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A criterion for existence of solutions to the
supercritical Bahri-Coron’s problem

SaiMAa KHENISSY* and Owuvier REY!

Abstract

We consider the supercritical elliptic problem —Au = 7, 4 > 0 in Q; v = 0 on 99
with Q a smooth bounded domain in R%®, and € > 0 a small number. Denoting by G the
Green’s function of —A on Q with Dirichlet boundary conditions, and by H its regular
part, we show that a nontrivial relative homology between the level sets ¢® and ¢® of ¢,
a <b<0,py) = Hz)/?*H(y,y)/? — G(z,y), implies the existence, for & small
enough, of a solution to the problem which blows up, as € goes to 0, at two points z,y such
that a < p(z,y) < b, Vo(z,y) = 0.

1 Introduction

Let us consider the nonlinear elliptic problem

(P

) —Au =u? [Ju>0 in Q
u =0 on 0f)

where 1 < ¢ < 400, and € is a smooth and bounded domain in RY, N > 3.

When ¢ is subcritical, i.e. ¢ < %, the mountain pass lemma proves the existence of a solution
to (P,) for any domain Q. In the case ¢ = %, Pohozaev’s identity [10] shows that problem

(P,) has no solution as Q is starshaped. On the other hand Kazdan and Warner [6] proved that
a solution exists in the special case €2 is an annulus, and Bahri and Coron [1] showed that a
nontrivial topology of the domain, in the sense Ha,—1(2; Q) # 0 or H,(2;Z/27Z) # 0 for some

n € N*, implies that (P,) has a solution. When ¢ > %f%, Passaseo [8, 9] gives, for N > 4, an
example of a topologically nontrivial domain for which no solution of (P,) exists, provided that

q > %—J_ré The present paper is interested in the slightly supercritical case, i.e. ¢ = % + ¢,

with € > 0 a small number. More precisely, we consider, for £ € RY and A > 0, the functions

. )\ N;Q N
Uertw) = on(pop=gp) ~ 7k
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N—2
with ay = [N(N —2)] © . These functions are the only solutions to the equation

—Au=u’, u>0 in RN

with p = &42 ([4]). We denote by U » the projection onto Hg(€2) of U », defined by
AU&A = AU&)\ in Q
U =0 on 0f).

Writing Ug » = Uf,,\ — fens fe solves

—Af&)\ :0_ in Q
fgy)\ = Ugﬁ,\ on 89

Functions Ug » are approximate solutions to (P,) when £ € Q and A goes to zero. This fact
suggests looking for solutions to (F;), ¢ close to p, in a neighbourhood of the U »’s, that is for
solutions writing as

k
u= Z Ugni tv
=1

with k£ € N* and v small in some norm.

When g = p—e, Bahri, Li and Rey [2], Rey [12] proved that such solutions exist. In particular,
a solution exists for £ = 1 and ¢ small enough, which blows up at a critical point of the Robin
function H(x,x) as € goes to 0.

When ¢ = p + ¢, the situation comes out to be different. Ben Ayed, Grossi, El Mehdi and
Rey [3] showed that there is no solution blowing up at a single point as e goes to 0. However,
Del Pino, Felmer and Musso [5] proved, under certain topological conditions, the existence of
such solutions when k = 2. To state their result, some notations have to be introduced.

We denote by G the Green'’s function of the operator (—A) with Dirichlet boundary conditions
on , by H its regular part, i.e.

1

G(z,y) = bNW

_H(‘Tay)

with by = [(N — 2)0N_1} _1, on—1 is the measure of the (N — 1)-dimensional unit sphere, and

AIH =0 in Qx0
H(z,y) :bNW on 9(Q x Q)

For (£1,&2) € Q x Q we define

o1, 62) = H? (61,60 H? (62,6) — G(1,6). (1.1)

H4(B) denotes the d-th cohomology group with integral coefficients of B C €2, and i* : H*(Q) —
H*(B) the homomorphism induced by the inclusion i : B — Q. We have :

Theorem[5]. Assume 3 < N < 6 and let Q be a bounded domain with smooth boundary in RN,
Suppose there exists a compact manifold M C Q and an integer d > 1 such that ¢ < 0 on
M x M, i*: HY(Q) — HY(M) is nontrivial, and either d is odd or H**(Q) = 0.



Then there exists €9 > 0 such that, for any 0 < € < e, problem (Pp1c) has at least one
solution ue. Moreover, let C be the component of the set where ¢ < 0 which contains M x M.
Then, given any sequence (€,,) going to zero, there is a subsequence, which we denote in the same
way, and a critical point (&1,&2) € C of the function ¢ such that u., (x) — 0 on compact subsets
of Q\ {&1,&} and such that for any § >0

sup  ue, (x) = 400, as e =0, i=12.
|[x—&;|<d

Examples are given of domains satisfying the topological assumptions of the theorem. Namely,
a fixed domain D in RY, from which a subdomain w is excised, w contained in a ball of sufficiently
small radius. When N = 3, another example consists of an arbitrary domain D, from which a
solid torus is excised, with sufficiently small cross-section.

In the present work, we consider the case N = 3. We prove again the existence of the two-
bubble solutions to (Ps4c), blowing up at two points as € goes to 0, with some modifications of
the method used in [5], leading to a simpler and more natural assumption. Indeed, denoting by

' ={x e QAxQ/p(x) <a}
the level sets of ¢, we prove :

Theorem 1.1 N = 3. Assume that a < b < 0, b is not a critical value of ¢, and the relative
homology H. (%, %) is nontrivial. Then, for e small enough, there exists a sequence of solutions
to (Psyc) which blows up at &1,& as € goes to zero, with (£1,&2) a critical point of ¢ such that

a < (,0(51,&2) < b.

Furthermore, denoting by
A={(z1,22) €EQAXQ [ x1 =122}
the diagonal of 2 x 2, we have :

Corollary 1.1 N = 3. Assume that b < 0 is not a critical value of @ and H.(¢" A) # 0. Then,
the problem (Psyc) has a solution as described in Theorem 1.1, with p(&1,&2) < b.

The corollary follows from the fact that ¢ retracts by deformation on A, for a small enough,
as proved at the end of the paper.

Remarks.

