ¼ 0 on G

This is a problem of plane poroelasticity without any loading (neither in S nor on G). Therefore, u0 is a rigid motion of the
section in its plane, i.e. a translation U0 and a rotation O�1a1, and the pressure vanishes:

u0 ¼ u0
aaa, u0

a ¼ U0
aðx1ÞþO

�1
½a1 � y�a, p�1 ¼ 0

Moreover, e
sy
ðu0Þ ¼ 0, then ss

�1 ¼ 0 and s�1
n ¼ l divyðu0Þ ¼ 0. Thus:

e�1 ¼ 0 , S�1
¼ s�1 ¼ 0

The translation U0 and the rotation O�1 (of order �1 to respect the scaling of the zero order displacement O�1h¼Oð1Þ) are
two independent kinematics that may be treated separately. They arise at the same order because the assumption of zero
order transverse motion does not distinguish translation and rotation. Nevertheless, their relative order of magnitude may
differ physically. Without restricting the generality of the further developments, we will consider that the rotation is of
lesser order than the translation, i.e. O�1

¼ 0, and leave the treatment of the section rotation for superior orders.

4.1.2. The second problem: Euler–Bernoulli kinematics

Eqs. ð24e�1 Þ and ð25e0 Þ deal with the axial motion u1
1 and the axial balance of s0

t . Taking into account the fact that
S�1

n ¼ 0, we have

divyðs0
t Þ ¼ 0 in S, s0

t ¼ mðu
1
1,ya
þU0

a,x1
Þaa

s0
t � n ¼ 0 on G

This is a shear elastic problem, with U0
a,x1

as forcing term and with free boundary. It admits the following solution:

u1 ¼ u1
1a1 with u1

1 ¼�y � U0
,x1
þU1

1ðx1Þ

e0
t ¼ 0, s0

t ¼ 0, hence e 0 ¼ 0, S 0
¼ s0 ¼ 0

This shows that at the leading order, the out of plane motion of the section consists in the usual kinematics of the Euler–
Bernoulli beam. Despite the fact that the relative magnitude of (i) the rigid out of plane rotation (of vector U 0

,x1
� a1) and

(ii) the uniform vertical translation U1
1a1 may physically differ, it is convenient to treat them conjointly.
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4.1.3. The third problem: poroelastic stress-strain state

Eqs. ð24e0 Þ,ð27eÞ,ð28e0 Þ,and ð29eÞ concern the in-plane field u2 and the pressure p1. Using the previous results, the
problem takes the form herebelow. Note that the forces and volume balances undergo the same forcing term u1

1,x1
which

cumulates the bending forcing �y � U0
,x1x1

and the compression forcing U1
1,x1

:

S1

s
¼ 2me

sy
ðu2Þþl½divyðu

2Þþu1
1,x1
�I

s
�ap1I

s
, divyðS

1

s
Þ ¼ 0 in S

S1

s
� n ¼ 0 on G

divy
K

ioZ grad
y
ðp1Þ

� �
�

p1

M
�a½divyðu

2Þþu1
1,x1
� ¼ 0 in S

x
h
:pþgradðpÞ � n ¼ 0 on G

The solution (u2, p1) of this plane poroelastic problem is decomposed into the elastic solution (ue) that prevails when the
material is purely elastic (drained state) and a poroelastic contribution (bu 2

, p1), i.e. (u2, p1)¼(ue, 0) þ (bu 2
, p1). The details

of the resolution are given in Appendix. The poroelastic contribution involves specific solutions, denoted (c , z) for
compression, and (ba, ca) for bending in direction aa. The complete solution yields to the following strain, effective and
total stress tensors at the first order:

e 1 ¼ ½a1 � a1�nI
s
�½�ya � U

0
a,x1x1
þU1

1,x1x1
�þð1�2nÞa A

lþm ½e s
ðba
ÞU0

a,x1x1
þe

s
ðcÞU1

1,x1
�

s1 ¼ E½�ya � U
0
a,x1x1
þU1

1,x1x1
�a1 � a1þð1�2nÞa A

lþm flfdivyðb
a
ÞU0

a,x1x1
þdivyðcÞU

1
1,x1
ÞgIþ2mfe

s
ðba
ÞU0

a,x1x1
þe

s
ðcÞU1

1,x1
gg

S1
¼ s1�ð1�2nÞa2A½caU0

a,x1x1
þzU1

1,x1
�I ð31Þ

The poroelastic strain and effective stress states at the leading order do not follow the form that prevails in elastic beams.
Nevertheless, using identities (62), the mean total stress tensor reduces to an axial component as in elastic beams:Z

S
S1 ds¼ ½a1 � a1�

Z
S
S1

n ds;

Z
S

yaS
1 ds¼ ½a1 � a1�

Z
S

yaS
1
n ds

and from (74)–(75), we have:Z
S
S1

n ds¼ ES0U1
1,x1
�½ð1�2nÞa�2A

Z
S
½caU0

a,x1x1
þzU1

1,x1
� ds

Z
S

yaS
1
n ds¼�EI0aU0

a,x1x1
�½ð1�2nÞa�2A

Z
S

ya½c
aU0

a,x1x1
þzU1

1,x1
� ds

Note also that, conversely to the 3D-poroelasticity where the pressure is an independent variable, the pressure in
poroelastic beams is directly related to the solid deformation and becomes a hidden variable. This also applies to the
pressure gradient, and in turn to the Darcy’s velocity, whose leading order components (the axial is of one order smaller
than the in-plane) read

fioðuf�uÞb ¼�ð1�2nÞa½ca
,yb

U0
a,x1x1
þz,yb

U1
1,x1
�
AK
Z ð32Þ

fioðuf�uÞ1 ¼�ð1�2nÞa½caU0
a,x1x1x1

þzU1
1,x1x1
�
AK
Z ð33Þ

Then, from the order of magnitude of the terms, we deduce that

ðuf�uÞi ¼ e2OðUiÞ ð34Þ

4.1.4. The fourth problem: axial and momentum balances

Eqs. ð24eÞand ð25e2 Þ concern the axial balance of s2
t where S1

n,x1
acts as a source term:

S1
n,x1
þdivyðs2

t Þ ¼ 0 in S, s2
t ¼ m½u

3
1,ya
þu2

a,x1
�aa

s2
t � n ¼ 0 on G

The global axial and momentum balance equations of the beam section are established as described in Section 2.4.
Noticing that the y-integral over the section of a quantity of order i multiplied by yj

a is of order iþð2þ jÞ, one obtains
(in absence of body and surface forces):

N3
,x1
¼ 0, N3

¼

Z
S
S1

n ds ð35Þ
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M4
,x1
�T 4
¼ 0, M4

a ¼

Z
S
S1

nya ds ð36Þ

The beam behavioral laws relating the normal force and the transverse momentum to the longitudinal strain and
curvature are deduced from the expression (32) of S1

n
.

In elastic beams, the compression and bending mechanisms are uncoupled when expressed in the main y-frame. In
general, this is no longer true for poroelastic beams, because the y-frame that enables uncoupling depends on the pressure
distribution (hence on the frequency) and does not necessarily coincide with the main y-frame. However, if the section is
bi-symmetric, the pressure fields respect the bi-symmetry, and in this case (see (70)):Z

S
ca ds¼

Z
S

yaz ds¼ 0 ð37Þ

Thus, the compression and bending mechanisms are uncoupled in the main y-frame. Then, using the identities (74)–(75),
the beam constitutive laws expressed in the symmetry axis of the bi-symmetric section simply read

N3
¼ E9S09�½ð1�2nÞa�2A

Z
S
z ds

� �
U1

1,x1
ð38Þ

M4
a ¼� EI0aþ½ð1�2nÞa�2A

Z
S

yac
a ds

� �
U0
a,x1x1

ð39Þ

In addition, the mean and ‘‘moment’’ of the axial Darcy flux are also uncoupled since from (33) and (37):

fio
Z

S
ðuf�uÞ1 ds¼�ð1�2nÞaAK

Z

Z
S
z ds

� �
U1

1,x1x1

fio
Z

S
yaðuf�uÞ1 ds¼�ð1�2nÞaAK

Z

Z
S

yac
a ds

� �
U0
a,x1x1x1

The derivation of u3
1 and s2

t , not necessary at this stage, is given in Appendix.

