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Introduction

In this paper we consider the motion of a weakly inhomogeneous incompressible viscous fluid in the two-dimensional Euclidean space. We can describe the fluid by the pair (ρ, u), ρ = ρ(t, x) ∈ R + being the density field and u = u(t, x) ∈ R 2 the velocity field. The evolution we consider here is governed by the density-dependent incompressible Navier-Stokes equations:

   ∂ t ρ + (u • ∇) ρ = 0 ∂ t u + (u • ∇) u = 1 ρ (△u -∇p) div u = 0 (1)
where p = p(t, x) ∈ R is the pressure field, which is determined (up to a constant) by the incompressibility condition which yields the elliptic equation:

div 1 ρ ∇p = div 1 ρ △ u -(u • ∇) u . (2) 
Alternatively, we can represent the fluid motion using the vorticity field ω = curl u ∈ R rather than the velocity. Note that, in the two-dimensional context, curl(f 1 , f 2 ) stands for ∂ 1 f 2 -∂ 2 f 1 . Therefore the evolution equations for (ρ, ω) become

∂ t ρ + (u • ∇) ρ = 0 ∂ t ω + (u • ∇) ω = div 1 ρ (∇ω + ∇ ⊥ p) (3) 
where p is again determined by [START_REF] Danchin | Estimates in Besov spaces for transport and transportdiffusion equations with almost Lipschitz coefficients[END_REF], and u is recovered from ω via the Biot-Savart law:

u(x) = 1 2π R 2 (x -y) ⊥ |x -y| 2 ω(y) dy (4) 
for x ∈ R 2 , with (z 1 , z 2 ) ⊥ = (-z 2 , z 1 ). We also denote u = K BS ⋆ ω, where K BS is the Biot-Savart kernel:

K BS (x) = 1 2π
x ⊥ |x| 2 . Without loss of generality, we assume throughout the present paper that the viscosity of the fluid is equal to one.

We refer to the monograph [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF] for a general presentation of the available mathematical results on incompressible Navier-Stokes equations. We also mention the work of B.Desjardins on the global existence of weak solutions [START_REF] Desjardins | Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations[END_REF][START_REF] Desjardins | Global existence results for the incompressible densitydependent Navier-Stokes equations in the whole space[END_REF], and, closer to the spirit of the present paper, the work of R.Danchin on wellposedness in Besov spaces [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF]. Let us emphasize that both Danchin and Desjardins work with the velocity formulation [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] and do not assume the density ρ to be bounded away from zero. In more physical terms, they allow for regions of (almost complete) vacuum, which create technical difficulties.

In contrast, not only shall we not allow the density to be close to zero but we shall only consider weakly inhomogeneous fluids, namely we shall assume that the density ρ is close to a positive constant which, without loss of generality, we take equal to one. Remark that if the initial density is constant in space i.e. if the fluid is initially homogeneous, then the density remains equal to this constant for all subsequent times. Therefore, in such a case, system [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] reduces to the usual incompressible Navier-Stokes equations. Moreover, since div(∇ ⊥ p) = 0, the pressure term disappears from system (3) which thus reduces to

∂ t ω + (u • ∇) ω = △ ω . (5) 
Again, a wealth of information on the Cauchy problem for the homogeneous incompressible Navier-Stokes equations can be found in [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF] or [START_REF] Gilles | Recent developments in the Navier-Stokes problem[END_REF]. Concerning the long-time behavior of the solutions of the vorticity equation [START_REF] Gallagher | Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity[END_REF], the work of Th.Gallay and C.E.Wayne has revealed the important role played by a family of explicit self-similar solutions, Oseen vortices, given by ρ ≡ 1, u = α u G and ω = α ω G , where α ∈ R is a parameter and

ω G (t, x) = 1 t G x √ t , u G (t, x) = 1 √ t v G x √ t with G(ξ) = 1 4π e -|ξ| 2 /4 , v G (ξ) = 1 2π ξ ⊥ |ξ| 2 1 -e -|ξ| 2 /4 .
For the Oseen vortex (1, α ω G ), the quantity |α| is actually its Reynolds number.

If the initial vorticity ω 0 is integrable, it is proved in [START_REF] Gallay | Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF] that the corresponding solution of (5) converges to α ω G in L 1 -norm as t → ∞, where α := R 2 ω 0 . Moreover, it was shown in [START_REF] Gallagher | Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity[END_REF][START_REF] Gallagher | On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity[END_REF] that α ω G is the unique solution of the vorticity equation [START_REF] Gallagher | Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity[END_REF] with initial data α δ 0 . Note also that u G is not square integrable, since |v G (ξ)| ∼ 1 |ξ| as |ξ| → ∞, which means that Oseen vortices are not finite energy solutions in the sense of Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]. More generally, when dealing with incompressible flows of integrable vorticity and non-zero global circulation, one needs to consider infinite energy solutions.

Even though the homogeneous incompressible Navier-Stokes equations provide a good model in many situations, all real fluids are, at least slightly, inhomogeneous and it is therefore important and relevant, both from a practical and theoretical point of view, to investigate whether the predictions of the homogeneous model are meaningful for the density-dependent model, especially in the weakly inhomogeneous regime. The goal of this paper is to address this question in the particular case of Oseen vortices. These explicit solutions persist in the density-dependent case if we assume ρ ≡ 1, and it is therefore natural to ask whether they play there the same role as in the homogeneous case. While the general answer to this question is unknown, we treat here one important aspect: are Oseen vortices stable solutions for the density-dependent incompressible Navier-Stokes equations ? In other words, does the theory predicts that these self-similar solutions may be observed ?

Before stating what we mean exactly by stability, let us recall an important property of the Navier-Stokes equations: scaling invariance. For any λ > 0, if (ρ(t, x), ω(t, x)) is a solution of (3), so is

D λ (ρ, ω) = (ρ (λ 2 t, λx), λ 2 ω (λ 2 t, λx)) .
Correspondingly, the velocity field u(t, x) and the pressure p(t, x) are rescaled into λ u(λ 2 t, λx) and λ 2 p(λ 2 t, λx). As is easily verified, Oseen vortices are selfsimilar, in the sense that D λ (1, α ω G ) = (1, α ω G ), for any α ∈ R and any λ > 0. To study these solutions, it is therefore more convenient to rewrite (3) in self-similar variables. Following [START_REF] Gallay | Invariant manifolds and the longtime asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF] , we set

(τ, ξ) := (ln t, x √ t ) . (6) 
Motivated by scaling invariance, we will work with new quantities (r, w, v, Π) related to the former by r(τ, ξ) = ρ (e τ , e 

Then the corresponding evolution equations for (r, w) are

∂ τ r + (v -1 2 ξ) • ∇ r = 0 ∂ τ w + (v -1 2 ξ) • ∇ w -w = div 1 r (∇ω + ∇ ⊥ Π) (8) 
where again v is obtained from w by the Biot-Savart law and ∇Π by solving

div 1 r ∇Π = div 1 r △ v -(v • ∇) v . (9) 
By construction, Oseen vortices correspond to stationary solutions of (8) of the form (1, α G), where α is any real number. We prescribe initial data for the original equations at t = 1 rather than at t = 0, hence at τ = 0 for the new equations.

In order to state our main result, we now write down the evolution equations for a perturbation of an Oseen vortex. Given α ∈ R, we work with new quantities (b, w) related to the former by b = 1 r -1 and w = wα G. The evolution equations for (b, w) are

∂ τ b + (v -1 2 ξ) • ∇ b = 0 ∂ τ w -(L -α Λ) w + v • ∇ w = div b (∇w + ∇ ⊥ Π) (10) 
where

Lf = △f + 1 2 ξ • ∇f + f , Λf = v G • ∇f + (K BS ⋆ f ) • ∇G . ( 11 
)
Here v is obtained from w by the Biot-Savart law, w and v are recovered by

w = α G + w , v = α v G + v , (12) 
and ∇Π is obtained by solving

div (1 + b) ∇Π = div (1 + b) △v -(v • ∇) v . (13) 
Let us point out that, thanks to the linearity of the Biot-Savart law, we both have

v = K BS ⋆ w and v = K BS ⋆ w.
Note that L is the usual Fokker-Planck type operator which generates the evolution corresponding to the heat equation in self-similar variables. On the other hand, Λ is the non-local first-order operator resulting from the linearization around w = G of the transport term of [START_REF] Gallay | Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF]. More precisely, if v = K BS ⋆ w and (v, w) satisfies [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF], then v

