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Abstract

In the standard setting of approachability there are two players and a target set. The players play

a repeated vector-valued game where one of them wants to have the average vector-valued payoff

converge to the target set which the other player tries to exclude. We revisit the classical setting

and consider the setting where the player has a preference relation between target sets: she wishes

to approach the smallest (“best”) set possible given the observed average payoffs in hindsight.

Moreover, as opposed to previous works on approachability, and in the spirit of online learning,

we do not assume that there is a known game structure with actions for two players. Rather,

the player receives an arbitrary vector-valued reward vector at every round. We show that it is

impossible, in general, to approach the best target set in hindsight. We further propose a concrete

strategy that approaches a non-trivial relaxation of the best-in-hindsight given the actual rewards.

Our approach does not require projection onto a target set and amounts to switching between scalar

regret minimization algorithms that are performed in episodes.

Keywords: Online learning, multi-objective optimization, approachability

1. Introduction

In online learning (or regret minimization) a decision maker is interested in obtaining as much

reward as she would have obtained with perfect hindsight of the average rewards. The underlying

assumption is that the decision maker can quantify the outcomes of her decision into a single value,

e.g., money. However, the outcome of some sequential decision problems cannot be cast as a single

dimensional optimization problem: different objectives that are possibly contradicting need to be

considered. This arises in diverse fields such as finance, control, resource management, and many

others. This is called multi-objective optimization.

Offline answers to multi-objective optimization. The fundamental solution concept used in

offline multi-objective optimization is that of the Pareto front: given several criteria to be optimized

this is the set of feasible points that are not (weakly) dominated by any other point. While every

rationally optimal solution is on the Pareto front, it is not always clear which of the points in the

front should be chosen. One approach it to scalarize the different objectives and solve a single

objective. However, scalarization leads to finding just a single point on the Pareto front. Other

approaches include no-preference methods, a prior methods and a posteriori methods; see Hwang

and Masud (1979); Miettinen (1999).
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Online answers proposed so far. The approachability theory of Blackwell (1956) can be con-

sidered as the most general approach available so far for online multi-objective optimization. In

the standard setting of approachability there are two players, a vector-valued payoff function, and

a target set. The players play a repeated vector-valued game where one of them wants to have the

average vector-valued payoff (representing the states in which the different objectives are) converge

to the target set (representing the admissible values for the said states) which the other player tries

to exclude. The target set is prescribed a priori before the game starts and the aim of the decision

maker is that the average reward be asymptotically inside the target set.

We note that determining if a convex set is approachable may not be an easy task. In fact,

Mannor and Tsitsiklis (2009) show that determining if a single point is approachable is NP-hard in

the dimension of the reward vector.

Our view: approachability in “unknown games.” The analysis in approachability has been

limited to date to cases where the action of Nature, or a signal thereof, is revealed. We deviate

from the standard setting by considering the decision problem to be an online problem where only

(vector-valued) rewards are observed and there is no a priori assumption on what can and cannot be

obtained is made. Moreover, we do not assume that there is some underlying game structure we can

exploit. In our model for every action of the decision maker there is a reward that is only assumed

to be arbitrary. This setting is referred to as the one of an “unknown game” and the minimization of

regret could be extended to it (see, e.g., Cesa-Bianchi and Lugosi, 2006, Sections 7.5 and 7.10). One

might wonder if it is possible to treat an unknown game as a known game with a very large class

of actions and then use approachability. While such lifting is possible in principle, it would lead to

unreasonable time and memory complexity as the dimensionality of the problem will explode.

In such unknown games, the decision maker does not try to approach a pre-specified target set,

but rather tries to approach the best (smallest) target set given the observed (average) vector-valued

rewards. Defining a goal in terms of the actual rewards is standard in online learning, but has not

been pursued (with a few exceptions listed below) in the multi-objective optimization community.

Literature review. Our approach generalizes several existing works. Our proposed strategy

can be used for standard approachability as it is computationally efficient. It can further be used for

opportunistic approachability (when the decision maker tries to take advantage of suboptimal plays

of Nature, see Bernstein et al., 2013). The proposed strategy further encompasses online learning

with sample path constraints approachability Mannor et al. (2009) as a special case. The algorithm

we present does not require projection which is the Achilles heel of many approachability-based

schemes (similarly to Bernstein and Shimkin, 2014). Our approach is also more general than one

recently considered by Azar et al. (2014). An extensive comparison to the results by Bernstein and

Shimkin (2014) and Azar et al. (2014) is offered in Section 4.2.

Contributions and outline. To summarize, we propose a strategy that works in the online

setting where a game is not defined, but rather only reward vectors are obtained. This strategy can

approach a good-in-hindsight set among a filtration of target sets. Furthermore, the convergence rate

is independent of the dimension and the computational complexity is reasonable (i.e., polynomial).

We start the paper with defining the setting of approachability in unknown games in Section 2.

In Section 3 we then move to discussing the issue of the target to be achieved. We review three

different families of possible targets. The first is the best set based on average rewards in hindsight,

which is not achievable. The second is the convexification of the former, which is achievable but

not ambitious enough. The third goal is a sort of convexification of some individual-response-based

target set; we show that the latter goal is never worse and often strictly better than the second one. In
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APPROACHABILITY IN UNKNOWN GAMES

Section 4 we devise a general strategy achieving this third goal. Its amounts to playing a (standard)

regret minimization in blocks and modifying the direction as needed. In Section 5 we finally work

out the applications of our approach to the setting of classical approachability and to online learning

with sample path constraints approachability.

2. Setup (“unknown games”), notation, and aim

The setting is the one of (classical) approachability, that is, vector payoffs are considered. The

difference lies in the aim. In (classical) approachability theory, the average rT of the obtained

vector payoffs should converge asymptotically to some base approachable convex set C. In our

setting, we do not know whether C is approachable (because there is no underlying payoff function)

and ask for convergence to some α–expansion of C, where α should be as small as possible.

Setting: unknown game with vectors of vector payoffs. The following game is repeatedly

played between two players, who will be called respectively the decision-maker (or first player)

and the opponent (or second player). Vector payoffs in R
d, where d > 1, will be considered. The

first player has finitely many actions whose set we denote by A = {1, . . . , A}. The opponent

chooses at each round t ∈ {1, 2, . . .} a vector mt = (mt,a)a∈A of vector payoffs mt,a ∈ R
d. We

impose the restriction that these vectors mt lie in a convex and bounded set K of RdA. The first

player picks simultaneously at each round t an action at, possibly at random according to some

mixed action xt = (xt,a)a∈A; we denote by ∆(A) the set of all such mixed actions. We consider

a scenario when the player is informed of the whole vector mt at the end of the round and we are

interested in controlling the average of the payoffs mt,at . Actually, because of martingale conver-

gence results, this is equivalent to studying the averages rT of the conditionally expected payoffs

rt, where

rt = xt ⊙mt =
∑

a∈A

xt,amt,a and rT =
1

T

T∑

t=1

rt =
1

T

T∑

t=1

xt ⊙mt .

Remark 1 We will not assume that the first player knows K (or any bound on the maximal norm

of an elements of its); put differently, the scaling of the problem is unknown.

Aim. This aim could be formulated in terms of a general filtration (see Remark 2 below); for the

sake of concreteness we resort rather to expansions of a base set C in some ℓp–norm, which we

denote by ‖ · ‖, for 0 < p < ∞. Formally, we denote by Cα the α–expansion in ℓp–norm of

C. The decision-maker wants that her average payoff rT approaches an as small as possible set

Cα. To get a formal definition of the latter aim, we consider the smallest set that would have been

approachable in hindsight for a properly chosen target function ϕ : K → [0,+∞). (Section 3 will

indicate reasonable such choices of ϕ.) This function takes as argument the average of the past

payoff vectors,

mT =
1

T

T∑

t=1

mt , that is, ∀ a ∈ A, mT,a =
1

T

T∑

t=1

mt,a .

It associates with it the ϕ(mT )–expansion of C. Therefore, our aim is that

dp
(
rT , Cϕ(mT )

)
−→ 0 as T → ∞ , (1)

where dp( · , S) denotes the distance in ℓp–norm to a set S.
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Concrete example. Consider a decision problem where a decision maker has to decide how to

transmit bits on a wireless channel in a cognitive network (Simon, 2005; Beibei and Liu, 2011).

The objectives of the decision maker are to have minimum power and maximum throughput. The

decision maker decides at every stage how to transmit: which channels to use, what code to select

and how much power to use. The transmissions of multiple other players, modeled as Nature,

dictate the success of each transmission. The ideal working point is where throughput is maximal

and power is zero. This working point is untenable and the decision maker will be looking for a

better balance between the objectives. The model presented here fits the application naturally with

d = 2 where the two axes are power and throughput. The set C is the point in the power-throughput

plane with values 0 for power and maximal throughput for throughput.

Remark 2 More general filtrations α ∈ [0,+∞) 7→ Cα could be considered than expansions in

some norm, as long as this mapping is Lipschitz for the Hausdorff distance between sets. For

instance, if 0 ∈ C, one can consider shrinkages and blow-ups, C0 = {0} and Cα = C for α > 0. Or,

given some compact set B with non-empty interior, Cα = C + αB for α > 0.

