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Abstract

The best known analytical model of swimming was originally developed by Lighthill and
is known as large amplitude elongated body theory (LAEBT). Recently, this theory has
been improved and adapted to robotics through a series of studies [Boyer et al., 2008, 2010;
Candelier et al., 2011] ranging from hydrodynamic modelling to mobile multibody system
dynamics. This article marks a further step towards the Lighthill theory. The LAEBT is ap-
plied to one of the best bio-inspired swimming robots yet built: the AmphiBot III, a modular
anguilliform swimming robot. To that end, we apply a Newton-Euler modelling approach
and focus our attention on the model of hydrodynamic forces. This model is numerically in-
tegrated in real time by using an extension of the Newton-Euler recursive forward dynamics
algorithm for manipulators to a robot without a fixed base. Simulations and experiments
are compared on undulatory gaits and turning manoeuvres for a wide range of parameters.
The discrepancies between modelling and reality do not exceed 16% for the swimming speed,
while requiring only the one-time calibration of a few hydrodynamic parameters. Since the
model can be numerically integrated in real time, it has significantly superior accuracy com-
pared with computational speed ratio, and is, to the best of our knowledge, one of the most
accurate models that can be used in real-time. It should provide an interesting tool for
the design and control of swimming robots. The approach is presented in a self contained
manner, with the concern to help the reader not familiar with fluid dynamics to get insight
both into the physics of swimming and the mathematical tools that can help its modelling.

Keywords: swimming dynamics, bio-inspired locomotion, Newton-Euler algorithmic, mo-
bile multibody system dynamics.

1 Introduction

The locomotive performance of fish attracts great interest in submarine robotics. In particular,
the quest for underwater vehicles that are both efficient and manoeuvrable has led to the design
of a new generation of underwater robots inspired by fish [Barrett, 1996; McIsaac and Ostrowski,
2003; Yu et al., 2004; Yamada et al., 2005; Morgansen et al., 2007; Crespi and Ijspeert, 2008;
Boyer et al., 2008; Liu and Hu, 2010; Salumäe and Kruusmaa, 2011; Stefanini et al., 2012].
Whether it be for mechanical design or for control, researchers involved in the field need efficient
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and accurate models of swimming. In the context of bio-robotics these models have to be able to
predict the relations between the internal joint (or shape) motions or forces and the external (or
net) motions. Furthermore, this has to be achieved with computational times compatible with
their exploitation for control, or fast simulation (as required by optimisation or path planning).
Strictly speaking, deriving these relations requires solving the Navier-Stokes (N-S) equations
which govern the time evolution of a real (i.e. viscous) fluid at any Reynolds number1. However,
the intrinsic nonlinearities of these equations are such that, to date, their numerical resolution
(when it is possible, i.e. for sufficiently simple geometries at low Reynolds numbers [Carling
et al., 1998; Liu and Kawachi, 1999; Farnell et al., 2005; Kern and Koumoutsakos, 2006; El-
dredge, 2006; Bergmann and Iollo, 2011], or at high Reynolds numbers, with a simplified model
of turbulence [Leroyer and Visonneau, 2005]) is still far from being achievable in real time. To
overcome these limits, several simplifications of N-S equations can be applied. Firstly, due to
the relatively high Reynolds numbers involved in fish-like swimming, the fluid around a fish (or
a robot) can be considered as inviscid, i.e. it can only exert pressure forces (no shearing stress),
and the N-S equations can be replaced by those of Euler [Milne-Thomson, 1996]. Due to its
inviscid character, this fluid model cannot predict the separations of the boundary layer which
can occur near the body boundaries, which are responsible for the vortex generation, and in
particular of the large vortices observed in the wake of fish [Videler et al., 1999]. To address this
lack of viscosity (and vorticity), models based on a perfect fluid (i.e. inviscid and incompressible)
can be complemented by an exogenous model of vorticity generation derived from experimental
observation and the exploitation of the singularities of potential flow theory2 [Kelly and Murray,
2000; Kanso, 2009]. These additional models produce vorticity which then obeys the usual con-
servation laws of a perfect fluid3. Despite these simplifications, and even if one crudely neglects
the wake vorticity, the numerical methods able to solve these swimming models (based on the
boundary elements method, see [Hill, 1998; Wolfgang, 1999]) are still too computationally heavy
to be used in robotics. In opposition to these numerical approaches, a few analytical models
were developed in the pre-computer era. Both Wu [Wu, 1961] and Lighthill [Lighthill, 1960]
based their models on a perfect fluid, with no vorticity apart from in the fish wake. In order to
analytically integrate the equations of the 3-D flow around the body, the flow is replaced by a
stratification of planar (i.e. 2-D) potential flows structured by the geometry of an undulating
infinite height plate in the case of Wu [Wu, 1961], and by a finite axisymmetric slender body,
in the case of Lighthill [Lighthill, 1960]. In both cases, analytic methods in planar harmonic
functions enable swimming models in a closed analytical form to be obtained. Even if in some
respects, as for instance the modelling of the proto-vortices along the body in the plane of swim-
ming [Videler et al., 1999], Wu’s approach has a few advantages, Lighthill’s more realistic body
model makes it the most relevant for the roboticist. Thus, we will consider the Lighthill model
in the rest of the article, starting with a resumé of a few of the milestones that have marked its
elaboration and explain its persistence.

The Lighthill theory was developed over several years [Lighthill, 1960, 1970, 1971]. In its
essence, it consists in explains swimming by the timed variations of body shape that accelerate
the (initially quiescent) fluid from front to back thus generating thrust. As has been conjectured

1In fluid dynamics, the Reynolds number is a dimensionless number characterising the relative influence of the
viscous and inertial forces.

2An edge on a body boundary generates a singular potential flow whose discontinuities can model the regions
of high shearing strains of the real flow.

3For instance, the vorticity shed at a sharp trailing edge can be modeled by a sheet of singularities (of dipoles
or vortex) whose strength is deduced at each step of time by a Kutta-like condition [Saffman, 1992], and whose
the advection in the wake is governed by Helmoltz laws [Milne-Thomson, 1996].
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by J. Gray4, the swimming of an elongated fish is based on a kinetic amplification mechanism,
where the fluid is gradually accelerated along the fish body by curvature waves of increasing am-
plitude. These travel from head to tail pushing the fluid laterally until it is shed into the wake,
thus generating thrust by virtue of the action/reaction principle [Breder, 1926; Gray, 1933].
Starting from this principle, Lighthill’s approach is based on two adaptations of the perfect fluid
theory. Firstly, in order to avoid the modelling of the complex rotational flow in the fish wake,
while taking it into account in the thrust, the modelling is restricted to the fluid contained in
a half sphere of infinite radius whose the equatorial plane is at any time perpendicular to the
trailing edge of the fish caudal fin. Moreover, based on experimental observations, the flow is
assumed to be potential in that hemisphere and produced by the body undulations. Secondly,
due to the high aspect ratio (length/thickness) of the body fish, the flow surrounding the fish
and the forces which are produced by that flow can be modelled by the slender body theory
which approximates the 3-D flow around the body by a stratification of potential 2-D flows per-
pendicular to the longitudinal axis of the body [Munk, 1924]. Based on these two ingredients,
Lighthill made several crucial contributions to modelling fish swimming. Firstly, he considered
an elongated body submitted to low amplitude undulations. Through a perturbation series ex-
pansion of Laplace equations with respect to the small parameters of the problem (aspect ratio,
amplitude of deformations), he derived - via the direct integration of pressure forces - a closed
form of the hydrodynamic thrust [Lighthill, 1960]. Secondly, he reproduced the results from this
first approach by using a more global model based on the balance of kinetic momenta applied to
the flow inside the control volume defined by the hemisphere containing the body [Lighthill, 1960].

