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First exit time from a bounded interval for

pseudo-processes driven by the equation
d/0t = (—1)N"192N/9x2N

Aimé LACHAL*

Abstract

Let N be an integer greater than 1. We consider the pseudo-process X = (X;);>o driven
by the high-order heat-type equation 8/9t = (—1)N=192N/9x2N_ Let us introduce the first exit
time T,;, from a bounded interval (4, b) by X (a,b € R) together with the related location, namely
Xy

In this paper, we provide a representation of the joint pseudo-distribution of the vector
(Tap, X1,,) by means of some determinants. The method we use is based on a Feynman-Kac-
like functional related to the pseudo-process X which leads to a boundary value problem. In
particular, the pseudo-distribution of X, admits a fine expression involving famous Hermite
interpolating polynomials.

MSC: primary 60G20; secondary 60G40; 60K99

Keywords: Pseudo-Brownian motion; First exit time; Laplace transform; Hermite interpolating polynomials

1 Introduction

Let N be an integer greater than 1 and set x, = (—1)N~1. We consider the pseudo-process (X¢);>0
driven by the high-order heat-type equation 9/t = x,,0*N/9x?N, the so-called pseudo-Brownian
motion. This is the pseudo-Markov process with independent and stationary increments, asso-
ciated with the signed heat-type kernel p(t; x) which is the elementary solution of the foregoing
equation. The kernel p(t; x) is characterized by its Fourier transform:

+oo
/ e p(tx)dx = e
—00

We define the related transition kernel as p(t;x,y) = p(t;x — y) for any time t > 0 and any real
numbers x,y, which represents the pseudo-probability that the pseudo-process started at x is in
state y at time ¢. In symbols,

PA{X; € dy} = p(t;x,y) dy.

The IPy, x € R, define a family of signed measures whose total mass equals one:

400
P.{X; € R} = /7 p(t;x,y)dy = 1.
The transition kernel p(t; x, y) satisfies the backward and forward Kolmogorov equations

ap ZNP 82Np
g(f}x/y) = KNm(t}x/y) = KNW(f;x/}/)-
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To be more precise, let us recall that the pseudo-Markov process (X;);> is defined according to
the usual chain rule: for any positive integer n, for any times ¢, ...,t; such that 0 < t; < --- <ty
and any real numbers x1, ..., x,, and setting tp = 0, xo = x,

n
Pu{X;, €dxq,..., X, €dxy} = (H p(t — tk_l;xk_l,xk)> dxq...dx,. (1.1)
k=1

In particular, by setting Ti¢p(x) = Ey[¢(X;)] for any time ¢, any real number x and any bounded

C?N-function ¢, the family (T;);> is a semi-group of operators whose infinitesimal generator G is
given by
.1
Go(x) = lim 2 [Ex[p(Xu)] = p(x)] = x5, @) (). (12)
h—0+ h

Above and throughout the paper, for any non-negative integer ¢, ¢(*) stands for the derivative of
¢ of order /.

The very notion of pseudo-process in a general framework goes back to Daletskii and Fomin in
1965 ([7]). The reader can find an extensive literature on the particular case of pseudo-Brownian
motion. For instance, let us quote the works of Beghin, Cammarota, Hochberg, Krylov, Lachal,
Nakajima, Nikitin, Nishioka, Orsingher, Ragozina ([2] to [6], [8, 9], [11] to [23]) and the references
therein. These papers deal with several functionals related to pseudo-Brownian motion: sojourn
time in a bounded or not interval, first overshooting time of a single level, maximum or minimum
up to a fixed time... Let us mention also other interesting works : one dealing with high-order
Schrodinger-type equation 9/9t = i9°N/9x?N which is related to the so-called Feynman-Kac
measure [1], as well as [10] in which the authors develop an alternative and more probabilistic
approach to pseudo-processes.

In [13, 14], we obtained the pseudo-distribution of the first overshooting time of a single
threshold, together with the corresponding location at this time. In symbols, if 7, denotes the
first overshooting time of a fixed level a (upwards or downwards), we derived the joint pseudo-
distribution of the couple (7;, X¢,). Therein, we used an extension of famous Spitzer’s identity.
In [13, 14] and, in the particular case N = 2, in [20, 21], the authors observed a curious fact con-
cerning the pseudo-distribution of X,: it is a linear combination of the Dirac distribution and its
successive derivatives (in the sense of Schwartz distributions):

N-1 _ \k
P{X;, € dz}/dz = Y (a k'x)

k=0

59 (2). (1.3)

The quantity 5§k) is to be understood as the functional acting on test functions ¢ according as

<5§k), ¢) = (—1)*¢¥) (). Formula (1.3) says that the overshoot through level a should be actually
concentrated at a. The appearance of the Schwartz-Dirac distribution J, together with its succes-
sive derivatives can be interpreted by means of “multipoles” in reference to electric dipoles as
in [13, 14] and, for N = 2, in [20, 21]. In particular, therein, §, and &, are respectively named
“monopole” and “dipole”. We refer the reader to [22] for a detailed account on monopoles and
dipoles. An explanation of this curious fact should be found in considering a linear pseudo-
random walk with 2N consecutive neighbours around each sites. Indeed, after suitably normaliz-
ing such a walk, the neighbours cluster into a single site and form a multipole; see the draft [17].

Till now, the first exit time from a bounded interval, or, equivalently, the first overshooting
time of a double threshold has not yet been considered. This is the purpose of this work.

Let us introduce the first exit time from (a,b) (a,b being real numbers such that a < b) for
(Xt)r=0:

T =1nf{t > 0:X; & (a,b)}

with the usual convention that inf @ = +co. In this paper, we tackle the problem of finding the
pseudo-distribution related to the double threshold: we provide a representation for the joint
pseudo-distribution of the couple (7, Xr,,). This representation involves some determinants;
this is the object of Theorems 1 and 2. For the location X, we have the following counterpart
to (1.3); see Theorem 4:

N-1 N-1
P{X, €dz}/dz = Y (=1)*H7 (x) 67 (2) + ¥ (=1)FH (x) 67 (2) (1.4)
k=0 k=0
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where the functions Hki, 0 < k < N —1, are the classical Hermite interpolating polynomials of
degree (2N — 1) related to points a and b satisfying

(H) (@) = (HHO®) = 0, (H)V(a) = (H) (k) =0, 0<(<N-1.