1) The arguments are still valid for N = 4. However, for sake of simplicity, we restrict ourselves
in this paper to the case N = 3. Dimensions N > 5 could be treated using the same tools as in
[13].

2) The problem has a variational structure. Let J, denote a functional whose critical points are
solutions to (P,. For slightly subcritical exponents, i.e. ¢ = % — ¢, the difference of topology
induced by the solutions blowing up at two points, as € goes to zero, between the level sets of
Jy, is linked to the relative topology between Q% and ¢~ = {z € Q x Q/¢(z) < 0} [2]. Here,
the relevant quantity is the relative topology between ¢~ and A. We know that for expanding
annuli-domains A,, n < |z| < 57!, ¢~ is homotopically equivalent to A, x A,, whereas for

thin annuli-domains ¢~ is homotopically equivalent to A [7]. In one case, we obtain blowing up



solutions for the supercritical exponent going to the critical one, in the other case blowing up
solutions for the subcritical exponent going to the critical one.

Our approach to prove Theorem 1.1 is similar to Del Pino, Felmer and Musso’s one, with
appropriate modifications. In Section 2, we recall some results of [5] which lead to a finite-
dimensional reduction of the problem, together with an asymptotic expansion of the reduced
functional. Section 3 is devoted to the additional results which are required in Section 4 to prove
Theorem 1.1.

2 Known results : the finite dimensional reduction

We consider the energy functional, defined in H} () N L57¢(Q), whose positive critical points
are solutions to the problem (P.) := (Ps4c)

1 1
Je(u) = 3 /Q [Vul? — 612 Quiﬂ-

We look for solutions to (P:) in a neighbourhood of functions U = Uy + Uz, U; = Ug, »,
denoting the H{(Q)-projection of U; = Uy, », introduced in Section 1. Let § > 0 be a small
number, we set

O5(Q) = {(£1,6) € XX Q : |61 — &o| > 6, dist(&,00) > 6, i = 1,2}
and
N =ch?e, i=1,2, §< A <6t (2.1)
with
_ WU _ 1 5 p
603 [y T 128

We also define

U(&r,62, A1, A2) = %(H(él,él)/\f + H(&,6)A5 — 2G(§17§2)A1A2) +InAjA,. (2.2)

Expanding J.(U; + Usz) with respect to e, we find ([2], [5]) :
Lemma 2.1 There exist constants Cy > 0, Cy > 0, C3 such that, for any § > 0
Jg(Ul + Ug) =(C1+ Crelne + Cse + 025‘11(51,52, Aq, Ag) + O(E)

uniformly with respect to (&1,&2,A1,A2) € O5(Q)x]5,07L[2. This expansion holds in C?*-norm
with respect to the variables & and A in the considered domain.

Remark. Writing U= UOJ, constants C, Cy and C3 are defined as

1 - 2
0122—/ 7’ =32
s 2



In view of this result, the strategy to prove the theorem consists in reducing the original
problem of finding a critical point of J. to a finite dimensional one in the variables &1, &, Aq,
As, such that the critical points of ¥ will provide us with the solutions that we are looking for.
We first perform a rescaling. We set

Q. =Q/e

and § > 0 being fixed, we consider points E; € Q., numbers A; > 0, i = 1,2, such that

! !’ 6 / d
& — & > = dist(§;, 00 ) > = §< A <6 h (2.4)
We define the functions
- Ay e
e M et

As previously, we define the projections onto Hg(€2.) of these functions, namely the functions V;
given as the unique solutions of

AV, =V, i Q.
Vi =0 on 0.

Let us denote
V:V1+‘/2 7:71 +V2 and (5’175;,A1,A2):(§,7A).

Our aim is finding a solution to the problem in a neighbourhood of V, for appropriate & and A.
In order to reduce the problem to a finite dimensional one, we first solve the linearized equation
at V. We define, for ¢ = 1, 2, the functions

_ — oV,
Z.=20i 1<i<s Ty =
J =J= 1T A

which span the kernel of the linearized problem at V; on R® when ¢ = 0, and their H}(f.)-
projections Z;;, i.e. the unique solutions of

AZij :A7ij in Qg
0 on 0.

Then, following [5], we consider the problem : h € L>(£.) being given, find a function ¢ which
satisfies

A¢ + (5 + E)V4+E¢ =h+ Zi,j CijV;AZij in Qg

o =0 on 0, (2.5)
<ViZijj, 6> =0 for all 4,7

for some numbers ¢; ;, < +,- > denoting the scalar product in L?(€2.) (we notice that the orthog-
onality to V;*Z;; in L?(€2.) is equivalent to the orthogonality to Z;; in Hg (£:)).



Existence and uniqueness of ¢ follows from the implicit functions theorem, in suitable func-
tional spaces. Actually, for ¢ a function defined on ., we consider the following weighted
L®°-norms

’ 1 / 1 -1
Jelle = sup | (141 =€)+ (Lo - &A)7F) (@)
€N,
and
’9 1 ’2 1 —4
[ller = sup | (L +Jo = &R 7F + 1+ a6 7F)  v@).
€N,

These norms are equivalent to ||(V) 19|« and ||(V) %1/« respectively, uniformly with respect
to the points and numbers satisfying (2.4).
We recall the following result (see Propositions 4.1 and 4.2 in [5]) :

Proposition 2.1 Assume that conditions (2.4) hold. There exists eg > 0 and a constant C >0
independent of €, &', A, such that for all 0 < & < &g and all h € L*>().), problem (2.5) has a
unique solution ¢ = L.(h), which satisfies

[Le(R)ll < O[] [cij| < CllAl - (2.6)
Moreover, the map (£ ,A) — L.(h) is C* and
1D e ay Le(P) ||« < O[] s (2.7)

A first order correction to consider, between V and a solution to the original problem, is
given by

¥ = —L.(F°) RE = Vo T V. (2.8)

Estimating || R?||.« - see 3.22 below - provides us, through Proposition 2.1, with an estimate of
l]|«. Namely, there exists a constant C, independent of € and &', A satisfying (2.4) such that

[l¥]l« < Ce. (2.9)

Still following [5], the next step is considering the nonlinear problem of finding ¢ such that,
for some numbers c¢;;, the following holds

AVHY+9)+ (V4o +0)7F =%, eVitZy; i Qe

¢ =0 on 99, (2.10)
<ViZij,¢> =0 for all 1, j.
Setting

Ne(n) = (V40T = V¥ — 5+ )V (2.11)

system (2.10) writes as

Ap+(B+e)Vieo =-N.(Y+9¢)+>,,c;Vi'Zi; i Q
¢ =0 on 0. (2.12)
<V#Ziy, 6> =0 for all i, 7.