Much easier to understand, this second more global point of view allowed Lighthill to derive
the mechanism of kinetic amplification first conjectured by Gray, which can be translated in to
mathematical terms as follows. When swimming, the body cross sections sweep past a fluid slice
while transmitting more and more kinetic energy to it. Once the last cross section has swept past
the fluid slice, the slice has a maximum kinetic energy and is shed into the wake so producing the
reactive thrust. After his initial paper, Lighthill returned on several occasions to his elongated
body theory (EBT) and proved that the thrust (deduced from the kinetic balance applied to
the half space including the body) can equivalently be interpreted as generated by the vorticity
produced at the trailing edge of the caudal fin [Lighthill, 1970]. Finally, he generalised the EBT
to the case of finite body deformations so building the foundations of a large amplitude elongated
body theory (LAEBT) [Lighthill, 1971]. Since then, biologists have used the LAEBT to estimate
the mean thrust and the swimming power of live fish [Tytell and Lauder, 2004; Tytell, 2004].
More recently, Tytell and co-workers have successfully compared the Lighthill’s reactive model
to planar Navier-Stokes simulations obtained with a full model of lamprey swimming including
body stiffness and muscular activation [Tytell et al., 2010]. As it is capable of modeling high
amplitude shape variations such as those of current fish-like robots, the LAEBT is well adapted
to roboticists’ needs. Furthermore, it is well adapted to any fish morphology (e.g. caranguiform)
that uses the body caudal fin swimming mode [Breder, 1926]. However, Lighthill’s starting point
in 1971 was the kinetic balance [Lighthill, 1971] rather than the rigorous computation of the
pressure field on the body as that proposed in his EBT [Lighthill, 1960]. As a result, premis-
ing his calculation on a kinetic model of the flow (and not a kinematic model), the LAEBT is
biased ab initio by a heuristic character which is not present in the EBT. Recently, we man-
aged to overcome this limit, and the LAEBT has been derived by a direct calculation based on
the integral of pressure forces along the body boundaries [Candelier et al., 2011]. Furthermore,
modelling the fish body as a nonlinear Cosserat beam, we extended Lighthill’s model in [Boyer
et al., 2008] (numerically) and [Boyer et al., 2010] (theoretically) to: 1) the 3-D swimming; 2)

4whose a meeting with him initiated Lighthill’s works on swimming.
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the self-propelled swimming (i.e. the net motions are calculated rather than being imposed);
3) the computation of the internal stress field of the Cosserat beam (which models the forces
of the fish muscles or robot motors); 4) the modelling of resistive forces through a Taylor-like
resistive model [Taylor, 1952]. This analytical model has been validated by comparisons with
N-S simulations [Boyer et al., 2008]. In the case of planar swimming gaits and manoeuvres, the
trajectory and speed discrepancies between the analytical model and the N-S simulations do not
exceed 10%, drastically reducing the requirements for the CPU time. In fact, the analytical
model can run in real time, while N-S simulations take several hours (or days) for only a few
seconds of swimming.

In this article, we will take this model one step further by applying it to one of the most
advanced fish-like robots yet built: the AmphiBot III5 of the EPFL BioRob6. We extended the
Newton-Euler (N-E) based algorithm of forward manipulator dynamics [Featherstone, 1983] to
the case of a locomotion robot without a fixed base. This approach has the advantage of offering
simple access to insight into the physics of swimming [Khalil et al., 2007], while minimising the
computational complexity and the time execution. Starting from the description of the AmphiBot
III in section 2, we will then derive its dynamic model in the N-E formalism in section 3. In the
same section, special attention will be paid to the modelling of the external forces exerted by the
fluid onto the robot. The model we describe in this article is self-contained and original in itself.
In contrast to our earlier model [Boyer et al., 2010] which was based on abstract variational
calculus, the model in this article uses the balance of the fluid kinetic momenta contained in a
control volume enclosing each of the segments. Once derived, this model is introduced into the N-
E model of the AmphiBot III. Based on this model, the extended Featherstone forward dynamics
algorithm is described in section 4 and then used in section 5.3 to compute the motion of the
AmphiBot III. These results are then compared to those given by a set of experiments carried
out with the real robot. The comparisons concern undulatory gaits and turning manoeuvres.
With a very small set of hydrodynamic (dimensionless) parameters each tuned only once, the
discrepancies between the model and reality did not exceed 16% in terms of averaged forward
velocity, confirming the validity of the LAEBT. This model is, to the best of our knowledge, the
most accurate that can be run in real-time on a standard computer. The article concludes with
a discussion of the results in section 6.

2 The snake-like robot AmphiBot III

The snake-like robot AmphiBot III (see figure 1) is a 2-D swimming robot composed of 8 seg-
ments, the first (from left to right) being the head segment, while the last segment, or "tail
segment", supports a caudal fin. This fin is rigidly clamped to the last segment and is sufficiently
stiff7 to be considered as rigid in the subsequent modelling. The AmphiBot III is designed to be
modular. In particular, its segments are constructed from several identical polyurethane parts.
The external casing of each segment consists of three parts: a top, a bottom and a central box,
which are fixed together with magnets. Waterproofing of the assembly is achieved by custom
O-rings placed between each part. The segments are connected (both mechanically and electri-
cally) by an elastic connector (see figure 1). A segment has an external length of 9.7 cm, and
a cross-section of 4.0 cm × 5.7 cm. The total length of the robot (denoted by Lr) is 88.0 cm.
The caudal fin has a length of 10.3 cm and a cross-section of 0.3 cm × 5.7 cm. This relatively

5This robot is part of a series of amphibious robots that was originally founded by the SwissNational Science
Foundation and by the European commission (FP7).

6see http://biorob.epfl.ch/
7Note that it is possible to attach a compliant fin instead of the rigid one.
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Figure 1: From the left to the right, a global view of the snake-like robot AmphiBot III and an
internal view of two robot segments.

Segment

Shaft

Spring

Motor

Revolute series elastic 
actuators of the AmphiBot 

III robot
(Side view)

aj , aj+1 aj+2, aj+3aj−2, aj−1

j − 1 j + 1

Figure 2: The series elastic actuators of the AmphiBot III.

low thickness allows one to consider its trailing edge sufficiently sharp to justify the use of the
LAEBT. The robot’s density is slightly less than 1.0 kg/m3, so that the robot swims just below
the water surface. The center of mass of each segment is below its geometric center, which
ensures the vertical stability of the robot during swimming. Each actuated segment contains a
power board, a proportional derivative (PD) position controller, a small water detector, a direct
current (DC) gear-motor with an integrated incremental encoder and a rechargeable lithium-ion
battery. The DC gear-motor used here has a maximum torque of 0.57N.m and drives the elastic
connector forming "a serial elastic actuator" [Spong, 1987] (see figure 2). The head segment,
which resembles a body segment without a motor, contains the locomotion control board which
sends out the desired positions to body segments in real-time via a serial bus. A radio device
embedded in the head segment permits control commands and swimming parameters to be sent
from a controlling computer to the robot when it is just below the water. Its relatively low
weight/power ratio, compliant joints, and caudal fin, make the AmphiBot III an excellent swim-
mer. According to Lighthill’s theory, the sharp trailing edge of its tail is largely responsible
for its good performance, being responsible for the non zero average thrust produced by body
undulations. We show in section 5.3.1 a three fold increase in the AmphiBot III’s swimming
speed compared to the results obtained with no caudal fin [Crespi and Ijspeert, 2008], whatever
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Figure 3: Schematic views of the fish-like robot and its internal kinematics. In the bottom view,
we have voluntarily off-centered the axis of the joint j + 1 with respect to the axis of the joint j
in order to make appear on the view the parameters of the rigid shaft j.

the swimming parameters used.

3 Dynamic model of the AmphiBot III

3.1 Parametrisation and notation

The AmphiBot III’s kinematic schema is presented in figure 3. Let us consider it, and more
generally, any serial robot, swimming in a fixed horizontal plane in an unbounded volume of
initially quiescent water. We attach a fixed spatial frame denoted by Fe = (Oe, se, ne, ae) to the
ambient geometric space, where the unit vector ae is normal to the robot swimming plane. The
robot is a mobile multibody system (MMS) composed of a sequence of m + 1 rigid segments
interconnected through m actuated joints. Because the joints have a compact geometry, the
serial discrete assembly of segments is approximated by a continuous boundary in contact with
water. Between two segments, is a "serial elastic actuator" joint [Spong, 1987]: a gear-motor
serially connected to a rigid shaft and a revolute spring (see figure 2). The m shafts and the m+1
segments are modeled by 2m + 1 rigid bodies, while each "serial elastic actuator" introduces 2
degrees of freedom (one for the motor axis and one for the rotational spring). As a result, the
serial kinematic chain of the AmphiBot III has n = 2m revolute joints parameterised by the
m angles of gear-motors and the m strain angles of the revolute springs. Overall, the MMS is
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composed of n+1 rigid bodies denoted B0,B1, ...,Bn, with B0 and Bn representing the head and
tail segments respectively. According to this convention, an even index denotes a segment while
an odd index denotes a shaft. We attach to each body Bj a mobile frame Fj = (Oj , sj , nj , aj),
whose center Oj coincides with the center of the joint j. The unit vector sj is supported by the
line OjOj+1, and aj supports the joint axis. At any time t, the robot configuration is defined
by the vector of joint positions r(t) = (r1, ..., rn)

T (t) defining the relative angles between the
segments and shafts, together with the orientation matrix eR0 and the position vector eP0 of the
mobile frame attached to the head segment F0 = (O0, s0, n0, a0) with respect to Fe. Thus B0 is
the reference body and the time evolution of the pose ( eR0,

eP0) defines the rigid net motion of
the robot. At time t = 0 s this reference pose, and its velocity are known and must be updated
by time integration of the head segment accelerations using a computational algorithm which is
presented in section 4. Throughout this article we will use the following notation convention. For
any physical variable modelled as a tensor, the right lower index will represent the body index
(to which it is related) while the left upper exponent will indicate the index of the projection
frame (e.g. eR0,

eP0). When the tensor related to a body is expressed in the mobile frame of
this body, the upper index is omitted. Moreover, the temporal derivative ∂./∂t will sometimes
be denoted by a ’dot’.