• ∇w = α Λ w + v • ∇ w, since v G ⊥ ∇G.
Before stating our result of stability, we introduce the function spaces and the norms that we will encounter throughout the present paper. For 1 ≤ p ≤ ∞, we denote by L p (R 2 ) the usual L p -space and by | f | p the usual L p -norm of a function f : R 2 → R or f : R 2 → R 2 . Similarly, for s ∈ R, we denote by H s (R 2 ) the usual Sobolev space and by | f | H s the corresponding norm. Sobolev norms will be convenient to specify the regularity of our perturbations, but we also need weighted norms to describe the localization properties. Indeed, even in the homogeneous case, we know that it is impossible to get a convergence rate in time if we do not assume that the perturbations decay sufficiently fast at infinity in space (see [START_REF] Gallay | Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF]). Instead of using polynomial weights as in [START_REF] Gallay | Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF], we choose here the Gaussian weight G -1 2 , which is more restrictive but naturally related to the Oseen vortices and has several technical advantages. For instance, on the Hilbert space

L 2 w (R 2 ) := {f | G -1 2 f ∈ L 2 (R 2
)}, the linear operators L and Λ become respectively symmetric and skew-symmetric. More generally, we shall use the weighted L p -space defined as follows, for any 1 ≤ p ≤ +∞,

L p w (R 2 ) := { f | G -1 2 f ∈ L p (R 2 ) } (14) with corresponding norms | f | w,p := | G -1 2 f | p .
We are now able to state the main result of this paper:

Theorem 1 Let α ∈ R, 0 < s < 1 and 0 < γ < 1 2 .
There exist ε 0 > 0 and K > 0 such that, for any

0 < ε < ε 0 , if 1. b 0 belongs to L 2 w (R 2 )∩L ∞ w (R 2 )∩H s+2 (R 2 ) with | b 0 | w,2 ≤ ε, | b 0 | w,∞ ≤ ε, and G -1 2 ∇b 0 belongs to L q (R 2 ) for some q > max(4, 2 s ), 2. w 0 belongs to L 2 w (R 2 ) ∩ H s (R 2 ) with | w 0 | w,2 ≤ ε and R 2 w 0 = 0,
then there exists a unique solution (b, w) of [START_REF] Gilles | Recent developments in the Navier-Stokes problem[END_REF] with initial data (b 0 , w 0 ) such that

1. b ∈ L ∞ loc (R + ; H s+2 (R 2 )), 2. G -1 2 b ∈ L ∞ (R + ; L 2 (R 2 ) ∩ L ∞ (R 2 )), G -1 2 ∇b ∈ L ∞ loc (R + ; L q (R 2 )) 3. w ∈ L ∞ loc (R + ; H s (R 2 )) ∩ L 2 loc (R + ; H s+1 (R 2 )), 4. G -1 2 w ∈ L ∞ (R + ; L 2 (R 2 )) ∩ L 2 (R + ; L 2 (R 2 )), G -1 2 ∇ w ∈ L 2 (R + ; L 2 (R 2 )), G -1 2 |ξ| w ∈ L 2 (R + ; L 2 (R 2 )) .
Moreover this solution satisfies | w(τ ) | w,2 ≤ K ε e -γ τ , for any τ > 0.

Theorem 1 shows that Oseen vortices, which are self-similar solutions of the density-dependent Navier-Stokes equations, are stable with respect to small localized perturbations of the density and the vorticity. It is very important to note that we do not make any smallness assumption on the parameter α ∈ R so that we do treat Oseen vortices with arbitrarily high Reynolds numbers |α|. However, unlike in the homogeneous case [START_REF] Gallay | Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF], we are not able to consider large perturbations of the vorticity, due to the lack of appropriate Lyapunov functions for the density-dependent system, and unfortunately, in Theorem 1, the allowed size ε 0 of the perturbations is a decreasing function of the Reynolds number |α| tending to zero as |α| goes to infinity.

Without loss of generality, we assume in Theorem 1 and throughout this paper that the vorticity perturbation w has zero average. Indeed, if w = α G+ w with w small and δ := R 2 w = 0, one can always rewrite w = (α + δ) G + w with w small and R 2 w = 0. This zero-mean condition is preserved under the evolution defined by [START_REF] Gilles | Recent developments in the Navier-Stokes problem[END_REF] and is necessary to show that w(τ ) converges to zero as τ → ∞, i.e. to obtain an asymptotic stability result for the vorticity.

To make this asymptotic stability more concrete, we express it now in the original variables. Under the assumptions of Theorem 1, if (ρ, ω) is the solution of (3) defined by [START_REF] Gallay | Invariant manifolds and the longtime asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF] with w = α G + w and r = 1 1+b , then the vorticity ω(t, x) satisfies t

1 2 | e |x| 2 8t (ω(t) -α ω G (t)) | 2 ≤ C t γ , t ≥ 1 . Moreover this implies t 1-1 p | ω(t) -α ω G (t) | p ≤ C p t γ , t 1 2 -1 q | u(t) -α u G (t) | q ≤ C q t γ for any 1 ≤ p ≤ 2, 2 < q < +∞, t ≥ 1. Note that self-similarity implies | ω G (t) | p = C t -(1-1 p ) and | u G (t) | p = C t -( 1 2 -1 q )
. In contrast, since the density perturbation 1 ρ -1 is just transported by the divergence-free velocity field u, formally it remains constant in law, thus in any L p -norm.

The rest of the paper is organized as follows. In a preliminary section, we collect estimates on the Biot-Savart kernel, thus on the velocity in terms of the vorticity, and on the pressure. In the second section, we establish various estimates for the solution of a linearized density equation. Similarly, in the third one, we study a linearized vorticity equation. The final section is devoted to the proof of Theorem 1.

However there is another underlying structure that the reader may find useful to keep in mind. Indeed, to establish the existence part of Theorem 1, following [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF], we build a sequence of solutions of a linearization of [START_REF] Gilles | Recent developments in the Navier-Stokes problem[END_REF]. In order to show the convergence of this sequence, we will use local-in-time estimates in Sobolev norms for solutions of this linearized system. To be more precise, in a first step, we establish global estimates for solutions of the linearized system, which control the density in weighted L p spaces and the vorticity in H 1 . In a second step, we use the previous results to prove first global estimates of the density in H 2-ε (with a loss of regularity), then local estimates of the vorticity in H s+1 , and finally local estimates of the density in H s+2 . Then we use these results to establish the existence and uniqueness parts of the theorem via estimates on differences of two solutions. In both second section and third section, where we study the linearized density and vorticity equations, we shall clearly indicate which estimates are needed for the first step and the second step respectively.

Let us make clear that the global estimates show decay in time and enable us to keep some quantities small, leading to stability, whereas the local estimates are only used to show the existence for all time of a unique solution, allowing growth in time but precluding blow-up in a finite time. It should also be emphasized that since we consider infinite energy solutions even the existence for small time was unknown. Actually, concerning local existence, one should also note that the localization of the vorticity necessary to obtain a decay rate is also useful to get low regularity estimates of the velocity field as provided by inequality (21) below.

In what follows, the original (and physical) time will never appear again, so for notational convenience henceforth we use the letter t to denote the rescaled time τ .

Preliminaries

If f is integrable over R 2 , we define its Fourier transform to be the function f defined for any η ∈ R 2 by

f(η) = R 2 f (ζ) e iη•ζ dζ .
Concerning function spaces, we will also need the following convention. For any σ ∈ R, we denote by Ḣσ (R 2 ) the usual homogeneous Sobolev space on

R 2 equipped with | f | Ḣσ := | I σ f | 2 , where I := (-△) 1 2 .

Biot-Savart kernel

The goal of this subsection is to enable us to estimate the velocity in terms of the vorticity. For this purpose, we collect here some estimates on v in terms of w when v is obtained from w by the Biot-Savart law. Recall that, in this case, for almost every

ξ ∈ R 2 , v(ξ) = 1 2π R 2 (ξ -η) ⊥ |ξ -η| 2 w(η) dη (15) 
where (

x 1 , x 2 ) ⊥ = (-x 2 , x 1 ), that is v = K BS ⋆ w, where K BS is the Biot- Savart kernel K BS (x) = 1 2π x ⊥ |x| 2 . Also note that in terms of Fourier transform, (15) becomes v(η) = i η ⊥ |η| 2 ŵ(η) . (16) 
Most of these estimates are already known, but for the sake of completeness we try to give proofs rather than references whenever this is not too long.

The following proposition gathers estimates in L p -spaces.