Lemma 5.1 in [5] provides us with the following estimate, when conditions (2.4) hold : there
is a positive constant C such that, for any sufficiently small £ and ||¢||. < 1

IN(¥ + @)llsx < C(ISIIZ + %) (2.13)

Then, applying a fixed point theorem to the map A. from F = {¢p € Hi N L>®(Q.) : [|¢]l« <&}
to H} N L% (£2.) defined as

Ac(¢) = —L(Ne(¢ + 1))
which is contracting in norm || - ||, we obtain (see Propositions 5.1 and 5.2 in [5]) :

Proposition 2.2 Assume that conditions (2.4) hold. For e small enough, there exists a unique
solution ¢ = ¢(€ , A) to problem (2.12) in F. Moreover, (£ ,A) — ¢(& ,A) is Ct, and there exists
a constant C > 0 independent of €, £, A, such that

1D ay @l < Ce. (2.14)

Remark. Actually, ¢ = gb(f,, A) and its first derivatives satisfy the estimates
]l < Ce? IDer py ¢l < Ce. (2.15)

The first inequality is a consequence of (2.13) and the definition of ¢ as a fixed point of A.. The
second one is proved in the next section - see Lemma 3.3.

To come back to the original problem, we consider the rescaled functions defined in 2

1

YENE) =TGN (=g (2.16)
$(& M) () = e p(e ¢, A) (e ) (2.17)

and
U(&,A)(z) = eV (e a) = e~ (Uy (z) + Ua(a)) Ui(z) = Ug, », () (2.18)

with

i =cA2 and & =et, € Os5(9).
Lastly, we define

L(6A) = J((U +¢ + §)(E,0)). (2.19)

Previous results provide us with the following basic assertion (see Lemma 6.1 in [5]) :

Proposition 2.3 The function u= U + 1) + ¢ is a solution to problem (P:) if and only if (€, A)
s a critical point of I..

Consequently we are led, for proving the theorem, to find a critical point of I.. We establish
before, in the next section, some results about the second derivatives of I..



3 Improved results : the second derivatives of [

In this section, we prove a C?-expansion of I. - see (3.33) below. For this purpose, we first show
that inequalities (2.7) and (2.14) are still valid for the second derivatives of L. and ¢ respectively.

Lemma 3.1 Assume that assumptions of Proposition 2.1 are satisfied. L.(h) is C? with respect
to A, &, and there is a constant C independent of €, £ , A, such that

IDFer py Le(W) ]l < Cllit] (3.1)

€0

Proof. For given h € L*°(f.), we recall that problem
Ap+(B+e)VHo =h+3, ciVitZy;  in Q.
o =0 on 0, (3.2)
<ViZijj, 6> =0 forall 4,7
has a unique solution ¢ = L.(h) for some numbers ¢;;, with
[ Le(P)]l« < CllA]lx |cij| < Cllhll«x- (3.3)
Let us write
Z=0g¢
at least formally. Differentiating the first and third equations in (3.2) with respect to ¢, we find
AZ+(54+e)ViHZ = —(54¢)(0s V)0
+ ZduV“Zu + ch (VAZy) i Q. (34)

with dij = (95/ Cij and
<0 (Vi*Zij), ¢ >+ < V;*Zij, Z >=0 forall i,j. (3.5)
We decompose Z, writing

Z=7+ ZblkZlk with < V*Zi;, Z >=0 Vi,j.
Lk
It follows from (3.5) that
> b < Vi*Zij, I >=— < 0p (Vi Zij), ¢ > Vi, j. (3.6)
Ik

This defines a linear system in the b;;’s which is almost diagonal, with uniformly bounded
coefficients since, as € goes to 0, we have

—4 0Up A \2
<VAZij, Zie >= ;161 /RN UO,A;‘( 9y - ) +o(1) (3.7)
J




with y; = z;, 1 < j <3, and y4 = A}. Such a system is uniquely solvable, and estimating the

right hand side provides us with by, = O(]|¢]|«). Whence, using (3.3)
bk = O([[Af] ).
On the other hand, using (3.4) we find that Z satisfies the equation

AZ+(B+e)VieZ=f+ Z dijVAZ; in Q.
4,7

with

F==6G+) 0 V™) =D biy[AZi; + 5+ )V Zy] + > ;0 (Vi Zij).

2% 4,J
It is easily checked, taking account of (3.3) and (3.8), that
[fllex < CllAI -
Then, we deduce from Proposition 2.1 that Z = L.(f) and d;; satisfy
1Z][« < Cl|hllxs |dij| < O[]«
Thus, using again estimate (3.8) we obtain
12+ < CllA] -

Once these estimates are known, one easily check that

Z=LAf)+ +ZblkZlk
Ik

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

with the byy’s defined by (3.6) and f defined by (3.10) is definitely the derivative of ¢ with respect

to «f/.

We have now to estimate the second derivatives of ¢ with respect to ¢ . Differentiating (3.4)

and (3.5) with respect to ¢', and writing formally
W =0g7 = ag,zqa
we find
AW + (5 + VW = =2(5+¢)(8 V) Z — (5 +) (97 V)0
+ 3 [eiVit Zij + 2diy0g (Vi Zij) + 302 (Vi Ziy)]
irj

with €ij = 85/ dij and

< (Vi'Zij),¢ > +2 < 8 (Vi Zij), Z > + < V;'Zij, W >=0 Vi,j.