4.1.5. The fifth problem: transverse and torsion balances

Eqs. ð26e2 Þ and ð27e3 Þ express the in-plane balance of s3
s

in presence of the forcing term s2
t,x1

.

s2
t,x1
þdivyðs3

s
Þ ¼ 0 in S

s3
s
� n ¼ 0 on G

Following Section 2.4, two balance equations are deduced (without body and surface forces):

T 4
,x1
¼ 0, T4

a ¼

Z
S
s2

t � aa ds ð40Þ

M5
1,x1
¼ 0, M5

1 ¼

Z
S
½y � s2

t � � a1 ds¼ mI0tO
1
,x1

ð41Þ

The torsion law relating M5
1 to O1

,x1
valid for bi-symmetric sections is proved in Appendix (I0t is the torsion inertia that

accounts for warping). Notice that, the bi-symmetric poroelastic torsion law coincides with that of purely elastic beams.
Conversely, non bi-symmetric sections may introduce torsion–bending–compression coupling via the poroelastic effects.

To sum up, the leading order description of poroelastic beams with current section free of loading is given by the set
(35), (36), (38)–(41).

4.2. Complete beam description

This section provides the description of poroelastic beams in presence of body and/or contact forces on the current
section. The quasi-static and dynamic descriptions are established in harmonic regime, then expressed in time domain
more convenient for transient loading. For simplicity, we focus on bi-symmetric sections.

4.2.1. Loaded poroelastic beam—quasi-static harmonic regime

Let us examine body forces f ¼ f iai – such that divðS Þ ¼ f – and contact forces g ¼ giai – such that g ¼S � n on G – that
can be applied on the current section while being compatible with the above derived beam description. First, they should
not break the axial/transverse scale separation so that they may be expressed as f ðx1,yaÞ, gðx1,yaÞ. Second, they should be
small enough not to disturb the leading kinematics of the section. This is the case when f and g are of the orders:

f 1 ¼ ef
1
1, g1 ¼ e2g2

1 ; f a ¼ e2f 2
a, ga ¼ e3g3

a
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Indeed, in that case, the problems remain identical up to the fourth one. Only the global equilibrium is modified by f and g

whose averaged values on S and G act as sources. Hence, the balance become:

N3
x1
¼

Z
S

f 1
1 dsþ

Z
G

g2
1 dg

M4
a,x1
�T4

a ¼

Z
S

yaf 1
1 dsþ

Z
G

yag2
1 dg, T4

a,x1
¼

Z
S

f 2
a dsþ

Z
G

g3
a dg

M5
1,x1
¼ a1 �

Z
S

y � f 2 dsþa1 �

Z
G

y � g3 dg

Note that, in the fourth problem, u3
1 is modified by f 1

1 and g2
1. Thus the uncoupling of bending and torsion requires that f 1

1

and g2
1 respect the bi-symmetry of the section.

Smaller magnitudes of f and g lead to the unloaded beam description (at the leading order). Conversely, larger
amplitudes of f or g are incompatible with a beam model: the specific Euler–Bernoulli beam kinematics intrinsically
related to the strain–stress states of compression and bending would be lost. In other words, a 3D kinematics and 3D
strain–stress states at the leading order would be necessary to balance such large amplitude loading.

For practical applications, it is more convenient to express the description in the usual unscaled form. This is obtained
by coming back to the unscaled variables xi with the inverse change of variable xa ¼ eya, by considering the physically

observable quantities eiQ i instead of the scaled quantities Qi, and by expressing the parameters in the system xi (i.e.
practically, with the same units in the section and in the beam axis). Furthermore, there is no constraint on the relative
order of magnitude of the uncoupled, then independent, mechanisms. For this reason, the exponent specifying the order
may be dropped (for the leading order description). Hence, denoting the unscaled global loading by

F ¼

Z
S

f dS ; G ¼

Z
G

g dG

Ca ¼

Z
S

xaf 1 ds, C1 ¼ a1 �

Z
S

x � f ds ; Da ¼

Z
G

xaf 1dG, D1 ¼ a1 �

Z
G

x � f dG

the description of the loaded poroelastic beam with the usual variables reads

� Kinematics

U ¼ U1þxa
@Ua

@x1

� �
a1þUaaaþOa1 � ðxaaaÞ

� Normal force N and mean vertical motion U1

@N

@x1
¼ F1þG1

N¼cES
@U1

@x1
; cES ¼ E9S9�½ð1�2nÞa�2A

Z
S
z dS

� Transverse forces Ta, momentum Ma and mean transverse motion Ua

@Ma

@x1
�Ta ¼ CaþDa

@Ta

@x1
¼ 0

Ma ¼�cEIa
@2Ua

@x2
1

; cEIa ¼ EIaþ½ð1�2nÞa�2A

Z
S

xac
a dS

� Torsion momentum M1 and in-plane rotation (torsion) O

@M1

@x1
¼ C1þD1 ; M1 ¼ mIt

@O
@x1

At the extremities of the poroelastic beam, the boundary conditions are of the same nature as in elastic beams (i.e. forces
and moments and/or displacement rotations) according to the St. Venant principle. As the pressure is a hidden variable and
the fluid flow is of one order less than solid motions, the matching of specified conditions for pressure or fluid flow can
only be realized through correctors introducing boundary layers, following a similar matching approach as developed by
Panasenko (2000) and Buannic and Cartraud (2001) for elastic beams.
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4.2.2. Dynamics of poroelastic beam

The dynamics of beams unloaded on their surface (g ¼ 0) is treated in a similar way, considering harmonic regimes at a
frequency sufficiently low, o=oc rOðeÞ, to insure vanishing inertia effect in the flow, i.e. iorfK=Z¼ OðeÞ (thus the mass
balance considered in Section 4.1.3 remains valid). The inertial body force f ¼�o2½ð1�fÞrsuþfrf uf � can be assessed
provided that the inner state of the beam, previously determined, is respected. In that case, as established in (34), the
relative fluid solid displacement is two order smaller than the solid displacement. Thus, at the leading order, the section
displacement induces an inertial body force �o2rmu that reads

f ¼�o2rm½ðU
1
1þyaU0

a,x1
Þa1þU0

aaaþO
1a1 � y�

This estimate only applies if f does not interfere with beam behavior laws. As discussed for static loading, this requires that

f 1 ¼ ef
1
1 and f a ¼ e2f 2

a

For pure compression (U ¼U1
1a1 hence f ¼ f 1a1) or pure torsion motions (U ¼O1a1 � y hence f ¼ f aaa) these conditions

are satisfied independently. Only the global equilibrium is modified by the inertial terms whose averaged values on S and
G act as sources. Hence, (35)–(41) become

N3
,x1
¼�rmo

29S09U1
1, M5

1,x1
¼�rmo

2I0tO
1

Note that in both cases the frequency is of the order of o0 ¼Oð
ffiffiffiffiffiffiffiffiffiffiffiffi
E=rm

p
ð1=LÞÞ.