3.2 Mobile multibody system model

As the AmphiBot III is composed of a relatively high number of serially connected rigid bodies
and revolute joints, we chose to model it using a N-E framework described elsewhere [Khalil
et al., 2007; Boyer and Ali, 2011]. This work is generally devoted to modelling serial MMS, with
a mobile base (in this case the head segment). Let us start by introducing the geometric model of
the robot which relates the posture of the frame Fj with that of the frame Fj−1, both expressed
in the earth frame and represented by the two (4 × 4) matrices egj−1 and egj of SE(3). This
model can be expressed as:

egj =
egj−1

j−1gj =
egj−1

(

j−1Rj
j−1Pj

0 1

)

, (1)

where j−1Rj and j−1Pj are the orientation matrix and the position vector of Fj with respect
to Fj−1. With the AmphiBot III geometry, we have:

j−1Rj =





cos rj − sin rj 0
sin rj cos rj 0
0 0 1



 , and j−1Pj =





dj
0
0



 ,

where dj is the distance between the frame centers Oj−1 and Oj (see Figure 3).

Regarding the velocity of the body j, it is a (6× 1) vector of se(3) denoted ηj and related to
the velocity of body j − 1 through the recursive relation:

ηj =

(

Vj

Ωj

)

= Ad jgj−1
ηj−1 + ṙjAj , (2)

where Vj and Ωj are respectively the linear and angular Galilean velocities of the body under
consideration (both expressed in its mobile frame), Aj = (0T3 , a

T
j )

T is the (6 × 1) unit vector
supporting the joint axis j, and Ad jgj−1

is the adjoint map operator which permits a change in
velocity from Fj−1 to Fj :

Ad jgj−1
=

(

jRj−1
jRj−1

j−1P̂ T
j

0 jRj−1

)

. (3)

7



Let us remark that in (3), we introduced the notation ’hat’ which changes a (3× 1) vector into
its associated (3× 3) skew-symmetric tensor. Thus, for any vectors A and B in R

3, Â is defined
such that ÂB = A×B.

Once the Galilean velocities are defined, by temporal derivation of (2), the acceleration of
the body j is given by the relation:

η̇j = Ad jgj−1
η̇j−1 + ζj + r̈jAj , (4)

where ζj represents the component of acceleration in (4) which depends on velocities through
the detailed expression:

ζj =

(

( jVj−1 +
jPj−1 ×

jΩj−1)× ṙjaj
ṙj

jΩj−1 × aj

)

. (5)

Finally, by applying, Newton’s law and Euler’s theorem to the jth body, one obtains the dynamic
equations of body j in the Newton-Euler form:

Fj = Mj η̇j + βj +AdTj+1gj
Fj+1 − Fext,j . (6)

Here, we have introduced the following notation:

• for any j, Fj is the (6× 1) force vector (element of se(3)∗) exerted by the body j − 1 onto
the body j; and

• Mj is the (6× 6) inertia tensor of Bj (element of se(3)∗ ⊗ se(3)), which can be defined as:

Mj =

(

Mj −MSj

MSj Ij

)

= ρb

∫

VBj

(

13 − ˆOjQ
ˆOjQ − ˆOjQ ˆOjQ

)

dVBj
,

where Q is a point of Bj , 13 is the 3× 3 unit matrix, ρb is the body mass ratio while Mj ,
MSj and Ij are the tensor of body mass (spherical in the rigid body case), the tensor of
first inertia moments (skew-symmetric in the rigid body case) and the tensor of angular
inertia of the body j; and

• the (6× 1) vector of Coriolis and centrifugal forces, where:

βj =

(

−Ωj × (MSjΩj) + Ωj × (MjVj)
Ωj × (IjΩj) +MSj(Ωj × Vj)

)

, (7)

(we shall see that the fluid generates other velocity-dependent inertia forces that we will
also denote β by extension); and

• the (6× 1) vector of external hydrodynamic forces denoted by Fext,j which will be defined
in the next section (3.3).
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Figure 4: Schematic view of the fluid laterally surrounding a robot segment (i.e. when j is even).

3.3 Model of hydrodynamic forces

Following the terminology in [Lighthill, 1971] we distinguish two types of hydrodynamic forces,
produced either by the reaction forces exerted by the acceleration of the fluid around the robot
body or by the viscous stresses applied in its boundary layer. In the first case, the forces are
said to be "reactive" while in the second, they are termed "resistive". According to [Boyer
et al., 2008], the (6× 1) vectors of body external (hydrodynamic) forces of (6) are defined by the
following superimposition of forces:

Fext,j =

{

Freac,j + Fres,j if j is even,
0 otherwise,

(8)

where Freac,j = (fT
reac,j , c

T
reac,j)

T and Fres,j = (fT
res,j , c

T
res,j)

T are the (6 × 1) vectors of reactive
and resistive forces respectively. We will now to detail both of them. In the first case, we use
the model of the perfect fluid, while in the second, we account for the viscous effects.

3.3.1 The model of reactive forces

As in Lighthill’s original theory, the flow around the fish (or robot) is assumed to be potential8

except in its wake where vorticity is shed. The influence of boundary discontinuities, intro-
duced by the joints, onto the hydrodynamic forces exerted on the body, are neglected. These
approximations, and the high aspect ratio (length/thickness) of the AmphiBot III, allow the 3-D
fluid potential flow laterally surrounding the robot to be approximated using a stratification of
2-D potential flows perpendicular to the robot’s backbone. In this simplification of the fluid
kinematics9, the 3-D fluid volume is replaced by a 1-D medium of fluid slices which sweep past
the robot cross-sections. As illustrated in figure 4, if we denote by X the abscissa of the cross-
section Cj(X) of the jth segment, a fluid slice will be defined as the part of the fluid contained
at each instant in the geometric section Sj(X) which extends Cj(X) in the fluid. As the flow is

8By definition, the flow of a perfect fluid (non viscous and incompressible) is said potential if its vorticity field
is zero everywhere. In this case the velocity is the gradient of a potential field φ governed by Laplace equations.

9Which takes its origin in the slender body theory of Munk [Munk, 1924].
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potential, the 2-D velocity field of the fluid in Sj(X) is governed by the 2-D Laplace equation
submitted to the boundary conditions imposed by the body transverse motion of the robot on
Cj(X) and by those of a quiescent fluid at infinity10. Since the fluid is perfect (i.e. non vis-
cous), the fluid slices of the 1-D stratified fluid can only transmit compression forces along the
longitudinal segment axis (aligned with sj). These cross-sectional pressure forces define the field
fpres,j : X ∈ [0, lj ] 7→ fpres,j(X) along each of the segments11. In the case of 2-D swimming12,
these cross-sectional pressure forces can be derived by integrating the unsteady Bernouilli’s pres-
sure law13 in each of the fluid slices [Lighthill, 1971] while in the 3-D case, their computation
requires further investigation [Candelier et al., 2011]. In both cases, the cross-sectional pressure
forces take the form:

fpres,j(X) = T̄f,j(X)sj , (9)

where T̄f,j(X) is the kinetic energy of the fluid contained in Sj(X).

Based on these preliminary findings, we are going to state the balance of kinetic momenta of
the fluid laterally surrounding the robot in order to derive the reactive force Freac,j (of (8)) exerted
onto each of the robot segments. To that end, let us recall that for a given geometric volume
(named the "control volume" in fluid dynamics) containing material, N-E equations state the
balance of the external forces and moments exerted across the boundaries of the geometric volume
onto that material with the time derivative of its kinetic linear and angular momenta. In our case,
we consider the fluid which laterally surrounds the segment j, i.e. the fluid contained between the
two geometric slices Sj(0) and Sj(lj). As we have just seen, the external forces applied on that
fluid domain are the reactive force −Freac,j that we seek and the two sectional pressure forces
applied onto the isolated fluid across Sj(0) and Sj(lj), i.e. fpres,j(0) and −fpres,j(lj) respectively,
which can both be calculated using (9). Thus, applying Newton laws and Euler theorem to that
fluid domain (as detailed in the appendix in section 8), finally gives:

Freac,j = −Mreac,j η̇j − βreac,j − β−
reac,j − β+

reac,j , (10)

where we have introduced the following definitions:

• Mreac,j is the (6× 6) tensor of added inertia of the fluid accelerated by the segment j:

Mreac,j =

(

Mf,j −M̂Sf,j

M̂Sf,j If,j

)

