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A criterion for existence of solutions to the supercritical Bahri-Coron's problem

We consider the supercritical elliptic problem -∆u = u 5+ε , u > 0 in Ω; u = 0 on ∂Ω with Ω a smooth bounded domain in R 3 , and ε > 0 a small number. Denoting by G the Green's function of -∆ on Ω with Dirichlet boundary conditions, and by H its regular part, we show that a nontrivial relative homology between the level sets ϕ b and ϕ a of ϕ, a < b < 0, ϕ(x, y) = H(x, x) 1/2 H(y, y) 1/2 -G(x, y), implies the existence, for ε small enough, of a solution to the problem which blows up, as ε goes to 0, at two points x, y such that a ≤ ϕ(x, y) ≤ b, ∇ϕ(x, y) = 0.

Introduction

Let us consider the nonlinear elliptic problem (P q )

-∆u = u q , u > 0 in Ω u = 0 on ∂Ω where 1 < q < +∞, and Ω is a smooth and bounded domain in R N , N ≥ 3.

When q is subcritical, i.e. q < N +2 N -2 , the mountain pass lemma proves the existence of a solution to (P q ) for any domain Ω. In the case q = N +2 N -2 , Pohozaev's identity [START_REF] Pohozaev | Eigenfunctions of the equation ∆u + λf (u) = 0[END_REF] shows that problem (P q ) has no solution as Ω is starshaped. On the other hand Kazdan and Warner [START_REF] Kazdan | Remarks on some quasilinear elliptic equations[END_REF] proved that a solution exists in the special case Ω is an annulus, and Bahri and Coron [START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain[END_REF] showed that a nontrivial topology of the domain, in the sense H 2n-1 (Ω; Q) = 0 or H n (Ω; Z/2Z) = 0 for some n ∈ N * , implies that (P q ) has a solution. When q > N +2 N -2 , Passaseo [START_REF] Passaseo | New nonexistence results for elliptic equations with supercritical nonlinearity[END_REF][START_REF] Passaseo | Non trivial solutions of elliptic equations with supercritical exponent in contractible domains[END_REF] gives, for N ≥ 4, an example of a topologically nontrivial domain for which no solution of (P q ) exists, provided that q > N +1

N -3 . The present paper is interested in the slightly supercritical case, i.e. q = N +2 N -2 + ε, with ε > 0 a small number. More precisely, we consider, for ξ ∈ R N and λ > 0, the functions

U ξ,λ (x) = α N λ λ 2 + |x -ξ| 2 N -2 2 , x ∈ R N
Functions U ξ,λ are approximate solutions to (P p ) when ξ ∈ Ω and λ goes to zero. This fact suggests looking for solutions to (P q ), q close to p, in a neighbourhood of the U ξ,λ 's, that is for solutions writing as

u = k i=1 U ξi,λi + v
with k ∈ N * and v small in some norm.

When q = p-ε, Bahri, Li and Rey [START_REF] Bahri | On a variational problem with lack of compactness: the topological effect of the critical points at infinity[END_REF], Rey [START_REF] Rey | The topological impact of critical points in a variational problem with lack of compactness: the dimension 3[END_REF] proved that such solutions exist. In particular, a solution exists for k = 1 and ε small enough, which blows up at a critical point of the Robin function H(x, x) as ε goes to 0.

When q = p + ε, the situation comes out to be different. Ben Ayed, Grossi, El Mehdi and Rey [START_REF] Ben Ayed | A nonexistence result of single Peaked Solutions to a supercritical nonlinear problem[END_REF] showed that there is no solution blowing up at a single point as ε goes to 0. However, Del Pino, Felmer and Musso [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF] proved, under certain topological conditions, the existence of such solutions when k = 2. To state their result, some notations have to be introduced.

We denote by G the Green's function of the operator (-∆) with Dirichlet boundary conditions on Ω, by H its regular part, i.e.