Proposition 1

1. Let 1 < p < 2 < q < +∞ be such that 1 + 1 q = 1 2 + 1 p . There exists C > 0 such that, if w belongs to L p (R 2 ), then (15) defines a v in L q (R 2 ) and | v | q ≤ C | w | p . ( 17 
) 2. Let 1 ≤ p < 2 < q ≤ +∞ and 0 < θ < 1 be such that θ p + 1-θ q = 1 2 . There exists C > 0 such that, if w belongs to L p (R 2 ) ∩ L q (R 2 ), then (15) defines a v in L ∞ (R 2 ) and | v | ∞ ≤ C | w | θ p | w | 1-θ q . ( 18 
)
3. Let 1 < p < +∞. There exists C > 0 such that, if w belongs to L p (R 2 ) and v is defined from w by (15), then ∇v belongs to L p (R 2 ) and

| ∇v | p ≤ C | w | p . (19) 
In addition, in all cases, we have div v = 0 and curl v = w.

Let us emphasize that we do not estimate v in L 2 (R 2 ). Indeed, one can easily derive from (16) that to make v square integrable one must assume that w has zero circulation, that is R 2 w = 0. This would exclude Oseen vortices.

Proof. Part 1 follows from a Young-like inequality called Hardy-Littlewood-Sobolev inequality (see for instance Theorem V.1 in [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]). Indeed, K BS is weakly L 2 but not square integrable.

Part 2 is trivial when w ≡ 0. If not, we remark that from Hölder's inequalities, we obtain

|v(ξ)| ≤ 1 2π {|η|≤R} |w(ξ -η)| 1 |η| dη + 1 2π {|η|≥R} |w(ξ -η)| 1 |η| dη ≤ C | w | q R 1-2 q + C | w | p 1 R 2 p -1
, for almost every ξ ∈ R 2 and any R > 0. Aiming to optimize this inequality, we choose R = (

| w |p | w |q ) β with β = 1-θ 2 p -1 = θ 1-2 q
and derive (18). Part 3 holds since differentiating (15) yields that ∇v is obtained from w by a singular integral kernel of Calderón-Zygmund type (see Theorem II.3 in [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]).

The following proposition gathers estimates in Sobolev spaces.

Proposition 2 1. Let s ∈ R. There exists C > 0 such that, if w belongs to Ḣs-1 (R 2 ), then, if v is defined by (15), v belongs to Ḣs (R 2 ) and | v | Ḣs ≤ C | w | Ḣs-1 . (20) 2. Let 0 < s < 1. There exists C > 0 such that, if (1 + |ξ|) w belongs to L 2 (R 2 ), then, if v is defined by (15), v belongs to Ḣs (R 2 ) and | v | Ḣs ≤ C | (1 + |ξ|) w | 2 . ( 21 
)
Proof. Part 1 is a direct consequence of the Fourier formulation (16). Part 2 is thus reduced to estimate | w | Ḣs-1 . If 0 < s < 1, we note that

| w | 2 Ḣs-1 = C R 2 | ŵ(ξ)| 2 |ξ| 2(1-s) dξ ≤ C | ξ |≤1 | ŵ(ξ)| 2 |ξ| 2(1-s) dξ + C | ξ |≥1 | ŵ(ξ)| 2 dξ .
The second term of the right member is dominated by | w | 2 2 . Choosing p such that p > 2 s and applying first Hölder's inequalities then Sobolev's embeddings, we obtain for the first term

| ξ |≤1 | ŵ(ξ)| 2 |ξ| 2(1-s) dξ ≤ C | ŵ | 2 p ≤ C | ŵ | 2 H 1 .
Finally, gathering every piece yields

| w | 2 Ḣs-1 ≤ C | ŵ | 2 H 1 + C | w | 2 2 ≤ C | (1 + |ξ|) w | 2 2 .
This concludes the proof.

Pressure estimates

Keeping in mind equation ( 13), we gather some estimates for a solution Π of the following equation:

div (1 + b)∇Π = div F . (22) 
We begin with estimates in L p -spaces.

Proposition 3

Let 1 < p < +∞.

There exist C > 0 and κ > 0 such that if

F belongs to L p (R 2 ) and b to L ∞ (R 2 ) with κ | b | ∞ < 1, then (22) 
has a unique solution Π (up to a constant) such that ∇Π belongs to L p (R 2 ), and

| ∇Π | p ≤ C 1 -κ | b | ∞ | F | p . (23) 
2. Let 1 < p ≤ +∞ and 1 < q, r < +∞ be such that 1 r = 1 p + 1 q . There exist C > 0 and κ > 0 such that if F belongs to L q (R 2 ) and, for

i = 1, 2, b i belongs to L ∞ (R 2 ) ∩ L p (R 2 ) with κ | b i | ∞ < 1 and Π i solves div (1 + b i )∇Π i = div F , then ∇ (Π 2 -Π 1 ) belongs to L r (R 2 ) and | ∇ (Π 2 -Π 1 ) | r ≤ C (1 -κ | b | ∞ ) 2 | b 2 -b 1 | p | F | q . ( 24 
)
Proof. To prove part 1 we want to obtain ∇Π, the solution of ( 22), in terms of F as a perturbation of Leray projectors. Let P be the Leray projector, that is the projector on divergence-free vector fields along gradients, and let Q = I-P.

Remark that Q F gives the solution ∇Π of (22) when b ≡ 0. Now we can rewrite (22

) as div ∇Π = div ( F -b ∇Π ) then ∇Π = Q (F -b ∇Π) thus (I + Q b) ∇Π = Q F . Since Q is continuous on L p , there exists κ > 0 such that | Q b f | p ≤ κ | b | ∞ | f | p for f ∈ L p (R 2 ). Thus, if κ | b | ∞ < 1, I + Q b is invertible on L p , and 
∇Π = (I + Q b) -1 Q F (25)
gives the unique solution, with the expected bound.

To prove part 2 reminding (25) we write

∇Π 1 = (I + Q b 2 ) -1 (I + Q b 2 ) (I + Q b 1 ) -1 Q F ∇Π 2 = (I + Q b 2 ) -1 (I + Q b 1 ) (I + Q b 1 ) -1 Q F
then subtracting and factorizing yields

∇(Π 2 -Π 1 ) = (I + Q b 2 ) -1 Q (b 1 -b 2 ) (I + Q b 1 ) -1 Q F .
Now the continuity of the operator Q on L r reduces (24) to an estimate on

| (b 1 -b 2 ) (I + Q b 1 ) -1 Q F | r .
At last applying first Hölder's inequalities then the continuity on L q concludes the proof.

In order to estimate solutions of (22) in Sobolev spaces, we first state some useful commutator estimates of Kato-Ponce type (see [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF]). Let us recall that I = (-△)

1 2 .
Lemma 1 Let 0 < s ≤ 1 and σ > 1.

1. There exists C > 0 such that if

I s f belongs to L 2 (R 2 ) and g to H σ (R 2 ), then I s (f g) -f I s g belongs to L 2 (R 2 ) and | I s (f g) -f I s g | 2 ≤ C | I s f | 2 | g | H σ . ( 26 
)
2. There exists C > 0 such that if

I s f belongs to H σ (R 2 ) and g to L 2 (R 2 ), then I s (f g) -f I s g belongs to L 2 (R 2 ) and | I s (f g) -f I s g | 2 ≤ C | I s f | H σ | g | 2 . ( 27 
)
Proof. Let us first note that there exists C > 0 such that

| ĥ | 1 ≤ C | h | H σ ,
for any h in H σ (R 2 ). This comes applying Hölder's inequalities to

R 2 | ĥ(η)| dη = R 2 1 (1 + |η| 2 ) σ 2 (1 + |η| 2 ) σ 2 | ĥ(η)| dη .
Therefore in order to prove the lemma it is sufficient to establish

| I s (f g) -f I s g | 2 ≤ C | I s f | 2 | ĝ | 1 , (28) 
| I s (f g) -f I s g | 2 ≤ C | I s f | 1 | g | 2 . ( 29 
)
Now set h = I s (f g)f I s g. We have ĥ

(η) = 1 (2π) 2 R 2 (|η| s -|η -ζ| s ) f (ζ) ĝ(η -ζ) dζ
for almost every η ∈ R 2 . Thanks to the following basic fact:

||η| s -|η ′ | s | ≤ |η -η ′ | s , 0 < s ≤ 1 (30) for η, η ′ ∈ R 2 , we obtain | ĥ(η)| ≤ 1 (2π) 2 R 2 |ζ| s | f (ζ)| |ĝ(η -ζ)| dζ .
At last depending on how we apply Young's inequalities we obtain either (28) or (29).