2.1. Link with approachability in known finite games

We link here our general setting above with the classical setting considered by Blackwell. Therein

the opponent also has a finite set of actions B and chooses at each round t an action bt ∈ B, possibly

at random according to some mixed action yt = (yt,b)b∈B. A payoff function r : A × B → R
d is

given and is linearly extended to ∆(A)×∆(B), where ∆(A) and ∆(B) are the sets of probability

distributions over A and B, respectively. The conditional expectation of the payoff obtained at

round t is rt = r(xt, yt). Therefore, the present setting can be encompassed in the more general

one described above by thinking of the opponent as choosing the vector payoff mt = r( · , bt). A

target set C is to be approached, that is, the convergence rT = (1/T )
∑

t6T r(xt, yt) −→ C should

hold uniformly over the opponent’s strategies. A necessary and sufficient condition for this when C
is non-empty, closed, and convex is that for all y ∈ ∆(B), there exists some x ∈ ∆(A) such that

r(x, y) ∈ C. Of course, this condition, called the dual condition for approachability, is not always

met. However, in view of the dual condition, the least approachable α–Euclidian expansion of such

a non-empty, closed, and convex set C is given by

αunif = max
y∈∆(B)

min
x∈∆(A)

d2
(
r(x, y), C

)
. (2)

Approaching Cαunif
corresponds to considering the constant target function ϕ ≡ αunif. Better (uni-

formly smaller) choices of target functions exist, as will be discussed in Section 5.1. This will be

put in correspondance therein with what is called “opportunistic approachability.”

2.2. Applications

We describe in this section two related mathematical applications we have in mind.

Regret minimization under sample path constraints. We rephrase (and slightly generalize) here

the setting of Mannor et al. (2009). A vector ma ∈ R
d now not only represents some payoff but also

some cost. The aim of the player here is to control the average payoff vector (to have it converge to

the smallest expansion of a given target set C) while abiding by some cost constraints (ensuring that

the average cost vector converges to a prescribed set).
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APPROACHABILITY IN UNKNOWN GAMES

Formally, two matrices P and G associate with a vector ma ∈ R
d a payoff vector Pma ∈ R

p

and a cost vector Gma ∈ R
g. By an abuse of notation, we extend P and G to work with vectors

m = (ma)a∈A of vectors ma ∈ R
d by defining Pm = (Pma)a∈A and Gm = (Gma)a∈A. In our

setting, the opponent player and the decision-maker thus choose simultaneously and respectively a

vector (ma)a∈A ∈ K ⊆ R
dA and a mixed action xt ∈ ∆(A); the decision-maker then gets as a

payoff and cost vectors xt ⊙ Pmt = P
(
xt ⊙mt

)
and xt ⊙ Gmt = G

(
xt ⊙mt

)
. The admissible

costs are represented by a set Γ ⊆ R
g, while some set P ⊆ R

p is to be approached.

We adapt here slightly the exposition above. We define some base set C = C0 ⊆ R
d and its

α–expansions Cα in ℓp–norm by forcing the constraints stated by Γ: for all α > 0,

Cα =
{
m′ ∈ R

d : Gm′ ∈ Γ and dp
(
Pm′, P

)
6 α

}
.

We also denote by Pα the (unconstrained) α–expansions of P in ℓp–norm. For all m′ ∈ R
d with

Gm′ ∈ Γ, one has dp(m
′, C) 6 dp(Pm′, P). Therefore, the general aim (1) is now satisfied as

soon as the following convergences are realized: as T → ∞,

dp
(
PrT , Pϕ(mT )

)
−→ 0 and dp

(
GrT , Γ

)
−→ 0 , (3)

for some target function ϕ to be defined (taking into account the cost constraints); see Section 5.2.

Approachability of an approachable set at a minimal cost. This is the dual problem of the pre-

vious problem: have the vector-valued payoffs approach an approachable convex set while suffering

some costs and trying to control the overall cost. In this case, the set P is fixed and the α–expansions

are in terms of Γ. Actually, this is a problem symmetric to the previous one, when the roles of P
and P are exchanged with G and Γ. This is why we will not study it for itself in Section 5.2.

3. Choices of target functions

We discuss in this section what a reasonable choice of a target function ϕ can be. To do so, we start

with an unachievable target function ϕ⋆. We then provide a relaxation given by its concavification

cav[ϕ⋆], which can be aimed for but is not ambitious enough. Based on the intuition given by the

formula for concavification, we finally provide a whole class of achievable targets, relying on a

parameter: a response function Ψ.

An unachievable target function. We denote by ϕ⋆ : K → [0,+∞) the function that associates

with a vector of vector payoffs m ∈ K the index of the smallest ℓp–expansion of C containing a

convex combination of its components:

ϕ⋆(m) = min
{
α > 0 : ∃x ∈ ∆(A) s.t. x⊙m ∈ Cα

}
= min

x∈∆(A)
dp(x⊙m, C) , (4)

the infimum being achieved by continuity. That is, for all m ∈ K, there exists x⋆(m) such that

x⋆(m)⊙m ∈ Cϕ⋆(m). The defining equalities of ϕ⋆ show that this function is continuous (it is even

a Lipschitz function with constant 1 in the ℓp–norm).

Definition 3 A continuous target function ϕ : K → [0,+∞) is achievable if the decision-maker

has a strategy ensuring that, against all strategies of the opponent player,

dp
(
rT , Cϕ(mT )

)
−→ 0 as T → ∞ . (5)
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More generally, a (possibly non-continuous) target function ϕ : K → [0,+∞) is achievable if the

following convergence to a set takes place in R
dA × R

d as T → ∞:

(mT , rT ) −→ Gϕ where Gϕ =
{
(m, r) ∈ R

dA × R
d s.t. r ∈ Cϕ(m)

}
. (6)

The set Gϕ is the graph of the set-valued mapping m ∈ K → Cϕ(m). The second part of the

definition above coincides with the first one in the case of a continuous ϕ, as we prove in Section B.1.

(In general, it is weaker, though.) It is useful in the case of non-continuous target functions to avoid

lack of convergence due to errors at early stages. The following lemma is proved by means of two

examples in Section C.

Lemma 4 The target function ϕ⋆ is not achievable in general.

An achievable, but not ambitious enough, target function. We resort to a classical relaxation,

known as a convex relaxation (see, e.g., Mannor et al., 2009): we only ask for convergence of

(mT , rT ) to the convex hull of Gϕ⋆ , not to Gϕ⋆ itself. This convex hull is exactly the graph Gcav[ϕ⋆],

where cav[ϕ⋆] is the so-called concavification of ϕ⋆, defined as the least concave function K →
[0,+∞] above ϕ⋆. Its variational expression reads

cav[ϕ⋆](m) = sup

{∑

i6N

λi ϕ
⋆(mi) : N > 1 and

∑

i6N

λimi = m

}
, (7)

for all m ∈ K, where the supremum is over all finite convex decompositions of m as elements of K
(i.e., the λi factors are nonnegative and sum up to 1). By a theorem by Fenchel and Bunt (see Hiriart-

Urruty and Lemarchal, 2001, Theorem 1.3.7) we could actually impose that 1 6 N 6 dA + 1. In

general, cav[ϕ⋆] is not continuous; it however is so when, e.g., K is a polytope.

Definition 5 A target function ϕ : K → [0,+∞) is strictly smaller than another target function ϕ′

if ϕ 6 ϕ′ and there exists m ∈ K with ϕ(m) < ϕ′(m). We denote this fact by ϕ ≺ ϕ′.

Lemma 6 The target function cav[ϕ⋆] is achievable. However, in general, there exist easy-to-

construct achievable target functions ϕ with ϕ ≺ cav[ϕ⋆].

The first part of the lemma is proved in Section B.2; its second part is a special case of Lemma 7

below.

A general class of achievable target functions. By (4) we can rewrite (7) as

cav[ϕ⋆](m) = sup

{∑

i6N

λi dp
(
x⋆(mi)⊙mi, C

)
: N > 1 and

∑

i6N

λimi = m

}
.

Now, whenever C is convex, the function dp( · , C
)

is convex as well over Rd; see, e.g., Boyd and

Vandenberghe (2004, Example 3.16). Therefore, denoting by ϕx
⋆

the function defined as

ϕx
⋆

(m) = sup

{
dp

(∑

i6N

λi x
⋆(mi)⊙mi, C

)
: N > 1 and

∑

i6N

λimi = m

}
(8)

for all m ∈ K, we have ϕx
⋆
6 cav[ϕ⋆]. The two examples considered in Section C show that this

inequality can be strict at some points. We summarize these facts in the lemma below.

6



APPROACHABILITY IN UNKNOWN GAMES

Lemma 7 The inequality ϕx
⋆
6 cav[ϕ⋆] always holds; and sometimes ϕx

⋆ ≺ cav[ϕ⋆].

More generally, let us introduce individual response functions Ψ as functions K → ∆(A). The

target function naturally associated with Ψ in light of (8) is defined, for all m ∈ K, as

ϕΨ(m) = sup

{
dp

(∑

i6N

λiΨ(mi)⊙mi, C
)
: N > 1 and

∑

i6N

λimi = m

}
. (9)

Lemma 8 For all response functions Ψ, the target functions ϕΨ are achievable. However, in gen-

eral, there exist easy-to-construct achievable target functions ϕ with ϕ ≺ ϕx
⋆
.