G(x, y)

= b N 1 |x -y| N -2 -H(x, y) with b N = (N -2)σ N -1
-1 , σ N -1 is the measure of the (N -1)-dimensional unit sphere, and

∆ x H = 0 in Ω × Ω H(x, y) = b N 1 |x-y| N -2 on ∂(Ω × Ω) For (ξ 1 , ξ 2 ) ∈ Ω × Ω we define ϕ(ξ 1 , ξ 2 ) = H 1 2 (ξ 1 , ξ 1 )H 1 2 (ξ 2 , ξ 2 ) -G(ξ 1 , ξ 2 ).
(1.1)

H d (B) denotes the d-th cohomology group with integral coefficients of B ⊂ Ω, and i * : H * (Ω) → H * (B) the homomorphism induced by the inclusion i : B → Ω. We have :

Theorem [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF]. Assume 3 ≤ N ≤ 6 and let Ω be a bounded domain with smooth boundary in R N . Suppose there exists a compact manifold M ⊂ Ω and an integer d ≥ 1 such that ϕ < 0 on M × M, i * : H d (Ω) → H d (M) is nontrivial, and either d is odd or H 2d (Ω) = 0.

Then there exists ε 0 > 0 such that, for any 0 < ε < ε 0 , problem (P p+ε ) has at least one solution u ε . Moreover, let C be the component of the set where ϕ < 0 which contains M × M. Then, given any sequence (ε n ) going to zero, there is a subsequence, which we denote in the same way, and a critical point (ξ 1 , ξ 2 ) ∈ C of the function ϕ such that u εn (x) → 0 on compact subsets of Ω \ {ξ 1 , ξ 2 } and such that for any δ > 0 sup |x-ξi|<δ u εn (x) → +∞, as ε → 0, i = 1, 2.

Examples are given of domains satisfying the topological assumptions of the theorem. Namely, a fixed domain D in R N , from which a subdomain ω is excised, ω contained in a ball of sufficiently small radius. When N = 3, another example consists of an arbitrary domain D, from which a solid torus is excised, with sufficiently small cross-section.

In the present work, we consider the case N = 3. We prove again the existence of the twobubble solutions to (P 5+ε ), blowing up at two points as ε goes to 0, with some modifications of the method used in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF], leading to a simpler and more natural assumption. Indeed, denoting by

ϕ a = {x ∈ Ω × Ω / ϕ(x) ≤ a}
the level sets of ϕ, we prove : Theorem 1.1 N = 3. Assume that a < b < 0, b is not a critical value of ϕ, and the relative homology H * (ϕ b , ϕ a ) is nontrivial. Then, for ε small enough, there exists a sequence of solutions to (P 5+ε ) which blows up at ξ 1 , ξ 2 as ε goes to zero, with

(ξ 1 , ξ 2 ) a critical point of ϕ such that a < ϕ(ξ 1 , ξ 2 ) < b.
Furthermore, denoting by

∆ = {(x 1 , x 2 ) ∈ Ω × Ω / x 1 = x 2 }
the diagonal of Ω × Ω, we have :

Corollary 1.1 N = 3.
Assume that b ≤ 0 is not a critical value of ϕ and H * (ϕ b , ∆) = 0. Then, the problem (P 5+ε ) has a solution as described in Theorem 1.1, with ϕ(ξ 1 , ξ 2 ) < b.

The corollary follows from the fact that ϕ a retracts by deformation on ∆, for a small enough, as proved at the end of the paper.

Remarks.

1) The arguments are still valid for N = 4. However, for sake of simplicity, we restrict ourselves in this paper to the case N = 3. Dimensions N ≥ 5 could be treated using the same tools as in [START_REF] Rey | On elliptic Neumann problems with supercritical exponent[END_REF].

2) The problem has a variational structure. Let J q denote a functional whose critical points are solutions to (P q . For slightly subcritical exponents, i.e. q = N +2 N -2 -ε, the difference of topology induced by the solutions blowing up at two points, as ε goes to zero, between the level sets of J q , is linked to the relative topology between Ω 2 and ϕ -= {x ∈ Ω × Ω / ϕ(x) ≤ 0} [START_REF] Bahri | On a variational problem with lack of compactness: the topological effect of the critical points at infinity[END_REF]. Here, the relevant quantity is the relative topology between ϕ -and ∆. We know that for expanding annuli-domains A η , η < |x| < η -1 , ϕ -is homotopically equivalent to A η × A η , whereas for thin annuli-domains ϕ -is homotopically equivalent to ∆ [START_REF] Ould Ahmadou | Computation of the difference of topology at infinity for Yamabe-type problems on annuli-domains, I & II[END_REF]. In one case, we obtain blowing up solutions for the supercritical exponent going to the critical one, in the other case blowing up solutions for the subcritical exponent going to the critical one.