We proceed as previously, writing W as

W =W+ anZy with <V Z;W>=0 Vij.
Lk

(3.13)

(3.14)



It follows from (3.14) that

D aw <Vi'Zi, I >= - < 92.(Vi Zi), 6 > =2 < 0 (Vi Ziy), Z > Vi, j. (3.15)
1.k

(3.7) implies again that (3.15) is a linear system in the a;;’s which is almost diagonal, and (3.3),
(3.12) show that

lae] < C[[6ll« + 1Z11+) < C[|Allxx- (3.16)
On the other hand, we have
10 V) Zllws < CIZI < C'llas 1022V 5)lles < Clillw < C[I][ (3.17)
and
10 (Vi* Zi) s < C 102> (Vi Zij)|l+s < C. (3.18)
Going back to (3.13), we see that W satisfies

AW + (5 + E)V4+€VI/ =g+ Zi,j eij‘/?Zij in QE
W =0 on 09, (3.19)
<VAZjW> =0 forall 4,7
with
g=— Z Qij [AZU + (5 + E)V4+€Zij] +2 Z dijag/ (‘/14le) + Z Cija?/z(‘/fzij)
. 0,J ] (3.20)
— (5+2) (02, VI)p —2(5 + ) (0 V1) Z.

Estimates (3.3), (3.11), (3.16), (3.17) and (3.18) prove that

9]l < CllA] s
whence, in view of Proposition 2.1

Wl < C[lA]l s
Finally, estimate (3.16) yields

Wl < CllAl -

Once again, these estimates show that W = L.(g) + Zz,k aix 21, where the a;’s are defined

by (3.15) and g by (3.20), is indeed the second derivative of ¢ with respect to ¢'. The other first
and second derivatives of ¢, involving the A;’s, may be treated in the same way. This concludes
the proof of Lemma 3.1. O

Lemma 3.2 The map (€ ,A) — (&, A) is C2 for the norm ||-||«, and there exists C independent
of € and &, A\ satisfying (2.4) such that

9]l < Ce IDer py¥ll« < Ce IDfer py¥lls < Ce. (3.21)

10



Proof. We recall that v is defined as
W = —L.(R°) R = (Vi + Va)*t= -V, - V).

The smoothness of (¢, A) — (€', A) follows from the smoothness of R® with respect to (€, A)
and Lemma 3.1. Moreover, in view of Proposition 2.1 and Lemma 3.1, it is sufficient for estab-
lishing (3.21) to prove

| R[]« < Ce D e py B [len < Ce HD(QE,A)REH** < Ce (3.22)

as € goes to zero. B B
Let us estimate ||R||««. In the regions |x — §;| < 0/e, for small § > 0, we write (for i = 1)

RE = Ve 4 O(VAeV,) — Ty — Ty < CV4 | In V1| + O(VEEVs) + O(e°)

whence

VRe| < Ce.
In the exterior of these two regions, we see that |R¢| < Ce®, and since || - ||+ is equivalent to
||V_4 “||oo, the first inequality in (3.22) follows. Next, we write

Do R = (5+ )V (9 Vi) — V(0 V). (3.23)
Setting Vi = V1 — f1, we get

0

o RE = 5V~ V1) (0 Vi) = 5V (0 f1) + V(0 V),

Arguing as above, we have in the region |z — & < 8 /¢, for small § > 0

VI — V) = -V, 4 O(VVa)
=V T Vi+ OV fi + ViV
= VIV, + OV (In V)2 + Vo f1 + VEVR)

and, using the fact that Vo = O(e) in the considered region, |8£/1 Vil < CV? and, through the
maximum principle, f1 = O(e) in Qc, uniformly with respect to the parameters, provided that
(2.4) is satisfied, we obtain

7_4351]%8 < Ce.
In the region |z — & < 8 /¢, for small § > 0
V(v - V)0, V)| < OV < C2?

whence again, in that region
——4
|4 |(9££RE| < Ce.

In the exterior of the previous regions we derive from (3.23) that

|0 BF| < CV° < C<°

11



from which we deduce
|\a§,R€|\** < Ce. (3.24)

In order to estimate ||8§,AREH**, we write

02\ B = (54 )4 +2)(9 V1) (0n, V1) (Vi + Vo)
O+ + Vo) O, Vi) = VA0, V)
— 200 V1)(0r, V1)V,

Away from ¢;, noticing that 9y, Vi = O(V 1), 652’/\1 Vi = O(V?) in Q. (and the same estimates
hold for V; instead of V;)
02, R <CEV 42V +)
whence in this region, since V' > Ce¢ in €,
Vo2, R < Ce

Looking at the region |z — &, | < /e, for small § > 0, we write 852’/\ R# in the following way

5521 A, B = 20[(0 V1) (04, Vi) (Vi + V2)* 5 — (0 V1)(0n, V1)V
€ 4 I/
+ 5[(‘/1 + ‘/2)4+ (8£2£A1 Vl) - Vl(a?;/h‘/l)]
+2(9+€) (0 V1) (00, V1) (Vi + Vo) ™F° 4 (Vi + V2)F5(05 , V1)
=hL+1L+ I3+ 1.
We have . .,
1% (|I3|+|I4|) < (CeV™ < Ce.

Writing Vi = V1 — f1, we have also

I = (9 V1)(0n, V1) [V = VY]
+ [(9g £1)(On, f1) = (9 V1) (On, f1) — (On, V1) f1)]VEF
and
(0 V1) (00, V1) [V3He = V1] = O[V ViV + V7 (11 + Va)].
Consequently
VL < ce
and similarly
VL < Ce.