As for transverse bending motions (U0
aaaþyaU0

a,x1
a1), inertial forces arise along both axial and in-plane axis and

Oðf 1=f aÞ ¼Oð9yaU0
a,x1

9=9U0
a9Þ ¼Oðh=LÞ ¼ e

Then, the order of magnitude compatible with the beam description is

f a ¼ e2f 2
a and therefore f 1 ¼ e3f 3

1

Consequently,
R

Sf a ds¼Oðe4Þ and the mean translation inertia acts as a source in the global equilibrium of shear forces.
As this estimate requires a frequency of the order of Oðeo0Þ ¼Oð

ffiffiffiffiffiffiffiffiffiffiffiffi
E=rm

p
ð1=LÞðh=LÞÞ, the frequency is rescaled as eo.

Moreover, since
R

Syaf 1 ds¼ Oðe6Þ, the out of plane rotation inertia term is negligible at the leading order of the bending
moment balance (order 4). Finally, the balance equations (36)–(40) now read

M4
a,x1
�T4

a ¼ 0, T4
a,x1
¼�rmðeoÞ

2S0U0
a

The restrictions on the magnitude of inertia terms express the fact that the characteristic size of the mode wave length must be
larger than the size of the section. This imposes for compression and torsion modes a frequency domain such that o¼Oðo0Þ;
while for first bending mode the frequency domain is more restricted: ooOðo0Þh=L. Converse situations lead to lose the axial-
transverse scale separation, hence the 1D beam description, and the poroelastic rod has to be described as a guide of waves.

Finally, rewritten with the usual variables, the poroelastic beam dynamics is described by the following set:

� Kinematics

U ¼ U1þxa
@Ua

@x1

� �
a1þUaaaþOa1 � ðxaaaÞ

� Normal force N and mean vertical motion U1

@N

@x1
¼�rmSo2U1

N¼cES
@U1

@x1
; cES ¼ E9S9�½ð1�2nÞa�2A

Z
S
z dS

� Transverse forces Ta, momentum Ma and mean transverse motion Ua

@Ma

@x1
�Ta ¼ 0

@Ta

@x1
¼�rmSo2Ua

Ma ¼�cEIa
@2Ua

@x2
1

; cEIa ¼ EIaþ½ð1�2nÞa�2A

Z
S

xac
a dS

� Torsion momentum M1 and in-plane rotation (torsion) O
@M1

@x1
¼�rmIto2O ; M1 ¼ mIt

@O
@x1
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4.2.3. Transient loading

The difference between elastic and poroelastic beams lies in the behavior laws for normal force and momentum
(38)–(39). The poroelastic compression stiffness cES and bending inertia cEIa involve complex frequency dependant terms
related to the pore pressure. When expressed in the time domain, the compression and bending laws involve convolution
products, the kernel of which being the inverse Fourier transform of the terms related to pressure:

NðtÞ ¼ E9S9
@U1

@x1
�½ð1�2nÞa�2AZn

@U1

@x1
; ZðtÞ ¼

Z 1
�1

exp�iot

Z
S
zðoÞ dS

� �
do

MaðtÞ ¼ �EIa
@2Ua

@x2
1

þ½ð1�2nÞa�2ACn
@2Ua

@x2
1

; CðtÞ ¼
Z 1
�1

exp�iot

Z
S

xac
a
ðoÞ dS

� �
do

This induces damping of oscillation, relaxation and creep phenomena absent in elastic beams but usual in viscoelastic
beams. However, conversely to these latter, the inelastic properties of poroelastic beams differ under compression or
under bending deformations and vanish under torsion (for bi-symmetric sections).

Relaxation functions are the time history of the effort in response to a Heaviside kinematic loading. For a pure
extension, @U1=@x1ðtÞ ¼HðtÞ, the relaxation of the normal force reads

NrðtÞ ¼ E9S9HðtÞ�½ð1�2nÞa�2A

Z 1
�1

exp�iot 1

io

Z
S
zðoÞ dS

� �
do

and for pure curvature, @2Ua=@x2
1ðtÞ ¼HðtÞ, the relaxation of the bending reads

MarðtÞ ¼�EIaHðtÞþ½ð1�2nÞa�2A

Z 1
�1

exp�iot 1

io

Z
S

xac
a
ðoÞ dS

� �
do

Conversely, creep functions are the time history of the deformation in response to an Heaviside effort loading. Hence for
pure compression, i.e. NðtÞ ¼HðtÞ, the creep in extension reads

@U1

@x1
ðtÞ ¼

Z 1
�1

exp�iot 1

iocES
do

and for pure bending MaðtÞ ¼HðtÞ, the creep in curvature reads

@2Ua

@x2
1

ðtÞ ¼ �

Z 1
�1

exp�iot 1

iocEIa
do

5. Analysis of the poroelastic beam behavior

The poroelastic effects are hereafter examined according to the mechanical parameters, the boundary conditions, and
the frequency.

5.1. Vanishing poroelastic effect

The beam behavior laws (38)–(39) show that two situations lead to negligible effects of poroelasticity.
Incompressible porous matrix: As the pressure results from the porous matrix compressibility, when the matrix tends to

be incompressible (1�2n-0), the pressure, then the poroelastic effect tend to vanish in (38)–(39).
Very compressible fluid compared to the porous matrix: If OðE=K f Þb1 then OðE=AÞb1, since

1

A
¼
a�f

Ks
þ

f
K f
þ

a2

lþm :

Consequently, the poroelastic effect vanishes in (38)–(39). Moreover, as the pressure gradient becomes negligible in the
force balance, ~u 2-0, and in turn ca and z tend to the solutions of the uncoupled set:

KA

ioZDyðpÞ�
A

M
p¼ V , in S ; V ¼ 1 for z, V ¼�ya for ca

ð42Þ

x
h
:pþgradðpÞ � n ¼ 0, on G ð43Þ

5.2. Fluid effect with impervious boundary condition

In the no leakage case (x¼ 0), the fluid flux, hence the pressure gradient are null on G. Then, integrating over S (66), and
(66) multiplied by ya, and making the usual integral transformations, the particular pressure fields (denoted here by the
index 0) satisfy

Aa
lþm

Z
S

divyðc0Þ dsþ
A

M

Z
S
z0 ds¼�9S90 ;

Aa
lþm

Z
S

ya divyðb
a
0Þ dsþ

A

M

Z
S

yac
a
0 ds¼ I0a ð44Þ
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and, from the identities (74), (75), one obtainsZ
S
z0 ds¼�9S90,

Z
S

yac
a
0 ds¼ I0a

consequently, with the usual variables, the beam constitutive laws become

N¼ E9S9 1þ½ð1�2nÞa�2 A

E

� �
@U1

@x1
ð45Þ

Ma ¼�EIa 1þ½ð1�2nÞa�2 A

E

� �
@2Ua

@x2
1

ð46Þ

Hence, impervious boundary conditions cancel the effect of fluid transfer. The beam behavior remains purely elastic, even
if the saturating fluid stiffen the apparent Young modulus trough the effective bulk effect characterized by ½ð1�2nÞa�2A

(which corresponds to the elastic coefficients of the undrained porous medium lþa2M, m) .