Above, the quantity dy, denotes the usual Kronecker symbol: if k = ¢, 6y = 1, else dy; = 0. They
explicitly write as

o= (2 R () ()

(=0

H (x) = (z:a)N (x ;lb)k fol (le_l) (Z_Tx)f

=0

In particular, we can deduce from (1.4) the “ruin pseudo-probabilities”, that is, the pseudo-probabilities
of overshooting one level (a or b) before the other one; see Corollary 3.

These results have been announced without any proof in a survey on pseudo-Brownian mo-
tion, [16], after a conference held in Madrid (IWAP 2010).

Throughout the paper, the function ¢ denotes any (N — 1) times differentiable function.

2 Feynman-Kac functional

We start from the following fact: in [13, 14], we first obtained the pseudo-distribution of the couple
(supy<s<; Xs, Xt) by making use of an extension of Spitzer’s identity. From this, we deduced that
of the couple (7, X,) and we made the observation that, for any A > 0 and any (N — 1) times dif-

ferentiable bounded function ¢, the Feynman-Kac functional ®(x) = [Ey (e’“ﬂ(p(XTQ) 1< +oo})
solves the boundary value problem

@N)(x) = o0 0o
{KN(D (x) =A®(x), x € (—o0,a)(orx € (a,+0)), 1)

oK (a) = M) (a) forke {0,1,...,N—1}.

So, we state the heuristic that an analogous boundary value problem should hold for the Feynman-
Kac functional related to 7,;. The results obtained here through this approach coincide with limit-
ing results deduced from a suitable pseudo-random walk studied in [17]. Moreover, when taking
the limit as a goes to —oo or b goes to 40 in the present results, we retrieve the pseudo-distribution
of (74, X¢,) obtained in [14]. So, these observations comfort us in our heuristic. Actually, our pur-
pose in this work is essentially concentrated in calculating the pseudo-distribution of (7, Xz, ).

As pointed out in several works on pseudo-processes, pseudo-Brownian motion is properly
defined only on the set of dyadic times and ad-hoc definitions should be taken for computing
certain functionals of this pseudo-process depending on a continuous set of times; see, e.g., [14]
and, in the particular case N = 2, [21]. Roughly speaking, the dense subset of dyadic times is
appropriate because of the usual property that for any n € N, {k/2", k € N} C {k/2""!,k € N}.
Indeed, this latter permits to view the pseudo-process (X¢);>o as an informal limit of the family
of step-processes (Xy,+)>0 defined according to the following sampling procedure:

Xt = Y Leson (k1) /27 () X j2n-
k=0

For each fixed n € IN, the sequence (Xj/n)ren can be correctly defined thanks to (1.1). But
the fact that [ j;o |p(t;x)| dx > 1 prevent us from applying the classical extension theorem of
Kolmogorov for finding a priori a c-additive measure on the usual space of right-continuous func-
tions on [0, +o0) which have left-hand limits, measure whose finite projections would yield the
finite-dimensional pseudo-distributions of the sequence (X /2 )keN-

For our concern, we set

1 .
Tabn = o mm{k eN: Xk/2n ¢ (ﬂ, b)}



and, for x € (a,b),
q)n(x) =E, (efftTab/nqg(XTab’n) ]I{Tab,n<+°°})'

Then, we define the Feynman-Kac functional ®(x) = E, (e_)‘fﬂh ¢(Xrpy) Y < +oo}) as the limit

P(x) = lim Dy(x)

n— 400
and we state below the analogue to (2.1).

Heuristic. For any A > 0 and any (N — 1) times differentiable bounded function ¢, the Feynman-Kac
functional ®(x) = Ey (e’“ﬂb(p(XTab) ]I{Tab<+°°}) solves the boundary value problem

{ @ (1) =A@(x), x € (ab), (22)

oM (a) = W (a) and ®HO(b) = " (b) forke {0,1,...,N—1}.

3 Joint pseudo-distribution of (7, X+ ,)

In this section, we solve boundary value problem (2.2) in order to derive the joint pseudo-probab-
ility of (Tuh, XTab)‘ In this way, if we choose ¢(x) = e, u € R, we first obtain its Laplace-
Fourier transform. Actually, the results we derived hold true for any (N — 1) times differentiable
function ¢.

Let us introduce the (2N)th roots of x,: 6, = eizuilltll_lﬂ, 1 < ¢ < 2N. We have G%N = k. For
AL/(2N),

any complex number z, we set ¢; = e

Theorem 1. The Feynman-Kac functional related to (T,p, X<, ) admits the following representation:

it N-1 A‘(A;x) N-1 7LA+(/\;X)
Ey (e A “(Xq,,) ]I{Tah<+00}) = k[;) AT kA(iA) o) (a) + kg(:) AT2N kA(i/\) GD(k)(b) 3.1)

where the quantities A(A) and Aki (A; x) are the determinants below:

91&1 92Na
e)\ .. e)\
01a Orna
91 e/\l s 921\] e/\ZN
N-1 614 N-—1 6ana
01 ey o By ey
A(A) = SRR RN A
1 ON
e/\ e e/\
61b onb
tre) tone)
N-1 Glb N-—1 92Nb
01 ey N ex




and

91u 92Na 91&1 921\]“
ey ey e) e
k—1 614 k—1 ,0ana N-1 01a N-1 6na
01 ey Oon €y 01 ey N ex
Glx 92Nx .............................
€x ex b O
g el A :
A (A x) = : : ;A (Ax) = : :
‘ : k—1 610 . k—1 02N
eNfl egla GNfl eGZNu 91 e)\ 92N e)\
1 A 2N A eelx . 6921\13‘
............................. A A
Eilb EiZNb 911<+1 eilh . 912<I-l\-]1 eiQNb
N-1 616 N-1 6nb N—1 6ib N—1 6onb
01 ey N ex 01 ey o by ey

The functions x — A;‘L (A;x),0 <k < N — 1, are the solutions of the boundary value problems

(A)CN(A;x) = kA DL (A;x),
(D) O (A;a) = 8 AYENIAA), (8) D (A;b) =0 for € {0,...,N—1},

(A O (A a) =0, (AN O(A;0) = G5 AYENIA(A) for L € {0,...,N—1}.
Proof. The solution of linear boundary value problem (2.2) has the form ®(x) = }:%51 &p e?{x
where the coefficients ay, 1 < £ < 2N, satisfy the linear system below:

k
k
{ (AN PN (A x) = K AA (A x),
+
k

2N 0 r

Z Blge/\“”ag = A‘qu(k)(a), 0<k<N-1,

";Nl 3.2)
Y okl = A" me®(h), 0<k<N-1.