Our approach to prove Theorem 1.1 is similar to Del Pino, Felmer and Musso's one, with appropriate modifications. In Section 2, we recall some results of [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF] which lead to a finitedimensional reduction of the problem, together with an asymptotic expansion of the reduced functional. Section 3 is devoted to the additional results which are required in Section 4 to prove Theorem 1.1.

Known results : the finite dimensional reduction

We consider the energy functional, defined in H 1 0 (Ω) ∩ L 6+ε (Ω), whose positive critical points are solutions to the problem (P ε ) := (P 5+ε )

J ε (u) = 1 2 Ω |∇u| 2 - 1 6 + ε Ω u 6+ε + .
We look for solutions to (P ε ) in a neighbourhood of functions

U = U 1 + U 2 , U i = U ξi,λi denoting the H 1 0 (Ω)-projection of U i = U ξi,λi introduced in Section 1. Let δ > 0 be a small number, we set O δ (Ω) = (ξ 1 , ξ 2 ) ∈ Ω × Ω : |ξ 1 -ξ 2 | > δ, dist(ξ i , ∂Ω) > δ, i = 1, 2 and 
λ i = cΛ 2 i ε, i = 1, 2, δ < Λ i < δ -1 (2.1) with c = b 3 R 3 U 6 6α 3 R 3 U 5 = 1 128 U = U 0,1 .
We also define

Ψ(ξ 1 , ξ 2 , Λ 1 , Λ 2 ) = 1 2 H(ξ 1 , ξ 1 )Λ 2 1 + H(ξ 2 , ξ 2 )Λ 2 2 -2G(ξ 1 , ξ 2 )Λ 1 Λ 2 + ln Λ 1 Λ 2 .
(2.2)

Expanding J ε (U 1 + U 2 ) with respect to ε, we find ( [START_REF] Bahri | On a variational problem with lack of compactness: the topological effect of the critical points at infinity[END_REF], [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF]) :

Lemma 2.1 There exist constants C 1 > 0, C 2 > 0, C 3 such that, for any δ > 0

J ε (U 1 + U 2 ) = C 1 + C 2 ε ln ε + C 3 ε + C 2 εΨ(ξ 1 , ξ 2 , Λ 1 , Λ 2 ) + o(ε) uniformly with respect to (ξ 1 , ξ 2 , Λ 1 , Λ 2 ) ∈ O δ (Ω)×]δ, δ -1 [ 2 .
This expansion holds in C 2 -norm with respect to the variables ξ and Λ in the considered domain.

Remark. Writing U = U 0,1 , constants C 1 , C 2 and C 3 are defined as

C 1 = 2 1 3 R 3 U 6 = √ 3 π 2 2 C 2 = 1 6 R 3 U 6 = √ 3 π 2 8 C 3 = 1 6 1 3 + ln c R 3 U 6 - 1 3 R 3 U 6 ln U . (2.3)
In view of this result, the strategy to prove the theorem consists in reducing the original problem of finding a critical point of J ε to a finite dimensional one in the variables ξ 1 , ξ 2 , Λ 1 , Λ 2 , such that the critical points of Ψ will provide us with the solutions that we are looking for. We first perform a rescaling. We set Ω ε = Ω/ε and δ > 0 being fixed, we consider points ξ

′ i ∈ Ω ε , numbers Λ i > 0, i = 1, 2, such that |ξ ′ 1 -ξ ′ 2 | > δ ε , dist(ξ ′ i , ∂Ω ε ) > d ε , δ < Λ i < δ -1 . (2.4)
We define the functions

V i = U ξ ′ i ,Λ * i = α N Λ * i (Λ * i ) 2 + | • -ξ ′ i | 2 1 2 Λ * i = cΛ 2 i .
As previously, we define the projections onto H 1 0 (Ω ε ) of these functions, namely the functions V i given as the unique solutions of

-∆V i = V 5 i in Ω ε V i = 0 on ∂Ω ε .
Let us denote

V = V 1 + V 2 V = V 1 + V 2 and (ξ ′ 1 , ξ ′ 2 , Λ 1 , Λ 2 ) = (ξ ′ , Λ).
Our aim is finding a solution to the problem in a neighbourhood of V , for appropriate ξ ′ and Λ. In order to reduce the problem to a finite dimensional one, we first solve the linearized equation at V . We define, for i = 1, 2, the functions

Z ij = ∂V i ∂ξ ′ ij 1 ≤ j ≤ 3 Z i4 = ∂V i ∂Λ * i
which span the kernel of the linearized problem at V i on R 3 when ε = 0, and their H 1 0 (Ω ε )projections Z ij , i.e. the unique solutions of