=





ljM̄f,j
l2j
2 M̄f,j ŝ

T
j

l2j
2 M̄f,j ŝj

l3j
3 ŝ

T
j M̄f,j ŝj + lj Īf,j



 , (11)

which depends only on the segment’s cross sectional added inertia tensors M̄f,j and Īf,j
along with its geometry;

• βreac,j is the (6× 1) vector of the reactive forces produced by the fluid added mass accel-
erated by the Coriolis and centrifugal accelerations of the segment j:

βreac,j =

(

−Ωj × (MSf,jΩj) + Ωj × (Mf,jVj)
Ωj × (If,jΩj) +MSf,j(Ωj × Vj)

)

+

(

0
Vj × (Mf,jVj)

)

; (12)

10In the rest of the article, the effects of the walls of the pool in which the robot is experimented are neglected.
11By analogy with solid beam theory, fpres,j(X) represents the compression force applied across Sj(X) by the

fluid on its left side onto the fluid on its right side.
12By "2-D" we here mean that the robot moves in a plane while generating a 3-D flow around its body.
13A potential flow is entirely parameterised by a unique point-function named the velocity potential from

which the velocity field derives. The velocity potential is governed by Laplace equations and Neumann boundary
conditions on solid boundaries and defines the flow kinematics. As regards internal forces, they are modelled by
a pressure field governed in each point by the unsteady Bernoulli equations.
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• β−
reac,j and β+

reac,j are the (6× 1) boundary vectors (the two indices − and + indicate the
left and right planes Sj(0) and Sj(lj)) given by:

β−
reac,j = −

(

VX P̄f,j

VXΣ̄f,j

)

(0) +

(

f−
pres,j

0

)

, (13)

and

β+
reac,j = AdTlj gj

((

VX P̄f,j

VXΣ̄f,j

)

(lj)−

(

f+
pres,j

0

))

, (14)

where VX , P̄f,j and Σ̄f,j are detailed in the appendix in section 8 and respectively denote
the linear velocity of the X-cross section Cj(X) projected onto sj , its cross-sectional linear
momentum and its cross-sectional angular momentum. Physically, β−

reac,j and β+
reac,j model

two kinds of forces. The first ones (first terms of (13)-(14)) account for the net flux of fluid
kinetic momenta across the control volume boundaries14 Sj(0) and Sj(lj), both moving
with segment Bj while the fluid slices do not move along the segment axis15. The second
terms of (13)-(14) are produced by the pressure exerted by the fluid outside of the isolated
control volume onto its two boundaries Sj(0) and Sj(lj).

As previously mentioned (see section 3.1), if the serial assembly of segments is approximated
as a continuous boundary in contact with the water, the conservation of the mass, and the
action/reaction principle requires the convective and pressure forces transmitted across the slices
to cancel each other out, except those applied to the first (from left to right) section of the head
segment and the last section of the tail segment. In other terms, among all the forces described
in (13)-(14), only β−

reac,0 and β+
reac,n will generate net forces on the robot. Furthermore, the

cross-section of the robot nose being a single point, its cross-sectional added mass tensor M̄f,0(0)
and Īf,0(0) are equal to zero and hence β−

reac,0 = 0. On the other hand, β+
reac,n, is not zero

and models: 1) the effects of the flux of kinetic momentum across Sn(ln) (the terms function of
VX(ln) in (14); 2) the pressure force −f+

pres,n exerted across the plane Sn(ln) on the fluid on its
left side by the fluid on its right side. From (9), f+

pres,n is directed along sn with a strength equal

to the kinetic energy of the fluid contained in Sn(ln), i.e. f+
pres,n = fpres,n(ln) = T f,n(ln)sn. As

a result, if V (X) and Ω(X) denote the linear and angular velocity of the X-cross section Cj(X)
in the segment frame, we can write (see (26) in appendix):

β+
reac,n = AdTlngn

((

(M̄f,nV )VX

(Īf,nΩ)VX

)

(ln)−
1

2

(

(V T M̄f,nV +ΩT Īf,nΩ)(ln)sn
0

))

. (15)

Finally, in the planar case (where ΩX = 0, VZ = 0), we reproduce the conditions in which the
original LAEBT was formatted [Lighthill, 1970]. In particular, the second term of (15) is the
key explanation of thrust generation. Indeed, it is responsible for the non-zero average thrust
and models the reaction force exerted on the caudal fin and generated by the cross-sectional
kinetic energy amplified along the robot body by the curvature wave and shed in the wake, or
equivalently by the vorticity generated along the sharp trailing edge. This is demonstrated in
[Lighthill, 1970] for the 2-D swimming in small body deformation and discussed in [Boyer et al.,
2010; Candelier et al., 2011] in the case of 3-D swimming with finite deformations.

14They come from the boundary terms of (26) in Appendix (see Section 8).
15According to the slender body theory, they only move laterally, i.e. in the planes perpendicular to the segment

axis.
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3.3.2 The model of resistive forces

As far as the resistive model is concerned, the shear stresses exerted by the fluid in the robot
boundary layer are approximated through a Taylor-like resistive model [Taylor, 1952]. In this
model, the resistive forces take the form of a field of cross-sectional steady drag forces and
couples, which resist the lateral motion of the cross sections:

Fres,j =
1

2

∫ lj

0
AdTXgj

(

C1(|VX |VX)sj + C2(|VY |VY )nj + C3(|VZ |VZ)aj
(C4|ΩX |ΩX)sj

)

dX ,

where VY (X) = V (X)Tnj , VZ(X) = V (X)Taj and ΩX(X) = Ω(X)T sj are the components of
the lateral velocity of the X-cross section Cj(X) in the Bj mobile frame, while Ci for i = 1, 2, 3, 4
are resistive coefficients derived from experimental fluid dynamics which are further described in
section 5.2.2.

3.3.3 Newton-Euler model of the swimming robot

Once the model of external forces has been developed, we can model of the robot’s dynamics.
According to (8) and (10), Fext,j = 0 if j is odd (Bj is a shaft), and :

Fext,j = −Mreac,j η̇j − βext,j , (16)

if j is even (Bj is a segment), with:

If j 6= n: βext,j = βreac,j + Fres,j , while : βext,n = βreac,n + β+
reac,n + Fres,n. (17)

It is worth noting here that all the terms of (17) are known functions of the state variable ηj .
Finally, inserting this model in (6) gives the N-E model of the segments of our swimming robot.

For j = 0, 1, ..., n− 1:

Fj =

{

AdTj+1gj
Fj+1 + (Mj +Mreac,j) η̇j + βj + βreac,j + Fres,j if j is even,

AdTj+1gj
Fj+1 +Mj η̇j + βj otherwise,

(18)

and for j = n:

Fn = (Mn +Mreac,n) η̇n + βn + βreac,n + Fres,n + β+
reac,n . (19)

Once completed with recursive kinematics (1), (2) and (4), these equations can be exploited to
solve the forward dynamics of a swimming robot as detailed in the next section.

4 The computational algorithm

To compute the dynamics of our robot, we have used Khalil et al ’s recursive forward dynamic
algorithm based on the N-E equations [Khalil et al., 2007]. This algorithm is used in a global time-
integration loop. It is a generalisation of Featherstone’s N-E algorithm of serial manipulators
[Featherstone, 1983] to the case of a system without a fixed base. According to the flow chart
in figure 5, it gives the head (net) and joint (shape) accelerations, i.e. η̇0 and r̈, as a function of
joint torques Γ and the current state (g0, η0, r, ṙ). At each time step of a global time integration
loop, the direct algorithm executes the three following recursions with respect to the body index.

12
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Figure 5: Schematic view of the direct dynamic model (DDM). The DDM computes the head
segment accelerations and joint accelerations as a function of torques Γ, hydrodynamic forces
Fext and the head state (eg0, η0).

4.1 The first forward recursion on the kinematics

As the current robot’s state (eg0, η0, r, ṙ) is known, the algorithm starts by the following forward
(from the head to the tail) recursion:

For j = 0, ..., n, compute:

• the j−1Rj ,
j−1Pj and the body transformations egj from recursion (1),

• the body velocities ηj from recursion (2),

• the terms ζj of (4) from (5),

• the body inertia matrices Mj and Mn of (18)-(19) from (7),

• the body Coriolis and centrifugal forces βj and βn of (18)-(19) from (7),

• the added inertia matrices Mreac,j from (11),

• the fluid Coriolis and centrifugal forces βreac,j from (12),

• the velocity dependent hydrodynamic forces β+reac,n and Fres,j of (18)-(19) from (15)-(16).