(=1

This system can be solved by using Cramer’s formulae:

Ao(A, @)
w= =R 1< ¢ <2N,

where A(A) is the determinant displayed in Theorem 1 and Ay(A, ¢) is the determinant deduced
from A(A) by replacing its /th column by the right-hand side of (3.2), that is

014 14 O¢1 10 N
e)\ o« e o e)\ q)(a) e)\ + o« e o eA
01a Gg_lﬂ . / 9[ 14 0Nl
01 ¢} e Bpqey AT2N @/ (a) Oprre) ™ - Onel
N-1 ba N-1 018 5N (N_1 N—-1 0r14a N—1 N4
07 et - 0, e AT 2N qo( )(a) 9€+1 ey e Oy ey
AZ(A/¢): eb ............... Gh .............................. ) h ............... eb
1 -1 (+1 2N
e e, @(b) e ey
61b 0p_1b Ly 01 LN
f1e, 0p_1e) AT2N @' (b) Opy1e fon €
N—-1 b N—1 0rqb N (N_1 N—1 0r41b N—1 ,0onb
91 €y T 9€—1 €y ATTN q)( )(b) 9[4.] €\ T 92]\] ey

The determinant Ay (A, @) can be expanded with respect to its /th column:

N-1 e N—1 o
AN )= Y A" AL(A) oW (a) + Y AT AL (A) 9 (b)
k=0 k=0
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with

A (A) =

Gg_la
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o
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_-
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A
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1 0
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92N¢Z
ex

gkfl 6921\1&

6 92N¢Z
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k—1 Oona

On €x

k+1 62na
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92Na
ex
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and, in the same manner,

b1a 014 B¢a Op410 bana
EA EA EA EA e
N—1 614 N-1 818 ,N—-1 6m AN-1 0r14 N-1 64
01 ey 0,1 ey 0y ey 0 ey N ex
61b 010 0¢b 0p11b N
e) ey ey e ey
+ _ : : : :
AL(A) = : : : : :
k—1 616 k—1 0¢-1b k—1 8¢b k=1 Besab k—1 6ana
01 ey -1 ¢y 0 ey e, 0N €y
0 0 1 0
k+1 61b k+1 0r-1b k+1 0,0 k+1 Oo41b k+1 6ona
91 e, 9[_1 e, 9[ e, 9£+1 e, 921\1 ey
N—1 61b N—1 0r1b  aN—-1 06 N—1 0Bri1b N—1 6nb
91 e, 9[_1 e, 9[ e, 9“1 e, 921\1 ey

With these settings at hand, we can write the solution of (2.2):

2N 2N
0 AN @) p,x
O(x) = E ape,” = E —= Tl el
) = A(A) A

with
- NG N
A (A x) = EZ;AM()&) e, Af(Ax) = ZZ;AM(/\) el (3.3)

We immediately see that equalities (3.3) are the expansions of the determinants displayed in The-
orem 1 with respect to their (k — 1)th raw and (k + N — 1)th raw respectively. Formula (3.1) is
roved.
b Finally, it is easy to check the boundary value problems satisfied by the functions x + Af{t (A;x)
by using elementary rules on differentiating a determinant. In particular for, e.g., A, the deter-
minants defining (Ak_)([)(/\;a), ¢ € {0,...,N—1}\{k}, and (Ak_)([)()\; b), ¢ € {0,...,N —1},
have two identical rows, thus they vanish. The determinant (A, )®)(A;a) has the same rows as
A(M) up to the multiplicative factor A¥/(2N) for its kth row, then it coincides with AK/2NIA(A).
The proof of Theorem 1 is finished. O

Now, by eliminating the function ¢ in (3.1), we get the following result which should be un-
derstood in the sense of Schwartz distributions:

e Uy, ooy, Xy, € dz) /dz

_Nfl_ . 7%Ak*(/\;x) k), Nfl_ L 7%Alj()\;x) ®),,
—kg)( DA =Ey % ()+k§]( iz == ) (3.4)

from which we derive the following representation for the pseudo-distribution of (7, X¢,,)-
Theorem 2. The joint pseudo-distribution of (Typ, X<, ) admits the following representation:

N-1 k N-1 k
Pe{ty € dt, X¢, € dz}/dtdz = Y (—1)FI (5x) 60 (z) + Y (—1)*IF (5x) 6 (z)  (35)
k=0 k=0

where the functions Iki (t;x),0 < k < N — 1, are characterized by their Laplace transforms:
Aki (A; x)

Y (b x) e Mdt = A .
A k ( ,x)e N A(/\)



They are also characterized by the boundary value problems

ol o*NI-
k . _
7(1’,3() Ky aZN (t X)
o'l oI
afi (t0) = e, =& —k(;b)=0 forte{0,1,...,N—1},
al+ aZNI-‘r
k . _ .
a3 (£ x) =K, NNy k(£ x)
o't o't
a[—k(t,-a)—o, —k (D) = o for¢€{0,1,...,N —1}.

The boundary value problems satisfied by the functions 1= ,0 <k < N —1, come from those
satisfied by the functions Af{t displayed in Theorem 1. The only details we have to check are that
If(t; x) goes to 0 as f tends to 0" and that Iki(t; x) is bounded as t tends to 4o (in order to have
Jo @70t [F(x) e~ Mdt = A [;° I (t;x) e dt) which can be deduced from the fact that their
Laplace transforms go to 0 exponentially quickly as A goes to +oco and are bounded as A goes to
0. These facts are proved in Appendix A; see (A.2) and (A.5).