We now state the announced estimates in Sobolev norms.

Proposition 4 Let 0 < s < 1 and σ > 1.

There exists C > 0 and κ > 0 such that if

F belongs to H s (R 2 ), b to L ∞ (R 2 ) with κ | b | ∞ < 1 and I s b belongs to H σ (R 2 ), then, if Π solves (22), I s ∇Π belongs to L 2 (R 2 ) and | I s ∇Π | 2 ≤ C 1 -κ | b | ∞ (| I s F | 2 + 1 1 -κ | b | ∞ | I s b | H σ | F | 2 ) . (31) 
Proof. Applying I s to (22) and commuting b and

I s yields div (1 + b)∇I s Π = div [b, I s ]∇Π + div I s F .
Applying then (23) to this equation we obtain

| I s ∇Π | 2 ≤ C 1 -κ | b | ∞ (| I s F | 2 + | [b, I s ]∇Π | 2 ) .
Now using first (27) then applying (23) once again yields

| [b, I s ]∇Π | 2 ≤ C | I s b | H σ | ∇Π | 2 ≤ C 1 -κ | b | ∞ | I s b | H σ | F | 2 .
Gathering everything leads to (31).

Density equation

In this section, we gather information on the following linearization of the density equation:

∂ t b + (ν - 1 2 ξ) • ∇ b = 0 ( 32 
)
where ν is a divergence-free vector-field, α ∈ R and ν = α v G + ν. By linearization, we mean that we do not assume that ν is obtained from a solution w of the vorticity equation in [START_REF] Gilles | Recent developments in the Navier-Stokes problem[END_REF], which involves b.

Actually in the cases we will consider ν -1 2 ξ generates a flow since ∇ ν belongs to

L 2 loc (R + ; L ∞ (R 2 )) (and ν belongs to L ∞ loc (R + ; L ∞ (R 2 
)). Thus our point is not to prove the existence of a solution to (32) but to establish bounds for such a solution.

We begin with estimates in L p -spaces, weighted or not. We recall that L p w (R 2 ) for 1 ≤ p ≤ ∞ is the weighted space defined in (14). The next proposition is the density part of the announced first step of the proof.

Proposition 5 Let T > 0. Assume that ν is a divergence-free vector field belonging to L 2 (0, T ; L ∞ (R 2 )). Then b, the solution of (32) with initial data b 0 , satisfies

1. for any 1 ≤ p ≤ +∞, provided b 0 ∈ L p (R 2 ), | b(t) | p ≤ | b 0 | p e -t p , for 0 < t < T ; (33) 2. for any 1 ≤ p ≤ +∞, provided G -1 2 b 0 ∈ L p (R 2 ), | b(t) | w,p ≤ | b 0 | w,p e -t p e 1 8 t 0 | ν(s) | 2 ∞ ds , for 0 < t < T. (34) 
Proof. In order to prove part 1 for 1 ≤ p < +∞, multiply (32) by sgn(b) |b| p-1 , where sgn is the usual sign function, and integrate by parts to obtain

d dt | b | p p = - R 2 (ν - 1 2 ξ) • ∇ |b| p = -| b | p p
since div ν = 0 and div ξ = 2. Integrating gives (33) in this case. The case p = +∞ follows letting p go to infinity.

To prove the weighted part of the proposition for 1 ≤ p < +∞, start as in the former and obtain

d dt | b | p w,p = - R 2 G -p 2 (ν - 1 2 ξ) • ∇ |b| p = R 2 G -p 2 p 4 ξ • (ν - 1 2 ξ) -1 |b| p since ∇G -p 2 = G -p 2 p 4 ξ. Now, since ξ ⊥ v G (ξ), we have ξ • (ν(ξ) - 1 2 ξ) = ξ • ν(ξ) - 1 2 |ξ| 2 ≤ 1 2 | ν(ξ)| 2 hence d dt | b | p w,p ≤ (-1 + p 8 | ν | 2 ∞ ) | b | p w,p .
Again integrating achieves the proof for finite p and the case p = +∞ follows letting p go to infinity.

The next proposition corresponds to the density part of the announced second step: local-in-time estimates in Sobolev norms. In order to prove some part of it we will need the following commutator lemma.

Lemma 2 Let s ≥ 1 and σ > 1.

There exists C > 0 such that if

I s f belongs to L 2 (R 2 ) and g to H σ (R 2 ), then I s (f g) -f I s g belongs to L 2 (R 2 ) and | I s (f g) -f I s g | 2 ≤ C | I s f | 2 | g | H σ + C | ∇f | H σ | I s-1 g | 2 .
(35)

Proof. The proof is essentially the same as Lemma 1's except that here (30) is replaced by

||ζ| s -|ζ ′ | s | ≤ C |ζ -ζ ′ | (|ζ -ζ ′ | s-1 + |ζ ′ | s-1 ), for ζ, ζ ′ ∈ R 2 . ( 36 
)
Note that we could have obtained, as in Lemma 1, various estimates depending on the way we apply Young's inequalities.

Proposition 6 Let T > 0.

1. Let 0 < s ≤ 2 and 0 < ε < s. Assume ν is a divergence-free vector field with ∇ ν ∈ L 1 (0, T ; H 1 (R 2 )).

Then there exists C T > 0 independent of ν such that, for any initial data

b 0 ∈ H s (R 2 ), any solution b ∈ L ∞ (0, T ; H s-ǫ (R 2 )) of (32) satisfies | b(t) | H s-ε ≤ C T | b 0 | H s exp (C T t 0 | ∇ν(τ ) | H 1 dτ ) 2 , for 0 ≤ t ≤ T. (37) 2. Let s > 2.
Assume ν is a divergence-free vector field with ∇ ν ∈ L 1 (0, T ; H s-1 (R 2 )). Then (32) has a unique solution b ∈ L ∞ (0, T ; H s (R 2 )), for any initial data b 0 ∈ H s (R 2 ). Moreover there exists C > 0 independent of b 0 and ν such that b satisfies

| b(t) | H s ≤ C | b 0 | H s e s-1 2 t exp C t 0 | ∇ν(τ ) | H s-1 dτ , for 0 ≤ t ≤ T. (38) 
Proof. We refer to Theorem 0.1 in [START_REF] Danchin | Estimates in Besov spaces for transport and transportdiffusion equations with almost Lipschitz coefficients[END_REF] for the first part of the proposition.

Let us only add that here we apply the former theorem with σ = s, ǫ = ε and p = r = p 2 = r 2 = 2.

To prove the second part, we start computing [I s , ξ 2 ] • f = -s 2 I s-2 div f , for any vector field f . Thus applying I s to equation (32) and commuting yield

∂ t I s b + (ν - 1 2 ξ) • ∇ I s b = s 2 I s b -[I s , ν] • ∇b .
Then multiplying by I s b and integrating lead to

1 2 d dt | I s b | 2 2 - s -1 2 | I s b | 2 2 = - R 2 I s b [I s , ν] • ∇b
since div ν = 0. Now use Cauchy-Schwarz' inequality and apply Lemma 2 (with σ = s -1) to get 1 2

d dt | I s b | 2 2 - s -1 2 | I s b | 2 2 ≤ C | ∇ν | H s-1 | b | 2 H s .
At last combine the former with

1 2 d dt | b | 2 2 + 1 2 | b | 2 2 ≤ 0 to obtain 1 2 d dt | b | 2 H s - s -1 2 | b | 2 H s ≤ C | ∇ν | H s-1 | b | 2 H s
which yields (38) by a mere integration.

The last estimate we state for the linearized transport equation ( 32) is intended to be used for the proofs of the convergence of our iterative scheme and of the uniqueness of our solutions. Indeed we estimate the difference of two solutions of equations of type (32).