The second part of the lemma indicates that there are cleverer choices for the response function

Ψ than x⋆. This will be illustrated by Example 2 of Section C. We provide some elements towards

a theory of optimality in Section D (e.g., there always exists admissible functions). The first part of

the lemma will follow from Theorem 9 below, which provides an explicit and efficient strategy to

achieve any ϕΨ. However, we provide in Section B.3 a proof based on calibration, which further

explains the intuition behind (9). It also advocates why the ϕΨ functions are reasonable targets:

resorting to some auxiliary calibrated strategy outputting accurate predictions m̂t (in the sense of

calibration) of the vectors mt almost amounts to knowing in advance the mt.

4. A strategy by regret minimization in blocks

In this section we exhibit a strategy to achieve the desired convergence (5) with the target func-

tions ϕΨ advocated in the previous section. The algorithm is efficient, as long as calls to Ψ are (a

full discussion of the complexity issues is provided in Section 5). The considered strategy—see

Figure 1—relies on some auxiliary regret-minimizing strategy R, with the following property.

Assumption 1 The strategy R sequentially outputs mixed actions ut such that for all ranges B > 0
(not necessarily known in advance), for all T > 1 (not necessarily known in advance), for all

sequences of vectors m′
t ∈ R

A of one-dimensional payoffs lying in the bounded interval [−B,B],
possibly chosen by some adversary, where t = 1, . . . , T ,

max
u∈∆(A)

T∑

t=1

u⊙m′
t 6 4B

√
T lnA+

T∑

t=1

ut ⊙m′
t .

Note in particular that the auxiliary strategy R adapts automatically to the range B of the payoffs

and to the number of rounds T , and has a sublinear worst-case guarantee. (The adaptation to B
will be needed because K is unknown.) Such auxiliary strategies indeed exist, for instance, the

polynomially weighted average forecaster of Cesa-Bianchi and Lugosi (2003). Other ones with a

larger constant factor in front of the B
√
T lnA term also exist, for instance, exponentially weighted

average strategies with learning rates carefully tuned over time, as in Cesa-Bianchi et al. (2007);

de Rooij et al. (2014).

For the sake of elegance (but maybe at the cost of not providing all the intuitions that led us to

this result), we only provide in Figure 1 the time-adaptive version of our strategy, which does not

need to know the time horizon T in advance. The used blocks are of increasing lengths 1, 2, 3, . . ..
Simpler versions with fixed block length L require a tuning of L of the order of

√
T to optimize the

theoretical bound.

7



Parameters: a regret-minimizing strategy R (with initial action u1), a response function Ψ : K → ∆(A)

Initialization: play x1 = u1 and observe m1 ∈ R
dA

For all blocks n = 2, 3 . . .,

1. compute the total discrepancy at the beginning of block n (i.e., till the end of block n− 1),

δn =

n(n−1)/2∑

t=1

xt ⊙mt −
n−1∑

k=1

kΨ
(
m(k)

)
⊙m(k) ∈ R

d , where m(k) =
1

k

k(k+1)/2∑

t=k(k−1)/2+1

mt

is the average vector of vector payoffs obtained in block k ∈ {1, . . . , n− 1};

2. run a fresh instance Rn of R for n rounds as follows: set un,1 = u1; then, for t = 1, . . . , n,

(a) play xn(n−1)/2+t = un,t and observe mn(n−1)/2+t ∈ R
dA;

(b) feed Rn with the vector payoff m′

n,t ∈ R
A with components given by

m′

n,t,a = −〈δn, mn(n−1)/2+t,a〉 ∈ R, where a ∈ A ,

where 〈 · , · 〉 denotes the inner product in R
d;

(c) obtain from Rn a mixed action un,t+1.

Figure 1: The proposed strategy, which plays in blocks of increasing lengths 1, 2, 3, . . .

4.1. Performance bound for the strategy

We denote by ‖ · ‖ the Euclidian norm and let Kmax = max

{
max
m∈K

‖m‖, max
m,m′∈K

‖m−m′‖
}

be a bound on the range of the norms of the (differences of) elements in K. Note that the strat-

egy itself does not rely on the knowledge of this bound Kmax as promised in Remark 1; only its

performance bound does. Also, the convexity of C is not required. The proof is in Section A.

Theorem 9 For all response functions Ψ, for all T > 1, for all sequences m1, . . . , mT ∈ R
dA of

vectors of vector payoffs, possibly chosen by an adversary,

dp
(
rT , CϕΨ(mT )

)
= O

(
T−1/4

)
.

More precisely, with the notation of Figure 1, denoting in addition by N the largest integer such

that N(N + 1)/2 6 T , by

mpart. =
1

T −N(N − 1)/2

T∑

t=N(N−1)/2+1

mt

the partial average of the vectors of vector payoffs mt obtained during the last block, and by cT ∈
CϕΨ(mT ) the following convex combination,

cT =
1

T

(
N−1∑

k=1

kΨ
(
m(k)

)
⊙m(k) +

(
T − N(N − 1)

2

)
Ψ
(
mpart.

)
⊙mpart.

)
,

we have

wwwww
1

T

T∑

t=1

xt ⊙mt − cT

wwwww
2

6
(
8Kmax

√
lnA

)
T−1/4 +

√
2Kmax T

−1/2 . (10)
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APPROACHABILITY IN UNKNOWN GAMES

4.2. Discussion

In this section we gather comments, remarks, and pointers to the literature. We discuss in particular

the links and improvements over the concurrent (and independent) works by Bernstein and Shimkin

(2014) and Azar et al. (2014).

Do we have to play in blocks? Our strategy proceeds in blocks, unlike the ones exhibited for

the case of known games, as the original strategy by Blackwell (1956) or the more recent one

by Bernstein and Shimkin (2014). This is because of the form of the aim ϕΨ we want to achieve:

it is quite demanding. Even the calibration-based strategy considered in the proof of Lemma 8

performs some grouping, according to the finitely many possible values of the predicted vectors of

vector payoffs. Actually, it is easy to prove that the following quantity, which involves no grouping

in rounds, cannot be minimized in general:

∥∥∥∥∥
1

T

T∑

t=1

xt ⊙mt −
1

T

T∑

t=1

Ψ(mt)⊙mt

∥∥∥∥∥
1

. (11)

Indeed, for the simplest case of regret minimization, the mt consist of scalar components ℓa,t > 0,

where a ∈ A, each representing the nonnegative loss associated with action a at round t. The

cumulative loss is to be minimized, that is, the set C = (−∞, 0] is to be approached, and its

expansions are given by Cα = (−∞, α], for α > 0. The target function ϕΨ thus represents what the

cumulative loss of the strategy is compared to. Considering Ψ
(
(ℓa)a∈A

)
∈ argmina∈A ℓa, we see

that (11) boils down to controlling

∣∣∣∣∣

T∑

t=1

∑

a∈A

xa,tℓa,t −
T∑

t=1

min
a′t∈A

ℓa′t,t

∣∣∣∣∣ ,

which is impossible (see, e.g., Cesa-Bianchi and Lugosi, 2006). In this example of regret minimiza-

tion, the bound (10) corresponds to the control (from above and from below) of some shifting regret

for
√
T blocks; the literature thus shows that the obtained T−1/4 rate to do so is optimal (again, see,

e.g., Cesa-Bianchi and Lugosi, 2006, Chapter 5 and the references therein).

In a nutshell, what we proved in this paragraph is that if we are to ensure the convergence (1) by

controlling a quantity of the form (10), then we have to proceed in blocks and convergence cannot

hold at a faster rate than T−1/4. However, the associated strategy is computationally efficient.

Trading efficiency for a better rate. Theorem 9 shows that some set is approachable here,

namely, GϕΨ : it is thus a B–set in the terminology of Spinat (2002). Therefore, there exists some (ab-

stract and possibly computationally extremely inefficient) strategy which approaches it at a 1/
√
T–

rate. Indeed, the proof of existence of such a strategy relies on Zorn’s lemma (thus, on the axiom of

choice) and not on any constructive argument.

Links with the strategy of Bernstein and Shimkin (2014). We explain here how our strategy

and proof technique compare to the ones described in the mentioned reference. The setting is the

one of a known game with a known target set C, which is known to be approachable. The latter

assumption translates in our more general case into the existence of a response function ΨC such

that ΨC(m) ⊙m ∈ C for all m ∈ K. In that case, one wishes to use the null function ϕ = 0 as a

target function. A straightforward generalization of the arguments of Bernstein and Shimkin (2014)

9



then corresponds to noting that to get the desired convergence dp
(
rT , C

)
→ 0, it suffices to show

that there exist vectors m̃t such that
∥∥∥∥∥
1

T

T∑

t=1

xt ⊙mt −
1

T

T∑

t=1

ΨC

(
m̃t

)
⊙ m̃t

∥∥∥∥∥
1

−→ 0 ; (12)

of course, this is a weaker statement than trying to force convergence of the quantity (11) towards 0.

Section A.2 recalls how to prove the convergence (12), which takes place at the optimal 1/
√
T–rate.