Remark 1. The functions Iki, 0 < k < N —1, are real-valued. Indeed, observing that the com-
plex numbers 0, 1 < ¢ < 2N, are conjugate two by two, it is easily seen that the determinants
contain conjugate columns two by two, so they are real numbers. More precisely, conjugating
01,...,0N,ON11, ..., 0N respectively yields Oy, ...,01, 02N, ...,0n+1. Therefore, conjugating the
determmants A and Aki[ boils down to 1nterchang1ng their 1st and Nth columns, their 2nd and
(N — 1)th columns, ..., their (N + 1)th and (2N)th columns, their (N + 2)th and (2N — 1)th
columns, and so on. In this way, we perform an even number of transpositions and we retrieve
the original determinants: A = A and Akg = ;}, proving that they are real numbers.

Moreover, the functions I,” and I, are related according to the identity L' (t;x) = (—1)k
I, (t;a+ b — x) as it can be seen by proving the same identity concerning their Laplace trans-
forms; see (A.1) in Appendix A.

Remark 2. Let us compute the limit of (3.4) as b tends towards +-cc. To this aim, we find that

(/\ x 0y (x—a) A]—:()\; X)
W b Z Apg€) and W h—>_+>oo 0 (3.6)
with
1 1 0 1 e 1
61 - 01 0 O - O
k—1 k—1 k—1 k—1
o 1 ok R/ S (N S SR
M= Getv)| 0 -~ 0 1 0 - 0
k+1 k+1 k+1 k+1
01 /AR 9£+1 Oy
N-1 N-1 N-1 N-1
61 ooVl QEH ooy
The coefficients ay are characterized by the identity
1 e 1 1 1 e 1
N-1 61 s 6g,1 X Gg 1 BN
1 + x—0
k k
Up X° = ) . . ) L= 37
kg) K det(V) | : : : : 1%1\/ <9£ - 9k> 37)
N-1 N-1 ,N-1 gN-1 N-1
01 e 0y X 9@+1 e Oy

asitis easily seen by appealing to the well-known Vandermonde determinant det(V) = [Ti<;<j<n
(8; — 0;). Notice that polynomial (3.7) is nothing but an elementary Lagrange interpolating poly-
nomial related to the numbers 6;, 1 < i < N. The details of these limiting results being cumber-
some, we postpone them to Appendix A.



In regards to (3.4), (3.5) and (3.6), we conclude that, for x > a,

N-1
m Pe{ty € df, Xy, € dz}/didz = Y (1! (%) 6 (2)
el k=0

where K} is the function whose Laplace transform is given by
oo —At -k al 0 2I\\'ﬁ(xfa)
/ Ki(;x)e ™ Mdt=A"2N szkgef .
0 =1

We retrieve at the limit the pseudo-distribution of (7, X,) related to the first overshooting time
of level a displayed in [14], formula (5.15).

4 Pseudo-distribution of 7,

By applying the Schwartz distribution (3.5) to the test function 1, we immediately extract the
pseudo-distribution of T, Pe{ 1y € dt}/dt = I; (t;x) + Ij (£ x) that we state as follows.

Theorem 3. The pseudo-distribution of T,y is given either by one of both formulae below:
Pe{ty € dt}/dt =I(t;x), Pe{ty <t} =](tx)

with

Let us introduce the up-to-date minimum and maximum functionals of X:

m; = min Xg, M; = max X;.
s€(0,¢] s€(0,t]

It is plain that the functionals m;, M; and time T, are related according asa < m; < M; < b <=
T > £ Then Pe{a < my < My < b} =1—Py{t, < t}.

Corollary 1. The joint pseudo-distribution of (m, My) is given by
Pe{a <m < My <b}=1-](tx)
and its Laplace transform with respect to t writes

1 AN) = Af (A x) — Ay (A;x)
A A(M)

00
/ Pe{a <m < My < b}e*)‘tdt =
JO

5 Pseudo-distribution of X,

In this part, we focus on the exit location of X at time 7,;, whose pseudo-distribution admits a
remarkable expression by means of Hermite interpolating polynomials whose expressions are
displayed in the introduction.

Theorem 4. The pseudo-distribution of the exit location X, 1o, - o) is given, in the sense of Schwartz
distributions, by

N-1
P{ X, € dz, 1y < +00}/dz = Y (=1)FH, (x ) + 2 VHE (x) 6 (z). (B.1)
k=0

Proof. We directly solve boundary value problem (2.2) in the case where A = 0 therein. Namely,
by setting ¥ (x) = Ex (go(XTab) ]I{Tab<+°°})’

YCN)(x) =0, xe€(ab),
Y®) (a) = 90 (a) and ¥O) (b) = ) (b) fork € {0,1,...,N —1}.
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Itis clear that ¥ is the polynomial of degree not greater than (2N — 1) whose derivatives ata and b
up to order (N — 1) are the given numbers ¢(¥) (a) and ¢(¥) (b),0 < k < N — 1. It can be written as
a linear combination of the Hermite interpolating fundamental polynomials Hki, 0<k<N-1,
displayed in Theorem 4 as follows: for any test functions ¢,

N-1 N-1
Ex (9(Xey) Unyetey) = 3 He (090 (@) + ¥ Hyf (x) 99 (0). (5:2)
k=0 k=0
Formula (5.1) is nothing but (5.2) rephrased by means of Schwartz distributions. O

Remark 3. Formula (5.2) yields for ¢ = H,f, 0 <k < N-—1, that E, (Hf(XTab) ]I{Tab<+°°}) =

Remark 4. By letting b tend to +oco, we see that H," (x) tends to 0 while H (x) tends to (x — a)k/(k").
Hence, we find that

- N-1 (11 _ x)k «
Jim P{Xq, € dz, g < +oo}/dz = k;o T 59 (2).

We retrieve at the limit the pseudo-distribution (1.3) of the location X+, of X at the first overshooting time
of level a, which is displayed in [14], formula (5.18).

Corollary 2. Time T,y is Py-almost surely finite in the sense that
]Px{Tab < —|—OO} =1.