Proposition 7 Let T > 0. Assume that, for i = 1, 2, ν i is a divergence-free vector field belonging to

L 2 (0, T ; W 1,∞ (R 2 )). If, for i = 1, 2, b i is a solution of ∂ t b i + (ν i - 1 2 ξ) • ∇ b i = 0 ,
where ν i = α v G + ν i , with initial data b 0 , then b 1 and b 2 satisfy 1. provided that G -1 2 ∇b 0 belongs to L p (R 2 ), for some 1 ≤ p ≤ +∞,

| ∇b i (t) | w,p ≤ | ∇b 0 | w,p e -t( 1 p - 1 
2 ) e

1 8 t 0 | νi(s) | 2 ∞ ds e t 0 | ∇νi (s) |∞ ds (39) 
for i = 1, 2 and 0 ≤ t ≤ T ;

2. provided that G -1 2 b 0 belongs to L p (R 2 ) and G -1 2 ∇b 0 belongs to L q (R 2 ), for some 1 ≤ p < q ≤ +∞,

| (b 2 -b 1 )(t) | w,p ≤ e 1 8 t 0 | ν2(s) | 2 ∞ ds sup 0≤s≤t | ∇b 1 (s) | w,q t 0 | ( ν 2 -ν 1 )(s) | r ds (40) for 0 ≤ t ≤ T , where r is such that 1 p = 1 q + 1 r .
Proof. In order to prove the first part of the proposition, we start differentiating the equation for b 1 to get for j = 1, 2,

∂ t ∂ j b 1 + (ν 1 - 1 2 ξ) • ∇ ∂ j b 1 = -∂ j ν 1 • ∇b 1 + 1 2 ∂ j b 1 .
From this, following the proof of (34), we obtain for j = 1, 2,

d dt | ∂ j b 1 | p w,p ≤ (-1 + p 2 + p 8 | ν 1 | 2 ∞ ) | ∂ j b 1 | p w,p + p | ∇ν 1 | ∞ | ∇b 1 | p w,p .
Now combining the inequalities for j = 1, 2 and integrating lead to (39). Then to prove part 2 observe that b 2b 1 satisfies

∂ t (b 2 -b 1 ) + (ν 2 - 1 2 ξ) • ∇ (b 2 -b 1 ) = -( ν 2 -ν 1 ) • ∇b 1 .
Now following again the proof of (34) yields

d dt | δ b | p w,p ≤ (-1 + p 8 | ν 2 | 2 ∞ ) | δ b | p w,p + p | δ b | p-1 w,p | ∇b 1 | w,q | ν 2 -ν 1 | r where δ b = b 2 -b 1 .
It is now straightforward to derive (40).

Vorticity equation

As announced, we now study a linearization of the vorticity equation:

∂ t w -(L -α Λ) w + ν • ∇ w = div b (∇w + ∇ ⊥ Π) ( 41 
)
where L and Λ are as in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], b is a real function, ν is a divergence-free vector field,

α ∈ R, v = K BS ⋆ w , v = α v G + v , w = α G + w , ν = α v G + ν ,
and ∇Π is obtained by solving

div (1 + b) ∇Π = div (1 + b) △v -(ν • ∇) v . ( 42 
)
Remind that we always assume R 2 w 0 = 0.

Weighted estimate

In this subsection we establish a global-in-time estimate in weighted L 2 -spaces.

Proposition 8 Let α ∈ R, K 0 > 0.
There exist ε 0 > 0 and C > 0 such that if b is a real function and ν a divergence-free vector field such that 1. for 0 < t < T , for any

1 ≤ p ≤ +∞, 2 ≤ q ≤ +∞, | b(t) | p ≤ | b 0 | p e -t p , | b(t) | w,q ≤ | b 0 | w,q e -t q e K0 2. for 0 < t < T , | ν(t) | 8 ≤ K 0 , t 0 | ν | 2 ∞ ≤ 1 24 3. and | b 0 | w,4 ≤ ε 0 , | b 0 | w,∞ ≤ ε 0 then any solution w ∈ L ∞ (0, T ; L 2 w (R 2 )) of (41), with initial data w 0 ∈ L 2 w (R 2 ), satisfies, for any 0 < t < T , | w(t) | 2 w,2 + C t 0 | w | 2 w,2 + | ∇ w | 2 w,2 + | |ξ| w | 2 w,2 ≤ 2 | w 0 | 2 w,2 + C |α| | b 0 | w,4 . (43) 
Note that the assumptions on b corresponds to the first proposition of the previous section. Note also that once α and K 0 are fixed, since L 2 w is embedded in any L p , 1 ≤ p ≤ 2, and H 1 is embedded in any L q , 2 ≤ q < ∞, inequalities (18) and (43) enable us to make

t 0 | v | 2
∞ as small as we want provided we take w 0 and b 0 small enough. At last note that the proposition enables us to bound

t 0 | ∇ v | 2
H 1 , which can be used in (37).

Proof. Our strategy is to multiply (41) by G -1 w and integrate to bound

d dt | w | 2 w,2 .
In what follows, we examine each term arising once multiplied by G -1 w and integrated on R 2 .

• Let us emphasize first that (41) preserves R 2 w. Hence R 2 w = 0.

Let L := G -1 2 (-L) G 1 2 . A direct calculation shows that L = -△ + |ξ| 2 16 -1 2
is a harmonic oscillator with spectrum {0, 1 2 , 1, 3 2 , . . .}. Moreover 0 is a simple eigenvalue with eigenvector G

1 2 . In particular, if f belongs to the domain of L with R 2 G 1 2 f = 0, then R 2 f Lf ≥ 1 2 | f | 2 2 .
Coming back to L, we obtain: if G -1 2 w belongs to the domain of L with R 2 w = 0, then, for any 0

< γ < 1 2 , R 2 G -1 w L w ≤ - 1 2 (1 -γ) | w | 2 w,2 + γ R 2
G -1 w L w thus integrating by part from the formula for L

R 2 G -1 w L w ≤ - 1 2 (1 -2γ) | w | 2 w,2 -γ | ∇(G -1 2 w) | 2 2 + | |ξ| 4 w | 2 w,2
and expanding

R 2 G -1 w L w ≤ - 1 2 (1 -2γ) | w | 2 w,2 -γ | ∇ w | 2 w,2 + 2 | |ξ| 4 w | 2 w,2 + 2 R 2 G -1 ∇ w • ξ 4 w hence R 2 G -1 w L w ≤ - 1 2 (1 -2γ) | w | 2 w,2 -γ 1 3 | ∇ w | 2 w,2 + 1 2 | |ξ| 4 w | 2 w,2 . (44) • Recalling that Λ w = v G • ∇ w + v • ∇G, we obtain R 2 G -1 w Λ w = 0 . (45) Indeed , from v G (ξ) ⊥ ξ and ∇G -1 = -ξ 2 G -1 , we derive R 2 G -1 w v G • ∇ w = - 1 2 R 2 G -1 ξ 2 • v G w 2 = 0 .
And, on the other hand, using the identity η ⊥ • ξ = -ξ ⊥ • η and the explicit formula (15) for the Biot-Savart law, we derive

R 2 G -1 w v • ∇G = - R 2 w(ξ) v(ξ) • ξ 2 dξ = - 1 4π R 2 ×R 2 w(ξ) (ξ -η) ⊥ • ξ |ξ -η| 2 w(η) dη dξ = 1 4π R 2 ×R 2 w(ξ) η ⊥ • ξ |ξ -η| 2 w(η) dη dξ = - 1 4π R 2 ×R 2 w(ξ) ξ ⊥ • η |ξ -η| 2 w(η) dη dξ = - R 2 G -1 w v • ∇G . Thus R 2 G -1 w v • ∇G = 0.
• Using Hölder's inequalities, we also obtain

| R 2 G -1 w ν • ∇ w| ≤ 6 | ν | 2 ∞ | w | 2 w,2 + 1 24 | ∇ w | 2 w,2 . (46) 
• Integrating by part, we obtain

R 2 G -1 w div (b ∇ w) = - R 2 G -1 b |∇ w| 2 - 1 2 R 2 G -1 b w ξ • ∇ w
then, using Hölder's inequalities and the fact that

| b(t) | ∞ ≤ | b 0 | ∞ , | R 2 G -1 w div (b ∇ w)| ≤ 5 4 | b 0 | ∞ | ∇ w | 2 w,2 + 1 4 | b 0 | ∞ | |ξ| w | 2 w,2 . (47) 
• In the same way, since

| b(t) | 2 ≤ | b 0 | 2 e -t 2 , we have | R 2 G -1 w div (b ∇G)| = | 1 2 R 2 b ξ • ∇ w + 1 4 R 2 b w |ξ| 2 | ≤ C | b 0 | 2 e -t 2 (| ∇ w | w,2 + | w | w,2 ) thus | R 2 G -1 w div (b ∇G)| ≤ C | b 0 | 2 ( e -t + | ∇ w | 2 w,2 + | w | 2 w,2 ) . (48) 
• Finally, integrating by part, using Hölder's inequalities and applying inequality (23), we obtain, for b 0 small enough in

L ∞ , | R 2 G -1 w div (b ∇ ⊥ Π) | = | 1 2 R 2 G -1 b w ξ • ∇ ⊥ Π + R 2 G -1 b ∇ w • ∇ ⊥ Π | ≤ C 1 -κ | b 0 | ∞ (| |ξ| w | w,2 + | ∇ w | w,2 ) × ( | b 0 | w,∞ e K0 | (1 + b) △ v | 2 + | b 0 | w,4 e K0 e -t 4 | α (1 + b) △v G -(ν • ∇) v | 4 ). Now, on one hand, since | b(t) | ∞ ≤ | b 0 | ∞ , estimate (20) yields 
| (1 + b) △ v | 2 ≤ C (1 + | b 0 | ∞ ) | ∇ w | 2 .
On the other hand, similarly, we have

| (1 + b) △v G | 4 ≤ C (1 + | b 0 | ∞ ) .
At last, Hölder's inequalities, estimate (19) and Sobolev's embeddings yields

| (ν • ∇) v | 4 ≤ C (|α| + | ν | 8 ) (|α| + | w | 8 ) ≤ C (|α| + | ν | 8 ) (|α| + | w | H 1 )
.