On the related framework of Azar et al. (2014). The setting considered therein is exactly the

one described in Section 2: the main difference with our work lies in the aim pursued and in the

nature of the results obtained. The quality of a strategy is evaluated therein based on some quasi-

concave and Lipschitz function f : Rd → R. With the notation of Theorem 9, the extension to an

unknown horizon T of their aim would be to guarantee that

lim inf
T→∞

f

(
1

T

T∑

t=1

xt ⊙mt

)
− min
k∈{1,...,N−1}

max
x∈∆(A)

f
(
x⊙m(k)

)
> 0 . (13)

A direct consequence of our Theorem 9 and of the Lipschitz assumption on f is that

lim inf
T→∞

f

(
1

T

T∑

t=1

xt ⊙mt

)
− f

(
O(1/

√
T ) +

1

T

N−1∑

k=1

kΨ(m(k))⊙m(k)

)
> 0 . (14)

The quasi-concavity of f implies that the image by f of a convex combination is larger than the

minimum of the images by f of the convex combinations. That is,

lim inf
T→∞

f

(
1

T

T∑

t=1

xt ⊙mt

)
− min
k=1,...,N−1

f
(
Ψ(m(k))⊙m(k)

)
> 0 .

Defining Ψ as Ψ(m) ∈ argmax
x∈∆(A)

f(x⊙m), we get (13).

However, we need to underline that the aim (13) is extremely weak: assume, for instance, that

during some block Nature chooses m(k) such that x⊙m(k) = min f for all x ∈ ∆(A). Then (13)

is satisfied irrespectively of the algorithm. On the contrary, the more demanding aim (14) that we

consider is not necessarily satisfied and an appropriate algorithm—as our one—must be used.

In addition, the strategy designed in Azar et al. (2014) still requires some knowledge—the set K
of vectors of vector payoffs needs to be known (which is a severe restriction)—and uses projections

onto convex sets. The rate they obtain for their weaker aim is O(T−1/4), as we get for our improved

aim.

An interpretation of the rates. Based on all remarks above, we conclude this section with an

intuitive interpretation of the T−1/4 rate obtained in Theorem 9, versus the 1/
√
T rate achieved by

Blackwell’s original strategy or variations of it as the one described above in the case where C is

approachable. The interpretation is in terms of the number of significant computational units Ncomp

(projections, solutions of convex or linear programs, etc.) to be performed. The strategies with the

faster rate 1/
√
T perform at least one or two of these units at each round, while our strategy does

it only of the order of
√
T times during T rounds—see the calls to Ψ. In all the cases, the rate is√

Ncomp/T .

10



APPROACHABILITY IN UNKNOWN GAMES

5. Applications (worked out)

In this section we work out the applications mentioned in Section 2.2. Some others could be con-

sidered, such as global costs (see Even-Dar et al., 2009; Bernstein and Shimkin, 2014) but we omit

them for the sake of conciseness.

5.1. Link with classical approachability, opportunistic approachability

We recall that in the setting of known finite games described at the end of Section 2, vectors of

vector payoffs m actually correspond to vectors of scalar payoffs given by r( · , y), where y is some

mixed action of the opponent. This defines the set K. The response function Ψ will thus be a

function of r( · , y) ∈ K. A natural (but not necessarily optimal, as illustrated by Example 2 in

Section C) choice is, for all y ∈ ∆(B),

x⋆(y) = Ψ
(
r( · , y)

)
∈ argmin

x∈∆(A)
d2
(
r(x, y), C

)
.

A key feature of our algorithm, even based on this non-necessarily optimal response function,

is that it is never required to compute the quantity αunif defined in (2), which, depending on whether

it is null or positive, indicates whether a convex set C is approachable or not and in the latter case,

suggests to consider the least approachable convex set Cαunif
. The latter problem of determining the

approachability of a set is actually an extremely difficult problem as even the determination of the

approachability of the singleton set C = {0} in known games is NP–hard to perform; see Mannor

and Tsitsiklis (2009).

On the other hand, our strategy only needs to compute
√
T calls to Ψ in T steps. Moreover,

each of these queries simply consists of solving the convex program

min
∥∥∑

a∈A xar(a, y)− c
∥∥2 s.t. x ∈ ∆(A), c ∈ C ,

which can be done efficiently. (It even reduces to a quadratic problem when C is a polytope.) Doing

so, our algorithm ensures in particular that the average payoffs rT are asymptotically inside of or

on the border of the set Cαunif
.

To see that there is no contradiction between these statements, note that our algorithm does not,

neither in advance nor in retrospect, issue any statement on the value of αunif. It happens to perform

approachability to Cαunif
for the specific sequence of actions chosen by the opponent but does not

determine a minimal approachable set which would suited for all sequences of actions. In particular,

it does not provide a certificate of whether a given convex set C is approachable or not.

This is of course a nice feature of our method but it comes at a cost: the main drawback is the

lower rate of convergence of T−1/4 instead of T−1/2. But we recall that the latter superior rates

requires in general, to the best of our knowledge, the knowledge of αunif.

Opportunistic approachability? In general, in known games, one has that the target function

considered above, ϕx
⋆
, satisfies ϕx

⋆ ≺ αunif. That is, easy-to-control sequences of vectors r( · , yt)
can get much closer to C than the uniform distance αunif: we get some pathwise refinement of

classical approachability. This should be put in correspondance with the recent, but different, notion

of opportunistic approachability (see Bernstein et al., 2013). However, quantifying exactly what we

gain here with the pathwise refinement would require much additional work (maybe a complete

paper as the one mentioned above) and this is why we do not explore further this issue.

11



5.2. Regret minimization under sample path constraints

We recall that the difficulty of this setting is that there exists a hard constraint, given by the costs

having to (asymptotically) lies in Γ. The aim is to get the average of the payoffs as close as possible

to P given this hard constraint. We will choose below a response function Ψ such that for all

m ∈ K, one has G
(
Ψ(m)⊙m

)
∈ Γ and we will adjust (9) to consider only payoffs:

φΨ(m) = sup

{
dp

(
P

N∑

i=1

λiΨ(mi)⊙mi, P
)
:

N∑

i=1

λimi = m

}
.

As long as Γ is convex, the strategy of Figure 1 and its analysis can then be adapted to get (3):

dp
(
PrT , PφΨ(mT )

)
−→ 0 and dp

(
GrT , Γ

)
−→ 0 .

A reasonable choice of Ψ. We assume that the cost contraint is feasible, i.e., that for all m ∈ K,

there exists x ∈ ∆(A) such that G(x⊙m) ∈ Γ. We then define, for all m ∈ K,

x⋆(m) = Ψ(m) ∈ argmin
{
dp
(
P (x⊙m), P

)
: x ∈ ∆(A) s.t. G(x⊙m) ∈ Γ

}
,

where the minimum is indeed achieved by continuity as soon as both P and Γ are closed sets.

At least when P is a linear form (i.e., takes scalar values), Γ is convex, and P is an interval, the

defining equation of x⋆ is a linear optimization problem under a convex constraint and can be solved

efficiently (see, e.g., Mannor et al., 2009; Bernstein and Shimkin, 2014).

Link with earlier work. The setting of the mentioned references is the one of a known game, with

some linear scalar payoff function and vector-valued cost functions u : ∆(A)×∆(B) → [0,M ] and

c : ∆(A)×∆(B) → R
g. (With no loss of generality we can assume that the payoff function takes

values in a bounded nonnegative interval.) The vector m of our general formulation corresponds to

m(y) =

[
u( · , y)
c( · , y)

]
.

The payoff set P to be be approached given the constraints is [M, +∞), that is, payoffs are to be

maximized given the constraints: Pα = [M − α, +∞). Abusing the notation by not distinguishing

between m(y) and y, we denote the maximal payoff under the constraint by

φ⋆(y) = max
{
u(x, y) : x ∈ ∆(A) s.t. c(x, y) ∈ Γ

}
.

This target function corresponds to (4) in the same way as φΨ corresponds to (9). Mannor et al.

(2009) exactly proceed as we did in Section 3: they first show that φ⋆ is unachievable in general and

then show that the relaxed goal cav[φ⋆] can be achieved. They propose a computationally complex

strategy to do so (based on calibration) but Bernstein and Shimkin (2014) already noted that simpler

and more tractable strategies could achieve cav[φ⋆] as well.

The target function φx
⋆
, which we proved above to be achievable, improves on cav[φ⋆], even

though, as in the remark concluding Section 5.1, it is difficult to quantify in general how much we

gain. One should look at specific examples to quantify the improvement from cav[φ⋆] to ϕψ (as we

do in Section C). The added value in our approach mostly lies in the versatility: we do not need to

assume that some known game is taking place.
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Additional Material for

“Approachability in unknown games:
Online learning meets multi-objective optimization”

Important information. We gather in this appendix several facts and results whose proofs were

omitted from the main body of the paper. We realize that this is a long and overwhelming appendix.

However, we stress that its most crucial section is the (rather short) Section A. The rest of the

appendix can safely be skipped. Indeed, Sections B and C explain in greater details the path we

followed to study or formulate the various aims described in Section 3. They were written up

for the sake of completeness but it is not necessary to read them to be able to understand, and

maybe appreciate, the results stated in the main body of the paper. Finally, Section D paves the

way for future research by putting together some thoughts around the notion of optimality of target

functions.
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Appendix A. Proof of Theorem 9 (and of another statement of Section 4)

In this most important section of the appendix we prove Theorem 9, as well as the convergence (12),

which was a key point in the comparison of our work with the one by Bernstein and Shimkin (2014).