Because of this, in the sequel of the paper, we shall omit the condition 7, < +oco when con-
sidering the pseudo-random variable X ,. Actually, let us recall that, in the framework of signed
measures, if A is a set of Py-measure 1, it does not entail that for any set B that Px(A N B) = Py(B)
contrarily to the case of ordinary probability.

Proof. The pseudo-probability IP{7,, < +oo} can be deduced from (5.1) by choosing ¢ = 1. In-
deed, we have that

Hy (x) = (Ziﬁ)fﬁ_:: (7 (%)Z

_\N N-1 B
= (b(b_ a;g\ll (64_12] 1) (x—a)'(b—a)N"17"

(=0

By writing the term (b — a)N=1* as

N-1-¢ a
e Rt A o (P CE N (Rt

it follows that

Hy (x) = m Osé;,l <N —kl — E) (f + IZ - 1> (x — @)K+ (b — x)2N-1-k=
= = ;)ZN_l :Zj,: Lé <£ + z;r - 1) <Nn;i; z)l (x— )" (b — xPN-1m,

By using the elementary identity Y/, (“f )(”:ﬁ;[) = ("*P+0+1) which comes from the equal-

ity (1+u)"P(1+u)"7 = (1+u) P17 together with the expansion, e.g., for p, (14 u)™? =
Zfzo(—l)z(”ré*l)ug, we get that

§<£+?—1><N;i;£) _ <2Nm— 1>.
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As a byproduct,

1 N-1 (2N—1

e I G [

Similarly,
2N-1 _
0+ (x) = 1 (ZN 1

(b—a)2N-1

) (x _ a)m(b _ x)2N717m

N m

and we immediately deduce that

2N-1 _
P{1, < +oo} = Hy (x) + Hy (x) = W Z@ <2Nm 1) (x— )" (b — x)PN-1-m _ 1.

O

Let us introduce the first down- and up-overshooting times of the single thresholds a and b for

(Xt)e=0:
T, =inf{t >0:X; <a}, 7 =inf{t>0:X; > b}.

The famous problem of the ruin of the gambler in the context of pseudo-Brownian motion consists
in computing the pseudo-probability of overshooting one level (a or b) before the other one. For
instance, we have that

]I)x{TL; < T;} — l[Jx{XTab < a}.
Hence, in view of formula (5.1), we obtain the following result.

Corollary 3. The “ruin” pseudo-probabilities related to pseudo-Brownian motion are given by
P{t, <7} =Hy(x), Py <1, }=Hj(x).
In the corollary below, we provide a way for computing the pseudo-moments of X, ,.

Corollary 4. Let P be a polynomial and R the remainder of the Euclidean division of P(x) by (x —a)N (x —
b)N. We have that
E.[P(X¢,)] = R(x).

In particular, the pseudo-moments of X, are given, forany p € {0,1,...,2N —1}, by
Ex[(Xz,,)F] = xP

and for any positive integer p, by setting ¢, = Y, (Nﬁffl) (Nt:’:klfk)ak bk, by

p
Ea[(Xg, ) PN47)] = 22N+ — (2 ,,) (x—a)N(x—b)N
n=0
= y2NFP [x” + N(a+b)xP~!
+ (AN(N+1)(@2 + 1) + N2ab) 2 4 (x — )N (x = ).
For instance,

Ex[(Xr, )] = 2N = (x =)V (x = D)T,
Ex[(Xr, )N = V1 — [x + N(a + b)](x — ) (x = D),
Ex[(Xq,) 2N 2] = $2N+2 - [x2 +N(a+b)x+ (% N(N +1)(a® + %) + Nzab)} (x —a)N(x — b)V.
Proof. Let us introduce the quotient Q of the Euclidean division of P(x) by (x —a)N(x — b)N:

we have P(x) = Q(x)(x —a)N(x — b)N + R(x). The polynomial R is of degree not greater than
(2N —1). Since a and b are roots of the polynomial P(x) — R(x) = Q(x)(x —a)N(x — b)N with a

11



multiplicity not less than N, the successive derivatives of P — R up to order (N — 1) vanish at a
and b. Therefore, by (5.2), we deduce that

Ex[Q(Xx,) (Xg, — 0)" (Xg, —0)V] =0

and then
]Ex[P(XTab)] = ]EX[R(X%)]-

Since the polynomial R is of degree not greater than (2N — 1), we can write the decomposition
N-1 N-1
R(x) = Y. R® (@) H (x)+ Y RW(b) H (x).
k=0 k=0
Therefore, appealing to Remark 3, we obtain that
Ex[P(Xx,)] = Ex[R(Xq,)] = R(x) = P(x) ~ Q(x)(x — )" (x — b)N.

Next, we compute the quotient Q when P(x) = x2N+7:

(r— ﬁj— v = (1 - 3)_N(1 B E)N
= (ECRECT)

0 B 14 (=] Cn-l—p
= Z C”xp "= Z CP_”xn + Z n
k=0 k=0 n= X

where
Cpy = 2 a b’ = E a bﬂ .
! Lotz ( k 4 =0 k n—k
+{=n

Then, the quotient of x*N P by (x — a)N(x — b)N is equal to Y}, c,x”~". In particular,

co=1c1=N(a+b), c; = %N(N—l—l)(nz—l—bz)—l—Nzab.

Remark 5. By (5.2), we easily get that

'Hf(x) ifp<N
AT — P N
Ex [(XTﬂh b) ]]'{T;'<Ta_}i| - { 0 ifp>N+1.

