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THE EXACT VALUE OF COLOURFUL SIMPLICIAL DEPTH

PAULINE SARRABEZOLLES

Abstract. Given d+1 sets of points, or colours, S1, . . . ,Sd+1 in R
d, a colourful simplex is

a set T ⊆
⋃

d+1

i=1
Si such that |T ∩ Si| ≤ 1, for i = 1, . . . , d+ 1. The colourful Carathéodory

theorem states that, if 0 is in the convex hull of each Si, then there exists a colourful simplex
T containing 0 in its convex hull. In 2006, Deza, Huang, Stephen, and Terlaky (Colourful
simplicial depth, Discrete Comput. Geom., 35, 597–604 (2006)) conjectured that, actually,
when |Si| = d+1 for all i = 1, . . . , d+1, there are always at least d2 +1 colourful simplices
containing 0 in their convex hulls. We prove this conjecture with the help of combinatorial
objects called octahedral systems.

1. Introduction

A colourful point configuration is a collection of d+ 1 sets of points S1, . . . ,Sd+1 in R
d. A

colourful simplex is a subset T of
⋃d+1

i=1 Si such that |T ∩Si| ≤ 1. The colourful Carathéodory
theorem, proved by Bárány in 1982 [1], states that, given a colourful point configuration

S1, . . . ,Sd+1 in R
d such that 0 ∈

⋂d+1
i=1 conv(Si), there exists a colourful simplex T containing

0 in its convex hull. In the same paper, Bárány uses this theorem combined with Tverberg’s
theorem to give a bound on simplicial depth. His argument motivated the following question:
how many colourful simplices, at least, contain 0 in their convex hulls?

Let µ(d) denote the minimal number of colourful simplices containing 0 in their convex
hulls over all colourful point configurations S1, . . . ,Sd+1 in R

d such that 0 ∈ conv(Si) and
|Si| = d + 1 for i = 1, . . . , d+ 1. The colourful Carathéodory theorem states that µ(d) ≥ 1.
The quantity µ(d) has been investigated by Deza, Huang, Stephen, and Terlaky [3]. They
proved that 2d ≤ µ(d) ≤ d2 + 1 and conjectured that µ(d) = d2 + 1. Later Bárány and

Matoušek [2] proved the bound µ(d) ≥ max
(

3d,
⌈

d(d+1)
5

⌉)

for d ≥ 3, Stephen and Thomas

[6] proved that µ(d) ≥
⌊

(d+2)2

4

⌋

, and Deza, Stephen, and Xie [4] showed that µ(d) ≥
⌈

(d+1)2

2

⌉

.

More recently Deza, Meunier, and Sarrabezolles [5] improved the bound to 1
2
d2 + 7

2
d− 8 for

d ≥ 4. This latter result was obtained with the help of a combinatorial generalization of the
colourful point configurations suggested by Bárány and known as octahedral systems, see [4].

We use this combinatorial approach to prove the conjecture.

Theorem 1. The equality µ(d) = d2 + 1 holds for every integer d ≥ 1.

The outline of the paper goes as follows. Section 2 is divided into two parts. First we
define the octahedral systems and show their link with the colourful point configurations.
Second, we introduce one of our main tools: the decomposition of an octahedral system over
some elementary objects called umbrellas. Section 3 is devoted to the proof of Theorem 1.
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2. Preliminaries

2.1. Octahedral systems. Let V1, . . . , Vn be n pairwise disjoint finite sets, each of size
n ≥ 2. An octahedral system is a set Ω ⊆ V1 × · · · × Vn satisfying the parity condition: the
cardinality of Ω ∩ (X1 × · · · × Xn) is even if Xi ⊆ Vi and |Xi| = 2 for all i ∈ {1, . . . , n}.
We use the terminology of hypergraphs to describe an octahedral system: the sets Vi are
the classes, the elements in Vi are the vertices, and the n-tuples of V1 × · · · × Vn are the
edges. An edge whose ith component is a vertex x ∈ Vi is incident with the vertex x, and
conversely. A vertex x incident with no edges is isolated. A class Vi is covered if each vertex
of Vi is incident with at least one edge. Finally, the set of edges incident with x is denoted
by δΩ(x) and the degree of x, denoted by degΩ(x), refers to |δΩ(x)|.

The following lemma states that a nonempty octahedral system covers at least one class.

Lemma 1. In every nonempty octahedral system, at least one class is covered.