The computations for estimating ||8£2, LB |l are simpler and we omit them. Finally, we obtain
1442
182 \B® || < C. (3.25)

[|0A RE || s, ||8£2,2RE||** and [|03: R®||+« may be estimated in the same way, concluding the proof
of the lemma. ]

12



Lemma 3.3 The map (fl,A) — d)(f,,A) provided by Proposition 2.2 is C? for the norm || - ||+,
and there exists C independent of € and &’, A satisfying (2.4) such that

1D ) 811+ < Ce? 1D 5 @l < C<*. (3.26)
Proof. We recall that ¢ given by Proposition 2.2 is defined through the relation

¢ = 7LE(N€(¢+’¢))) (3'27)

and
No(9) = N(€,A,0) = (V + )77 — Ve — (5 + o) VHeg, (3.28)
Setting
05 = {€ = (6,&) € Q% x Q. 1 1€, — 6] > /e, d(&,09) > 3/e, i =1,2]
and F = {$ € HX(.) : || 4]l < e}, we define the map B : 05 x (16,671))* x F — L2(2.) as
B(§ A, ¢) = ¢+ Lo(N=(¢ + ¥)).
We have
0;3B(€ A, 0)[0] = 0+ L ((95N)(E, A, ¢+ ) 0) = 0+ M(0) = (I + M)(0)
and, according to Proposition 2.1
1M O)]]. < ClIO3N)E A, &+ 1)8]|w < OV (95N (E A+ )l|oc10].
(3.28) yields
(OpN)(E A, 8) = (5+2)[(V + @)} — Ve (3.29)
whence, using (3.21) and ¢ € F

V(05N A b+ )| < Ce (3.30)

and ||[M(0)]|« < Ce||0]|«. As a consequence, for £ small enough, the linear operator G(Z;B(gl,A, ?)

is invertible in L2°(€).), with uniformly bounded inverse. As (§,,A,gz~5) — B(&l,A,gg) is 2,
(€, A) = ¢(€', N) defined by B(&', A, ¢(¢',A)) = 0 is also a C2-map.
Let us prove (3.26). Derivating B(€ , A, (€ ,A)) = 0 with respect to &', we find

de¢ =[0;B]7 [0y B
=[0;B]7" [0 L) (Ne(6+ ) + Le((9 N2) (6 + )
+Le((05N:)(6 + ) O )|
whence, in view of Proposition 2.1

10 ¢ll+ < CLINe(S + )|l + [1(0er Ne)(@ + ) [l + 105N ) (& + ) Derth]ls] -
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From (3.28), (3.21) and (2.14) we deduce that

IN(¢ + ) l4x < Ce2. (3.31)
We also compute, recalling that [0, V| < CVQ, and assuming that [|¢||. < Ce

774|(8£/N8)(§,,A,(5)| < CVﬁQI(V + (E)i"rt? _ V4+E _ (4 + E)VBJ’_E(E‘ < CH(EHi
whence
1@ NY(E A @+ 1) wn < C2.

Lastly, using (3.30) and (3.21)

1(O5N-) (¢ + ) Der Pllaw < CIV 7 (03N) (6 + ) | ocl| O 9|« < O

and finally we obtain
100l < Ce2.

The estimate for 0p ¢ is obtained in the same way. We turn now to the second derivatives. We
concentrate our attention on 852, 1@, since the estimates for 3,¢ and 852,2425 follow from identical

arguments. Derivating B(¢', A, ¢(¢', A)) = 0 with respect to ¢ and A, we find
2 —1[52 2 2 2
&% 6 = 0;B) [anZB.aE,qb.aAqs+ad;£,B.aA¢+6$AB.a§,¢+aE,AB (3.32)

and we have to estimate each term of the right hand side in norm || - ||.«. Let us consider the
first term. According to the definition of B and (3.28)

02 B0y .056 = L. |02, N..00 6.000
= L[5+ 2)(d+2)(V + 6+ 9)1 (9 6) (09)]
and in view of Proposition 2.2, we have to estimate

IV + 6+ 9) L= (D O)OaB)lew <V (V + 6+ )2 oo |0 - [0r6] < Ce?

using (3.21) and Proposition 2.2. Estimating the other terms in the same way provides us with
the announced result. O

We are now able to prove the main result of this Section. From Proposition 2.3, we know
that w = U + ¢ + ¢ defined through (2.16) (2.17) (2.18) is a solution to the initial problem if
and only if (&, A) is a critical point of I. = J.(U 4+ ¢ + ¢).

Proposition 3.1 We have the expansion
I.(§&,A) = Cy + Caelne + Cse + CaeP(,A) + 6-(€, A) (3.33)
with 0., D¢ a0 and DgyAHE going to zero as € goes to zero, uniformly with respect to £, A

satisfying (2.4).
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Proof. We claim that

L(&A) = J.(U) + £pe(&,A) (3.34)

with pe, D¢ a)pe and D(2g A)Pe going to zero as € goes to zero, uniformly with respect to &, A
satisfying (2.4). Then, expansion (3.33) is obtained estimating .J. (/). Indeed, we have
eXTN(U) = X7 (25 (UL + Un))

1—¢2
= J. (U, + U Uy + Uy)te
g( 1+ 2)+ 612 /Q( 1+ 2)

— J.(U + Us) + é(—% Ine + 0(5)) (2 /Rd T 4 oleln |5|))

2
=J. (U1 +Us) — \/g%slna + o(e)

whence

J.(U) = (1 + ielns + 0(€)> <J€(U1 +Uy) — \/5%251115 + 0(€)>

and the desired expansion for JE(U) using Lemma 2.1 and (2.3). The expansions for the deriva-
tives of J.(U) are obtained in the same way.

We turn now to the proof of claim (3.34). Validity of such an expansion for I. and its
first derivatives has already been proved in [5] (Proposition 6.1). Moreover, it can easily be
found again from the arguments used below, concerning the second derivatives. Actually, we
shall concentrate our attention on the second derivative with respect to &, A, for the second
derivatives with respect to A% and &2 may be treated exactly in the same way. The proof is
composed of two steps : we show that

OZL(E,N) — J(U + )] = o(e) (3.35)
and
O [Je(U + ) — J(U)] = o(e). (3.36)

Let us prove (3.35). From a Taylor expansion and the fact that J/ (U + ¢ + ¢)[¢] = 0, we
have

1EA) ~ Jo(0 +8) = J(0 + 6+ &) ~ 1.0 /D2 (O + 9+ ), Bt
1 (3.37)
_ 1-2¢ dte yi+e]
£ /O (/QENa(Qﬁ—I—w)qﬁ—i—/Qg(S—i-s)[V (V 4+ + o)y )tdt.
We recall that ( = (24 1¢)~! < 1/2. Differentiating twice with respect to &, A, we find
i m) - a0+ i) = [ ([ a2, ivo
Q2 (3.38)

7/ (5+€)82/A[((V+w+t¢)i+sV4+€)¢2}>tdt

Qe
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with §; = ¢;/e. Let us estimate the last integral. Setting

p=1v+to H=H.(¢ M) = (V + @)t - vite
we have
2\ (Ho?) =2(0y 6)(0rd) H + 2¢(5; Ad))H +20(02¢) (0 H)
+2¢(8AH>( ¢>)+¢( H)
with
Op H = (4+ 2V + @)1 = V@ V) + (4 +)(V +9) 1 (0 )
and

O\ H = (4+2)B+e)[(V+9)T = V)0 V)(0rV)
+(@A+e)[(V+)ite— V(9 , V)
+ (4 +e)B+e)(V + so)”%amo)[(a V) + (e 9)]
+@A+)B+)(V + )i (0 0)(OaV) + (4 +e)(V +9) 702 ).