A.1. Proof of Theorem 9

The first part of the theorem follows from its second part, together with the definition of ϕΨ as a

supremum and the equivalence between ℓp– and ℓ2–norms.

It thus suffices to prove the second part of the theorem, which we do by induction. We use a

self-confident approach: we consider a function β : {1, 2, . . .} → [0,+∞) to be defined by the

analysis and assume that we have proved that our strategy is such that for some n > 1 and for all

sequences of vectors of vector payoffs mt ∈ K, possibly chosen by some adversary,

‖δn+1‖2 =

wwwwww

n(n+1)/2∑

t=1

xt ⊙mt −
n∑

k=1

kΨ
(
m(k)

)
⊙m(k)

wwwwww
2

6 β(n) .

We then study what we can guarantee for n+ 2. We have

‖δn+2‖22 =

wwwwww
δn +




(n+1)(n+2)/2∑

t=n(n+1)/2+1

xt ⊙mt − (n+ 1)Ψ
(
m(n+1)

)
⊙m(n+1)



wwwwww

2

2

= ‖δn‖22 +

wwwwww

(n+1)(n+2)/2∑

t=n(n+1)/2+1

xt ⊙mt − (n+ 1)Ψ
(
m(n+1)

)
⊙m(n+1)

wwwwww

2

2

+2

〈
δn,

(n+1)(n+2)/2∑

t=n(n+1)/2+1

xt ⊙mt − (n+ 1)Ψ
(
m(n+1)

)
⊙m(n+1)

〉
. (15)

We upper bound the two squared norms by β(n)2 and (n+1)2K2
max, respectively. The inner product

can be rewritten, with the notation of Figure 1, as

〈
δn,

(n+1)(n+2)/2∑

t=n(n+1)/2+1

xt ⊙mt − (n+ 1)Ψ
(
m(n+1)

)
⊙m(n+1)

〉

= −
n+1∑

t=1

un+1,t ⊙m′
n+1,t +

n+1∑

t=1

u(n+1) ⊙m′
n+1,t (16)

where we used the short-hand notation u(n+1) = Ψ
(
m(n+1)

)
. Now, the Cauchy–Schwarz inequality

indicates that for all a and t,

∣∣m′
n+1,t,a

∣∣ 6 ‖δn‖2 ‖mn(n+1)/2+t,a‖2 6 Kmax β(n) ,

where we used the induction hypothesis. Assumption 1 therefore indicates that the quantity (16)

can be bounded by 4Kmax β(n)
√

(n+ 1) lnA.
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Putting everything together, we have proved that the induction holds provided that β is defined,

for instance, for all n > 1, as

β(n+ 1)2 = β(n)2 + 8Kmaxβ(n)
√
(n+ 1) lnA+K2

max(n+ 1)2 .

In addition, we have that β(1)2 = K2
max is a suitable value, by definition of Kmax. By the lemma

below, taking γ1 = 4Kmax

√
lnA and γ2 = K2

max, we thus get first

β(n)2 6 8K2
max(lnA)n3 or β(n) 6 2Kmax

√
2n3 lnA

for all n > 1, hence the final bound

‖δn+1‖2 6 2Kmax

√
2n3 lnA

still for all n > 1.

It only remains to relate the quantity at hand in (10) to the δn+1. Actually, T times the quantity

whose norm is taken in (10) equals δN plus at most N differences of elements in K. Therefore,

wwwww
1

T

T∑

t=1

xt ⊙mt − cT

wwwww
2

6
1

T

(
‖δN‖2 +NKmax

)
.

In addition, N(N + 1)/2 6 T implies N 6
√
2T , which concludes the proof of the theorem.

Lemma 10 Consider two positive numbers γ1, γ2 and form the positive sequence (un) defined by

u1 = γ2 and

un+1 = un + 2γ1
√

(n+ 1)un + γ2(n+ 1)2

for all n > 1. Then, for all n > 1,

un 6 max
{
2γ21 , γ2

}
n3 .

Proof We proceed by induction and note that the relation is satisfied by construction for n = 1.

Assuming now it holds for some n > 1, we show that it is also true for n + 1. Denoting C =
max

{
2γ21 , γ2

}
, we get

un+1 = un + 2γ1
√
(n+ 1)un + γ2(n+ 1)2 6 C n3 + 2γ1

√
C
√

(n+ 1)n3 + γ2(n+ 1)2 .

It suffices to show that the latter upper bound is smaller than C (n+ 1)3, which follows from

2γ1
√
C
√

(n+ 1)n3 + γ2(n+ 1)2 6
(
2γ1

√
2C + γ2

)
n2 + 2γ2 n+ γ2 6 3C n2 + 3C n+ C ;

indeed, the first inequality comes from bounding n+1 by 2 and expanding the (n+1)2 term, while

the second inequality holds because C > γ2 and 2C > 2γ1
√
2C by definition of C.
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A.2. Proof of the convergence (12)

The construction of the strategy at hand and the proof of its performance bound also follow some

self-confident approach: denote, for t > 1,

δt+1 =

t∑

s=t

xs ⊙ms −
t∑

s=1

ΨC

(
m̃s

)
⊙ m̃s .

No blocks are needed and we proceed as in (15) by developing the square Euclidian norm; we

show that the inner product can be forced to be non-positive, which after an immediate recurrence

shows that ‖δT+1‖2 is less than something of the order of 1/
√
T , which is the optimal rate for

approachability. Indeed, the claimed inequality

〈δt+1, xt+1 ⊙mt+1〉 6
〈
δt+1, ΨC

(
m̃t+1

)
⊙ m̃t+1

〉
(17)

follows from the following choices, defining the strategy:

xt+1 ∈ argmin
x∈∆(A)

max
m∈K

〈δt+1, x⊙m〉 and m̃t+1 ∈ argmax
m∈K

min
x∈∆(A)

〈δt+1, x⊙m〉 .

Then, by von Neumann’s minmax theorem, for all m′ ∈ K and x′∆(A),

〈δt+1, xt+1⊙m′〉 6 min
x∈∆(A)

max
m∈K

〈δt+1, x⊙m〉 = max
m∈K

min
x∈∆(A)

〈δt+1, x⊙m〉 6
〈
δt+1, x

′⊙m̃t+1

〉
.

Choosing m′ = mt+1 and x′ = ΨC

(
m̃t+1

)
entails (17).
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Appendix B. Proofs of the general, theoretical results of Section 3

We gather in this section the proofs of all the claims issued in Section 3 but of the ones that are

based on examples (i.e., Lemma 4 as well as the second parts of Lemmas 6, 7 and 8). The latter will

be proved and illustrated in the next section.

B.1. Proof that (5) and (6) are equivalent under a continuity assumption

We always have that (5) entails (6), with or without continuity of ϕ. Now, consider a continuous

function ϕ : K → [0,+∞). To show that (6) entails (5), it suffices to show that there exists a

function f : (0,+∞) → (0,+∞) with f(ε) → 0 as ε → 0, such that for all (m, r) ∈ K × R
d,

d2
(
r, Cϕ(m)

)
6 f

(
d2
(
(m, r), Gϕ

))
. (18)

(Only the case p = 2 needs to be considered, by equivalence of norms.)

Since K is bounded, ϕ is uniformly continuous: we denote by ω : (0,+∞) → (0,+∞) its

modulus of continuity, which satisfies ω(ε) → 0 as ε → 0. Now, we fix (m, r) ∈ K × R
d and

denote by
(
πG(m), πC(r)

)
its projection onto the closed set Gϕ in Euclidian norm. We also define

πC(r) ∈ argmin
{
d
(
r′, πG(r)

)
: r′ ∈ Cϕ(m)

}
.

Since the Cα are expansions of the same base set and since πG(r) ∈ Cϕ(πG(m)) by definition of an

element of Gϕ, we thus have that

wwπG(r)− πC(r)
ww

2
= max

{
0, ϕ

(
πG(m)

)
− ϕ(m)

}
. (19)

Since by definition

d2
(
(m, r), Gϕ

)
=
www(m, r)−

(
πG(m), πC(r)

)www
2
>
wwm− πG(m)

ww
2
,

we get, by a triangle inequality,

d2
(
r, Cϕ(m)

)
6
www(m, r)−

(
m, πC(r)

)www
2

6
www(m, r)−

(
πG(m), πG(r)

)www
2
+
www
(
πG(m), πG(r)

)
−
(
m, πG(r)

)www
2

+
www
(
m, πG(r)

)
−
(
m, πC(r)

)www
2

6 2 d2
(
(m, r), Gϕ

)
+
wwπG(r)− πC(r)

ww
2
.

By (19), the last term in the right-hand side can be bounded by

wwπG(r)− πC(r)
ww

2
6
∣∣∣ϕ
(
πG(m)

)
− ϕ(m)

∣∣∣ 6 ω
(wwm− πG(m)

ww
)
6 ω

(
d2
(
(m, r), Gϕ

))
.