5.3. The different poroelastic regimes according to frequency

From the situation described by the set (64)–(67), different poroelastic regimes can be identified. Recall that at pores
scale the flow is dominated by viscous effect as o=oc rOðeÞ. As mentioned in Section 4.1.3, the nature of fluid transfer at
section scale is related to the dimensionless frequency oðZh2

Þ=ðKAÞ. As A¼OðAcÞ, more physical insight is provided by the
usual consolidation length d associated with elasto-diffusion phenomena:

d2
¼
KAc

ioZ ð47Þ

since the relative order of the transfer and compression terms in (66) depends on the dimensionless ratio h=d. Moreover, as
d varies with the frequency, it is convenient to introduce the intrinsic length dc , which is of the order of dðocÞ, by

dc ¼
K
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Acrft1

f

s
thus O

h

9d9

 !
¼

h

dc

o
oc

5.3.1. Transfer and compression of the same magnitude

When h=9d9¼ ðh=dcÞðo=ocÞ ¼ Oð1Þ both transfer and compression terms in (66) are of the same order at the scale of the
beam section. As o=oc 51, this situation occurs for beam section such that h=dc b1. As for the magnitude of the Darcy
motion, in this regime OðzÞ ¼Oð1Þ and Oðca

Þ ¼ OðhÞ, and expressions (32)–(33) lead to the following estimates:

O½fðuf�uÞa� ¼ ð1�2nÞa d
2

h2
½Oðe2U0

aÞþOðeU1
1Þ�, O½fðuf�uÞ1� ¼ eO½fðuf�uÞa�

Now, if h=9d9b1 or 51 the phenomena at the scale of the beam section are respectively dominated either by the transfer
or by the compression mechanism. These situations enable simple assessment of the poroelastic effect.

5.3.2. Negligible transfer

When h=9d9¼ ðh=dcÞðo=ocÞZOðe�1Þ the transfer becomes negligible and (66) tends to

�
A

M
p�a A

lþmdivyðuÞ ¼ V

Consequently, the relations (63) established for impervious conditions also apply and the beam laws tend to those
obtained in the impervious case (45)–(46). Notice however that the pressure distributions for h=db1 and for x¼ 0 are not
identical. The pressure boundary conditions when h=db1 are matched by boundary layers (depending on x) of thickness
9d9. Outside of these layers, the flow vanishes and the fluid acts as a purely compressible elastic constituent through its
bulk modulus, as when x¼ 0.

As for the magnitude of the Darcy motion, we still have in this regime OðzÞ ¼ Oð1Þ and Oðca
Þ ¼ OðhÞ, however the

gradient of z is limited to the boundary layers. Consequently, from expressions (32)–(33) we deduce:

O½fðuf�uÞa� ¼ ð1�2nÞa d
h

d
h

Oðe2U0
aÞþOðeU1

1Þ

� �

O½fðuf�uÞ1� ¼ ð1�2nÞad
2

h2
½Oðe3U0

aÞþOðe2U1
1Þ�
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5.3.3. Negligible compression effect

This situation occurs when h=9d9¼ ðh=dcÞðo=ocÞrOðeÞ, hence for beam section such that h=dc ZOð1Þ. In that case (66)
reduces to

KA

ioZDyðpÞ ¼ V

therefore, the particular fields z and ca are respectively Oðh2=9d92
Þ and Oðh � h2=9d92

Þ. Consequently:Z
S
z ds¼�9S09

ioZ
KA

9S09cN ,

Z
S

yac
a ds¼ 9S09

ioZ
KA

I0acMa

where cN ¼Oð1Þ and cMa ¼Oð1Þ are real positive form coefficients depending on the geometry of the section and on the
leakage coefficient x. Using the usual variables, the poroelastic beam parameters take the form of elastic beam parameters
with small poroelastic corrector (the pressure is in phase quadrature with the solid motion and the flow acts as viscous
dampers, different under compression and under bending):

cES ¼ E9S9 1þ½ð1�2nÞa�2
ioZ9S9
KE

cN

� �

cEIa ¼ EIa 1þ½ð1�2nÞa�2
ioZ9S9
KE

cMa

� �
In this regime, since OðzÞ ¼Oðh2=9d92

Þ and Oðca
Þ ¼Oðh � h2=9d92

Þ, the magnitude of the Darcy motion deduced from
(32)–(33) becomes

O½fðuf�uÞa� ¼ ð1�2nÞa½Oðe2U0
aÞþOðeU1

1Þ�, O½fðuf�uÞ1� ¼ eO½fðuf�uÞa�

Remark. The analysis on frequency has to be complemented by the restriction imposed by the axial versus lateral scale
separation requirement, as specified in Section 4.2.

5.4. Approximated pressure distribution

When h=9d9¼Oð1Þ no simple expression of the pressure is available. Nevertheless an approximated solution (denoted
by ante exponent a) can be derived as proposed by Scherer et al. (2009). The idea is to consider that GrðbS 1

s
Þ ¼ 0 instead ofR

STrðbS 1

s
Þ ds¼ 0 as established in (62). Thus, for the approximate solution, one has

ðlþmÞdivyð
au 2
Þ ¼ a � ap

This assumption leads to disregard the rotational part of the solid displacement in the equilibrium of the skeleton.
Consequently, the initial set becomes uncoupled, and the approximated problem:

KA

ioZ
Dyð

apÞ�ap ¼ V in S, V ¼ 1 for az, V ¼�ya for aca ð48Þ

x
h
:apþgradðapÞ � n ¼ 0 on G ð49Þ

enables easier determination of aca
and z through standard solving methods. Note that this problem introduces an

approximated length of the elasto-diffusion phenomena, da defined by

ðdaÞ
2
¼
KA

ioZ ¼
A

Ac
d2 with

1

2
r

A

Ac
¼ 1þ

1�2n
1þlþ2m

a2M

 !�1

r1 ð50Þ

Hence, the maximum discrepancy between da and d corresponds to a ratio of
ffiffiffi
2
p

, reached for n-0 and lþ2m5a2M. Note
also the similarity of the problem governing the approximate solutions of az and aca

with the problem (47)–(48) obtained
for very compressible fluid.

6. Exact analytical solutions: flat and circular sections

The beam parameters depend on the local fields solution of the in-plane poroelastic problems (64)–(67). In general, this
latter problems have to be solved numerically. However, for flat and circular sections exact solutions can be established.
As they correspond to two extreme geometry, they are useful as reference solutions and to assess the validity of
approximated solutions.
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6.1. Flat sections

When the field in the section tends to depend on a single variable, e.g. y3, the problem tends to be 1D (disregarding the
y2-dependency). This situation is reached for sections more elongated in the direction a2 than along a3 (�h=2ry3rh=2)
and corresponds to poroelastic plates as studied by Taber (1992). Zhang and Cowin (1994) also suggest that 1D solution
could approach the situation of rectangular section having free flow boundary condition on y3 ¼ 7h and impervious
conditions in the other faces. In 1D case, (dropping the indice 3) the dimensionless problem (64)–(67) defining z and c
reduces to (0 and 00 stand for the simple and second derivative according y):

2ð1�nÞu00�ap0 ¼ 0 for 9y9rh=2, 2ð1�nÞu0 ¼ ap on y¼ 7h=2 ð51Þ

KA

ioZ
p00�

A

M
p�a A

lþm
u0 ¼ V for 9y9rh=2,

x
h

p¼8p0 on y¼ 7h=2 ð52Þ

From (51) one deduces that 2ð1�nÞu0 ¼ ap. This expression reported in (52-a) provides the pressure equation:

KA

ioZp00�
A

Ac
p¼ V , V ¼ 1 for z, V ¼�y for c

The integration of this latter with the boundary conditions (52-b), leads to (d2
¼KAc=ioZ):

z¼
Ac

A

cosh y
d

	 

cosh h

2d

	 

þsinh h

2d

	 

h
xd

�1

" #

c¼�
Ac

A
1þ

2

x

� �
sinh y

d

	 

sinh h

2d

	 

þcosh h

2d

	 

h
xd

�
2y

h

" #
h

2

and, by further integration we deduce the following beam parameters (as a consequence of the 1D geometry of the section,
E and ½ð1�2nÞa�2 are respectively changed into E=ð1�n2Þ and ½ðð1�2nÞaÞ=ð1�nÞ�2):

cES ¼
E9S9

1�n2
1þ½ð1�2nÞa�2 1þn

1�n
Ac

E
FS

� �
, FS ¼ 1�

2d=h

coth h
2d

	 