∆Z ij = ∆Z ij in Ω ε Z ij = 0 on ∂Ω ε .
Then, following [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF], we consider the problem : h ∈ L ∞ (Ω ε ) being given, find a function φ which satisfies

   ∆φ + (5 + ε)V 4+ε φ = h + i,j c ij V 4 i Z ij in Ω ε φ = 0 on ∂Ω ε < V 4 i Z ij , φ > = 0 for all i, j (2.5) 
for some numbers c i,j , < •, • > denoting the scalar product in L 2 (Ω ε ) (we notice that the orthogonality to

V 4 i Z ij in L 2 (Ω ε ) is equivalent to the orthogonality to Z ij in H 1 0 (Ω ε )).
Existence and uniqueness of φ follows from the implicit functions theorem, in suitable functional spaces. Actually, for ψ a function defined on Ω ε , we consider the following weighted L ∞ -norms

ψ * = sup x∈Ωε (1 + |x -ξ ′ 1 | 2 ) -1 2 + (1 + |x -ξ ′ 2 | 2 ) -1 2 -1 ψ(x)
and

ψ * * = sup x∈Ωε (1 + |x -ξ ′ 1 | 2 ) -1 2 + (1 + |x -ξ ′ 2 | 2 ) -1 2 -4 ψ(x) .
These norms are equivalent to (V ) -1 ψ ∞ and (V ) -4 ψ ∞ respectively, uniformly with respect to the points and numbers satisfying (2.4).

We recall the following result (see Propositions 4.1 and 4.2 in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF]) :

Proposition 2.1 Assume that conditions (2.4) hold. There exists ε 0 > 0 and a constant C > 0 independent of ε, ξ ′ , Λ, such that for all 0 < ε < ε 0 and all h ∈ L ∞ (Ω ε ), problem (2.5) has a unique solution φ ≡ L ε (h), which satisfies

L ε (h) * ≤ C h * * |c ij | ≤ C h * * . (2.6)
Moreover, the map (ξ

′ , Λ) → L ε (h) is C 1 and D (ξ ′ ,Λ) L ε (h) * ≤ C h * * . (2.7) 
A first order correction to consider, between V and a solution to the original problem, is given by

ψ = -L ε (R ε ) R ε = V 5+ε -V 5 1 -V 5 2 . (2.8) 
Estimating R ε * * -see 3.22 below -provides us, through Proposition 2.1, with an estimate of ψ * . Namely, there exists a constant C, independent of ε and ξ ′ , Λ satisfying (2.4) such that ψ * ≤ Cε.

(2.9)

Still following [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF], the next step is considering the nonlinear problem of finding φ such that, for some numbers c ij , the following holds

   ∆(V + ψ + φ) + (V + ψ + φ) 5+ε + = i,j c ij V 4 i Z ij in Ω ε φ = 0 on ∂Ω ε < V 4 i Z ij , φ > = 0 for all i, j. (2.10) 
Setting

N ε (η) = (V + η) 5+ε + -V 5+ε -(5 + ε)V 4+ε η (2.11)
system (2.10) writes as

   ∆φ + (5 + ε)V 4+ε φ = -N ε (ψ + φ) + i,j c ij V 4 i Z ij in Ω ε φ = 0 on ∂Ω ε < V 4 i Z ij , φ > = 0
for all i, j.

(2.12) Lemma 5.1 in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF] provides us with the following estimate, when conditions (2.4) hold : there is a positive constant C such that, for any sufficiently small ε and φ * ≤ 1

N ε (ψ + φ) * * ≤ C( φ 2 * + ε 2 ). (2.13)
Then, applying a fixed point theorem to the map

A ε from F = {φ ∈ H 1 0 ∩ L ∞ (Ω ε ) : φ * ≤ ε} to H 1 0 ∩ L ∞ (Ω ε ) defined as A ε (φ) = -L ε (N ε (φ + ψ))
which is contracting in norm • * , we obtain (see Propositions 5.1 and 5.2 in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF]) :

Proposition 2.2 Assume that conditions (2.4) hold. For ε small enough, there exists a unique

solution φ = φ(ξ ′ , Λ) to problem (2.12) in F . Moreover, (ξ ′ , Λ) → φ(ξ ′ , Λ) is C 1
, and there exists a constant C > 0 independent of ε, ξ', Λ, such that

D (ξ ′ ,Λ) φ * ≤ Cε.
(2.14)

Remark. Actually, φ = φ(ξ ′ , Λ) and its first derivatives satisfy the estimates

φ * ≤ Cε 2 D (ξ ′ ,Λ) φ * ≤ Cε 2 . (2.15)
The first inequality is a consequence of (2.13) and the definition of φ as a fixed point of A ε . The second one is proved in the next section -see Lemma 3.3.