Taking this into account yields when

κ | b 0 | ∞ ≤ 1 2 | R 2 G -1 w × div (b ∇ ⊥ Π)| ≤ e -t 2 C |α| e K0 | b 0 | w,4 (1 + |α| + | ν | 8 ) 2 + | w | 2 w,2 C e K0 | b 0 | w,4 (1 + |α| + | ν | 8 ) 2 + | ∇ w | 2 w,2 C e K0 (| b 0 | w,∞ + | b 0 | w,4 (1 + |α| + | ν | 8 )) + | |ξ| w | 2 w,2 C e K0 (| b 0 | w,∞ + | b 0 | w,4 (1 + |α|)) . (49) 
It only remains to us to gather everything after setting γ = 1 4 in (44) and integrate in time in order to obtain, when

κ | b 0 | ∞ ≤ 1 2 , | w(t) | 2 w,2 × (1 -12 t 0 | ν | 2 ∞ ) + C t 0 | w | 2 w,2 × (1 -e K0 | b 0 | w,4 (1 + |α| + | ν | 8 ) 2 ) + C t 0 | ∇ w | 2 w,2 × (1 -e K0 ( | b 0 | w,∞ +| b 0 | w,4 (1 + |α| + | ν | 8 )) + C t 0 | |ξ| w | 2 w,2 × (1 -e K0 (| b 0 | w,∞ + | b 0 | w,4 (1 + |α|))) ≤ | w 0 | 2 w,2 + C |α| × | b 0 | w,4 e K0 (1 + |α| + | ν | 8 ) 2
which yields the proposition since

t 0 | ν | 2 ∞ ≤ 1 24 .

Sobolev estimate

In this subsection we prove a local-in-time estimate in Sobolev norms for solutions of equation ( 41). Remind that I = (-△)

1 2 . Proposition 9 Let 0 < s < 1, 1 + s < s ′ < 2, 1 < s ′′ < 2 -s and α ∈ R.
There exists ε 0 > 0 and, for K > 0, there exists C > 0 such that if b is a real function and ν a divergence-free vector field such that

sup [0,T ] | b | ∞ ≤ | b 0 | ∞ ≤ ε 0 , sup [0,T ] | b | H s ′ ≤ K , sup [0,T ] | w | 2 ≤ K , T 0 | w | 2 w,2 ≤ K , T 0 | ∇ w | 2 2 ≤ K , T 0 | ν | 2 ∞ ≤ K , sup [0,T ] | I s ν | 2 ≤ ε 0 , T 0 | I s ν | 2 H s ′′ ≤ K , then any solution w ∈ L ∞ (0, T ; Ḣs (R 2 
)) of ( 41), with initial data w 0 ∈ Ḣs (R 2 ), satisfies for any 0 < t < T ,

| I s w (t) | 2 2 + C t 0 | I s ∇ w | 2 2 ≤ C e Ct ( | I s w 0 | 2 2 + K ) . (50) 
Note that (33) and (37) can provide us the validity of the assumptions on b, and (43) both the validity of the assumptions on w and, thanks to estimates (18), ( 20) and ( 21), the validity of estimates on ν when ν = v. Conversely (50) can be used in (38), again when ν = v.

Proof. We choose σ such that 1 < σ < 1 + s, s + σ < s ′ and σ < s ′′ . The only role of σ is to make clearer our use of commutator estimates (26) and (27).

Our strategy is to apply I s to (41), then multiply by I s w and estimate each term arising, in order to bound

d dt | I s w | 2 2 . • First we compute the commutator [I s , L] = s 2 I s and obtain R 2 I s w I s L w = - R 2 |∇I s w| 2 + 1 + s 2 R 2 |I s w| 2 (51) 
since integrating by parts yields

R 2 f Lf = -R 2 |∇f | 2 + 1 2 R 2 |f | 2 . • On one hand, we have R 2 I s w I s ((v G • ∇) w) = R 2 I s w (v G • ∇) I s w + R 2 I s w ([I s , v G ] • ∇) w with, integrating by parts, R 2 I s w (v G • ∇) I s w = 1 2 R 2 (v G • ∇) |I s w| 2 = 0
and, using Hölder's inequalities and inequality (27),

| R 2 I s w ([I s , v G ] • ∇) w| ≤ C | I s w | 2 | I s v G | H σ | ∇ w | 2 .
On the other hand, we have

R 2 I s w I s (( v • ∇) G) = R 2 I s w ( v • ∇) I s G + R 2 I s w ([I s , v] • ∇) G
with, using Hölder's inequalities,

| R 2 I s w ( v • ∇) I s G| ≤ C | I s w | 2 | v | ∞ | ∇I s G | 2
and, using both Hölder's inequalities and inequality (26),

| R 2 I s w ([I s , v] • ∇) G| ≤ C | I s w | 2 | I s v | 2 | ∇G | H σ .
Using estimate (21) and estimate (18) combined with Sobolev's embeddings, we derive |

R 2 I s w I s Λ w| ≤ C (| w | 2 w,2 + | ∇ w | 2 2 ) . (52) 
• In the same way, we have

R 2 I s w ( ν • ∇) I s w = 0
and, applying Hölder's inequalities and inequality (26),

| R 2 I s ∇ w • ([I s , ν] w)| ≤ C | I s ∇ w | 2 | I s ν | 2 | w | H σ thus, since 0 ≤ σ ≤ 1 + s, | R 2 I s w I s (( ν • ∇) w)| ≤ C | I s ν | 2 | I s ∇ w | 2 2 + C | I s ν | 2 | w | 2 2 . (53) 
• Integrating by parts yields

R 2 I s w I s div( b∇ w) = - R 2 b |I s ∇ w| 2 - R 2 I s ∇ w [I s , b] ∇ w .
Applying (27), we derive

| R 2 I s w I s div( b∇ w)| ≤ (| b 0 | ∞ + ε) | I s ∇ w | 2 2 + C ε | b | 2 H s+σ | ∇ w | 2 2 (54)
where ε > 0 is intended to be chosen small enough.

• Similarly,

| R 2 I s w I s div( b∇G)| ≤ (| b 0 | ∞ +ε) | I s ∇ w | 2 2 + C (| b 0 | ∞ + 1 ε | b | 2 H s+σ ) . ( 55 
)
• First, integrating by parts yields

R 2 I s w I s div(b∇ ⊥ Π) = - R 2 I s ∇ w • b I s ∇ ⊥ Π - R 2 I s ∇ w • ([I s , b]∇ ⊥ Π)
with, using Hölder's inequalities,

| R 2 I s ∇ w • b I s ∇ ⊥ Π| ≤ | I s ∇ w | 2 | b 0 | ∞ | I s ∇Π | 2
and, using Hölder's inequalities and inequality (27),

| R 2 I s ∇ w • ([I s , b]∇ ⊥ Π)| ≤ C | I s ∇ w | 2 | b | H s+σ | ∇Π | 2 .
Besides, on one hand, estimate (23) applied to equation (42) and Hölder's inequalities imply

| ∇Π | 2 ≤ C (|α| + |α| 2 + | △ v | 2 + |α|| ∇ v | 2 + | ν | ∞ | ∇ v | 2 + |α|| ν | ∞ )
thus with estimates on Biot-Savart kernel

| ∇Π | 2 ≤ C (|α| + |α|| ν | ∞ + |α| 2 + (|α| + | ν | ∞ ) | w | 2 + | ∇ w | 2 ) .
On the other hand, estimate (31) applied to (42) and Hölder's inequalities imply

| I s ∇Π | 2 ≤ C (| b | H s+σ | ∇Π | 2 + | I s ((1 + b) △v) | 2 + | I s (ν • ∇) v | 2 )
with, commuting I s and b thanks to (27), after some calculation,