Putting all pieces together, we proved (18), as desired.
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Remark: no equivalence in lack of continuity. The proof above crucially uses the (uniform)

continuity of ϕ. This can be seen with the help of the following counter-example, showing that in

general, (6) does not entail (5). Consider a strict, closed subset K ′ ⊂ K, and define IK′ as the

indicator function of K ′. Take C = {r0} and pick r1 such that ‖r0 − r1‖ = α, for some α > 0. The

function ϕ at hand will be αIK′ . Finally, pick a sequence (mt) of elements in K such that mt 6∈ K ′

and mt → m∞, where m∞ ∈ K ′. Then (mt, r1) → (m∞, r1), where (m∞, r1) ∈ GαIK′ , that

is, (mt, r1) → GαIK′ . But on the other hand, CαIK′ (mt) = Cα for all t, so that the sequence of the

d2
(
r1, CαIK′ (mt)

)
= d2(r1, Cα) = α does not converge to 0.

B.2. Proof of the first part of Lemma 6

We sketch below such a proof in the case when K is known (which is not necessarily the case). We

discuss the importance of the knowledge of K after the proof. We recall that anyway, the first part

of Lemma 6 follows from Lemmas 7 and 8 (or Theorem 9), which are proved independently.

Proof [sketch; when K is known] When the decision-maker knows K (and only in this case), she

can compute cav[ϕ⋆] and its graph Gcav[ϕ⋆]. We show that the convex set Gcav[ϕ⋆] is approachable

for the game with payoffs (x,m) ∈ ∆(A)×K 7→ (m, x⊙m); the decision-maker then should play

any strategy approaching Gcav[ϕ⋆] (these strategies require the knowledge of the approachable target

set). Note that ϕ⋆ is continuous, that Gϕ⋆ is thus a closed set, and that Gcav[ϕ⋆] is a closed convex set

containing Gϕ⋆ . Now, the characterization of approachability by Blackwell (1956) for closed con-

vex sets states that for all m ∈ K, there should exist x ∈ ∆(A) such that (m, x ⊙m) ∈ Gcav[ϕ⋆].

But by definition of (4), we even have
(
m, x⋆(m)⊙m

)
∈ Gϕ⋆ , which concludes the proof.

The knowledge of K could seem crucial. The argument above requires the knowledge of K in a

subtle way: actually, the approachability strategy needs to know the target set Gcav[ϕ⋆] on which to

project. But as we explain below (and the examples in Section C will further illustrate), the values

taken by cav[ϕ⋆] strongly depend on K and this target function can thus only be computed knowing

K. This is in strong contrast with the functions x⋆ and ϕ⋆, which are independent of K as they are

defined as the solutions of some optimization programs that only depend on m on C, but not on K.

Indeed, if K is reduced to the singleton {m∗}, then cav[ϕ⋆](m∗) = ϕ⋆(m∗), while if K strictly

contains {m∗}, then it may happen that cav[ϕ⋆](m∗) > ϕ⋆(m∗). For instance, in a problem where

ϕ⋆ would be the absolute value mapping | · | and K would be an interval [−a, a] ⊂ R, then

cav[ϕ⋆] = a is a constant function, whose value crucially depends on K.

It would actually be possible to adapt the proof above for Lemma 6 to the case of an unknown

K, yet at a prohibitive increase in the length and complexity of the proof. But as recalled at the

beginning of this section, Theorem 9 together with Lemma 7 shows this very result in the lack of

knowledge of K, in a constructive way. Even better, they prove the strongest notion of conver-

gence (5) of Definition 3, irrespectively of the continuity or lack of continuity of cav[ϕ⋆].

B.3. Proof of Lemma 8 based on calibration

We recall that Lemma 8 follows from Theorem 9. However, a calibration-based proof of it provides

some intuition as for the choice of the target (9).
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APPROACHABILITY IN UNKNOWN GAMES

Proof We show that for all ε > 0, one can construct a strategy such that

lim sup
T→∞

dp
(
rT , CϕΨ(mT )

)
6 ε a.s.;

working in regimes r = 1, 2, . . . based on a decreasing sequence εr → 0 then ensures the aim (1).

Given ε >0, there exist randomized strategies picking predictions m̂t among finitely many elements

m(j) ∈ K, where j ∈ {1, . . . , Nε} so that the so-called calibration score is controlled,

lim sup
T→∞

Nε∑

j=1

wwwww
1

T

T∑

t=1

I{m̂t=m(j)}

(
m̂t −mt

)
wwwww
p

6 ε a.s.; (20)

see Foster and Vohra (1998). (Actually, the latter reference only considers the case of calibrated

predictions of elements in some simplex, but it is clear from the method used in Mannor and Stoltz,

2010 that this can be performed for all subsets of compact sets, such as K here. Also, the result

holds for all ℓp–norms, by equivalence of norms on vector spaces of finite dimension.)

Now, our main strategy, based on such an auxiliary calibrated strategy, is to play Ψ
(
m̂t

)
at each

round. Our average payoff is thus

rT =
1

T

T∑

t=1

Ψ
(
m̂t

)
⊙mt .

Therefore, denoting for all j ∈ {1, . . . , Nε},

λ̂j,T =
1

T

T∑

t=1

I{m̂t=m(j)} ,

and using the definition of ϕΨ, we have

dp
(
rT , CϕΨ(mT )

)
6

wwwwww
1

T

T∑

t=1

Ψ
(
m̂t

)
⊙mt −

Nε∑

j=1

λ̂j,T Ψ
(
m(j)

)
⊙m(j)

wwwwww
p

=

wwwwww

Nε∑

j=1

Ψ
(
m(j)

)
⊙
(

1

T

T∑

t=1

I{m̂t=m(j)}

(
m̂t −mt

)
)wwwwww

p

6

Nε∑

j=1

wwwwwΨ
(
m(j)

)
⊙
(

1

T

T∑

t=1

I{m̂t=m(j)}

(
m̂t −mt

)
)wwwww

p

6

Nε∑

j=1

wwwww
1

T

T∑

t=1

I{m̂t=m(j)}

(
m̂t −mt

)
wwwww
p

,

where last two inequalities are by the triangle inequality for norms, where in the last inequality we

also used that all components of Ψ
(
m(j)

)
are in [0, 1]. Substituting (20) concludes the proof.

21



Appendix C. Two toy examples to prove the other results of Section 3

We first present these two examples and then prove Lemma 4, as well as the second parts of Lem-

mas 6, 7 and 8, based on these examples.

Example 1: description. The following example is a toy modeling of a case when the first player

has to perform two tasks simultaneously and incurs a loss (or a cost) for each of them; we assume

that her overall loss is the worst (the largest) of the two losses suffered. For simplicity, and because

it will be enough for our purpose, we will assume that the two players have only two actions, that

is, A = {1, 2} for the decision-maker while the opponent will only pick convex combinations of

the following vectors of vector payoffs:

m† =
(
m†
a

)
a∈{1,2}

∈ R
2×2 with m†

1 =

[
3
4

]
and m†

2 =

[
0
5

]
,

and m♯ =
(
m♯
a

)
a∈{1,2}

∈ R
2×2 with m♯

1 =

[
4
3

]
and m♯

2 =

[
5
0

]
.

The opponent’s actions can thus be indexed by ν ∈ [0, 1], where the latter corresponds to νm† +
(1− ν)m♯.

The base, convex, set C is the negative orthant C = (−∞, 0]2 and its α–expansions in the

supremum norm are Cα = (−∞, α]2.

Example 2: description. In this example, d = 1, i.e., only vectors of payoffs mt ∈ R
2 are chosen

by the opponent, not vectors of vector payoffs, and the decision-maker gets a scalar reward. The

product ⊙ is then simply the standard inner product over R2. More precisely, we set A = {1, 2}
and K = [−1, 1]2 and consider C = {0} as a base convex set to be approached. Its expansions (in

any norm) are C = [−α, α], for a > 0. That is, the aim is to minimize the absolute value of the

average payoff.

C.1. Example 1: Exploitation

The actions of the opponent can be indexed by parameters ν ∈ [0, 1], so that K ⊆ R
2×2 can be

identified with [0, 1]. The actions of the decision-maker are of the form (x, 1 − x) for x ∈ [0, 1].
This example corresponds to a game with vector-valued payoff function

r(x, ν) = x

(
ν

[
3
4

]
+ (1− ν)

[
4
3

])
+ (1− x)

(
ν

[
0
5

]
+ (1− ν)

[
5
0

])

=

[
x(4− ν) + 5(1− x)(1− ν)

x(3 + ν) + 5(1− x)ν

]
=

[
5− x− ν(5− 4x)
3x+ ν(5− 4x)

]
.

We denote by αx : [0, 1] → [0,+∞) the distance in supremum norm of the vector above to the

negative orthant,

αx(ν) = d∞
(
r(x, ν), (−∞, 0]2

)
= max

{
5− x− ν(5− 4x), 3x+ ν(5− 4x)

}
.
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APPROACHABILITY IN UNKNOWN GAMES

We then compute ϕ⋆ using (4):

ϕ⋆(ν) = min
x∈[0,1]

αx(ν) = min
{
α0(ν), α1(ν)

}
=





4− ν if ν ∈ [0, 1/4],

5− 5ν if ν ∈ [1/4, 1/2],

5ν if ν ∈ [1/2, 3/4],

3 + ν if ν ∈ [3/4, 1].

This last set of equalities can be seen to hold true by contemplating Figure 2.

C C2.5 C4

m†

m♯

2.5

4

5

ϕ⋆

m†m♯

αx

Figure 2: Graphical representation of m† and m♯, and of different expansions Cα (left); graphs

of the functions ϕ⋆ (bold solid line), of α0 and α1 (dotted lines), and of some αx, for

x ∈ [0, 1] (thin solid line).