To come back to the original problem, we consider the rescaled functions defined in Ω

ψ(ξ, Λ)(x) = ε -ζ ψ(ε -1 ξ, Λ)(ε -1 x) ζ = 1 2 + 1 2 ε (2.16) φ(ξ, Λ)(x) = ε -ζ φ(ε -1 ξ, Λ)(ε -1 x) (2.17) and Û (ξ, Λ)(x) = ε -ζ V (ε -1 x) = ε ( 1 2 -ζ) (U 1 (x) + U 2 (x)) U i (x) = U ξi,λi (x) (2.18)
with

λ i = cΛ 2 i ε and ξ i = εξ ′ i ∈ O δ (Ω).
Lastly, we define

I ε (ξ, Λ) ≡ J ε ( Û + ψ + φ)(ξ, Λ) . (2.19)
Previous results provide us with the following basic assertion (see Lemma 6.1 in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF]) :

Proposition 2.3 The function u = Û + ψ + φ is a solution to problem (P ε ) if and only if (ξ, Λ) is a critical point of I ε .
Consequently we are led, for proving the theorem, to find a critical point of I ε . We establish before, in the next section, some results about the second derivatives of I ε .

3 Improved results : the second derivatives of I In this section, we prove a C 2 -expansion of I ε -see (3.33) below. For this purpose, we first show that inequalities (2.7) and (2.14) are still valid for the second derivatives of L ε and φ respectively.

Lemma 3.1 Assume that assumptions of Proposition 2.1 are satisfied. L ε (h) is C 2 with respect to Λ, ξ
′ , and there is a constant

C independent of ε, ξ ′ , Λ, such that D 2 (ξ ′ ,Λ) L ε (h) * ≤ C h * * . (3.1) Proof. For given h ∈ L ∞ (Ω ε ), we recall that problem    ∆φ + (5 + ε)V 4+ε φ = h + i,j c ij V 4 i Z ij in Ω ε φ = 0 on ∂Ω ε < V 4 i Z ij , φ > = 0 for all i, j (3.2) 
has a unique solution φ = L ε (h) for some numbers c ij , with

L ε (h) * ≤ C h * * |c ij | ≤ C h * * . (3.3) 
Let us write

Z = ∂ ξ ′ φ
at least formally. Differentiating the first and third equations in (3.2) with respect to ξ ′ , we find

∆Z + (5 + ε)V 4+ε Z = -(5 + ε)(∂ ξ ′ V 4+ε )φ + i,j d ij V 4 i Z ij + i,j c ij ∂ ξ ′ (V 4 i Z ij ) in Ω ε (3.4) with d ij = ∂ ξ ′ c ij and < ∂ ξ ′ (V 4 i Z ij ), φ > + < V 4 i Z ij , Z >= 0 for all i, j. (3.5) 
We decompose Z, writing

Z = Z + lk b lk Z lk with < V 4 i Z ij , Z >= 0 ∀i, j. It follows from (3.5) that lk b lk < V 4 i Z ij , Z lk >= -< ∂ ξ ′ (V 4 i Z ij ), φ > ∀i, j. (3.6) 
This defines a linear system in the b lk 's which is almost diagonal, with uniformly bounded coefficients since, as ε goes to 0, we have

< V 4 i Z ij , Z lk >= δ i,l δ j,k R N U 4 0,Λ * i ∂U 0,Λ * i ∂y j 2 + o(1) (3.7) 
with y j = x j , 1 ≤ j ≤ 3, and y 4 = Λ * i . Such a system is uniquely solvable, and estimating the right hand side provides us with b lk = O( φ * ). Whence, using (3.3)

b lk = O( h * * ). (3.8)
On the other hand, using (3.4) we find that Z satisfies the equation