| I s ((1 + b) △v) | 2 ≤ C | b | H s+σ (|α| + | ∇ w | 2 ) + C (1 + | b 0 | ∞ ) (|α| + | I s ∇ w | 2 )
and, in the same way, commuting I s and ν,

| I s ((ν •∇) v) | 2 ≤ C (|α|+| I s ν | H σ ) (|α|+| w | 2 )+C (|α|+| ν | ∞ ) (|α|+| I s w | 2 ) .
Therefore, gathering these inequalities,

| R 2 I s w × I s div( b ∇ ⊥ Π) | ≤ C | I s w | 2 2 | b 0 | ∞ (|α| 2 + | ν | 2 ∞ ) + C | I s ∇ w | 2 2 (| b 0 | ∞ + ε) + C | b | 2 H s+σ 1 ε + | b 0 | ∞ × |α| 2 + |α| 2 | ν | 2 ∞ + |α| 4 + (|α| 2 + | ν | 2 ∞ ) | w | 2 2 + | ∇ w | 2 2 + C | b 0 | ∞ |α| 2 (1 + | b 0 | 2 ∞ + |α| 2 + | ν | 2 ∞ ) +(|α| 2 + | I s ν | 2 H σ ) (|α| 2 + | w | 2 2 ) + | b | 2 H s+σ (|α| 2 + | ∇ w | 2 2 ) . (56) 
Putting all these points together and integrating yields

| I s w | 2 2 + C t 0 | I s ∇ w | 2 2 1 -| b 0 | ∞ (1 + |α|) -sup [0,t] | I s ν | 2 ≤ | I s w 0 | 2 2 + C t 0 | I s w | 2 2 1 + | b 0 | ∞ | ν | 2 ∞ + |α| (1 + | b 0 | ∞ t 0 | ν | 2 ∞ |α| | b 0 | ∞ ) + C t 0 | ν | 2 ∞ | b 0 | ∞ |α| 2 + (|α| 2 + sup [0,t] | w | 2 2 ) (1 + | b 0 | ∞ ) sup [0,t] | b | 2 H s+σ + C t 0 | ∇ w | 2 2 |α| + (1 + | b 0 | ∞ ) sup [0,t] | b | 2 H s+σ + C t 0 | w | 2 w,2 |α| + |α| 2 | b 0 | ∞ + sup [0,t] | I s ν | 2 + |α| 2 (1 + | b 0 | ∞ ) sup [0,t] | b | 2 H s+σ + C t 0 | I s ν | 2 H σ | b 0 | ∞ (|α| 2 + sup [0,t] | w | 2 2 ) + C t |α| (1 + |α| 3 ) (1 + | b 0 | ∞ ) (1 + sup [0,t] | b | 2 H s+σ ) .
A Gronwall-type argument achieves the proof.

Estimate for convergence

We now establish an estimate on the difference of two solutions of equations of type (41), intending to prove convergence of our iterative scheme and uniqueness of solutions of [START_REF] Gilles | Recent developments in the Navier-Stokes problem[END_REF]. For i = 1, 2, consider

∂ t w i -(L -α Λ) w i + ( ν i • ∇ ) w i = div b i (∇w i + ∇ ⊥ Π i ) (57) 
where L and Λ are as in ( 11), b i , Ω i are real functions, α ∈ R,

v i = K BS ⋆ w i , ν i = K BS ⋆ Ω i , v i = α v G + v i , ν i = α v G + ν i , w i = α G + w i , Ω i = α G + Ω i ,
and ∇Π i is obtained by solving

div (1 + b i ) ∇Π i = div (1 + b i ) △v i -(ν i • ∇) v i . (58) 
Note that we choose to write ν = K BS ⋆ Ω to stress the symmetry of the hypotheses on Ω and w.

In what follows for concision's sake we denote δf = f 2f 1 for any functions f 1 , f 2 .

Proposition 10

Let α ∈ R, K > 0, σ > 2, 0 < η < s < 1 and max( 2 η , 4) < p < +∞. There exists ε 0 > 0 and, for K ′ , T > 0, there exists C > 0 such that if w 1 , w 2 satisfy (57) with

1. | b 0 | w,4 ≤ ε 0 , | b 0 | w,∞ ≤ ε 0 2. for 0 < t < T , for i = 1, 2, for any 1 ≤ r ≤ +∞, | b i (t) | r ≤ | b 0 | r e -t r , | b i (t) | w,r ≤ K | b 0 | w,r e -t r 3. for 0 < t < T , for i = 1, 2, | b i (t) | H σ ≤ K ′ 4. for 0 < t < T , for i = 1, 2, | Ω i (t) | 2 w,2 + t 0 | ∇ Ω i | 2 w,2 ≤ ε 0 | Ω i (t) | H s + t 0 | ∇ Ω i | 2 H s ≤ K ′ 5. for 0 < t < T , for i = 1, 2, | w i (t) | 2 w,2 + t 0 | ∇ w i | 2 w,2 ≤ ε 0 | w i (t) | H s + t 0 | ∇ w i | 2 H s ≤ K ′ then for 0 < t < T , | δ w(t) | 2 w,2 + C t 0 | δ w | 2 w,2 + | ∇(δ w) | 2 w,2 + | |ξ| (δ w) | 2 w,2 ≤ C t 0 (1 + | w 1 | 2 w,p + | ∇ w 1 | 2 H η ) (| δb | 2 w,p + | δ Ω | 2 w,2 ) . ( 59 
)
Proof. Combining (60) for i = 1, 2, we derive

∂ t (δ w) -(L -α Λ) (δ w) + ν 2 • ∇ (δ w) -div b 2 (∇(δ w) + ∇ ⊥ Π) = -((δ ν) • ∇) w 1 + div (δb)∇w 1 + div (b 2 ∇ ⊥ R) + div (b 2 ∇ ⊥ (δS)) + div (δb)∇ ⊥ Π 1 (60) 
with Π, R, S 1 and S 2 obtained by solving

   div (1 + b 2 )∇Π = div (1 + b 2 )△(δ v) -( ν 2 • ∇) (δ ν) div (1 + b 2 )∇R = div -α(v G • ∇) (δ v) + (δb)△ v 1 -((δ ν) • ∇) v 1 div (1 + b i )∇S i = div (1 + b 1 )△v 1 -(ν 1 • ∇) v 1 , for i = 1, 2 . Note that Π 2 = Π + R + S 2 and Π 1 = S 1 .
Our strategy is again to multiply (60) by G -1 (δ w), integrate on R 2 and estimate each term arising to bound d dt | δ w | 2 w,2 . We deal with each term coming from the left member of equality (60) as we did in the linearized vorticity equation (41). Let us only show how to deal with the other terms.

First of all, let us emphasize that

| G r ∇(G r ′ f ) | 2 2 is controlled by | ∇f | 2 w,2 + | |ξ| f | 2 w,2 provided that r + r ′ = -1 2 .
• First integrating by parts and applying Hölder's inequalities, we obtain

| R 2 G -1 (δ w) div( w 1 (δ ν))| ≤ | G 1 2 ∇(G -1 (δ w)) | 2 | G -1 2 w 1 | p | δ ν | q
where 2 < q < +∞ is such that 1 p + 1 q = 1 2 . Then using (17)

R 2 G -1 (δ w) div( w 1 (δ ν))| ≤ ε | G 1 2 ∇(G -1 (δ w)) | 2 2 + C ε | w 1 | 2 w,p | δ Ω | 2 w,2 (61) 
where ε is intended to be chosen small enough.

• Similarly, with the same q, we also have

| R 2 G -1 (δ w) div((δb)∇w 1 )| ≤ | G 1 2 ∇(G -1 (δ w)) | 2 | G -1 2 (δb) | p | ∇w 1 | q thus using Sobolev's embeddings | R 2 G -1 (δ w) div((δb)∇w 1 )| ≤ ε | G 1 2 ∇(G -1 (δ w)) | 2 2 + C ε | ∇w 1 | 2 H η | δb | 2 w,p (62) 
where ε is again intended to be chosen small enough.

• In quite the same way, we obtain

| R 2 G -1 (δ w) div(b 2 ∇ ⊥ R)| ≤ C | G 1 2 ∇(G -1 (δ w)) | 2 | b 0 | w,∞ | ∇R | 2 .
With pressure estimate (23), estimate on Biot-Savart law (17), Hölder's inequalities and Sobolev's embeddings we can derive

| R 2 G -1 (δ w) div(b 2 ∇ ⊥ R)| ≤ ε | G 1 2 ∇(G -1 (δ w)) | 2 2 + C ε | b 0 | 2 w,∞ | ∇ w 1 | 2 H η | δb | 2 p + C ε |α|| b 0 | 2 w,∞ | δ w | 2 2 + C ε | b 0 | 2 w,∞ | w 1 | 2 w,2 | δ Ω | 2 w,2 (63) 
where ε is once again intended to be chosen small enough.