Proof [of Lemma 4] Assume by contradiction that ϕ⋆ is achievable in the above example and

consider any strategy of the decision maker to do so, which we denote by σ. Imagine in a first time

that Nature chooses, at every stage t > 1, the vectors mt = m†, which amounts to playing νt = 1.

Given that the average of the νt equals νT = 1 and that its image by ϕ⋆ equals ϕ⋆(1) = 4, the aim

is then to converge to C4. But this can only be guaranteed if the average of the chosen xt converges

to 1. That is, given ε > 0, there exists some, possibly large, integer Tε such that

∥∥∥∥rTε −
[
3
4

]∥∥∥∥
∞

6 ε . (21)

Now, consider a second scenario. During the first Tε stages, Nature chooses the vectors mt = m†.

By construction, as σ is fixed, (21) is ensured. Now, for the next Tε stages, for Tε + 1 6 t 6 2Tε,
assume that Nature chooses the vectors mt = m♯, and denote by γ ∈ [0, 1] the average of the

xt ∈ [0, 1] selected by σ. The average of the played vectors is m2Tε corresponds to ν = 1/2, whose

image by ϕ⋆ equals ϕ⋆(1/2) = 5/2. Therefore the target set is C2.5. However, by definition of γ,

we have

r2Tε =
1

2
rTε +

1

2

2Tε∑

t=Tε+1

xt ⊙m♯ =
1

2
rTε +

1

2

(
γ

[
4
3

]
+ (1− γ)

[
5
0

])

=
1

2
rTε +

1

2

([
5− γ
3γ

])
,
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and therefore, because of (21),

∥∥∥∥r2Tε −
[

4− γ/2
2 + 3γ/2

]∥∥∥∥
∞

6
ε

2
.

This entails that

d∞

(
r2Tε , Cϕ⋆(ν2Tε )

)
> d∞

([
4− γ/2
2 + 3γ/2

]
, C2.5

)
− ε

2
> 1− ε/2 .

This construction can be repeated again after stage 2Tε, by choosing mt = m⋆ till a stage T ′
ε is

reached when ∥∥∥∥rT ′
ε
−
[
3
4

]∥∥∥∥
∞

6
ε

2
;

such a stage exists by the assumption of achievability for σ. One can then similarly see that

d∞

(
r2T ′

ε
, Cϕ⋆(ν2T ′

ε
)

)
> 1− ε/4 .

By repeating this over again and again, one proves that

lim sup
T→∞

d∞

(
rT , Cϕ⋆(νT )

)
> 1 ,

which is in contradiction with the assumption of achievability for σ. The claim follows.

Proof [of the second part of Lemma 6] The concavification of ϕ⋆ equals, as can be seen, e.g., on

Figure 2, cav[ϕ⋆] ≡ 4, the function that is identically equal to 4. Now, α1 is clearly achievable, by

constantly playing xt = 1 at each stage. Since α1 6 cav[ϕ⋆], with strict inequality on (0, 1), we

proved that α1 ≺ cav[ϕ⋆].

Proof [of the second part of Lemma 7] We will prove that ϕx
⋆
= α1 so that the result will follow

from the last statement of the previous proof. Indeed, for all ν ∈ [0, 1], we have, as can be seen in

the computations leading to the value of ϕ⋆, that the individual best response (x, 1− x) against ν is

equal to

x⋆(ν) =

{
(1, 0) if ν ∈ [0, 1/4] ∪ [3/4, 1],

(0, 1) if ν ∈ [1/4, 3/4].

Therefore,

x⋆(ν)⊙
(
νm† + (1− ν)m♯

)
=

{
r(1, ν) if ν ∈ [0, 1/4] ∪ [3/4, 1],

r(0, ν) if ν ∈ [1/4, 3/4].

But for ν ∈ [1/4, 3/4], we have the component-wise inequality

r(0, ν) =

[
5− 5ν
5ν

]
6 r(1, ν) =

[
4− ν
3 + ν

]
,

24



APPROACHABILITY IN UNKNOWN GAMES

which entails that for all ν ∈ [0, 1], again component-wise,

x⋆(ν)⊙
(
νm† + (1− ν)m♯

)
6 (1, 0)⊙

(
νm† + (1− ν)m♯

)
.

Substituting in (8) and using that the supremum distance to the negative orthant is increasing with

respect to component-wise inequalities, we get that

ϕx
⋆

(ν) = sup

{
d∞

(
N∑

i=1

λi x
⋆(νi)⊙

(
νim

† + (1− νi)m
♯
)
, (−∞, 0]2

)
:

N∑

i=1

λiνi = ν

}

6 sup

{
d∞

(
N∑

i=1

λi (1, 0)⊙
(
νim

† + (1− νi)m
♯
)
, (−∞, 0]2

)
:

N∑

i=1

λiνi = ν

}

= d∞

(
(1, 0)⊙

(
νm† + (1− ν)m♯

)
, (−∞, 0]2

)
= α1(ν) .

(Here we did not write the condition N > 1 in the first two displays, but we mean considering

all possible finite convex decompositions.) The converse inequality ϕx
⋆
> α1 follows from the

decomposition of any ν ∈ [0, 1] as the convex combination of 1, with weight λ1 = ν, and 0, with

weight λ2 = 1− ν. In particular,

ϕx
⋆

(ν) > d∞

(
ν x⋆(1)⊙m† + (1− ν)x⋆(0)⊙m†, (−∞, 0]2

)
= α1(ν) ,

as both x⋆(0) = x⋆(1) = (1, 0) as recalled above.

C.2. Example 2: Exploitation

The previous example cannot be used to prove the second part of Lemma 8, which we do now

with this second example. We will also be able to illustrate again (parts of) the lemmas already

proved above thanks to the first example. As before, we start by computing ϕ⋆. We refer to vectors

m ∈ [−1, 1]2 chosen by Nature as m = (v, w) and to the mixed actions picked by the decision-

maker by (x, 1− x), where x ∈ [0, 1]. The absolute value of a convex combination of v and w is to

be minimized. This is achieved with

x⋆(v, w) =





(1, 0) if 0 < v 6 w or 0 > v > w,
(0, 1) if 0 < w < v or 0 > w > v,( |w|

|v|+ |w| ,
|v|

|v|+ |w|

)
if v w 6 0,

which leads to

ϕ⋆(v, w) =

{
min

{
|v|, |w|

}
if v w > 0,

0 if v w 6 0.

The concavification of ϕ⋆ admits the following expression: for all v, w ∈ [−1, 1]2,

cav[ϕ⋆](v, w) = 1− |v − w|
2

.

We replace a lengthy and tedious proof of this expression by the graphical illustration provided by

Figure 3.
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ϕ⋆

0

0

0

1

1

v

w

cav[ϕ⋆]
0

1

1

1− |v−w|
2

Figure 3: Representations of ϕ⋆ (left) and of its concavification cav[ϕ⋆] (right).

Proof [of Lemma 4] The same construction as for the previous example holds, by switching be-

tween regimes when mt = (−1, 1) is chosen and at the end of which the average payoff should

be close to null, rT 6 ε. Then, another regime of the same length starts with mt = (1, 1) and no

matter what the decision-maker does, she will get an average payoff of 1 in this regime. In total,

rT > 1/2− ε while the target, that is, the image of m2T = (0, 1) by ϕ⋆, equals ϕ⋆(0, 1) = 0. This

can be repeated over and over again.

Proof [of the second part of Lemma 6] We consider α1/2(v, w) = |v +w|/2, which is an achiev-

able target function; it indeed suffices to play xt = (1/2, 1/2) at each round. The inequality

α1/2 6 cav[ϕ⋆] follows from the fact that, |v + w| + |v − w| = max
{
|v|, |w|

}
6 2. That this

inequality can be strict is seen, e.g., at (0, 0). As a conclusion, we have α1/2 ≺ cav[ϕ⋆]. (This is

illustrated by Figures 3 and 4.)

The proof below illustrates what we could call a “sign compensation.” The absolute values of

the convex combinations considered in (22) can be (much) smaller than the convex combinations of

the absolute values of their elements, as considered in the expression of cav[ϕ⋆]; it can indeed be

seen in our example (given the form of the sets Cα) that

cav[ϕ⋆](v, w) = sup

{
N∑

i=1

λi
∣∣x⋆(vi, wi)⊙ (vi, wi)

∣∣ : N > 1 and

N∑

i=1

λi(vi, wi) = (v, w)

}
.

Proof [of the second part of Lemma 7] According to (8) and given the form of the sets Cα, the

target function ϕx
⋆

is defined as

ϕx
⋆

(v, w) = sup

{∣∣∣∣∣

N∑

i=1

λi x
⋆(vi, wi)⊙ (vi, wi)

∣∣∣∣∣ : N > 1 and

N∑

i=1

λi(vi, wi) = (v, w)

}
. (22)
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By a tedious case study consisting of identifying the worst convex decompositions
∑

λi(vi, wi),
one then gets the explicit expression

ϕx
⋆

(v, w) =





(
1 + |v + w|

)
/3 if |2w − w| 6 1 and |2v − w| 6 1,

(1 + v)/2 if 2w − v > 1 and v + w > 0,
(1 + w)/2 if 2v − w > 1 and v + w > 0,
(1− v)/2 if 2w − v 6 −1 and v + w 6 0,
(1− w)/2 if 2v − w 6 −1 and v + w > 0,

which shows that ϕx
⋆
6 cav[ϕ⋆]. Admittedly, a picture would help: we provide one as Figure 4.