∆ Z + (5 + ε)V 4+ε Z = f + i,j d ij V 4 i Z ij in Ω ε (3.9) with f = -(5 + ε)(∂ ξ ′ V 4+ε )φ - i,j b ij [∆Z ij + (5 + ε)V 4+ε Z ij ] + i,j c ij ∂ ξ ′ (V 4 i Z ij ). (3.10)
It is easily checked, taking account of (3.3) and (3.8), that

f * * ≤ C h * * .
Then, we deduce from Proposition 2.1 that Z ≡ L ε (f ) and d ij satisfy

Z * ≤ C h * * |d ij | ≤ C h * * . (3.11)
Thus, using again estimate (3.8) we obtain

Z * ≤ C h * * . (3.12) 
Once these estimates are known, one easily check that

Z = L ε (f ) + + lk b lk Z lk
with the b lk 's defined by (3.6) and f defined by (3.10) is definitely the derivative of φ with respect to ξ ′ .

We have now to estimate the second derivatives of φ with respect to ξ ′ . Differentiating (3.4) and (3.5) with respect to ξ ′ , and writing formally

W = ∂ ξ ′ Z = ∂ 2 ξ ′ 2 φ we find ∆W + (5 + ε)V 4+ε W = -2(5 + ε)(∂ ξ ′ V 4+ε )Z -(5 + ε)(∂ 2 ξ ′ V 4+ε )φ + i,j e ij V 4 i Z ij + 2d ij ∂ ξ ′ (V 4 i Z ij ) + c ij ∂ 2 ξ ′ (V 4 i Z ij ) (3.13) with e ij = ∂ ξ ′ d ij and < ∂ 2 ξ ′ 2 (V 4 i Z ij ), φ > +2 < ∂ ξ ′ (V 4 i Z ij ), Z > + < V 4 i Z ij , W >= 0 ∀i, j. (3.14) 
We proceed as previously, writing W as

W = W + l,k a lk Z lk with < V 4 i Z ij , W >= 0 ∀i, j. It follows from (3.14) that l,k a lk < V 4 i Z ij , Z lk >= -< ∂ 2 ξ ′ 2 (V 4 i Z ij ), φ > -2 < ∂ ξ ′ (V 4 i Z ij ), Z > ∀i, j. (3.15) 
(3.7) implies again that (3.15) is a linear system in the a lk 's which is almost diagonal, and (3.3), (3.12) show that

|a lk | ≤ C( φ * + Z * ) ≤ C ′ h * * . (3.16)
On the other hand, we have

(∂ ξ ′ V 4+ε )Z * * ≤ C Z * ≤ C ′ h * * (∂ 2 ξ ′ 2 V 4+ε )φ * * ≤ C φ * ≤ C ′ h * * (3.17)
and

∂ ξ ′ (V 4 i Z ij ) * * ≤ C ∂ 2 ξ ′ 2 (V 4 i Z ij ) * * ≤ C. (3.18)
Going back to (3.13), we see that W satisfies Finally, estimate (3.16) yields

   ∆ W + (5 + ε)V 4+ε W = g + i,j e ij V 4 i Z ij in Ω ε W = 0 on ∂Ω ε < V 4 i Z ij , W > = 0 for all i, j (3.19) with g = - i,j a ij [∆Z ij + (5 + ε)V 4+ε Z ij ] + 2 i,j d ij ∂ ξ ′ (V 4 i Z ij ) + i,j c ij ∂ 2 ξ ′ 2 (V 4 i Z ij ) -(5 + ε)(∂ 2 ξ ′ 2 V 4+ε )φ -2(5 + ε)(∂ ξ ′ V 4+ε )Z. ( 3 
W * ≤ C h * * .
Once again, these estimates show that W = L ε (g) + l,k a lk Z lk , where the a lk 's are defined by (3.15) and g by (3.20), is indeed the second derivative of φ with respect to ξ ′ . The other first and second derivatives of φ, involving the Λ i 's, may be treated in the same way. This concludes the proof of Lemma 3.1.