þ h

xd

ð53Þ

bEI ¼
EI

1�n2
1þ½ð1�2nÞa�2 1þn

1�n
Ac

E
FI

� �
, FI ¼ 1�6 1þ

2

x

� �
d
h

�
2d
h
þcoth h

2d

	 

1þcoth h

2d

	 

h
xd

ð54Þ

The parameters simplify for impervious condition into

cES=E9S9¼ bEI=EI¼
1

1�n2
1þ½ð1�2nÞa�2 1þn

1�n
Ac

E

� �
and for free flow condition into

cES ¼
E9S9

1�n2
1þ½ð1�2nÞa�2 1þn

1�n
Ac

E
1�

2d
h

th
h

2d

� �� �� �

bEI ¼
EI

1�n2
1þ½ð1�2nÞa�2 1þn

1�n
Ac

E
1�6

d
h
�

2d
h
þcoth

h

2d

� �� �� �� �
In this latter free flow case, using the residue method for inversion (Spiegel, 1965), the relaxation functions in compression
and bending read

Nrðt40Þ ¼
E9S9

1�n2
1þ½ð1�2nÞa�2 1þn

1�n
Ac

E

X1
1

2
2

ð2n�1Þp

� �2

expð�t=tnÞ

" #
, tn ¼

Zh2

4KAc

ð2n�1Þp
2

� �2

Mrðt40Þ ¼�
EI

1�n2
1þ½ð1�2nÞa�2 1þn

1�n
Ac

E

X1
1

6
1

np

� �2

expð�t=t0nÞ
" #

, t0n ¼
Zh2

4KAc
½np�2
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Recalling that

2
X1

1

2

ð2n�1Þp

� �2

¼ 6
X1

1

1

np

� �2

¼ 1

the instantaneous compression and bending responses are that of a beam with an apparent modulus

Eþ
½ð1�2nÞa�2

1�n A

The long term responses are that of the elastic beam without pressure effect (modulus E). Despite these similarities, the
time response of both mechanisms differs: the characteristic decay time in bending is longer (t01 ¼ 4t1) than in
compression. Whatever the leakage condition, the same method would enable to obtain analytical expressions for
relaxation (and creep). The general form is a series of decaying exponential, the discrete characteristic times of which are
determined by the poles of the considered functions.

These results are illustrated in Fig. 2, where the dimensionless complex parts, FS , FI of the compression and bending
modulus (58)–(59), are drawn versus the dimensionless frequency w¼o=½4KAc=Zh2

� in the free flow case (x¼1), and
with leakage boundary condition (taking x¼ 10). The difference of frequency responses between compression and bending
is clearly evidenced, as well as the influence of the flux condition. Fig. 3 depicts free flow dimensionless time responses
derived from the Fourier transforms of FS , FI (with x¼1), as function of the dimensionless time t0 ¼ t=½Zh2=4KAc�. It
confirms the much longer time decay in bending than in compression.

6.2. Circular sections

The principle of the resolution presented hereafter applies for any uniform leakage condition. For simplicity, we only
focus on free flow condition. Because of the circular geometry of the section of radius R, the problems are investigated
using the polar variables ðr,yÞ.
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Fig. 2. Flat sections. Dimensionless complex parts, FS , FI , (see (58)–(59) of the modulus of compression cES (left) and bending bEI (right) versus the

dimensionless frequency w¼o=ð4KAc=Zh2
Þ. Both real and imaginary parts are positive, but the opposite of the imaginary part is plotted to facilitate the

lecture. Solid lines correspond to the free flow case (x¼1), dashed lines to leakage boundary condition (x¼ 10).
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Fig. 3. Flat sections. Dimensionless time response deduced from the Fourier transforms of FS , FI . Solid line: compression. Dashed line: bending.

Dimensionless time t0 ¼ t=½Zh2=4KAc �.
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6.2.1. Compression

As the section is circular and the loading uniform in compression, the solution of the in-plane poroelastic problem
(64)–(67) is necessarily on the radial form:

p¼ pðrÞ, u ¼ uðrÞer

Hence, denoting by 0 the r-derivative, and dropping the y-indice:

gradðpÞ ¼ p0er , DðpÞ ¼
1

r
ðrp0Þ0

e
s
ðuÞ ¼ u0er � erþ

u

r
ey � ey, gradðdivðuÞÞ ¼DðuÞ ¼

ðruÞ0

r

� �0
er ¼ DðuÞ�

u

r2

h i0
er

Introducing these expressions in the set (70)–(72) with V¼1 and x¼1 leads to

grad½2ð1�nÞ divðuÞ�ap� ¼ 0 for 0rrrR

KA

ioZ
DðpÞ�

A

M
p�a A

lþm
divðuÞ ¼ 1 for 0rrrR

The first equation gives divðuÞ ¼ ðapþc0Þ=½2ð1�nÞ�, where c0 is a constant, and consequently the pressure is governed by

KA

ioZ
DyðpÞ�

A

Ac
p¼ 1þa A

lþ2m
c0

Recalling that d2
¼ ðKAcÞ=ðioZÞ, the solution finite in r¼0 and null in r¼R reads

pðrÞ ¼
Ac

A
1þa A

lþ2m
c0

� �
�1þ

J0ðir=dÞ
J0ðiR=dÞ

� �
where J0 is the Bessel function of zero order. To identify the constant c0 we use the first equality of (69) which reduces toZ R

0
ðapþc0Þr dr¼ 2ð1�nÞa

Z R

0
pr dr

and gives, using the relation
R z

0 zJ0ðzÞ dz¼ J1ðzÞ:

c0 ¼ að1�2nÞ
R R

0 rp drR R
0 r dr

¼
Ac

A
1þa A

lþ2m
c0

� �
�1þ

2d
iR

J1ðiR=dÞ
J0ðiR=dÞ

� �
The resolution of this linear equation provides the pressure function (and incidentally the solid displacement). Finally,
after integration and some algebra, the exact poroelastic compression modulus for circular section is

cES ¼ EpR2 1þ½ð1�2nÞa�2 A

E
CS

� �
, CS ¼

Ac

A
1�

2d
iR

J1ðiR=dÞ
J0ðiR=dÞ

� ��1

þ
Ac

A
�1

" #�1

ð55Þ

Noticing that the limit values at high and low frequency are respectively given by Abramowitz and Stegun (1964):

1�
2

z

J1ðzÞ

J0ðzÞ
-0 when 9z9-0, 1�

2

z

J1ðzÞ

J0ðzÞ
-1 when 9z9-1

we retrieve that the instantaneous (undrained) and long term (drained) moduli are respectively Eþ½ð1�2nÞa�2A and E.
For comparison, the approximate solution obtained by integrating (48) for circular section gives

dESa
¼ EpR2 1þ½ð1�2nÞa�2 A

E
Ca
S

� �
, Ca

S ¼ 1�
2da

iR

J1ðiR=daÞ

J0ðiR=daÞ
ð56Þ

This approximation respects the same instantaneous and long term moduli values than the exact solution. The
approximation is closer to the exact value as n-1=2 (hence Ac-A) while the maximum discrepancy is obtained when
n-0 and Ac-2A. The corresponding approximated relaxation function reads

Na
r ðt40Þ ¼ E9S9 1þ½ð1�2nÞa�2 A

E

X1
1

4
expð�t=tanÞ

l2
0,n

" #
, tan ¼

ZR2

KA
l2

0,n

where the l0,n are the (simple and real) zero of J0 (l0;1 	 2:405, l0;2 	 5:520, l0;3 	 8:654 . . .). Note that, for the exact
solution, the discrete time series tn is related to the poles of cES, i.e.