• Using estimate (24) instead of estimate (23) and inequalities ( 17) and ( 19), since

1 p < 1 2 -1 p , we can obtain | R 2 G -1 (δ w) div(b 2 ∇ ⊥ (δS))| ≤ ε | G 1 2 ∇(G -1 (δ w)) | 2 2 + C ε | b 0 | 2 w,∞ | δb | 2 p × | ∇w 1 | 2 H η + | Ω 1 | 2 w,2 | w 1 | 2 w,p (64) 
where ε is still intended to be chosen small enough.

• At last, integrating by parts and applying Hölder's inequalities, we have

| R 2 G -1 (δ w) div((δb)∇ ⊥ Π 1 | ≤ | G 1 2 ∇(G -1 (δ w)) | 2 | δb | w,p | ∇ ⊥ Π 1 | q .
where 2 < q < +∞ is again such that 1 p + 1 q = 1 2 . Again with pressure estimate (23), estimates on Biot-Savart law (17) and (19), Hölder's inequalities and Sobolev's embeddings we can derive

| R 2 G -1 (δ w) div((δb)∇ ⊥ Π 1 | ≤ ε | G 1 2 ∇(G -1 (δ w)) | 2 2 + C ε | δb | 2 w,p | ∇w 1 | 2 H η + | Ω | 2 w,2 | w 1 | 2 w,p (65) 
where ε is once again intended to be chosen small enough. Gathering everything and integrating yield (59).

Main results

We now use our various estimates to derive our main results.

Existence and uniqueness

Before proving a result of existence and uniqueness of solution of equations ( 10), we state a lemma that will make a link between norm estimates and convergence of the iterative scheme.

Lemma 3 Let T > 0 and 1 < p ≤ +∞. Let (f k ) be a sequence in L ∞ (0, T ; R + ), and (g k ) a bounded sequence in L p (0, T ; R + ) be such that for 0 < t < T and k ∈ N,

f k+1 (t) ≤ t 0 f k g k .
Then (f k ) is uniformly summable, namely, for 0 < t < T ,

k≥0 f k (t) ≤ C T .
Proof. Using Hölder inequalities and iterating yield f k (t) ≤ K C k ( t k k! ) 1-1 p , where C is a bound for (g k ) in L p (0, T ; R + ).

We can now prove the existence and uniqueness parts of Theorem 1.

Proof.

• Existence. We build a sequence ((b k , w k )) k∈N * such that, for any k ∈ N * ,

∂ t b k+1 + (v k -1 2 ξ) • ∇ b k+1 = 0 ∂ t w k+1 -(L -α Λ) w k+1 + v k • ∇ w k+1 = div b k (∇w k+1 + ∇ ⊥ Π k+1 )
where L and Λ are as in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] with initial data (b 0 , w 0 ). For k = 0, we solve the system with v k (t) ≡ 0 and b k (t) ≡ 0.

Let us show how we propagate bounds on (b k , w k ).

Step 1 Fix K 0 > 0 and choose ε 0 > 0 small enough. We can propagate which provides us, thanks to Proposition 1 and Sobolev's embeddings,

| v k | 8 ≤ C | w k | 8 5 ≤ C | w k | w,2 ≤ K 0 t 0 | v k | 2 ∞ ≤ C t 0 | w k | 2 w,2 + | ∇ w k | 2 2 ≤ min( 1 24 , K 0 ) .
Step 2 Again choosing ε 0 small enough independently of t and using Proposition 2 we can obtain, when 0 < s < 1 and 1 < s ′′ < 2s,

t 0 | ∇v k | H 1 ≤ C(t + t 1 2 ( t 0 | ∇ v k | 2 H 1 ) 1 
2 ) ≤ C(t 

+ t 0 | w k | 2 H 1 ) | I s v k (t) | 2 ≤ C | w k (t) | w,2 ≤ C K0 ε 0 t 0 | I s v k | 2
for some 0 < η < s such that 2 η < p < +∞. Now in order to apply Lemma 3 with

f k = | (δb) k | 2 w,p + | (δ w) k | 2 w,2 , remark that -since (G -1 2 w k ) is bounded in L ∞ (R + ; L 2 (R 2 
)) and (∇(G -1 2 w k )) in L 2 (R + ; L 2 (R 2 )), (G -1 2 w k ) is bounded in L r (R + ; L p (R 2 )), for some 2 < r < +∞, by interpolation and Sobolev embeddings

  , ξ) = e τ ω (e τ , e τ 2 ξ) , Π(τ, ξ) = e τ p (e τ , e τ 2 ξ) .

  , ( v k ) is obtained from ( w k ) by the Biot-Savart law, v k = α v G + v k , w k = α G + w k , for k ∈ N * ,and (∇Π k ) is obtained by solving, for anyk ∈ N * , div (1 + b k ) ∇Π k+1 = div (1 + b k ) △v k+1 -(v k • ∇) v k+1

1. for any 1 ≤ 0 | w k | 2 w, 2 + | ∇ w k | 2 w, 2 + | |ξ| w k | 2 w, 2 ≤

 10222222 p ≤ +∞, 2 ≤ q ≤ +∞, thanks to Proposition 5,| b k (t) | p ≤ | b 0 | p e -t p , | b k (t) | w,q ≤ | b 0 | w,q e -t q e K0and thanks to Proposition 8,| w k (t) | 2 w,2 + C K0 t C K0 (| w 0 | 2 w,2 + | b 0 | w,4 )

+ C t 0 | 0 | 0 (| w k | 2 2 +Step 3 2 w, 2 ≤ C T t 0 ( 1 +

 000232201 w k | 2 w,2 + | ∇ w k | 22 ) ≤ K 0 and propagate, for 0 < t < T , 1. when 1 + s < s ′ < 2, thanks to Proposition 6,| b k (t) | H s ′ ≤ C K0,T2. and thanks to Proposition 9,| I s w k (t) | 2 2 I s ∇ w k | 2 2 ≤ C K0,Twhich provides us, for 0 < t < T ,t ∇v k | H s+1 ≤ C (t + t | I s ∇ w k | 2 2 )) ≤ C K0,Tthus, thanks to Proposition 6, for 0 < t < T ,| b k (t) | H s+2 ≤ C K0,T .We now prove the convergence of the scheme. Set (δb) k = b k+1 -b k and (δ w) k = w k+1w k . Choose max(4, 2 s ) < p < q. Propositions 7 & 10 give us, for T > 0, for any 0 < t < T and any k ∈ N * ,| (δb) k+1 (t) | 2 w,p + | (δ w) k+1 (t) | | w k | 2 w,p + | ∇ w k | 2 H η ) (| (δb) k | 2 w,p + | (δ w) k | 2 w,2 )
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since ( w k ) is bounded in L ∞ (R + ; L 2 (R 2 )) ∩ L 2 (0, T ; H s+1 (R 2 )), (∇ w k ) is bounded in L r ′ (0, T ; H η (R 2 )) for some 2 < r ′ < +∞, by interpolation.

Thus (b k ) converges in L p w (R 2 ) and ( w k ) in L 2 w (R 2 ), locally uniformly in time. This implies at once that (b k ) and ( w k ) also converges in L 2 (R 2 ). Now by interpolation

, for any 0 < η ′′ < s.

These properties enable us to take the limit in the sequence of equations.

Note that we recover the regularity on the limit by a mere application of Fatou's lemma.

• Uniqueness. We obtain a bound similar to (66) for the difference of two solutions. Then Gronwall lemma gives the result.

Asymptotic behavior

We now state the asymptotic part of Theorem 1. Note that under the hypotheses of Theorem 1, the following assumptions are fulfilled.

Theorem 2 Let α ∈ R. For any 0 < γ < 1 2 , there exist ε 0 > 0 and K, K ′ > 0 such that if (b, w) is a solution of [START_REF] Gilles | Recent developments in the Navier-Stokes problem[END_REF] with initial data (b 0 , w 0 ), such that

Then we deal with the other terms of the vorticity equation as we did to obtain estimate (43), except for the pressure term and

obtained thanks to estimate (18) and Sobolev's embeddings. We treat the pressure term as follows:

This yields