End for.
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4.2 The backward recursion on the "external" dynamics

Once all the state-dependent variables known, the next step of the computational algorithm
consists in calculating the rigid net acceleration of the robot, i.e. the head acceleration η̇0, as
follows:

η̇0 = −(M∗
0)

−1β∗0 . (20)

This represents the external dynamics, i.e. the dynamics of the net-motions, with M∗
0(r) and

β∗0(Γ, r, ṙ, η0) respectively denoting the (6× 6) inertia matrix and the (6× 1) vector of Coriolis,
centrifugal and external (control and hydrodynamic) forces, both expressed in the head (refer-
ence) frame with the joints locked in their current configuration. They are given by the following
backward recursion (from the tail to the head) initialised by M∗

n = Mn and β∗n = βn + βext,n:

For j = n, n− 1, ..., 1:

Hj = AT
j M

∗
jAj ;

Kj = M∗
j −M∗

j (AjH
−1
j AT

j )M
∗
j ,

αj = Kjζj +M∗
jAjH

−1
j

(

Γj −AT
j β

∗
j

)

+ β∗j ,

M∗
j−1 = Mj−1 +Mreac,j−1 +AdTjgj−1

KjAd jgj−1
,

β∗j−1 = βj−1 + βext,j−1 +AdTjgj−1
αj ,

End for.

4.3 The second forward recursion on the "internal" dynamics

Finally, the algorithm ends with a third forward recursion initialised by the current state as well
as η̇0, computed from (20):

For j = 1, 2, ..., n:

r̈j = Hj

(

−AT
j

(

M∗
j

(

Ad jgj−1
η̇j−1 + ζj

))

+ Γj −AT
j β

∗
j

)

,

η̇j = Ad jgj−1
η̇j−1 + ζj + r̈jAj .

End for.

Finally, the time t, the head state (eg0, η0) and the joint position and speed vectors (ṙ, r) are
updated, and the algorithm resumes according to the flow chart in figure 5. Moreover, let us note
that, technically, η̇0 is numerically integrated with a numerical integrator based on quaternions.

5 Comparisons between experiments and simulations

In order to assess the dynamic model of the robot (and especially the model of hydrodynamic
forces) in section 3, we compared experimental data from the AmphiBot III with simulation
results obtained by applying the algorithm of section 4 with the model in section 3.

5.1 Experimental setup

The trajectory and speed of the AmphiBot III robot were measured in a swimming pool with a
video tracking system, as illustrated in figure 6. The pool measured 6.0 m × 1.5 m × 0.3 m and
was filled with water to a depth of approximately 0.2 m. The video tracking system was composed
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Figure 6: From the left to the right, a global view of the experimental setup and a schematic
view of the measurement process.

of 3 mm light-emitting diodes (LEDs) fixed to each robot segment and two black and white video
BASLER A622F cameras (each with a TAMRON M12VM412 wide-angle lens). Each camera has
a resolution of 1280×960 pixels in 8-bit grey scale and a frame rate of 15.0 frames per second. A
time trigger synchronises the time of the frame capture. The frames processed using "in-house"
software based on the OpenCV library. For each new frame capture, the software assembles
the images from the video cameras, corrects the frame distortions due to the wide-angle lenses,
extracts from the corrected frames, by a thresholding process, the positions of the segment LEDs
with respect to a frame attached to the pool, and saves the computed positions in a file. Then,
from (1) and the positions recorded in the dark16, the robot’s head trajectory and the body
shape are computed and, by derivation in time, the forward swimming speed is estimated. After
calibration, the tracking system measured position to an accuracy that was ±5mm.

5.2 Parameters of the dynamic model

Before presenting the comparison of the results, we have to specify the parameters used in our
model in order to fit the dynamics of the model of section 3 with those of the AmphiBot III.
This fitting concerns the MMS model parameters (including those of the controllers) along with
the hydrodynamic coefficients. This calibration is achieved once for all by starting from physical
considerations and, using as desired shape motions, the law defined (for j odd) as:

rd,j(t) = A(cos(2π(νt+ jk/m)) + α). (21)

This law is well known from the zoological literature on elongated (anguilliform) fish practicing
body caudal fin swimming [Breder, 1926; Gray, 1933]. It corresponds to a wave of body curvature
propagating along the fish backbone from the head to the tail superimposed on a constant
curvature offset. In (21), ν is the wave frequency, A is the wave amplitude, k is the number of
waves along the robot backbone and α governs the turning angle.

5.2.1 Parameters of the mobile multibody system model

The AmphiBot III introduced in Section 2 is composed of 8 segments attached together by m = 7
serial elastic actuators. Thus, it is an open chain of n = 14 angular joints and 15 rigid bodies

16In order to improve the LED light tracking, all the experiments were conducted in darkness in order to
minimise the ambient light reflections on the water’s surface.
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Parameter Unit j is odd j is even j = 14

lj m - 0.097 0.2
dj m 0.097 - -
mj Kg - 0.218 0.248
msj Kg.m - 6.0× 10−3sj 9.7× 10−3sj
Ij Kg.m2 2.2× 10−3aja

T
j 3.37× 10−4aja

T
j 8.35× 10−4aja

T
j

Ke Nm/rad - 1.5 1.5
Kp Nm/rad 50 - -
Kd Nm.s/rad 0.25 - -
ρb Kg/m3 - 1000.0 1000.0
ρf Kg/m3 - 1000.0 1000.0
Cm - - 0.5 0.5
Cf - - 0.006 0.006
Cd - - 1.75 1.75

Table 1: Parameters of the AmphiBot III dynamic model.

(shafts and segments) connected together. Using the numbering convention introduced in section
3.1, the mechanical parameters of the model are those of table 1. Note that all the segments and
shafts have the same characteristics except the last segment (j = 14) which supports the rigid
caudal fin (see the left of figure 1). The torques applied to the robot joints are related to the
joint motions (see figure 5) through the following physical law when the joints are passive (i.e.
when j is even):

Γj = −Kerj ,

where Ke is the stiffness of the passive joints (assumed to be identical for all the passive joints)
whose value, (given in table 1), has been measured by static tests. On the other hand (j is odd),
the active joints are ruled by the following PD control law (identical for all the active joints):

Γj = Kp (rd,j(t)− rj)−Kdṙj , (22)

where Kp and Kd are the proportional and derivative gains of the robot controllers, given in
table 1, while rd,j(t) is the desired joint position known by its time evolution (21).

5.2.2 Parameters of the hydrodynamic model

As mentioned in section 2, the AmphiBot III robot is statically balanced in order to swim in an
horizontal plane just below the water surface. As the pitching and rolling net motions are very
limited, we will ignore their dynamics in the simulations and the reactive model (11), (12) and
(15) can be computed with (for j = 0, 1..., n):

M̄f,j =
Cmρfπh

2

4
(njn

T
j ) , and Īf,j = 0 ,

where ρf is the fluid volume mass, h = 5.7 cm is the segment immersed height and Cm is a
dimensionless shape coefficient given in Table 1.

The resistive model is derived from experimental fluid dynamics [Hoerner, 1965]. The coeffi-
cients Ci of (16) are defined by:

C1 = CfρfP , C2 = Cdρfh , C3 = 0 , and C4 = 0 ,
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where P = 19.4 cm is the segment cross-section perimeter, Cf and Cd are the dimensionless
friction and drag coefficients stated in table 1, while the remaining drag coefficients are forced to
zero because of the planar nature of the motions. It is worth noting here that the hydrodynamic
model follows the modular nature of the AmphiBot III. Thus, since all the segments are identical,
the entire hydrodynamic model is parameterised by only 3 coefficients (Cm, Cf and Cd) which
can be fixed once in the following comparisons.

5.3 Comparisons and discussions

For validation purposes, the algorithm presented in section 4 has been coded in C. The developed
simulator uses a fourth-order Runge-Kutta integrator for the time integrations (with a time step
of 5 × 10−4 s) and a numerical integration by Gauss quadrature (with 6 points) for the spatial
integration of the resistive forces along the robot’s segments (16). These choices allow us to
compute the swimming motion of our virtual AmphiBot III robot in real time on a laptop (with
a 2.0 GHz dual-core CPU and 2048 Mb of RAM). In this section, we present comparison results
for two types of shape motions well known to zoological literature [Breder, 1926; Gray, 1933]:
the forward swimming gait and the turning manoeuvre.

5.3.1 Steady-state forward swimming gaits

In this first study, we systematically tested how the three swimming parameters ν, A and k of (21)
affect the forward swimming speed of the robot. To that end, 100 simulations were performed,
with 5 experiments per simulation, leading to 500 experiments, for 4 values of ν ranking from
0.4 Hz to 1.0 Hz (with a step ∆ν = 0.2 Hz), for 5 values of A ranking from 25◦ to 45◦ (with a
step ∆A = 5◦) and for 5 values of k ranking from 0.5 to 1.5 (∆k = 0.25). Let us note that for
this study, the turning angle α is fixed to 0. For each gait, the (simulated or real) robot, starts
from resting and is stopped after 10 s of swimming or when it has travelled 5 m (i.e. when it
reaches the opposite side of the pool). Then, the following cruising forward swimming speed:

V̄f = || eV̄0|| , with eV̄0 =
1

T

∫ t+T

t

eV0 dτ ,

is computed with T = 1/ν and for a t taken beyond the transitory regime of the gait. The left
and middle columns of 7 (a)-(d) illustrate the results obtained numerically and experimentally.
The right column is related to the following relative error between simulations and experiments:

ǫ = 100

(

(V̄f,exp − V̄f,sim)2

V̄ 2
f,max

)1/2

(%).