tn ¼
KAc

Z
ln

R

� �2
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where ln are the roots of the equation

zJ0ðzÞ

2J1ðzÞ
¼ 1�

A

Ac

6.2.2. Bending

The solution of the in-plane poroelastic problem (64)–(67) necessarily involves the bending direction e. However, for
circular section, any rotation of e, imposes the same rotation of the solution. Consequently according to the tensor
functions representation theory (Boehler, 1987) the local fields are of the following form:

p¼ e:gradðhÞ ¼ e � erh
0 and u ¼ e:grad � gradðf Þþeg�curlðOðe � eyÞezÞ

where the potential functions f, g, h, O depends on r only. These expressions introduced in the momentum balance (64)
lead to the following vectorial differential equation:

e
F 0
r
þð1�2nÞ½DðgÞ�F 0�

� �
þrðe � erÞ

F 0
r
þð1�2nÞ F

r

� �0
¼ 0 ð57Þ

with

F ¼ 2ð1�nÞDðf Þþg�ah and F ¼�
ðOrÞ0

r

� �0
Since e and r are independent vectors, both components of (57) vanishes. Form the r-component we deduce by integration
(c1 is a constant):

F 0 þð1�2nÞF ¼ 2c1r

This result, introduced in the e-component yields after integration (accounting for finite value on r¼0 of the pressure
h0 cosðyÞ and the volume variation divðuÞ ¼ ðDðf ÞþgÞ0cosðyÞÞ:

ð1�2nÞðg0�FÞ ¼�c1r

Combining these two results with the expression of F , one obtains

½Dðf Þþg�0 ¼
1

2ð1�nÞ ðah0 þc1rÞ

This relation enables to identify the pressure function h0: considering the mass balance equation (65) with the source
associated to bending V ¼�y¼�e � r , we have

e � er

KA

ioZDðhÞ�
A

M
h�a A

lþm ðDðf ÞþgÞ

� �0
¼ �e � r

With the previous results, this equation simplifies into

KA

ioZ
DðhÞ�

A

Ac
h

� �0
¼ r �1þc1

aA

lþ2m

� �
ð58Þ

The solution h0 having a finite value on r¼0 and respecting the zero pressure condition on r¼R (i.e. h0ðRÞ ¼ 0) is, where J1 is
the Bessel function of first order:

h0 ¼
Ac

A
�1þc1

aA

lþ2m

� �
r�R

J1ðir=dÞ
J1ðiR=dÞ

� �
ð59Þ

Now, c1 is deduced from the second equality of (68) which reads in the present case:Z
S

r cos2ðyÞðDðf ÞþgÞ0r dr dy¼ a
Z

S
r cos2ðyÞh0r dr dy

and gives, using the relation
R z

0 z2J1ðzÞ dz¼ z2J2ðzÞ:

c1 ¼ að1�2nÞ
R R

0 r2h0 drR R
0 r3 dr

¼
Ac

A
�1þc1

aA

lþ2m

� �
1�

4d
iR

J2ðiR=dÞ
J1ðiR=dÞ

� �
The resolution of this linear equation closes the determination of the pressure function. The determination of the
displacement field, not necessary for the sequel, is not reported.

Finally, the exact poroelastic bending modulus of circular sections, is given by

bEI ¼ E
p
4

R4 1þ½ð1�2nÞa�2 A

E
CI

� �
, CI ¼

Ac

A
1�

4d
iR

J2ðiR=dÞ
J1ðiR=dÞ

� ��1

þ
Ac

A
�1

" #�1

ð60Þ
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Noticing that

1�
4

z

J2ðzÞ

J1ðzÞ
-0 when 9z9-0, 1�

4

z

J2ðzÞ

J1ðzÞ
-1 when 9z9-1

the instantaneous (d=R-0) and long term (d=R-1) behavior are respectively governed by the undrained modulus
Eþ½ð1�2nÞa�2A and the drained modulus E.

For comparison, the approximated solution is derived from the approximated mass balance equation (48) with the
source associated to bending V ¼�y¼�E � r . It reads, with similar notations:

KA

ioZDð
ahÞ�ah

� �0
¼ �r

Then, after calculations, the approximated poroelastic bending modulus is given by

cEIa
¼ E

p
4

R4 1þ½ð1�2nÞa�2 A

E
Ca
I

� �
, Ca

I ¼ 1�
4da

iR

J2ðiR=daÞ

J1ðiR=daÞ
ð61Þ

Note again that the approximation respects the instantaneous and long term moduli and is closer to the exact value as n
tends to 1=2 (as under compression). The corresponding approximated bending relaxation function derived by inversion
reads

Ma
r ðt40Þ ¼�E

pR4

4
1þ½ð1�2nÞa�2 A

E

X1
1

8
expð�t=t0anÞ

l2
1,n

" #
, t0an ¼

ZR2

KA
l2

1,n

where the l1,n are the (simple and real) zero of J1 (l1;0 	 3:832, l1;1 	 7:016, l1;2 	 10:173, . . .). These values differ from that
given by the exact solution: the time series t0n related to the poles of bEI is

t0n ¼
ZR2

KAc
l2

n ,

ln being the roots of the equation

zJ1ðzÞ

4J2ðzÞ
¼ 1�

A

Ac

6.2.3. Numerical comparisons

The numerical comparison of the different analytical results enables to estimate the validity of the approximation of
Section 5.4. Calculations are performed considering the maximum possible discrepancy reached when Ac ¼ 2A. Fig. 4,
presents the exact (CS , CI ) and approximated (Ca

S , Ca
I Þ dimensionless complex parts of the compression and bending

modulus of circular section (53)–(54), versus the dimensionless frequency w¼o=½KAc=ZR2
�. It appears that the

approximation TrðaS1

s
Þ ¼ 0 is rather good, at least for circular sections. For comparison the results for the flat section

are also given showing that the 2D (circular) or 1D (flat) are quite similar provided that, the thickness is the double of the
radius h¼ 2R. This illustrates the sensitivity to the geometrical aspect of the section.

7. Poroelastic beam with visco-inertial inner flow

We finally investigate the particular situations where the pores scale flow is in visco-inertial regime, i.e. o=oc ¼Oð1Þ
thus iorfK=Z¼ Oð1Þ, while the whole motion inertia remains negligible at the section scale, i.e. ooOðh�1 ffiffiffiffiffiffiffiffiffiffiffiffi

E=rm

p
Þ. This

occurs for beam section such that ho ð
ffiffiffiffiffiffiffiffiffiffiffiffi
E=rm

p
Þ=oc . With inner inertia of the flow and quasi-statism within the section, the

set (9)–(10) leads, after scaling and following the asymptotic process, to identical solutions for the first and second
problems, as for pure viscous flows. However, the third problem is modified into

divyðS
1

s
Þþ

iorfK

Z
grad

y
ðp1Þ ¼ 0 in S

S1

s
� n ¼ 0 on G

divy
K

ioZ grad
y
ðp1Þ

� �
�

P1

M
� a� iorfK

Z

� �
½divyðu

2Þþu1
1,x1
� ¼ 0 in S

x
h
:p1þgradðp1Þ � n ¼ 0 on G

Compared with Section 4.1.3, the change due to the visco-inertial flow consists in replacing K by KðoÞ and a by the
complex parameter ~a ¼ a�iorfK=Z in the mass balance equation. The solution is again decomposed into elastic and
poroelastic contributions denoted here by ~:, i.e. ðu2,p1Þ ¼ ðue,0Þþð ~u 2, ~p1

Þ. The resolution is reported in Appendix. Finally,
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the dynamic balance equations are established in the same way as previously, with the remark that the inertia term now
reads