One the one hand, we deduce from the definition of V'

0\V| < CV 0 V| < CV* 92, < OV (3.39)
uniformly in Q., with C independent of £ and &', A satisfying (2.4). One the other hand, (3.21)
and (3.26) provide us with estimates of ¢ and ¢ in norm || - ||.. Lastly, we notice that for any
v>3
/ V'i=0(01) (3.40)
Q.

as € goes to zero, uniformly with respect to f/, A satisfying (2.4). Using these informations,
straightforward computations yield

_24/ = o(e).

The same arguments applied to the first integral in (3.38) lead to a similar estimate, establishing
(3.35). We turn now to the proof of (3.36). A Taylor expansion gives

JE(U + 7/}) - JE(U) :6172( (IE(V + "/)) - IE(V))
12 ( DL (V)] + / (1 OD*T.(V + t)[, ] ).

As DL(V)[¥] = — [ (AV + V) and AV = A(Vi + Vo) = -V, — V = R — V5, we

obtain
_ / Rew.
Qe
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On the other hand
DLV + )] = [ Ve = 64e) [ (Ve
Then, integration by parts and v = —L.(R,) yield
DLV + ot = [ Ro= e [ (0wt -yt
Consequently

J(U +4) = J.(U) )
— ol <_% /Q Ry — (5 + 5)/0 (1- t)(/QE [(V +ty)iTe — V4+a]w2)df)
and

35/\[ (U + 7/’) (U)]
=g % < 2852A(/Q€ Rep) — (5+¢) / (1—1t)( / (V + )it V4+5)1/)2])dt> :
We first consider the last integral. Denoting by
K = K. A)(@) = (V + t)hte - vi+e
we have

2 A(KY?) =2(0g ) (0a ) K + 20(9 Aw)K+2¢(5Aw)(35'K)
+2¢(3AK)( ) + ( K)

with
O K = (4+)[(V + 1) = V(0 V) + (4 + e)t(V + 1) (0 1)).
A similar expression holds for 9, K, and

97\ K =(4+ )3 +)[(V + )37 = VEF)(0 V) (aV)
+ (4 +e)B+e)(V + )3t (Iny) (8 V)
+(@+e)(V+ w)“f V3E)(02,V)

+ (4 +e)B+ UV + 1)1 (9 ) (aV)
+ (@ +e)B+e)t*(V + tw)“( ) (On1))
+ A+t (V + 1) (97 ).

JRGCICIEEE

follows directly from (3.21), (3.26), (3.39) and (3.40).

Once again, the estimate

e~
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In order to complete the proof of (3.36), it only remains to estimate the quantity

e 07 ( /Q 5 Rep) = 2¢ /Q E R0 \¥) + (9a1) (D R) + (9 ) (OnRY) + (87 , ).
(3.41)

Among the four integral terms which occur on the right hand side of (3.41), let us consider,
for example, the first one

I =¢% /( R (9 \ ).

Let R >0, and Q. = Q. \ (B(&;, R) U B(&, R)). We have

_ . - ) .
> 24/9, R (ag/Aw):O(g 10z Il R ||**/Q, v)

0 5/9/575)

“+o0 2 !

—5 T C
< — dr<=—
/Q;V —C/R T+22" =R

with € a constant independent of R. Therefore

using (3.22) and (3.21), and

IN

€

g% /Q, RE(92 ) = O(E). (3.42)
On the other hand, according to the definition (2.8) of R® there exists a constant ¢; such that

— / —5 — —4
€ 1R€(§i + :L') — VOvA? In VO,A;.* + CiVO,Aj

uniformly on B(&;, R) (with A} = (CNA%)N1*2). We recall that ¢p = —L.(R°) is the unique
solution of

AY+(B+e)Viy =—R 4+ cyViiZy  in Qo
v =0 on 0f).
<ViZij> =0 for all 4,7

for some numbers ¢;;, with |¢i;| < C||R¥||.« < C'e. Then, proceeding as in [15] (proof of Propo-
sition 3.3), we obtain that, up to a subsequence, e =19 converges uniformly in B(f;-, R), as € goes
to 0, to a solution ®; of

AP + 5737A>§<(I) = _VgﬁAik 111707/\3 - CivéﬁAf + Zi,j dingVMZ-j in R3
< Vg,ng‘a‘l’ > =0 1<j<4 (343
@] < CVoa:

for some number d;;. Multiplying the equation by Eij, 1 < j < 3, and integrating in R3, the
orthogonality relations satisfied by ® and oddness of Eij with respect to the variable (z — 5;) j

18



yield dij; = 0,1 < j < 3. On the other hand, the kernel of the operator L; = A + 57311\: in
W2r(R3), 3 < r < 400, is spanned by the Z;;’s, 1 < j <4 (Lemma 2.3 in [15]). |®;] < CV -
implies that ®; € W27 (R?) for r large enough. Then, if ®; and &, are two solutions of (3.43),
D, — <I>; € Ker L;, and the orthogonality relations < Vé,A;f?ij, D, — @; >=0,1<j <4, imply
that ®; = ®;. Since the solution ®; of (3.43) is unique, it is radial (otherwise, a rotation of ®;
would provide us with another solution). Proceeding in the same way, we would prove that, up

to a subsequence /
e H0F \¥) — 0%, ®; uniformly in  B(&;, R).

852,/\(1)1- being odd in the variables (x — fg)j, we finally see that

5_1/ , Ra(ag,Aw) dx =o(e) as e goesto 0.
B(&;,R)

Since R may be chosen as large as desired, this result, together with (3.42), shows that I. = o(¢).
The other terms in (3.41) may be treated in the same way, completing the proof of (3.36).