Undulations with an amplitude greater than 40◦ and a wave number less than 0.75 are im-
possible experimentally because the control torques exceed the intrinsic limits of the servomotors
and may damage them. The squares with a white cross bottom right in the panels of figure 7
represent this condition. The variability of the experimental measurements is measured by the
averaged standard deviation which is about 0.018 m/s. Depending on the experimental param-
eters, the cruising speed of the robot varied between 0.05 and 0.59 m/s, i.e. in the range of
real fish [Tytell et al., 2010]. For any swimming frequency ν, the maximum speed was reached
when A = 30◦ and k = 0.5. This agrees well with the simulation for which the swimming speed
varied between 0.07 and 0.55 m/s while for any swimming frequency ν, the maximum speed
was reached when A = 25◦ and k = 0.5. This good agreement between the simulation and the
experiment is also seen in the panels of figure 7 which show a maximal relative error ǫ ≃ 16%
and a mean error ǭ ≃ 4%. The discrepancy between the experiments and the simulations can be
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(a) ν = 0.4 Hz.
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(b) ν = 0.6 Hz.
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(c) ν = 0.8 Hz.
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Figure 7: Forward swimming in a straight line: Swimming speed comparisons for all the tested
forward swimming gaits as function of ν, A and k. The left, middle and right columns represent,
from ν = 0.4 Hz (top row) to ν = 1.0 Hz (bottom row), the numerical results, the experimental
results and the relative errors respectively. The white crosses represent the unstable gaits for
which the speed could not be estimated.
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Figure 8: Forward swimming in a straight line: The blue lines with circular markers represent
the successive midline profiles of the AmphiBot reconstructed from the video tracking device by
means of LED lights (blue circles) during a complete swimming cycle (between 3T and 4T ). The
magenta lines with stars represent the midline of the simulated robot reconstructed numerically
using the dynamic model presented (see section 4). The magenta stars are the positions of the
simulated LEDs.

seen to increase with the frequency ν. This is probably due to the fact that the water in the pool
becomes increasingly agitated by the robot, which becomes subjected to surface waves reflecting
from the pool’s walls, a phenomenon which is not accounted for by the model. These effects
increase (upper part of panels) with the number of waves (k) per (robot) length (Lr) and with
their amplitude (A). The energy transmitted to the unmodeled free surface waves increases with
A and k so amplifying the phenomenon. Roll oscillations which are neglected in our model of the
planar swimming are another perturbation effect which could explain the (small) discrepancies
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(a) ν = 1 Hz, A = 40◦, and k = 1.25.
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(b) ν = 0.8 Hz, A = 35◦, and k = 1.
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(c) ν = 0.6 Hz, A = 30◦, and k = 0.75.
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(d) ν = 0.4 Hz, A = 25◦, and k = 0.5.

Figure 9: Forward swimming in a straight line: Maximal lateral displacements (100 × |x|/Lr)
of segments along the body (100 × |y|/Lr) measured with respect to the forward direction of
swimming (dashed lines: robot; continuous lines: simulator; Lr = robot length). The vertical
error bars show the standard deviation of experimental measurements.

in the range of small wave numbers (for example, for k = 0.5 and ν ≥ 0.8 Hz). In this case
a small amount of the energy supplied by the motors goes into the rolling dynamics. Finally,
as observed on live fish [Tytell et al., 2010], for sufficient wave lengths (k = 0.5, k = 0.75), the
velocity increases monotonically with the frequency while after increasing with the amplitude,
it attains a maximum value beyond which it decreases. This first set of tests is related to the
dynamics of the external d.o.f. and does not give any indication about the internal d.o.f. (shape)
of the robot. However, recent studies in biology tend to show that kinematics and swimming per-
formance are strongly affected by internal parameters, particularly body stiffness [Tytell et al.,
2010]. In particular, in our case the hydrodynamic modelling errors could be hidden by the
calibration of the compliant and controlled joint dynamics. As a result, we had to assess the
accuracy of the internal dynamic model. To that end, we reconstructed the shape of the robot
using the video tracking system and compared these observed shapes to those calculated using
the simulation. For the purpose of illustration, figures 8 (a)-(d), show a series of snapshots for 4
arbitrary chosen forward swimming gaits, sampled throughout one swimming cycle (between 3T
and 4T , i.e. beyond the transient phase whose duration is about 3T ) comparing the simulator
and the robot. Once again, good matching is observed, both in terms of external (head) and
internal (shape) d.o.f. To quantify the errors due to internal (shape) dynamics modelling, we
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should compare the angle of the joint behind each series elastic actuator on the simulator and the
robot. Unfortunately, the angular encoders of the AmphiBot are located between the actuators
and the gears. To bypass this difficulty, we decided to compute the lateral displacement maxima
for each segment in each of the gaits of figure 8. The results are displayed in figure 9. Such a
measure accounts not only for the errors brought by the internal (shape) dynamics but also, since
the head is free, a small proportion of those due to the external (lateral) dynamics. As a result,
the errors indicated in figure 9, though they do not exceed 20%, are greater than those we could
deduce from the afore mentioned direct measurement of the joint angles after the gears. Beyond
the unavoidable errors introduced by the LED tracking device, the causes of these errors are the
imprecisions introduced by the model of hydrodynamic forces, those due to the identified model
of compliant joints (mass-spring parameters) and joint servo systems, as well as others due to
unmodeled phenomena such as the actuators’ saturation or the friction and backlash of the gears.
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(a) ν = 1 Hz, A = 40◦, and k = 1.25.
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(b) ν = 0.8 Hz, A = 35◦, and k = 1.
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(c) ν = 0.6 Hz, A = 30◦, and k = 0.75.
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(d) ν = 0.4 Hz, A = 25◦, and k = 0.5.

Figure 10: Forward swimming in a straight line: Magnitude of the resultant of the different
components of the hydrodynamic thrust for the motions of figure 8, including the reactive body
component (+++), the caudal reactive component (- - -), the resistive transverse drag component
(���), and the resistive viscous axial component (◦ ◦ ◦).

Finally, for the four forward swimming tests of figure 8, the hydrodynamic thrust Th along the
unit vector supporting the averaged forward velocity (denoted u) has been calculated from the
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relation:

Th = uT .





n
∑

j=0

AdTjgeFext,j



 , with u =
eV̄0

|| eV̄0||
.

The results are displayed in figure 10. As expected from the Lighthill model, these plots show
that among all the reactive forces, only the caudal term produces a non zero averaged thrust
over one cycle. As discussed in section 3.3, this term models the forces exerted by the vorticity
shed into the wake at the caudal fin’s trailing edge [Tytell et al., 2010; Candelier et al., 2011]. It
is dominant over the others and produces the thrust which counterbalances the drag generated
by the resistive forces of the Taylor-like model.
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(a) ν = 0.6 Hz, A = 25◦, and k = 0.5.
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(b) ν = 0.6 Hz, A = 35◦, and k = 0.5.
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(c) ν = 0.6 Hz, A = 25◦, and k = 1.0.
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(d) ν = 0.6 Hz, A = 35◦, and k = 1.0.

Figure 11: Steady state turning manoeuvre: The radius of the robot trajectory Ra is plotted
as a function of the turning parameter α for the four desired shape motions defined in table 2.
Dashed line: experimental results. Continuous line: simulation results. The vertical error bars
indicate the standard deviation of experimental measurements.

5.3.2 Steady-state turning experiments

The second set of tests concerns steady-state turning. We started by studying the external
dynamics by assessing how the turning parameter α of (21) influences the curvature of the robot
trajectory when it is stabilized in its steady-state motion. To that end, 16 simulations were
performed, with 5 experiments per simulation, leading to 80 experiments, for 4 shape motions
(21) with (ν,A, k) as displayed in table 2, and 4 values of α ranking from 0.1 to 0.4 (∆α = 0.1).
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(a) ν = 0.6 Hz, A = 25◦, k = 1.0 and α = 0.1.
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(c) ν = 0.6 Hz, A = 25◦, k = 0.5 and α = 0.4.

Figure 12: Steady state turning manoeuvre: The blue lines with circular markers represent the
successive midline profiles of the AmphiBot reconstructed from digitized video fields by means of
LED lights (blue points) during a complete swimming cycle (between 3T and 4T ). The magenta
lines with stars represent the midline of the simulated robot reconstructed numerically using the
dynamic model presented. The red spots indicate the head position of both the simulated and
real robot.