Proof. Consider an octahedral system Ω ⊆ V1×· · ·×Vn. Suppose that no classes are covered.
There is at least one isolated vertex xi in each Vi. Hence, if there were an edge (y1, . . . , yn)
in Ω, then the parity condition would not be satisfied for Xi = {xi, yi}. �

Given a colourful point configuration S1, . . . ,Sd+1, the Octahedron Lemma [2, 3] states
that, for any S′

1 ⊆ S1, . . . ,S
′
d+1 ⊆ Sd+1, with |S′

1| = · · · = |S′
d+1| = 2, the number of

colourful simplices generated by
⋃d+1

i=1 S
′
i and containing 0 in their convex hulls is even. The

hypergraph over V1 × · · · × Vn where Vi is identified with Si and whose edges are identified
with the colourful simplices containing 0 in their convex hulls is therefore an octahedral
system. Furthermore, a strengthening of the colourful Carathéodory Theorem, given in [1],

states that if 0 ∈
⋂d+1

i=1 conv(Si), then each point of the colourful point configuration is in
some colourful simplices containing 0 in their convex hulls. Hence, an octahedral system Ω
arising from such a colourful point configuration covers each class Vi.

2.2. Decompositions. The following proposition, proved in [5], states that the set of all
octahedral systems is stable for the operation “symmetric difference”.

Proposition 1. Let Ω and Ω′ be two octahedral systems over the same vertex set. Ω△Ω′ is
an octahedral system.

Proof. Let Ω′′ = Ω△Ω′. As Ω′′ is a subset of V1 × · · · × Vn, we simply check that the parity
condition is satisfied. Consider X1 ⊆ V1, . . . , Xn ⊆ Vn with |Xi| = 2 for i = 1, . . . , n. We
have

|Ω′′∩(X1×· · ·×Xn)| = |Ω∩(X1×· · ·×Xn)|+|Ω′∩(X1×· · ·×Xn)|−2|Ω∩Ω′∩(X1×· · ·×Xn)|.

All the terms of the sum are even, which allows to conclude. �

We now present a family of specific octahedral systems we call umbrellas. An umbrella U
is a set of the form {x(1)} × · · · × {x(i−1)} × Vi × {x(i+1)} × · · · × {x(n)}, with x(j) ∈ Vj for
j 6= i. The class Vi covered by U is called its colour. T = (x(1), . . . , x(i−1), x(i+1), . . . , x(n)) is
its transversal. An umbrella is clearly an octahedral system on V1 × · · · × Vn and we have
the following proposition.

Proposition 2. Two umbrellas of the same colour have an edge in common if and only if
they are equal.
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Proof. An umbrella is entirely determined by its colour Vi and its transversal T . Therefore,
if two umbrellas of the same colour have an edge in common, they necessarily have the same
transversal, which implies that they are equal. �

It was proved in [5] that any octahedral system can be described as a symmetric differ-
ence of umbrellas. This decomposition is not unique. In this paper, we use a particular
decomposition of an octahedral system to bound its cardinality.

Consider a nonempty octahedral system Ω ⊆ V1 × · · · × Vn. Denote by i1 the smallest
i ∈ {1, . . . , n} such that Vi is covered by Ω and order the vertices {x1, . . . , xn} of Vi1 by
increasing degree: degΩ(x1) ≤ · · · ≤ degΩ(xn). We define U to be the set of umbrellas of
colour Vi1 containing an edge of Ω incident with x1 and W = △U∈UU . Let Ωj be the set of
all edges in Ω△W incident with xj . Formally,

U = {U : U umbrella of colour Vi1 and δΩ(x1) ∩ U 6= ∅} and Ωj = δΩ△W (xj).

In the remaining of the paper we refer to (U ,Ω2, . . . ,Ωn) as a suitable decomposition.

Lemma 2. For any suitable decomposition (U ,Ω2, . . . ,Ωn), with W = △U∈UU , we have

(i) Ωj ∩ Ωℓ = ∅, for all j 6= ℓ (they have no edge in common),
(ii) Ω = W△Ω2△ · · ·△Ωn,
(iii) Ωj is an octahedral system, for all j ∈ {2, . . . , n},
(iv) degΩ(xj) ≥ max(|U|, |Ωj| − |Ωj ∩W |).
(v) If Vi is not covered in Ω, then Vi is neither covered in Ω△W nor in any Ωj.

Proof. We first prove (i). The i1th component of any edge in Ωj is xj . Therefore, Ωj and Ωℓ

have no edge in common if j 6= ℓ.
We then prove (ii). There are exactly degΩ(x1) umbrellas of colour Vi1 containing an edge

of Ω incident with x1. As W is the symmetric difference of these umbrellas, x1 is isolated in
Ω△W . Thus, Ω2, . . . ,Ωn form a partition of the edges in Ω△W and Ω△W = Ω2△ · · ·△Ωn.
Taking the symmetric difference of this equality with W we obtain Ω = W△Ω2 · · ·△Ωn.