This formula suggests the following interpretation of Hermite polynomials in terms of pseudo-
Brownian motion: for p € {0,...,N —1},
Hy () = - B (X0, ~ )P
p p! x Tab {t, <7}

6 Thecase N =2

For N = 2, pseudo-Brownian motion is the so-called biharmonic-pseudo-process. In this case, the
settings write 6 = el3/4 g, — 574 — 3, 03 = el7m/4 g, = el 4 = 03, and, by setting v = A/4,

Gla 92u 93& 94&
) ) ) A
Gla 92u 93& 94&
A()\): 016)\ 626A 63(3/\ 94(3/\
01b 0>b 03b O4b |7
) X €A )

010 020 N 04b
016)\ 626A 63(3/\ 94(3/\
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Glx 92X 93)( 94x Gla 92a 93a 94a

) ) ) ) ) ) ) )
01a 0ra 03a 040 01x 0rx 03x 04x
AT (Asx) = bre)” Oael G3e)” Ose; AT (Ax) = e, ey ey e,
0\ 01b 6,b 03b 04 |7 1\ 01b 0,b 03b 040 |7
) ) ) ) ) ) ) )
01b (14 03b 04b 01b (14 03b 040
916)\1 9262\2 9362\ 946)\4 916)\1 9262\2 936/\ 946)\4
eilﬂ eizﬂ e?\sﬂ eiw eilﬂ e?\zﬂ e?\sﬂ 63411
91& 92& 93& 94& 91u 92& 93& 94“
A*(A'x): 916/\ 926A 936/\ 946/\ A*(A'x): 916)L GzeA 936/\ 946)L
0 4 91]{ sz 93X 94X 4 1 4 Glb Gzh 93b 94b
) ) ) A ) Ex ) )
Glb 92b 93b 94b Glx 92X 93){ 94x
Bre)l” 6re Oze’” Oie; e, ey ey e,

Elementary computations yield that
A(A) = 4 [cosh(2v/v (b — a)) + cos(2v/v (b —a)) — 2].

Let us expand, e.g., A, (A; x) with respect to its first row:

— . _ Glx 92X 93X 94x
Ay (M x) =cre)” +cpe)” +c3e)l” +cgey

where ¢y, ¢y, ¢3, ¢4 are the cofactors of Aj (A; x) related to the first row. Straightforward (but cum-
bersome) computations yield that c; = ¢; and ¢4 = ¢3 and

o = (1—1i) o Vv ((2b—a)—ia) +(141) e VV(a=i(2b—a)) _ 5 o(1-i) %ﬂ,
3= (1—1i) e~ VV((2b—a)—ia) | (1+1) o VV(a—i(2b-a)) _ o o~(1-i)Pva_

Therefore, we have that

Ay (A;x) = 2R (1 € + c3hY)
=2 [e%(’“”) cos (Vv (x +a—2b)) +e V¥ () cos (Vv (x +a — 2b))
+ eV sin (Y0 (x +a —2b)) — e VD gin (Y (x +a — 2b))
—2eVV(x—a) cos (Vv (x—a)) — 2~ VV(x—a) cos(v/v (x —a))
+ eV (x+a=2b) cos(vv (x—a)) + e~ Vv (xta=2) cos(v/v (x —a))
— V¥ (xta=2b) sin(vv (x —a)) + e~ Vv(xta-2) sin(v/v (x — a))}

which simplifies by means of hyperbolic functions into

Ay (A;x) =4 [cosh(v/v (x —a)) cos(v/v (x +a—2b)) +sinh(v/v (x —a)) sin(+v/v (x +a — 2b))
+ cosh (/v (x 4+ a — 2b)) cos(+v/v (x — a)) — sinh(v/v (x +a — 2b)) sin(v/v (x — a))
—2cosh(v/v (x —a)) cos(v/v (x —a))].

Quite similar computations yield that

A7 (A;x) = 4 [cosh(v/v (x +a —2b)) sin(v/v (x —a)) + sinh(v/v (x — a)) cos (/v (x +a — 2b))
— cosh (Vv (x — a)) sin(v/v (x —a)) — sinh(v/v (x — a)) cos(+v/v (x —a))].
The determinants Aj and A]" can be immediately deduced from A, and A} by interchanging the
roles of a and b as it can be seen upon interchanging certain rows therein. We obtain that
A§ (A;x) =4 [cosh(v/v (x — b)) cos(v/v (x +b—2a)) +sinh(v/v (x — b)) sin(+v/v (x + b — 2a))
+ cosh (Vv (x + b —2a)) cos(v/v (x — b)) — sinh (/v (x + b — 2a)) sin(v/v (x — b))
—2cosh(v/v (x — b)) cos(v/v (x — b)) ],
A} (A;x) = 4 [cosh(+/v (x + b —2a)) sin(v/v (x — b)) +sinh(v/v (x — b)) cos(+v/v (x + b — 2a))
— cosh (/v (x — b)) sin(v/v (x — b)) — sinh(v/v (x — b)) cos (/v (x — b))].
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Now, formula (3.5) reads
Pr{t,p € dt, Xy, € dz}/dtdz = I; (t;x) 6a(z) + I} (£;x) 6, (2) + Iy (£ %) 6y(2) + I (£ x) 63(2)
where the functions Igt and Ili are characterized by

o0 T\ o oy AF (A x
/OISE(t;x)eMdt:%, /Olli(t;x)e)‘dt \/1_ A<(/\))

Concerning the pseudo-distribution of the exit location X, it is given by

Pr{Xy, € dz}/dz = Hy (x) 8a(z) — Hy (x) 8,(2z) + Hy (x) 6(z) — Hy (x) 6,(z)

with
x—b)2(2x —3a+ x—a)(x —b)2
N2 _ —a)2(y —
Hy (x) — a)(b(z_xa); Sb)' Hf (x) - 2 (;)_%2 b)'

When the pseudo-process starts at the middle of the interval [a,b], we obtain the following
expressions for the determinants of interest: by setting L = (b —a)/2,

A(A) =32 [cosh2({4/17 L) sinh? (/v L) — cos? (Vv L) sin2({4/17L)},

Ay (/\;a—;—b) =A; (/\;a—;—b) =4 {COSh({l/l_/L) cos(v/vL) (cosh2 (VVL) +cos? (Vv L) —2)
+sinh(v/v L) sin(v/v L) (coshz(WL) — cosz({*/;L))},
A7 <A”2Lb) —A} (A;“zib> — 4 [cosh (/L) sin (/v L) sinh? (/v L)
—sinh(v/v L) cos(+v/vL) sinz(%L)]

Hence, in this case, we have the following symmetric expression:

b b
Py {Ta € i, Xy, € dz}/didz = I <t; %) (6a(2) + 6p(2)) + I <t; %) (8(2) — 8.(2)).
Moreover,
[, atb 4, atbh 1 [, a+b +f, a+b L
(V) g () <1, (1) - (2) <L
Then,

a

Py (X, € d2}/dz = 3 (0(2) +8,(2)) + g (3}(2) ~ 84(2))
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A Appendix