Wave form label A (deg) ν (Hz) k

1 25 0.6 0.5
2 25 0.6 1.0
3 35 0.6 0.5
4 35 0.6 1.0

Table 2: Parameters of (21) used for the turning manoeuvres.

The swimming frequency ν is fixed to 0.6 Hz (i.e. T = 1.67 s) in all cases. For each set of
parameters, both the simulated or real robots, start from rest, and are stopped after 10 s (i.e.
6T ) of swimming or when its head collides one of the pool’s walls. The curvature radius of the
robot trajectory denoted by Ra is then computed from the video and simulation data by applying
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a least squares fitting. The discrepancy between the curvature radius observed in the simulation
and the experiment reflects the errors introduced by the model of the lateral hydrodynamic
forces (perpendicular to the robot axis) exerted on the robot when its joint dynamics are in their
steady-state phase. In contrast to the non-turning experiments in which symmetries average out
some of the discrepancies, when turning, any modelling error on the lateral forces can generate
a net lateral drift which affects the turning radius. Figures 11 (a)-(d) show the radius of the
robot trajectory as a function of the turning parameter α, for the 4 sets of parameters in table 2.
The overall tendencies observed in the simulations and experiments are similar. However, in this
case the robot steers into its own wake where big vortices are being advected by the flow. As a
result, the fluid laterally bounding the robot is far from quiescent and even further from being a
potential flow (as postulated by the LAEBT), which probably explains why the drift in turning
experiment after one cycle is more significant compared to the forward swimming experiment.
To complete the discussion, a sequence of 10 snapshots of the simulated and real robot sampled
along three of the previous turning trajectories over one period (between 3T and 4T ) is displayed
in figure 12 in the same way as for the non-turning gait illustrated in figure 8. It can be seen
that the simulated and real shapes match as well as in non-turning motions, at least when α
is sufficiently small. When α increases (and the turning radius decreases), some discrepancies
appear about half way through the cycle. Since this moment at which, the actuators’ torque
attains its maximal value, these discrepancies are probably due to the nonlinearities introduced
by the actuators (saturations) and gears (nonlinear stiffness). However, a good matching of the
shape is obtained at the beginning and the end of each cycle. This good match is used in figure 12
to translate and rotate the head of the simulated robot in order to align its configuration with that
of the AmphiBot at the instant t = 3T and then let the simulation evolve as displayed in figure
12. Although the external dynamic tendencies are qualitatively the same for the simulation
and the robot, the net position of the model progressively drifts with respect to reality. The
discrepancies we are interested in measuring are introduced by a dynamic model, i.e. they first
affect the computation of accelerations. As a result, because accelerations are integrated twice to
reconstruct the position and shape of the robot in space, the discrepancies shown in figure 12 are
mostly due to this integration which inevitably accumulates the dynamic errors and amplifies the
discrepancies with time. Finally, note that this drift is amplified by increasing α (i.e. decreasing
the turning radius). This is probably due to the fact that in this case, because the robot swims
into its own wake, Lighthill’s basic assumptions on the flow are less and less justified. The shape
dynamics introduce other errors when the turning radius is small.

5.3.3 Transient experiments

The behavior of the model during transients is also important if it is to be used for control, since a
control law will constantly push the robot in such transient phases in order to react to unmodeled
perturbations or to track the time varying control inputs. For the purpose of illustration, figure
13 shows snapshots of the robot and the simulator for one of the forward-swimming gaits and one
of the turning maneuvers previously presented. The AmphiBot III is controlled by a connection
of central pattern generators (CPGs), i.e. a set of coupled nonlinear oscillators organized in pairs
serially connected along the body length, whose outputs define the time-evolution of the desired
joint angles rd of the control law (22). According to [Crespi and Ijspeert, 2008]), the state of
each oscillator is governed by the following dynamic system:











φ̇i = 2πνi +
∑

j θjwij sin(φj − φi − ψij) ,

θ̈i = ai

(

ai
4 (Di − θi)− θ̇i

)

,

xi = θi(1 + cosφi) ,

(23)
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Figure 13: Transient phases of a non-turning (left) and a turning motion (right): The blue lines
with circular markers represent the successive midline profiles of the AmphiBot (blue dots) over
3T s starting from rest with a snapshot taken at each period. The magenta lines with stars
represent the midline of the simulated robot which now includes a model of the CPGs. The red
dots indicate the head position of both the simulated and real robot.

with (φi, θ̇i, θi) the state vector of the ith oscillator and xi its output. For each joint, a pair
of left-right oscillators generate the desired actuator angle through the relation rd,j = xlj − xrj ,
l and r denoting the left and the right oscillator of the joint while the parameters wij , Di, νi
and ψij are chosen in order to ensure the asymptotic convergence of the desired actuator angles
toward the desired robot shape motion (21). This explains why in all the steady-state tests
previously presented the motions have been considered after several cycles (namely 3 cycles), in
order to eliminate the transient phenomena from the observations. By contrast, in the transient
experiments illustrated in figure 13, motion is recorded from the beginning when the robot is
at rest. In these experiments, the dynamic model of the coupled oscillators (23) is coupled to
the simulator of the robot with the parameters of the AmphiBot III defined as follows. For
any connection between oscillators, we have wij = 10, while between two consecutive pairs of
oscillators, we have ψij = (2πk/m) or ψij = −(2πk/m) depending if the connection is ascending
or descending. Between two oscillators of a same pair, we have ψij = π, while νi = ν, Dl

i =
(A − αA)/2, Dr

i = (A + αA)/2 and ai = 20, for any oscillator. The results illustrated in figure
13 show that even in the context of transients, the model qualitatively (and quantitatively)
still matches reality well. In particular, there is no significant discrepancy of net position and
orientation occurring in the first few moments of motion although in this case, the velocities being
low, the Reynolds number characterizing the flow is smaller than that required by Lighthill’s
reactive model.

6 Conclusion

This article presents the dynamic model of a fish-like robot named AmphiBot III. The approach
is based on the adaptation of J. Lighthill’s large amplitude elongated body theory to a serial
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mobile multibody system. Based on this model, we used a fast Newton-Euler based algorithm
which solves the forward dynamics of the robot. This algorithm, which is a generalisation of the
Featherstone algorithm to mobile multi-body systems allows the robot motion to be integrated
in real time on a standard computer. The results of this integration are compared to the motion
of the real robot for forward swimming gaits and turning manoeuvres. In all cases, the model of
internal dynamics, whose parameters correspond to known or measurable mechatronic quantities
of the real robot, shows moderate discrepancies (< 20%) with respect to experiments. When
turning, in spite of the highly vortical flow, the results show a good match between the simulation
and observation in terms of curvature radius. Finally, all these results have been obtained by
calibrating only 3 dimensionless hydrodynamic parameters (i.e. Cm , Cf and Cd) whose values
were fixed only once. They accord well with the physics, confirming the LAEBT as a good
solution for fish-like robot modelling. Furthermore, beyond its application to the AmphiBot
III and any anguilliform fish-like robot, it has a more universal value which should enable the
modelling of a wide diversity of robot morphologies including those inspired by caranguiform
and thuniform fish or more widely any fish that uses body caudal fin swimming [Breder, 1926].
It would suffice to adapt the cross-sectional added inertias (and drag coefficients) to each specific
case. Similarly, adding roll and vertical cross-sectional added inertias and drag forces would
allow the present model to be extended to the three-dimensional swimming [Boyer et al., 2010;
Candelier et al., 2011]. The numerical efficiency and the modular character of the programming
of the model could prove a useful tool for robot design, gait optimization and control approaches
that require an online model [Porez et al., 2011; Morel et al., 2011, 2012b,c,a]. A simplified
version of this model (with no caudal term) has already proved useful in controlling the RAAMO
eel-like robot (see [Boyer et al., 2009] for more details). More specifically, the model has been
used: 1) as a fast simulator to develop 3-D swimming controllers with and without pectoral
fins [Alamir et al., 2007; El-Rafei et al., 2008a]. In particular, it has been used as a real-time
interface to control our eel-like robot in a virtual world using a joy-stick [El-Rafei et al., 2008a];
2) as a simulator to identify a highly-speed black box model [El-Rafei et al., 2008b]. Finally,
the modelling framework developed for the RAAMO robot was structured in three hierarchical
stages. The first level was a Navier-Stokes resolver [Leroyer and Visonneau, 2005] used to assess
the second stage based on the LAEBT [Boyer et al., 2008], itself used to identify the third (black
box) stage. This last high-speed model was used to integrate a predictive controller in a receding
horizon feedback schema [El-Rafei et al., 2008b]. Beyond the RAAMO project, the model has
been used in a same manner (fast simulator and identification) to control the AmphiBot III
[Morel et al., 2011, 2012a]. Most of these results were restricted to simulation but in future we
hope to use this model to control the AmphiBot III.
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8 Appendix: Proof of (10)

This appendix aims at deriving the expression (10) of the reactive force Freac,j applied on the
segment j. This derivation is based on the following simple remark. If we apply the kinetic
momenta balance to the fluid contained in the control volume between the two boundary planes
of the segment j, i.e. Sj(0) and Sj(lj) (see figure 4), we find the time rate of kinetic momenta of
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this piece of fluid on the first term of the balance, and on the second term, the pressure forces
applied across Sj(0) and Sj(lj) along with those applied by the lateral boundary of the segment
j. Therefore, this third force being the opposite (by action/reaction principle) of Freac,j , and
since the pressure forces are known functions of the segment state given by (9), one just needs
to calculate the time rate of kinetic momenta to finally find Freac,j .