O

4 Proof of Theorem 1.1

According to the statement of Theorem 1.1, we assume in this section that there exists a and b,
a < b < 0, such that H. (% »?) is nontrivial. In order to prove Theorem 1.1, we have to show
that for ¢ small enough, (P.) has a solution, which blows up at two points &1, &2 as € goes to
zero, with a < ¢(&1,&) < b and Vp(£,&) = 0.

In view of Proposition 2.3 and Proposition 3.1, we have to prove the existence of a critical
point of

Ia(gaA) = C'1 +C3€+025\I](65A)+598(€aA) (41)
with 0. = o(1), D a)f: = o(1), D(Q&A)HE = o(1) as € goes to 0, uniformly with respect to
(&,A) € Os5(Q2)x]d,67 L[, and ¥ is given by (2.2).

First, we remark that for any £ € 02 such that ¢(&) < 0, A — ¥(&, A) has a unique critical
point A(§) in (R%)?, such that
_ H(gj’ gj)l/Q
H(&,&)'? ¢(8)

Note that § € Os, and p(§) < —da, with d1, 2 strictly positive constants, imply the existence of
03 > 0 such that 03 < A;(&) < 5;1, i =1,2. Note also that

Aj(€) = i,j=1,2i+#j. (4.2)

02,v 02 U _
(({(912\/\11\ \Iz) ((gijip)) (f,/\(f)) = 4H(§1,51)1/2H(§2,£g)1/2(p(£) < —=04<0

for some d4 > 0. Therefore, the implicit functions theorem provides us, for £ € Os,, (&) < —d2
and e small enough, with the existence of A(€) close to A(¢) in C'-norm as € goes to 0, such that

Opl: (57 A(f)) =0.
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Then, in view of (4.1), finding a critical point of (£, A) = I.(§, A) reduces to finding a critical
point of £ — I.(§), with . }
1.(8) = W(&,A(6)) +6-(€)

and 0. = o(1), V0, = o(1) as € goes to 0, uniformly with respect to £ € Os, (Q2), (&) < —02.
A(€) being Cl-close to A(€), (4.2) yields

L(&) = —2In (= p(&)) — 1 +6.(¢) (4.3)

with 9:5 = o(1), Vég = 0(1) as € goes to 0, uniformly with respect to & € Os, (), p(§) < —da.

Arguing by contradiction, we assume that for any é; > 0, I. has no critical point in the subset
&€ 05 (), a < p(€) < b We note that ¢ has isolated critical values. This property follows
from the analyticity of ¢ on 92\ A, and the fact that (£) being a sequence of 2\ A such that
& = A, ¢'(€") =0, (&™) cannot be bounded (see the proof of Corollary 1.1 below). Then,
assuming that b is not a critical value of ¢, ¢ has no critical value ¢ in (a,a +n] U (b — n,b] for
some 1 > 0 sufficiently small. Consequently, ©? retracts by deformation onto ¢?~", %" retracts
by deformation onto %, and H, ((pb_", go‘”‘”) # 0 (on the boundary of 92, —V¢ points inward,
see Lemma 4.1 below).

We are going to use the gradient of I. to build a continuous deformation of @~ onto 7,
whence a contradiction. As I. is not defined on whole ¢?, we shall use the gradient of ¢ in the
complementary regions.

We notice that a < 0 and dp > 0 being given, ¢(£) > a and d(&;,00Q) > d§p, ¢ = 1,2, imply
that |§ — &2] > d;, with 4, a strictly positive constant.
For §p > 0 small enough and d(x,9Q) < 2§y, we denote by n, the outward normal to 9 at
x, with |t —z | = Mfla?z | — y|. We have the following lemma:
ye
Lemma 4.1 Leta < b <0, ¢ € Q2 such that a < p(€) < b and d(&;,00Q) = Min2 d(&;,0Q) < 26.
j=1,

Then, for 6o > 0 small enough, we have
afi@(g)-n& > 0.

Before proving this lemma, let us complete the proof of Theorem 1.1.

Proof of Theorem 1.1 completed. We consider ¢ € C"O(ﬁ X ﬁ), 0 < ¢ <1, such that
C&) =1 if d&,00) =25 i=1,2

) =0 if d(&,00) <8 i=1or2.

We set R
F=(VI.+(1-{)Vyp

and we consider the differential flow
d
Eg(t) = —F(E(t)), 6(0) = €0) a < (10(50) < —02. (44)

According to the assumption on I, (4.3) and Lemma 4.1, F(¢) does not vanish for a < ¢(&) <
—0d3. On one hand, if d(&;,00) < 28y, i =1 or 2, (4.3) yields

d Ve

317 =200 =5 — (1= CO) V() +0:(1) <o <0
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provided that ¢ is small enough, as Lemma 4.1 shows. Lemma 4.1 also shows that the orbits do
not meet the boundary of Q2. On the other hand, if d(&;, 9Q) > 26, i = 1,2, and a < ¢(£) < b,
we have

L1© = -IVLEP <0 (4.5)
From (4.3) we deduce that if { € ¢, the orbit £(t) with & as initial datum satisfies p(£(t)) €
¢® for any t, provided that ¢ is small enough. Therefore, (4.5) is valid along the orbit, and (4.3)
proves that for e sufficiently small, there is some ¢ such that gp(& (t)) = a + 7. Finally, composing
the flow with a retraction of ¢ onto ¢®~", we obtain a continuous deformation of ¢©?~" onto
@+ a contradiction with H, ("7, @@+ #£ 0. O

Actually, it is to be noticed that the previous arguments provide us, for € small enough, with
a nontrivial solution u. of —Au = ui“ in Q, u =0 on 0f). Then, the strong maximum principle
ensures that u. > 0 in 2. The concentration, as € goes to zero, up to a subsequence, of u. at two
points &1, & such that a < p(&1,&2) < b and V(&1,&) = 0 is a consequence of the construction
of us and (4.3).