We now prove (iii). By definition, the Ωj ’s are subsets of V1 × · · · × Vn. It remains
to prove that they satisfy the parity condition. Consider Xi ⊆ Vi with |Xi| = 2 for i =
1, . . . , n. If Xi1 does not contain xj , there are no edges in Ωj induced by X1 × · · · × Xn.
If Xi1 contains xj , the edges in Ωj induced by X1 × · · · × Xn are the ones induced by
X1 × · · · × Xi1−1 × {xj} × Xi1+1 × · · · × Xn. As x1 is isolated in Ω△W , those edges are
exactly the edges in Ω△W induced by X1 × · · · × Xi1−1 × {x1, xj} × Xi1+1 × · · · × Xn.
According to Proposition 1, Ω△W is an octahedral system, hence there is an even number
of edges.

We prove (iv). We have |U| = degΩ(x1) ≤ degΩ(xj) for j = 1, . . . , n. Furthermore, by
definition of the symmetric difference, we have (Ω2△ · · ·△Ωn) \ W ⊆ Ω. This inclusion
becomes (Ω2 \W )△ · · ·△(Ωn \W ) ⊆ Ω. As two Ωj ’s share no edges, considering the edges
incident with xj , we have Ωj \W ⊆ δΩ(xj). We obtain

|Ωj | − |Ωj ∩W | ≤ degΩ(xj).

Finally to prove (v) it suffices to prove that a class Vi not covered in Ω remains not covered
in Ω△W . Indeed, if a class is covered in an Ωj , it is also covered in Ω△W . Consider Vi

not covered in Ω. There is a vertex x ∈ Vi incident with no edges in Ω. In particular, there
are no edges in Ω incident with x1 and x. Therefore, the umbrellas in U , which are defined
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by the edges incident with x1, contain no edges incident with x. Hence, x is isolated in
W = △U∈UU and in Ω. Finally, x remains isolated in Ω△W . �

Unlike the suitable decomposition of Ω, which is a decomposition over general octahedral
systems, the decomposition given in the following lemma is over umbrellas.

Lemma 3. Consider an octahedral system Ω ⊆ V1×· · ·×Vn. There exists a set of umbrellas
D, such that Ω = △U∈DU and such that the following implication holds:

Vi is the colour of some U ∈ D ⇒ Vi is covered in Ω.

Proof. The proof works by induction on the number of covered classes in Ω. If no classes are
covered, then, according to Lemma 1, Ω is empty.

Suppose now that k classes are covered, with k ≥ 1, and consider a suitable decomposition
(U ,Ω2, . . . ,Ωn) of Ω. Denote by W the symmetric difference W = △U∈UU . According to
Proposition 1, W is an octahedral system, and so is Ω△W . There are stricly less covered
classes in Ω△W than in Ω. Indeed, in Ω△W , the class Vi1 is no longer covered, since x1

is isolated, and according to (v) of Lemma 3, a class not covered in Ω remains not covered
in Ω△W . By induction, there exists a set D′ of umbrellas such that Ω△W = △U∈D′U ,
and such that if there is an umbrella of colour Vi in D′, it implies that Vi is covered in
Ω△W . As the umbrellas in D′ are not of colour Vi1 , we have D′ ∩ U = ∅. Therefore,
Ω = (△U∈UU)△(△U∈D′U) and the set D = U ∪D′ satisfies the statement of the lemma. �

3. Proof of the main result

The following theorem gives a general lower bound on the cardinality of an octahedral
system. Our main theorem is a corollary of it.

Theorem 2. Let Ω ⊆ V1 × · · · × Vn be an octahedral system with |V1| = . . . = |Vn| = n and
n ≥ 2. If k classes among the Vi’s are covered, then

|Ω| ≥ k(n− 2) + 2.

Before proving this theorem, we show how the main theorem can be deduced from it.

Proof of Theorem 1. The inequality µ(d) ≤ d2 + 1 is proved in [3]. Let S1, . . . ,Sd+1 be a
colourful point configuration in R

d. As explained in Section 2.1, the set Ω ⊆ V1 × · · · × Vd+1,
with Vi = Si for i = 1, . . . , d + 1 and whose edges correspond to the colourful simplices
containing 0 in their convex hulls, is an octahedral system. According to [1, Theorem 2.3.],
this octahedral system covers all the classes. Applying Theorem 2 with k = n = d+ 1 gives
the lower bound: µ(d) ≥ d2 + 1. �

The remainder of the section is devoted to the proof of Theorem 2. The proof distin-
guishes two cases, corresponding to the following Propositions 3 and 4. We first prove these
propositions.