A1 Asymptotics of A(A) and A (A; x) as b tends to +oo

In this appendix, we check limits (3.6). By factorizing the /th column of the determinant A(A) by
ei‘ “foreach / € {1,...,2N} and observing that Z%i’l 6, = 0, we find that

1 .. 1
0, . Oon
N-1 N-1
91 921\]
A(A): ccccc 9 ;c(é;oac) ccccccccccccccc é;):l\.]&b‘"ai"‘
€r A
9 eil(b*ﬂ) . eiw(b a)
9{\]71 e?\l(b_”) L 6%\?1 eiZN(b_a)

We separate A(A) into four squared blocks as follows:

1% \%
(A) = [-eemeen SETIETE
W(A) : W(A)
with
1 1 1 1
61 On } ON+1 b2n
V = ’ V = . 7
N-1 N-1 N-1 N-1
91 9N 9N+1 92N
eil(b—ﬂ) L eiN(b—ﬂ)
61(b—a) On(b—a)
B el o Bye
W) = 1EA A )
6{\’*1 eil(b—a) . 0%’1ei1\’(b_a)
eiI\Hl(b*ﬂ) o e?\ZN(b_”)
Oni1(b—a) Oan (b—a)
s Ontiey ! <o bhye
W(A) = +1€) A
9%;} eiNH(b_a) . eé\ll\]—leizw(b*ﬂ)

Due to the fact that R(6;) < 0for ¢ € {1,...,N}and ®(6;) > 0for ¢ € {N+1,...,2N}, it may
be easily seen by using an expansion by blocks of type N x N that the leading terms of A(A) are
obtained by performing the product of the determinants of both diagonal blocks V and W(A),

namely:
A(A)  ~  det(V) x det(W(A)).

b—+o0

Similarly, we decompose A, (A; x) into
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with

1 1 1 1

6, On ON+1 ton

k—1 k—1 k—1 k—1

Vilds x) — 01 O Vol x) — ON+1 On
k(A x) = i) ) |- k(A x) = vnla) o fara)

k+1 k+1 k+1 k+1

91+ T 6N+ ON'h1 o SN

N-1 N-1 N-1 N-1

01 N 0N Oon

We can easily see that, for x € (a,b),

AL (Ax)  ~  det(Vi(A;x)) x det(W(A)).

b—+o0
As a byproduct, we get the first limit of (3.6):
A_ . .
¢ (A x) . det(Vi(A; x)) ‘
A(A)  botoo  det(V)
By expanding the determinant of Vj(A; x) with respect to its kth row, we obtain that

det(Vk(/\;x)) . N 0 (x—a)
det(V) ;“kf €A

where the coefficients ay, are explicitly written in Remark 2.

Next, concerning the determinant A;"(A; x), by factorizing the /th column by ei‘ " for each
¢ € {1,...,2N}, using the identity Y7, 6, = 0 and permuting the kth and (N + k)th rows for
eachk € {1,..., N}, we get that

1 1
k—1 k—1
61 BZN
eil(x*b) eizz\l(x*b)
o i
A (A x) = (-1)N - -
o o
... eil(a—b) .............. eiZN(a—h) ...
9{\1—1 eil(ﬂ*b) eé\lN—l iw(ﬂ b)
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1 1 1 1
g gy
Yi(A;x) = eil(x—b) eiN(X—b) , Yk()\;x) _ eiNH(x*b) eizw(x—b)
k+1 k+1 k+1 k+1
91+ 9N+ eNtLl 92?\_]
N-1 N-1 N-1 N-1
61 GN 0N+1 62N
eil(ﬂ*b) eiN(ﬂ*b)
61(a—b) On(a—b)
91 e, GN e
Z() A A ,
9{\]71 eil(ﬂ—b) Bgfleilv(a—b)
eiN“(a_b) eizw(ﬂ*b)
Ony1(a—b) fan(a—Db)
5 Onsrey N e
7 (/\) _ +1%) A
gN-1 e9N+1(ﬂ*b) Gé\ll\?le%w(ﬂ—b)

N+1+A A

Finally, by remarking that 6y, s = —6, forany £ € {1,..., N}, we derive that

Ui (A;x) & Ui(A; x)

BEM) = (1|t

where the matrices Ui(A; x) and U (A; x
(x —a) into (b — x), that is, Ux(A;x) =
byproduct, we derive the identity

) are deduced from Vi (A;x) and Vi(A; x) by changing

Vi(A;a+b—x) and Ux(A;x) = Vi(A;a+b—x). Asa
A (A x) = (-1)FA (A;a+b—x) (A1)

which is evoked in Remark 1. Thanks to an expansion by blocks, we can see that, for x € (a,b),

AF(Nx) ~  (—D)Fdet(Vi(A;a+b—x)) x det(W(A)) = o[det(W(A))].

b—+oo

From this, we deduce the second limit of (3.6):

A (A;x) 0
A b

A.2 Asymptotics of A(A) and A,f (A;x) as A tends to 0 or +oc0

The procedure depicted in the previous subparagraph can be carried out mutatis mutandis in the
case where A tends to +oo. This yields the following limiting result:

Aex) (A2)
AN ATt ‘

the rate of convergence being exponential. Then Iki(t;x) — 0. Below, we examine the case
t—=0

where A tends to 0.
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A.2.1 Asymptotics of A(A) as A tends to 0"

Set ¢ = A1/2N)(h — ). The number ¢ tends to 0. We expand the exponentials lying in A(A) into

power series: fork € {0,...,N —1},

ek ek(b a) _ Zel-‘rk C ZQF

=0
Then,

1 N+1

By multilinearity, we see that the terms including a power of 6, less than N can be discarded (for
these terms, the corresponding determinant has two or more identical rows, ‘th‘us it vanishes).
Hence, the determinant A(A) does not change if we only keep the sums Y2 0/ ¢ =%/ (i — k)!:

i—N+1

By multilinearity, we can rewrite A(A) as

Ci1+(i271)+“

N1 O o

YN O e

cl

Z 912N il

1 1

Y 912N(1 i)