Lemma 3.2 The map (ξ ′ , Λ) → ψ(ξ ′ , Λ) is C 2
for the norm • * , and there exists C independent of ε and ξ', Λ satisfying (2.4) such that

ψ * ≤ Cε D (ξ ′ ,Λ) ψ * ≤ Cε D 2 (ξ ′ ,Λ) ψ * ≤ Cε. (3.21)
Proof. We recall that ψ is defined as

ψ = -L ε (R ε ) R ε = (V 1 + V 2 ) 5+ε -V 5 1 -V 5 2 .
The smoothness of (ξ ′ , Λ) → ψ(ξ ′ , Λ) follows from the smoothness of R ε with respect to (ξ ′ , Λ) and Lemma 3.1. Moreover, in view of Proposition 2.1 and Lemma 3.1, it is sufficient for establishing (3.21) to prove

R ε * * ≤ Cε D (ξ ′ ,Λ) R ε * * ≤ Cε D 2 (ξ ′ ,Λ) R ε * * ≤ Cε (3.22)
as ε goes to zero. Let us estimate R ε * * . In the regions |x -ξ ′ i | ≤ δ/ε, for small δ > 0, we write (for i = 1)

R ε = V 5+ε 1 + O(V 4+ε 1 V 2 ) -V 5 1 -V 5 2 ≤ CεV 5 1 | ln V 1 | + O(V 4+ε 1 V 2 ) + O(ε 5 ) whence |V -4 R ε | ≤ Cε.
In the exterior of these two regions, we see that |R ε | ≤ Cε 5 , and since

• * * is equivalent to V -4
• ∞ , the first inequality in (3.22) follows. Next, we write

∂ ξ ′ 1 R ε = (5 + ε)V 4+ε (∂ ξ ′ 1 V 1 ) -5V 4 1 (∂ ξ ′ 1 V 1 ). (3.23) Setting V 1 = V 1 -f 1 , we get ∂ ξ ′ 1 R ε = 5(V 4+ε -V 4 1 )(∂ ξ ′ 1 V 1 ) -5V 4+ε (∂ ξ ′ 1 f 1 ) + εV 4+ε (∂ ξ ′ 1 V 1 ).
Arguing as above, we have in the region |x -ξ

′ 1 | ≤ δ/ε, for small δ > 0 V 4+ε -V 4 1 = V 4+ε 1 -V 4 1 + O(V 3 1 V 2 ) = V 4+ε 1 -V 4 1 + O(V 3 1 f 1 + V 3 1 V 2 ) = εV 4 1 ln V 1 + O(ε 2 V 4 1 (ln V 1 ) 2 + V 3 1 f 1 + V 3 1 V 2 )
and, using the fact that

V 2 = O(ε) in the considered region, |∂ ξ ′ 1 V 1 | ≤ CV 2 1
and, through the maximum principle, f 1 = O(ε) in Ω ε , uniformly with respect to the parameters, provided that (2.4) is satisfied, we obtain

V -4 ∂ ξ ′ 1 R ε ≤ Cε.
In the region |x -ξ

′ 2 | ≤ δ/ε, for small δ > 0 V -4 |(V 4+ε -V 4 1 )(∂ ξ ′ 1 V 1 )| ≤ CV 2 1 ≤ Cε 2
whence again, in that region

V -4 |∂ ξ ′ 1 R ε | ≤ Cε.
In the exterior of the previous regions we derive from (3.23) that

|∂ ξ ′ 1 R ε | ≤ CV 6 ≤ Cε 6
from which we deduce

∂ ξ ′ R ε * * ≤ Cε. (3.24)
In order to estimate ∂ 2 ξ ′ Λ R ε * * , we write

∂ 2 ξ ′ 1 Λ1 R ε = (5 + ε)(4 + ε)(∂ ξ ′ 1 V 1 )(∂ Λ1 V 1 )(V 1 + V 2 ) 3+ε + (5 + ε)(V 1 + V 2 ) 4+ε (∂ 2 ξ ′ 1 Λ1 V 1 ) -5V 4 1 (∂ 2 ξ ′ 1 Λ1 V 1 ) -20(∂ ξ ′ 1 V 1 )(∂ Λ1 V 1 )V 3 1 . Away from ξ ′ 1 , noticing that ∂ Λ1 V 1 = O(V 1 ), ∂ 2 ξ ′ 1 Λ1 V 1 = O(V 2 1 ) in Ω ε (and the same estimates hold for V 1 instead of V 1 ) |∂ 2 ξ ′ 1 Λ1 R ε | ≤ C(ε 3 V 3 + ε 2 V 4 + ε 6 ) whence in this region, since V ≥ Cε in Ω ε V -4 |∂ 2 ξ ′ 1 Λ1 R ε | ≤ Cε 2 . Looking at the region |x -ξ ′ 1 | ≤ δ/ε, for small δ > 0, we write ∂ 2 ξ ′ 1 Λ1 R ε in the following way ∂ 2 ξ ′ 1 Λ1 R ε = 20 (∂ ξ ′ 1 V 1 )(∂ Λ1 V 1 )(V 1 + V 2 ) 3+ε -(∂ ξ ′ 1 V 1 )(∂ Λ1 V 1 )V 3 1 + 5 (V 1 + V 2 ) 4+ε (∂ 2 ξ ′ 1 Λ1 V 1 ) -V 4 1 (∂ 2 ξ ′ 1 Λ1 V 1 ) + ε(9 + ε)(∂ ξ ′ 1 V 1 )(∂ Λ1 V 1 )(V 1 + V 2 ) 3+ε + ε(V 1 + V 2 ) 4+ε (∂ 2 ξ ′ 1 Λ1 V 1 ) = I 1 + I 2 + I 3 + I 4 .
We have