�o2 rmþ
iorfK

Z rf

� �
u

cf. (9). Consequently, assuming bi-symmetric sections, the dynamic beam description for visco-inertial regime of inner
flow is given by (the expressions of the coefficients are given section)

@N

@x1
¼� rmþ

iorfK

Z
rf

� �
o2SU1, N¼ ~ES

@U1

@x1

@Ma

@x1
�Ta ¼ 0, Ma ¼� ~EIa

@2Ua

@x2
1

@Ta

@x1
¼� rmþ

iorfK

Z
rf

� �
o2SUa

@M1

@x1
¼�rmo

2ItO, M1 ¼ mIt
@O
@x1

8. Conclusion

The asymptotic approach provides a theoretical frame to analyze the poroelasticity effect on the beam behavior. The
method enables a rigorous formulation that account for the magnitude of permeability, the flow conditions on the section
periphery, the gas or liquid nature of the fluid, the frequency range of the oscillations. The study mostly focuses on usual
situations with inner flow dominated by viscosity, but also investigates less classical situation involving visco-inertial
inner flow. The frequency dependent constitutive beam parameters can be computed numerically by solving an in-plane
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Fig. 4. Circular section with free flow conditions. Dimensionless complex parts of the modulus of compression cES (top) and bending bEI (bottom) versus

the dimensionless frequency w¼o=ðKAc=ZRÞ. Bold solid lines correspond to solutions CS , CI (60), (65) (real and imaginary parts are positive, the opposite

imaginary parts are plotted to facilitate the lecture). On the left, these solutions are compared to the approximated solutions in dashed line Ca
S , Ca

I (61),

(67), with Ac ¼ 2A. On the right, solutions CS , CI for circular section of radius R are compared to the exact solutions for flat section of thickness h¼ 2R (FS ,

FI , drawn in normal solid line).
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poroelastic problem in the section, or analytically for flat or circular sections. Using complex modulus for the solid and/or
complex viscosity for the fluid, the results can easily be extended to beams made of viscoelastic constituents. Note
however that the description assumes the validity of the Biot model. This imposes a viscous stress in the fluid much
smaller than both fluid pressure and elastic stress in the skeleton (Boutin and Auriault, 1990). This which may not be the
case for highly viscous fluids in very soft solid matrix (foam, gel).

Except in the degenerated cases of very compressible fluid or impervious periphery of the section, the poroelasticity
induces creep and relaxation phenomena in compression and bending but not in torsion (for bi-symmetric sections).
Moreover, the characteristic decay time differ for both mechanisms. These specific features differentiate the poroelastic
beams from beams made of viscoelastic material.

The theoretical formulation improves the existing analysis by explicitly defining the poroelastic state within the beam.
In particular, it is demonstrated that the mean value on the section of the in-plane total stress and its momentum are null.
This clarifies the existing approximations assuming either the in-plane stress to be zero (Scherer et al., 2009), or the field to
be uni-dimensional (Zhang and Cowin, 1994), and underlines the similarities with the modeling of poroelastic plates
(Taber, 1992). Moreover, the exact analytical solutions obtained for flat and circular sections can be used as reference cases
for usual geometry (and the same procedure could be applied to different boundary conditions). The discrepancy induced
by the approximations are illustrated through numerical comparisons.

The situation of axial diffusion studied by Li et al. (1995) cannot be obtained with the isotropic assumption of
permeability used in this paper. However, it could also be derived by the same method by considering a high permeability
in the axial direction only. In that case, the pressure would remain an independent variable, conversely to the
present study.

Notice finally that more complicated situations as heterogenous or non-straight (but periodic) poroelastic beams, could
also be investigated through the asymptotic method. Furthermore expansions at higher orders can also be contemplated to
analyze the shear effect (as in Timoshenko beams) for poroelastic rods of limited slenderness.

Appendix A

A.1. Poroelastic stress–strain state–third problem

We determine here successively the elastic contribution (drained state) (ue,0) and the poroelastic contribution (bu 2
, p1),

the complete solution being (u2, p1)¼(ue, 0) þ (bu 2
, p1).

The beam problem in the elastic drained state (variables denoted by e) reads

s e

s
¼ 2me

sy
ðueÞþl½divyðu

eÞþu1
1,x1
�I

s
, divyðs e

s
Þ ¼ 0 in S

s e

s
� n ¼ 0 on G

The solution ue under the forcing u1
1,x1

is classically derived noticing that the strains of the plane fields y and
xa ¼ yay� 1

2 JyJ2aa are respectively e
sy
ðyÞ ¼ I

s
and e

sy
ðxaÞ ¼ yaI

s
. Hence

s e

s
¼ 2me

sy
½ueþnðyU1

1,x1
�xaU0

a,x1x1
Þ�þl divy½u

eþnðyU1
1,x1
�xaU0

a,x1x1
Þ�I

s

from which we deduce that the solution reads

ue ¼�nðyU1
1,x1
�xaU0

a,x1x1
ÞþU2

ðx1ÞþO
1
ðx1Þa1 � y

where U2
ðx1ÞþO

1
ðx1Þa1 � y stands for any rigid in-plane translation and rotation of the section. By construction, the

classical stress-strain state in elastic beam (e.g. Trabucho and Viano, 1996) is recovered

e
sy
ðueÞ ¼ �nI

s
u1

1,x1
, ee

n ¼ u1
1,x1

, thus e e ¼ ½a1 � a1�nI
s
�u1

1,x1

s e

s
¼ 0, se

n ¼ Eu1
1,x1
¼ Eð�y � U0

,x1x1
þU1

1,x1x1
Þ thus s e ¼ se

na1 � a1

The problem governing the poroelastic contribution (bu 2
, p1), using the fact that divyðu2Þþu1

1,x1
¼ divyðbu 2

Þþð1�2nÞu1
1,x1

,
reads

bS 1

s
¼ 2me

sy
ðbu 2
Þþl½divyðbu 2

Þ�I
s
�ap1I

s
, divyð

bS 1

s
Þ ¼ 0 in S

bS 1

s
� n ¼ 0 on G

divy
K

ioZ grad
y
ðp1Þ

� �
�

1

M
p1�a divyðbu 2

Þ ¼ ð1�2nÞau1
1,x1

in S

x
h
:p1þgradðp1Þ � n ¼ 0 on G
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This is a plane poroelastic problem where the term ð1�2nÞau1
1,x1

acts as a forced volume injection. Note first that, because of
the zero divergence of bS 1

s
:

0¼

Z
S

ym
b divyð

bS 1

s
Þ ds¼

Z
G

ym
b
bS 1

s
� n ds�m

Z
S

ym�1
b

bS 1

sab
ds

" #
aa

then, from the free boundary condition, taking m¼ 1 or 2, we deduceZ
S

bS 1

s
ds¼ 0 ,

Z
S

yb
bS 1

s
ds¼ 0 hence

Z
S

TrðbS 1

s
Þ ds¼ 0,

Z
S

ybTrðbS 1

s
Þ ds¼ 0 ð62Þ

and, as a consequence of the zero mean isotropic part of bS 1

s
:

ðlþmÞ
Z

S
divyðbu 2

Þ ds¼ a
Z

S
p1 ds therefore ðlþmÞOðdivyðbu 2

ÞÞ ¼ aOðp1Þ ð63Þ

By linearity, the general solution (bu 2
, p1) is built from the three particular solutions related to the forcing terms �y � U 0