N1 O

i NBlZN(z 1)

o] 1 C
Lizn Oon N

+(iy—N+1)

A(A) = c
i1ing =N 11!(12 — ])' ..
i1, all distinct

Because of the conditions on the indices 7y, . . ., iy, the least power of c is not less than N 2; indeed,
the indices being distinct and not less than N, we have iy +ip + - -

(2N —1) or, equivalently, iy + (i — 1) + - - - + (iy — N + 1) > N2. Moreover, if an index is greater
+iN1+in > N+ (N+1)+
(2N), that is, iy 4 (i — 1) + - - - + (iy — N+1) > N2+ 1. In words, the term cN” is obtained at

than (2N — 1), say iy > 2N, theni; +ip + - - -

(in—N+1)!
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1
N

i
62N i!
1 1

i—N+1

iN
91

oiN

+iN >N+ (N+1)+---




most for the indices not greater than (2N — 1). Consequently, we see that the terms of the sums
corresponding to i greater than (2N — 1) can be neglected when ¢ tends to 0, namely:

1 1
6, Oon
GNfl GN 1
1
Al L 0 CN2
()Hm Z2N 1955' Z2N 191 c_' + ( )
2N 1 i1 2N 1 ¢t
Z 01 zcl) Z 61 (1 1)!
2N 1 i—N+1 2N 1 i—N+1
Z 01 - i—N+1)! Z 61 N (i—-N+1)!

We observe that the matrix lying in the foregoing determinant can be factorized into the product
of the two following matrices:

1 1
I1:0 6 - ON
Ap= -], Ay= ) )
O:B : :
2N—1 2N—1
91 92N

where I and O are respectively the unit and zero matrices of type N x N, and

N CN-H C2N—1
N (Nt T (2N-1)!
CN 1 CN C2N72
p— | N- NI (2N-2)!
2 N
c bl N1
We can decompose B into C; BC, where C; and C; are the diagonal matrices with ¢N,cN=1,... ¢
and 1,¢,...,cN~1 as diagonal terms respectively, and
L 1 U
NI (N+1)! (2N-1)!
1 L e 1
5 N—1)! NI 2N—2)!
g=| ¢ . ) . ( )
1 il N

Hence, all this discussion plainly entails that

A(A) ~ det(Aq) x det(Ay) = det(Ay) x det(B) x det(Cy) x det(Cy) = constant x N

c—0t

where the constant does not vanish, or, by means of the variable A,

A(A) ~ constant x AN/Z, (A.3)
A.2.2 Asymptotics of Aki (A;x) as A tends to 0

A similar analysis can be carried out in the case of the determinant Aki()\;x). Recall that ¢ =
AV(@N)(p — ) and set v = A1/ (2N) (x — q). The numbers ¢ and 1 tend to 0 as A tends to 0F. E.g.,
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for A; (A; x), we have that

1 e 1
6, 02N
ek—l ek—l
Z;)o 0 911 7! Zz =0 eéNl'
k1 k1
67" On
Aki (A x) =
N-1 N-1
0 fon
Z 95 SI Z 912N z'l
Zi: l(c ) Zz 16 (z 1)
o i—N+1 o0 ; i—N+1
Y N1 0 (CT” YimN-1 GEN(;;NH)!

As previously, this determinant remains unchanged by removing the terms related to the indices

0,1,...,

k—1,k+1,...,N —1 in each sum. Moreover, for obtaining an asymptotics when ¢,y

tend to 0 (actually ¢ and -y have the same order of growth when A tends to 0), it is enough to keep
the terms related to the indices not greater than (2N — 1). Then, by setting I, = {k} U{N,N +

1,...,

2N -1},
61 fan
6]1(71 kal
ZiGIk ei i ZIGI}( éN’Y_I
k+1 k+1
91 GZN
_ . . 2
A (Ax) = : : —|—0<’ych )
¢, y—0t
0N71 0N71
1 2N
c! i
Zielk 9%[ T ZiEIk QIZN 1!
: 1 1 : Cz 1
Zlelk l 1) ZJEI{( 2N (l 1)
i—N+1 . i—-N+1
Z icl 61 e Yoien, 0
Sk, iy S5, BN TR

We observe that the matrix lying in the above determinant is the product of A; by A, where

I is the diagonal matrix of type N x N with diagonal terms equal to 1 except for the (k4 1)th
which is 'yk /k!;

Ok is the matrix of type N x N with all terms equal to 0 except for the (k 4 1)th column
which is made ofck/k!,ck_l/(k -1),...,¢1,0,...,0;

O,  is the matrix of type N x N with all terms equal to 0 except for the (k + 1)th row which
is made of YN /N!, ANt /(N +1),...,92N"1/2N - 1)
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The determinant of A; remains unchanged by interchanging its (k + 1)th and Nth columns and
its (k+ 1)th and (k + 1)th rows. This yields that

1 -+ 0 0 0 L. 0
0 0 0
0 ,Y—k ﬂ ,YZN—I
! T 2N—1)!
k N 2N—-1
R A Ay
det(A;)=|0 --- 0 (zi_n! (1(:\]—1)! (ZCN—Z)!
1 Cl\;—k CZN;k—l
(N—K)! 2N—k—1)!
0 CN—k—l CZN—k—2
(N—k—1)! 2N—k—2)!
0 0 0 c o
,Y—k ﬂ ,YZN—I
3 NI 2N—1)!
é ﬂ CZN—l
LT Y
(Iifl)! (Ic\lfl)! (2CN72)!
= 1 oN—k 2N—k—1
(N0 A
0 (sz—k—l)' (ZCN—k—Z)!
0 c e Cﬁl\:

By expanding this last determinant with respect to its first row, it is not difficult to see that
det(A;) = O ('ych 2) (recall that ¢ and « have the same order of growth when A tends to 0).

Therefore, in terms of the variable A,

Ak_(/\/x) _ O()\k/(ZN)+N/2) (A4)

A—0*t

and the same holds for Alj (A; x). Finally, by (A.3) and (A.4), we derive that

O(AF/(2N)), (A.5)
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