Proof of Lemma 4.1. We prove the result for any dimension N > 3. From [11], we know the
uniform expansion with respect to y € €2

H(z,y) = by +0( ! )

|z =y + 2dgn, [N 2 dy—2

as d, = d(x,0Q) goes to zero. In particular

by 1
H(z,z) = SN2V 2 + O(dNQ)' (4.6)

Assume that a < ¢(z,y) < b and d, goes to 0. Then |z — y| has also to go to 0, and we have the
expansion

1 1 1 1
Z, = b — —5 + +o0 v 5 |- 47
90( y) N<2N2d:22d;22 |$*y|N72 Ixy+2dznz|N2> (d;\]zzd;zz) ( )

This expansion shows that d,, d, and |z — y| are of the same order as these quantities go to 0.
Then [11] provides us with the expansions

OH (N = 2)by O( 1 )

I, 1) = gmigy1 o\ g

oG dy — dy dy +d 1
) (%y)z—(N—l)bN< — + L N>+0(ﬁ>
N e =9I™ (o — g2 + 4d,d,) 2 dz

from which we deduce

) 1 d, — d, dy +d 1
a“"(x,y)z(N—z)bN< st + R >+o( N_l).
e oN-147d,> 1YY (o =y 4 4d,d,) dx

vl

This last quantity is clearly strictly positive as d, < d, and d, goes to 0. 0
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Proof of Corollary 1.1. We have to prove that for a small enough, ¢® retracts by deformation
on A. We are going to show that

Vo(z,y).(y —x,x —y) <0 when o(z,y) < a, with a small enough. (4.8)

According to the definition of ¢, we have :

p(z,y) = H(z,2)"*H(y,y)"* + H(z,y) - # (4.9)
dp _ H(y,y)Y/? 0H OH T—y
%(x,y) = H(z,2) 2 0z (z, ) + %(x,y) + (N - 2)I’Nm (4.10)
whence
. v (H, y)'/? OH v H(x,z)'/? 0H

Ve(z,y).(y —z,x—y) = <7H(x 2172 Oz ——(2,7) - H(y 92 By —-(vv) o

oH oOH 2(N — 2)by

+ %( Y) — a—y(%y)) (y—z) — To—g2

If 2 and y remain far from the boundary, say d(x,9Q), d(y,0Q) > 6 > 0, H and its derivatives
remain bounded, (4.9) implies that WZ% > —a, and (4.11) yields

Veo(z,y).(y —z,z —y) <2(N —2)a+ Cs <0 for a small enough.

If z and y approach the boundary, (4.9) implies that |« — y| goes to 0, (4.7) that d, and d, are
of the same order and |z — y|/d, is bounded. Moreover, [11] provides us with the estimate

OH x—y—Qnm.(w—y)nm_denI 1

) as d; — 0

and a similar expansion holds for —(ac y). Therefore, taking account of (4.6) and (4.10), we
find

dp nz T —y x—y—2ng.(x —y)ng, — 2d,n,
—(z,y) = (N —2)b — +
5 @) = )N<2N gzq, s -yl |z =y + 2dyng [V

1
+O(ﬁ) as dz—>0

X

The same expression holds for the derivative of ¢ with respect to y, interchanging the roles of x
and y. Note that we can write

y=x— (dy —dy)ngy + 7+ 0(dy)
with 7.ng = 0, |7| = O(|z — y|). Noticing that n, = n, + o(1), we obtain

Vo(z,y).(y — 2,2 —y)

=2(N — 2)bN< r —;IN—Q  (de ;dyj)j ([ dy)? — |z yl?) +0<d1v1—2> <0
>

2Nd 2 dy? do +dy)? + |7|?] 2 @
as d, goes to 0, |z — y|/d, bounded, since 2Nd§dy% @ +dy)N O

22



References

[1] A. BaHRrI, J. M. CORON, On a nonlinear elliptic equation involving the critical Sobolev
exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988) 255-
294.

[2] A. BaHri, Y. Y. L1, O. REY, On a variational problem with lack of compactness: the
topological effect of the critical points at infinity, Calc. Var. and Part. Diff. Eq. 3 (1995) 67-93.

[3] M. BEN AYED, K. EL MEHDI, M. GrossI, O. REY, A nonexistence result of single Peaked
Solutions to a supercritical nonlinear problem, to appear in Comm. Contemp. Math.

[4] L. CAFFARELLI, B. GIDAS, J. SPRUCK, Asymptotic symmetry and local behavior of semi-
linear elliptic equations with critical Sobolev growth, in Comm. Pure Appl. Math. 42 (1989)
271-297.

[5] M. DEL Pino, P. FELMER, M. Musso, Two-bubble solutions in the super-critical Bahri-
Coron’s problem, to appear in Calc. Var. and Part. Diff. Eq.

[6] J. KazDAN, F. WARNER, Remarks on some quasilinear elliptic equations, Comm. Pure Appl.
Math. 28 (1975) 567-597.

[7] M. OuLp AnmMmADOU, K. OuLp EL MEHDI, Computation of the difference of topology at
infinity for Yamabe-type problems on annuli-domains, I & II, Duke Math. J. 94 (1998) 215-
229, 231-255.

[8] D. PASSASEO, New nonezistence results for elliptic equations with supercritical nonlinearity,
Diff. Int. Eq. 8 (1995) 577-586.

[9] D. PaSsSASEO, Non trivial solutions of elliptic equations with supercritical exponent in con-
tractible domains, Duke Math. J. 92 (1998) 429-457.

[10] S. POHOZAEV, Figenfunctions of the equation Au+ Af(u) = 0, Soviet. Math. Dokl. 6 (1965)
1408-1411.

[11] O. REY, A multiplicity result for a variational problem with lack of compactness, J. Nonlinear
Anal. TMA, 13 (1989) 1241-1249.

[12] O. REY, The topological impact of critical points in a variational problem with lack of
compactness: the dimension 3, Advances in Diff. Equations, 4 (1999) 581-616.

[13] O. REY, J. WEI, On elliptic Neumann problems with supercritical exponent, to appear.

[14] X. WANG, On location of blow-up of ground states of semilinear elliptic equations in R™
involving critical Sobolev exponents, J. Diff. Eq. 127 (1996) 148-173.

[15] J. WEL, Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near
the critical Sobolev exponent, J. Math. Soc. Japan 50 (1998) 139-153.

23