1+|x+y|
3

1+x
2

1−y
2

1−x
2

1+y
2

Figure 4: Representations in 2D – 3D of ϕx
⋆

and of α1/2.

We conclude our discussion of this example by showing that even ϕx
⋆

can be improved. Indeed,

it was constructed by choosing the response function Ψ = x⋆, that is, somehow by having the un-

achievable target function ϕ⋆ in mind. This response function, as the main algorithm below shows,

is a short-term reply to a local average of vectors of vector payoffs. More reasonable quantities

should be targeted; quite surprisingly we illustrate below that relaxing the short-terms expectations

also results in better long-term payoffs. For instance, if the decision maker knows in advance that

the next vectors will be mt = (0, 1), she should not worry about getting ϕ⋆(0, 1) = 0, and thus,

playing xt = (1, 0); she could well be satisfied with ϕ⋆(0, 1) = 1/2, and thus play xt = (1/2, 1/2).
It turns out that the same argument can be performed at each (v, w).

Proof [of the second part of Lemma 8] The target function ϕ = α1/2 already considered above is

such that α1/2 ≺ ϕx
⋆

as can be seen on a picture.
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Appendix D. Some thoughts on optimality of target functions

The thoughts on optimality we gather here are based on the classical theory of mathematical order-

ings, with 6 and ≺ being seen, respectively as non-strict and strict partial orders.

Definition 11 An achievable target function ϕ is admissible if there exists no other achievable tar-

get function ϕ′ such that ϕ′ ≺ ϕ.

There might exist several, even an infinite number of, admissible target functions. We show

below that in Example 1 of Section C, the target functions αx are admissible, for all x ∈ [0, 1]. One

can actually show the following general result.

Lemma 12 There always exist admissible mappings.

The proof is rather involved but quite similar to the existence of minimal approachable sets.

Proof The result follows from Zorn’s lemma, as long as we can prove that the set T of all achievable

target functions ϕ : K → [0,+∞), which is partially ordered for 6, has the property that every

totally ordered subset TΘ = {ϕθ, θ ∈ Θ} has lower bound in T . Indeed, in that case, Zorn’s

lemma ensures that the set T contains at least one minimal element: one element ϕ such that no

other element ϕ ∈ T is such that ϕ ≺ ϕ.

But given TΘ, we can define the target function

ϕΘ : m ∈ K 7−→ inf
θ∈Θ

ϕθ(m) ;

ϕΘ is of course smaller than any element of TΘ. The difficulty is only to show that ϕΘ ∈ T , i.e.,

that ϕΘ is still achievable.

Now, since ϕθ is achievable, the compact sets Gϕθ
are each approachable for the game with

payoffs (x,m) ∈ ∆(A) × K 7→ (m, x ⊙ m), by Definition 3; in particular, they are non empty.

The compact set

GϕΘ =
⋂

θ∈Θ

Gϕθ

cannot be empty. Indeed, if it were, fixing some θ′ ∈ Θ, we would have that the open subsets

Gϕθ′
\ Gϕθ

cover the compact topological space Gϕθ′
; only finitely many of them would be needed

for the covering, call them Gϕθ′
\ Gϕj

, with j = 1, . . . , N . Since TΘ is totally ordered, one of these

sets is minimal for the inclusion ⊆, say, the one corresponding to j = 1. Therefore, we would have

Gϕθ′
\ Gϕ1 = Gϕθ′

. This would lead to either Gϕ1 = ∅ (if Gϕ1 ⊆ Gϕθ′
) or Gϕθ′

= ∅ (if Gϕθ′
⊆ Gϕ1);

which would, in both cases, be a contradiction.

In addition, we now prove that for all ε > 0, there exists θε ∈ Θ such that Gϕθε
is included in

the open ε–expansion of GϕΘ , which we denote by GϕΘ,ε. Indeed, denote by Hϕθ
the compact sets

Hϕθ
= Gϕθ

\ GϕΘ,ε. We have that

HϕΘ =
⋂

θ∈Θ

Hϕθ
= GϕΘ \ GϕΘ,ε = ∅ .

Therefore, by the same argument as above, we see that there exists some θε such that Hϕθε
= ∅,

which is exactly what we wanted to prove.
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So, putting all things together, we proved that GϕΘ is non empty and that each of its ε–expansion

is approachable (as it contains an approachable set). In terms of approachability theory (see, e.g.,

Perchet, 2013 for a survey), this means that GϕΘ is a 0–approachable set. But 0–approachability

and approachability are two equivalents notions (a not-so-trivial fact when the sets at hand are not

closed convex sets). That is, GϕΘ is approachable or put differently, ϕΘ is achievable.

Example 1: all the αx are admissible. We illustrate the general existence result of Lemma 12 by

showing that in Example 1 of Section C, the target functions αx are admissible, for all x ∈ [0, 1].
Our proof will be sketched only and it follows the methodology used therein to prove Lemma 4. We

fix any strategy of the decision-maker achieving a target function ϕ 6 αx, for some fixed x ∈ [0, 1],
and we show that necessarily, ϕ = αx.

Assume that Nature chooses m† (that is, ν = 1) during T stages, where T can be made arbitrar-

ily large. We denote by vT the average of the mixed actions xt played by the decision-maker during

these rounds. The average payoff vector received is
[

3vT
5− vT

]
,

whose distance to the negative orthant is 5 − vT . Since αx(1) = 5 − x and the strategy achieves

ϕ(1) 6 5− x, it must hold that lim sup 5− vT 6 5− x as T → ∞. For the sake of compactness,

we will denote this fact by 5 − vT . 5 − x or vT & x. During the next T stages, we assume that

Nature chooses m♯ (that is, ν = 0) and denote by wT the average of the mixed actions xt played by

the decision-maker during these rounds. The average payoff vectors received between rounds T +1
to 2T , one the one hand, and during rounds 1 to 2T , are therefore respectively equal to

[
5− wT
3wT

]
and

1

2

[
3vT + 5− wT
5− vT + 3wT

]
,

and the distance of the latter to the negative orthant is given by

1

2
max

{
3vT + 5− wT , 5− vT + 3wT

}
,

which we know is asymptotically smaller than ϕ(1/2) by achievability of ϕ, where ϕ(1/2) 6

αx(1/2) = 5/2 + x. We thus obtained the following system of equations:




vT & x
3vT − wT . 2x

−vT + 3wT . 2x

Summing the last two inequalities, we get vT + wT . 2x. Together with the first inequality vT &

x, we have proved wT . x. Substituting in the second and third inequalities, we have 3vT −
wT ≈ −vT + 3wT ≈ 2x, and thus vT ≈ wT ≈ x. (Here, we recall that the ≈ symbols mean a

convergence.)

Consider now some ν > 3/4. We show that ϕ(ν) > αx(ν). To that end, assume that after the

T stages of m†, when the player played in average arbitrarily close to (x, 1 − x), Nature switches

instead to 3/4m† + 1/4m♯ during

T ′ =
1− ν

ν − 3/4
T
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rounds. Note that in this case, the average values of the coefficients for m† and m♯ used in the first

T + T ′ rounds are proportional to

1 +
3

4

1− ν

ν − 3/4
=

ν

4ν − 3
and 0 +

1

4

1− ν

ν − 3/4
=

1− ν

4ν − 3
(23)

that is, mT+T ′ = ν m† + (1 − ν)m♯ was played. We perform first some auxiliary calculations:

by multiplying the equalities in (23) by T , we see that the total number T + T ′ of rounds equals

T+T ′ = T/(4ν−3). In particular, we have T/(T+T ′) = 4ν−3 and T ′/(T+T ′) = 1−(4ν−3) =
4− 4ν. Finally, denoting by w′

T ′ the average mixed action played by the decision-maker in rounds

T +1 to T +T ′, we have that the average vector payoffs during rounds T +1 to T +T ′ and during

rounds 1 to T + T ′ are respectively equal to

r(w′
T ′ , 3/4) =

[
5− w′

T ′ − 15/4 + 3w′
T ′

3w′
T ′ + 15/4− 3w′

T ′

]
=

[
2w′

T ′ − 5/4
4− 1/4

]

and

T

T + T ′

[
3vT

5− vT

]
+

T ′

T + T ′

[
2w′

T ′ − 5/4
4− 1/4

]

= (4ν − 3)

[
3vT

5− vT

]
+ (4− 4ν)

[
2w′

T ′ − 5/4
4− 1/4

]
. (24)

The overall average payoff is given by the distance of this vector in the supremum norm to the

negative orthant and must be smaller than ϕ(ν), by achievability of ϕ. However, the said distance

of (24) to the orthant is bound to be larger than second component of (24), which equals

(4ν − 3)(5− vT ) + (4− 4ν)(4− 1/4) ≈ 5ν − 4νx+ 3x = αx(ν) ,

where we substituted the above limit vT ≈ x. We thus proved that ϕ(ν) > αx(ν), as claimed.

We showed that ϕ > αx on [3/4, 1]. Similar arguments on the other intervals show that ϕ > αx
on the whole interval [0, 1].
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