,x1x1

and U1
1,x1

. Rewriting the fields as (bu 2
¼ ðA=ðlþmÞÞbu , p1 ¼ Ap) (recall that 1=A¼ 1=Mþa2=ðlþmÞ), leads to the following

dimensionless form of the problem:

grady ðdivyðbu ÞÞþð1�2nÞDyðbu Þ�a gradðpÞ ¼ 0 in S ð64Þ

2½ð1�2nÞe
sy
ðbu Þþn divyðbu ÞI s

� � n�apn ¼ 0 on G ð65Þ

KA

ioZDyðpÞ�
A

M
p�a A

lþmdivyðbu Þ ¼ V in S ð66Þ

x
h
:pþgradðpÞ � n ¼ 0 on G ð67Þ

Denoting the particular solutions (bu , p) of (64)–(67) by

� (c , z) for V¼1 (compression),
� (ba, ca) for V ¼�ya (bending in direction aa),

the solution (bu 2
,p1) takes the form:

bu 2
¼ ð1�2nÞa½baU0

a,x1x1
þcU1

1,x1
�

A

lþm

p1 ¼ ð1�2nÞa½caU0
a,x1x1
þzU1

1,x1
�A

According to (62) we have the following identities:Z
S

divyðb
a
Þ ds¼ a

Z
S
ca ds;

Z
S

ya divyðb
a
Þ ds¼ a

Z
S

yac
a ds ð68Þ

Z
S

divyðcÞ ds¼ a
Z

S
z ds;

Z
S

ya divyðcÞ ds¼ a
Z

S
yaz ds ð69Þ

By construction, (ba, ca) and (c , z) are complex valued and depend on (i) the geometry of the section, (ii) the dimensionless
elastic parameters, n, a, a2M=ðlþmÞ, (iii) the leakage coefficient x, and (iv) the dimensionless frequency oZh2=KA.
Moreover, when oZh2=KA¼Oð1Þ, then (c , z) are O(1) while (ba, ca) are O(h). Note also that for bi-symmetric section:

babðy2,y3Þ ¼ ð�1Þaþbbabð�y2,y3Þ ¼ ð�1Þaþbbabðy2,�y3Þ

caðy2,y3Þ ¼ �cað�y2,y3Þ ¼ caðy2,�y3Þ, idem for ca

zðy2,y3Þ ¼ zð�y2,y3Þ ¼ zðy2,�y3Þ ð70Þ

A.2. Warping and torsion

We focus here on the field u3
1 and the expression of M5

1.

S1
n,x1
þdivyðs2

t Þ ¼ 0 in S, s2
t ¼ m½u

3
1,ya
þu2

a,x1
�aa

s2
t � n ¼ 0 on G

Thus u3
1 obeys a linear problem and the solution is the sum of the contribution of each forcing term introduced by S1

n,x1
,

and u2
,x1

, namely U2
a,x1

, O1
,x1

, U1
1,x1x1

, U0
a,x1x1x1

(and the local particular fields associated to the two latter terms).
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The problem related to U2
a,x1

is identical to that treated previously for determining U1
1 and the solution is �U2

,x1
� y.

The problem related to O1
,x1

is new. The solution reads wðyÞO1
ðx1Þ,x1

where the warping function wðyÞ is solution of (the
zero mean value condition provides the unicity):

DyðwÞ ¼ 0 in S

ðgrad
y
ðwÞþa1 � yÞ � n ¼ 0 on G,

Z
S

w ds¼ 0

The problems related to U1
1,x1x1

and U0
a,x1x1x1

introduce respectively particular solutions $ and wa. If the section is bi-
symmetric the following properties can be established from the problems set on the section:

wað�ya,ybÞ ¼�waðya,ybÞ; waðya,�ybÞ ¼ waðya,ybÞ; idem for $ ð71Þ

The expression of M5
1 is derived by replacing s2

t by its expression:

M5
1 ¼

Z
S
E1abyas2

tb ds

Thus in general, there is a coupling between the torsion, bending and compression mechanisms. However, if the section is
bi-symmetric, due to the resulting symmetry of the local particular fields, the only remaining terms are associated to
torsion and reads

M5
1 ¼O1

,x1
m
Z

S
E1abya½w,ybþða1 � yÞb� ds¼O1

,x1
m
Z

S
ðE1abyaw,ybþy2

2þy2
3Þ ds

Denoting by I0t the torsion inertia that accounts for wrapping, the torsion law finally reads

M5
1 ¼O1

,x1
mI0t; I0t ¼

Z
S
ðE1abyaw,ybþy2

2þy2
3Þ ds

A.3. Poroelastic stress-strain state with visco-inertial inner flow

In the case of inner visco-inertial flow, the problem governing ( ~u 2, ~p1) reads

~S
1

s
¼ 2me

sy
ð ~u 2
Þþl½divyð ~u

2
Þ�I

s
�ap1I

s
, divyð

~S
1

s
Þ ¼�

iorfK

Z grad
y
ð ~p1
Þ in S

~S
1

s
� n ¼ 0 on G

divy
K

ioZ
grad

y
ð ~p1
Þ

� �
�

1

M
~p1
� ~a divyð ~u

2
Þ ¼ ð1�2nÞ ~au1

1,x1
in S

x
h
: ~p1
þgradð ~p1

Þ � n ¼ 0 on G

This is a plane poroelastic problem where ~S
1

s
is not divergence free and ð1�2nÞ ~au1

1,x1
is a forced volume injection. It takes

the following dimensionless form:

grady ðdivyðuÞÞþð1�2nÞDyðuÞ� ~agradðpÞ ¼ 0 in S ð72Þ

2½ð1�2nÞe
sy
ðuÞþn divyðuÞI s

� � n�apn ¼ 0 on G ð73Þ

KA

ioZDyðpÞ�
A

M
p� ~a A

lþmdivyðuÞ ¼ V in S ð74Þ

x
h
:pþgradðpÞ � n ¼ 0 on G ð75Þ

Denoting the particular solutions (u, p) of (72)–(75) by

� (~c , ~z) for V¼1 (compression),
� ( ~b

a
, ~c

a
) for V ¼�ya (bending in direction aa),

the solution ( ~u 2, ~p1) takes the form:

~u 2
¼ ð1�2nÞ ~a½ ~b

a
U0
a,x1x1
þ ~c U1

1,x1
�

A

lþm

~p1
¼ ð1�2nÞ ~a½ ~c

a
U0
a,x1x1
þ ~zU1

1,x1
�A
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Hence the poroelastic contribution for the strain and effective stress tensors reads

~e 1
¼ ð1�2nÞ ~a A

lþm ½e s
ð ~b

a
ÞU0

a,x1x1
þe

s
ð~c ÞU1

1,x1
�

~s 1
¼ ð1�2nÞ ~a A

lþm
½lfdivyð

~b
a
ÞU0

a,x1x1
þdivyð~c ÞU

1
1,x1
ÞgIþþ2mfe

s
ð ~b

a
ÞU0

a,x1x1
þe

s
ð~c ÞU1

1,x1
g�

that gives the total normal stress:

S1
n ¼ sn1e� ~að1�2nÞA½½a ~c

a
þ2n divyð

~b
a
Þ�U0

a,x1x1
þ½a ~zþ2n divyð~c Þ�U

1
1,x1
�

Considering bi-symmetric sections and observing that the local fields respect similar symmetries to (70), we deduce the
normal and bending laws (in the usual unscaled form):

N¼ ~ES
@U1

@x1
, ~ES ¼ E9S9�ð1�2nÞ ~aA

Z
S
½a ~zþ2n divyð~c Þ� ds

Ma ¼� ~EIa
@2Ua

@x2
1

, ~EIa ¼ EIaþð1�2nÞ ~aA

Z
S

xa½a ~c
a
þ2n divyð

~b
a
Þ� dS

For simplicity, the terms divyð
~b
a
Þ, divyð~c Þ are kept, although they could be re-expressed respectively with grad

y
ð ~c

a
Þ and

grad
y
ð ~zÞ.
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