Proposition 3. Consider an octahedral system Ω ⊆ V1 × · · · × Vn and a class Vi covered by
Ω. If Ω can be written as a symmetric difference of umbrellas, none of them being of colour
Vi, then |Ω| ≥ n2.

Proof. Let D be a set of umbrellas such that there are no umbrellas of colour Vi in D and
Ω = △U∈DU . Denote by x1, . . . , xn the vertices of Vi, and by Qj the set of umbrellas of D
incident with xj for j = 1, . . . , n. As D does not contain any umbrellas of colour Vi, the
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Qj ’s are disjoint: no two Qj have an umbrella in common. Furthermore, denoting by Qj

the symmetric difference of the umbrellas in Qj , we have that Qj is an octahedral system,
according to Proposition 1, and that δΩ(xj) = Qj , Qj 6= ∅, and Qj ∩ Qℓ = ∅ for all j 6= ℓ.
A nonempty octahedral system necessarily covers one class according to Lemma 1, hence it
contains at least n edges. Therefore, we have

|Ω| =
n

∑

j=1

degΩ(xj) =
n

∑

j=1

|Qj | ≥ n2

�

Proposition 4. Consider an octahedral system Ω ⊆ V1×· · ·×Vn and a suitable decomposition
(U ,Ω2, . . . ,Ωn) of it. Denote by Vi1 the colour of the umbrellas in U and suppose that
each covered class Vi with i 6= i1 is covered in at least one of the Ωj. Choose a set O ⊆
{Ω2, . . . ,Ωn}, minimal for inclusion, such that each covered class Vi, with i 6= i1, is covered
in at least one of the Ωj in O. Denote by P ⊆ O the subset of octahedral systems Ωj in O
that are umbrellas. We have

|Ω| ≥ |U|(n− |O|) +
∑

Ωj∈O

|Ωj| − |U|(|O| − |P|)− |U| − |P|+ 1.

Proof. As usual, let W = △U∈UY . The number of edges in Ω is equal to
∑n

j=1 degΩ(xj). We

bound degΩ(xj) by |U| if Ωj /∈ O and by |Ωj |− |Ωj ∩W | otherwise, see (iv) in Lemma 2. We
obtain

|Ω| ≥ |U|(n− |O|) +
∑

Ωj∈O

(|Ωj | − |Ωj ∩W |) .

We introduce a graph G = (V, E) defined as follows. We use the terminology nodes and
links for G in order to avoid confusion with the vertices and edges of Ω. The nodes in V are
identified with the umbrellas in U and the Ωj ’s in O: V = U∪O. There is a link in E between
two nodes if the corresponding octahedral systems have an edge in common. G is bipartite:
indeed, two umbrellas in U are of the same colour Vi1 and, according to Proposition 2, they
do not have an edge in common. According to Lemma 2, two Ωj ’s do not have an edge in
common either.

For Ωj in O, we have |Ωj ∩W | =
∑

U∈U |Ωj ∩ U | = degG(Ωj). Note that here the degree
is counted in G. The fact that the umbrellas in U are disjoint proves the first equality.
The second inequality is deduced from the facts that Ωj has at most one edge in common
with each umbrella in U , the one incident with xj , and that G is bipartite. We obtain the
following bound

|Ω| ≥ |U|(n− |O|) +
∑

Ωj∈O

(|Ωj | − degG(Ωj))

= |U|(n− |O|) +
∑

Ωj∈O

|Ωj | − degG(O \ P)− degG(P).

Again, for the equality, we use the fact that G is bipartite. The number of links in E
incident with a node in O \ P is at most |U|. Hence, degG(O \ P) ≤ |U|(|O| − |P|). It
remains to bound degG(P). Note that if U is an umbrella in P, it is the only umbrella of
its colour in P, otherwise it would contradict the minimality of O. We now prove that there
are no cycles induced by P ∪ U in G.
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Suppose there is such a cycle C and consider an umbrella U of P in this cycle. Denote its
colour by Vi and its neigbours in C by L and R. As G is simple, L and R are distinct. L and
R are both in U , and hence are of colour Vi1 and do not have an edge in common. Therefore
U∩L and U∩R do not have an edge in common either, which implies that the ith component
of the transversals of L and R are distinct. Note that two umbrellas adjacent in C, both of
colour distinct from Vi, have necessarily transversals with the same ith component. Hence
there must be another umbrella of colour Vi in the path in C between L and R not containing
U . This is a contradiction since U is the only umbrella in P of colour Vi.