From perfect fluid theory, we cannot compute the kinetic momenta of the fluid contained
in the volume control by using the basic definitions of mechanics17 since they lead to divergent
integrals contrary to the kinetic energy which is a convergent quantity [Batchelor, 1967]. As a
result, the fluid kinetic momenta are defined as the linear and angular impulses [Lamb, 1932],
i.e. the conjugate linear and angular momenta computed from the kinetic energy of all the fluid
slices between Sj(0) and Sj(lj). Applying the Kirchhoff potentials approach [Kirchhoff, 1869] to
the 2-D Laplace equations in Sj(X), the kinetic energy of the fluid contained in Sj(X), can be
expressed as a simple quadratic form of the lateral velocities of the segment cross section Cj(X):

T̄f,j(X) =
1

2

(

ηTM̄f,jη
)

(X) , (24)

where η is the field of cross-sectional velocity along the segment j, given for X ∈ [0, lj ] by:

η(X) = (V T ,ΩT )(X) = Ad(Xgj)ηj ,

with AdXgj the adjoint map operator from the cross-sectional frame (O(X), sj , nj , aj) centered
on Cj(X) to (Oj , sj , nj , aj) which is defined by:

AdXgj =

(

13 −Xŝj
0 13

)

. (25)

In (25), the rotation part reduces to identity since the segments are rigid and straight. Moreover,
in (24), we introduced the cross-sectional (2-D) added mass tensor:

M̄f,j(X) =

(

M̄f,j 0
0 Īf,j

)

(X) ,

where M̄f,j and Īf,j represent the density of linear and angular cross-sectional added inertia per
unit of segment length. Now computing the impulses as the conjugate momenta associated to
(24), one obtains:

(

P̄f,j

Σ̄f,j

)

(X) =

(

∂
∂V T̄f,j
∂
∂Ω T̄f,j

)

(X) =

(

M̄f,jV
Īf,jΩ

)

(X) ,

where P̄f,j and Σ̄f,j respectively denote the densities of linear and angular cross-sectional fluid
impulses along the segment j. Before going any further, let us remark that in the Newton law and
Euler theorem, the time-derivatives are applied to the momenta of fixed material particles. As a
result, the application of these principles, requires the introduction of the particular derivative
[Batchelor, 1967] which can be written here as18:

d

dt
(f(X, t)) =

∂

∂t
(f(X, t))− VX(X)

∂

∂X
(f(X, t)) ,

17i.e. in terms of the fluid velocity field.
18Let us recall that the particular derivative represents the variation in time as measured by an observer attached

to a given material particle. In our case, since the material particles are replaced by slices, (26) stands for a 1-
dimensional version of the particular derivative. Hence, when applied to any function f(X, t), d./dt (respectively
∂./∂t) is the rate of change of time measured by an observer attached to the fluid slice Sj(X) (respectively, to
the segment cross section Cj(X).
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where VX(X) represents the axial (along the jth segment length) velocity of the X cross section
(Cj(X)) in the Bj frame, i.e. VX(X) = V (X)T sj = (Vj+Ωj×Xsj)

T sj = V T
j sj . As a corollary, for

any function f of X and t related to the fluid stratification, we have the following 1-dimensional
version of the Reynolds (transport) theorem of fluid mechanics (see [Boyer et al., 2010]):

d

dt

∫ lj

0
f(X, t)dX =

∫ lj

0

∂f

∂t
dX + [VXf ]

lj
0 . (26)

In (26), the first (integral) term represents the contribution brought by the instantaneous vari-
ation of f(X, t) between Sj(0)) and Sj(lj), while the second (boundary) term represents the
variation in time of f between the two slices brought by the flux of fluid across this control
volume attached to the jth segment19. In order to derive the expression of the (6 × 1) vector
Freac,j = (fTreac,j , c

T
reac,j)

T of reaction forces applied by the fluid onto the segment Bj we apply
Newton’s law and Euler’s theorem to the fluid between the two geometric slices Sj(0) and Sj(lj).
That allows one to obtain:

• linear dynamics (from Newton’s law)

d

dt
(Pf,j) = −freac,j + fpres,j(0)− fpres,j(lj) , (27)

where:

Pf,j =

∫ lj

0
P̄f,jdX ,

is the linear kinetic momentum of the fluid between the two geometric slices Sj(0) and
Sj(lj) .

• angular dynamics (from Euler’s theorem):

d

dt
(Σf,j) + Vj × Pf,j = −creac,j +Xsj × fpres,j(lj) , (28)

where:

Σf,j =

∫ lj

0
(Σ̄f,j +Xsj × P̄f,j)dX ,

is the angular kinetic momentum of the fluid between the two geometric slices Sj(0) and
Sj(lj).

Then, using (26) in (27) and (28), gives the N-E equations of the isolated fluid between Sj(0)
and Sj(lj), from which we deduce the expression (10) of (6× 1) reactive forces.

�

19By the conventions of fluid mechanics, this second term is named "convective" since it is produced by the
advection of f by the flow sweeping past the body.
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List of Notations

13 The unit 3× 3 matrix.

A The joint motion amplitude.

Aj The unit vector supporting the joint axis j.

Ad jgj−1
The adjoint map operator allowing a change in velocity from Fj−1 to Fj .

Ci The hydrodynamic coefficients of the resistive model.

Cd The drag coefficient.

Cf The friction coefficient.

Cm The added mass coefficient.

Fj The force vector exerted by the body j − 1 on to the body j expressed in Fj .

Fext,j The vector of external hydrodynamic forces exerted on the body j.

Freac,j The vector of reactive forces exerted on the segment j.

Fres,j The vector of resistive forces exerted on the segment j.

Hj The angular inertia of the body j around the axis Aj .

Ij The tensor of angular inertia of the body j.

Kd The derivative gains of the joint controllers.

Ke The stiffness of passive joints.

Kp The proportional gains of the joint controllers.

Lr The total length of the robot.

MSj the tensor of first inertia moments of the body j.

Mj The tensor of body mass of the body j.

P The body cross-section perimeter.

Ra The radius of the robot trajectory.

T The swimming wave period.

Th The hydrodynamic thrust.

Vj The linear Galilean velocity of the body j in Fj .

VX The velocity field along the segment j.

j−1Pj The position vector of Fj with respect to Fj−1.

j−1Rj The orientation matrix of Fj with respect to Fj−1.

j−1gj The transformation matrix of Fj with respect to Fj−1.

Ωj The angular Galilean velocity of the body j in Fj .

α The turning angle ratio.

αj The reduced vector of Coriolis, centrifugal and external forces exerted onto the body j.

P̄f,j The field of linear kinetic momenta of the fluid along the segment j in Fj .

V̄f The cruising forward swimming speed.
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Σ̄f,j The field of angular kinetic momenta of the fluid along the segment j in Fj .

T̄f,j The field of kinetic energy of the fluid along the body j.

βj The vector of Coriolis and centrifugal forces exerted onto the body j in Fj .

βreac,j The vector of the reactive forces produced by the fluid added mass accelerated by the Coriolis
and centrifugal accelerations of the segment j.

η̇j The time derivative of ηj .

ηj The velocity of the body j in Fj .

Bj The body j.

Cj A cross-section of the body j.

Fe The fixed Galilean frame.

Fj The mobile frame attached to the body j.

Kj The reduced inertia tensor of the body j.

Mj The inertia tensor of the body j.

Mreac,j The tensor of added inertia of the fluid accelerated by the segment j.

Sj The geometric slice of fluid which prolongs Cj .

ν The joint motion frequency.

φi The phase state of the oscillator i.

ρb The body mass ratio of the body j.

ρf The fluid mass ratio.

θi The amplitude state of the oscillator i.

ζj The part of the acceleration of the body j which depends on its velocity expressed in Fj .

dj The distance between the frame centers Oj−1 and Oj along sj−1.

fpres,j The cross-sectional pressure forces field exerted on the body j.

k The number of waves along the robot backbone.

m The number of actuators.

n The number of joints.

rj The position of the joint j.

rd,j The set-point of the joint j.

t The time.

u The unit vector supporting the forward motion.
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