The number of links in E incident with P is then at most |P|+ |U| − 1. This allows us to
conclude. �

Proof of Theorem 2. Let Ω ⊆ V1 × · · · × Vn be an octahedral system with |V1| = · · · = |Vn| =
n and n ≥ 2, and suppose that k classes Vi1 , . . . , Vik , with i1 < · · · < ik, are covered in Ω.
The proof works by induction on k.

If k = 1, then Ω must contain at least n edges for one class to be covered.

Assume now that k > 1. If |U| ≥ n − 1, then, according to (iv) of Lemma 2, |Ω| =
∑n

j=1 degΩ(xj) ≥ n|U| ≥ k(n − 2) + 2 and we are done. Assume now that |U| ≤ n− 2. We

consider a suitable decomposition (U ,Ω2, . . . ,Ωn) of Ω and distinguish two cases.
Case 1: One of the covered classes Vi, for i ∈ {i2, . . . , ik}, is not covered in any Ωj .

Let Vi be a covered class in Ω not covered in any Ωj . Applying Lemma 3 on Ωj gives a
set Dj of umbrellas, all of colour distinct from Vi, such that Ωj = △U∈Dj

U . We obtain
Ω = (△U∈UU)△(△n

j=2△U∈Dj
U). Thus, we can apply Proposition 3 which ensures that

|Ω| ≥ n2 ≥ k(n− 2) + 2.

Case 2: Each covered class Vi is covered in at least one of the Ωj for i ∈ {i2, . . . , ik}.
Applying Proposition 4, we obtain

|Ω| ≥ |U|(n− |O|) +
∑

Ωj∈O

|Ωj| − |U|(|O| − |P|)− |U| − |P|+ 1.

It remains to bound
∑

Ωj∈O
|Ωj|. By induction, the cardinality of Ωj is at least kj(n−2)+2,

where kj is the number of covered classes in Ωj . We have kj < k according to (v) of Lemma 3.
This lower bound is not good enough for the Ωj /∈ P such that kj = 1. We explain now how
to improve the lower bound for such Ωj ’s. Assume that Ωj covers only one class and that
Ωj /∈ P. According to Lemma 3, Ωj can be written as a symmetric difference of distinct
umbrellas of the same colour. According to Proposition 2, these umbrellas are pairwise
disjoint and |Ωj| is equal to n times the number of umbrellas in this decomposition. Since Ωj

is not an umbrella itself, otherwise Ωj would have been in P, there are at least two umbrellas
in this decomposition. We denote by A the octahedral systems in O \ P covering only one
class. We obtain

∑

Ωj∈O

|Ωj | ≥





∑

Ωj∈O\A

kj



 (n− 2) + 2|O \ A|+ 2n|A| ≥





∑

Ωj∈O

kj



 (n− 2) + 2|O|+ n|A|
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We have thus

|Ω| ≥ |U|(n− |O|) +





∑

Ωj∈O

kj



 (n− 2) + 2|O|+ n|A| − |U|(|O| − |P|)− |U| − |P|+ 1.

Finally, we have

2|O| − |P| − |A| ≤
∑

Ωj∈O

kj(1)

k − 1 ≤
∑

Ωj∈O

kj(2)

Equation (1) is obtained by distinguishing the Ωj with kj = 1 from those with kj ≥ 2.
Equation (2) results from the fact that each class Vi2 , . . . , Vik is covered in at least one Ωj in
O. Thus,

|Ω| ≥ |U|(n− |O|) +





∑

Ωj∈O

kj



 (n− 2) + 2|O|+ |U||A| − |U|(|O| − |P|)− |U| − |P|+ 1

≥ (k − 1)(n− 2) + 2|O| − |P|+ 1 +





∑

Ωj∈O

kj − k + |A|+ n− 2|O|+ |P|



 |U|

where we only used the inequalities n ≥ n − 2 ≥ |U| and (2). According to (1), the ex-

pression
(

∑

Ωj∈O
kj − k + |A|+ n− 2|O|+ |P|

)

is nonnegative. Moreover, we have already

noted that |U| = degΩ(x1), which is at least 1. Therefore,

|Ω| ≥ (k − 1)(n− 2) + 2|O| − |P|+ 1 +
∑

Ωj∈O

kj − k + |A|+ n− 2|O|+ |P|.

Using (2) again, we obtain
|Ω| ≥ k(n− 2) + 2.

�
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