V -4 (|I 3 | + |I 4 |) ≤ CεV 2 ≤ Cε. Writing V 1 = V 1 -f 1 ,
we have also

I 1 = (∂ ξ ′ 1 V 1 )(∂ Λ1 V 1 ) V 3+ε -V 3 1 + (∂ ξ ′ 1 f 1 )(∂ Λ1 f 1 ) -(∂ ξ ′ 1 V 1 )(∂ Λ1 f 1 ) -(∂ Λ1 V 1 )(∂ ξ ′ 1 f 1 ) V 3+ε and (∂ ξ ′ 1 V 1 )(∂ Λ1 V 1 ) V 3+ε -V 3 1 = O εV 4 |V 3 1 ln V 1 | + V 5 (f 1 + V 2 ) . Consequently V -4 |I 1 | ≤ Cε and similarly V -4 |I 2 | ≤ Cε.
The computations for estimating ∂ 2 ξ ′ 1 Λ2 R ε * * are simpler and we omit them. Finally, we obtain 

∂ 2 ξ ′ Λ R ε * * ≤ Cε. (3.25) ∂ Λ R ε * * , ∂ 2 ξ ′ 2 R ε * * and ∂ 2 Λ 2 R ε *
D (ξ ′ ,Λ) φ * ≤ Cε 2 D 2 (ξ ′ ,Λ) φ * ≤ Cε 2 . (3.26)
Proof. We recall that φ given by Proposition 2.2 is defined through the relation

φ = -L ε (N ε (φ + ψ)) (3.27)
and

N ε ( φ) = N ε (ξ ′ , Λ, φ) = (V + φ) 5+ε + -V 5+ε -(5 + ε)V 4+ε φ. (3.28) Setting O ε δ = ξ ′ = (ξ ′ 1 , ξ ′ 2 ) ∈ Ω ε × Ω ε : |ξ ′ 1 -ξ ′ 2 | > δ/ε, d(ξ ′ i , ∂Ω) > δ/ε, i = 1, 2 and F = { φ ∈ H 1 0 (Ω ε ) : φ * ≤ ε}, we define the map B : O ε δ × ]δ, δ -1 [ 2 × F → L ∞ * (Ω ε ) as B(ξ ′ , Λ, φ) ≡ φ + L ε (N ε ( φ + ψ)).
We have

∂ φB(ξ ′ , Λ, φ)[θ] = θ + L ε (∂ φN ε )(ξ ′ , Λ, φ + ψ) θ ≡ θ + M (θ) = (I + M )(θ)
and, according to Proposition 2.1

M (θ) * ≤ C (∂ φN ε )(ξ ′ , Λ, φ + ψ)θ * * ≤ C V -3 (∂ φN ε )(ξ ′ , Λ, φ + ψ) ∞ θ * .
(3.28) yields

(∂ φN ε )(ξ ′ , Λ, φ) = (5 + ε)[(V + φ) 4+ε + -V 4+ε ] (3.29)
whence, using (3.21) and φ ∈ F

V -3 |(∂ φN ε )(ξ ′ , Λ, φ + ψ)| ≤ Cε (3.30)
and M (θ) * ≤ Cε θ * . As a consequence, for ε small enough, the linear operator

∂ φB(ξ ′ , Λ, φ) is invertible in L ∞ * (Ω ε ), with uniformly bounded inverse. As (ξ ′ , Λ, φ) → B(ξ ′ , Λ, φ) is C 2 , (ξ ′ , Λ) → φ(ξ ′ , Λ) defined by B(ξ ′ , Λ, φ(ξ ′ , Λ)) = 0 is also a C 2 -map.
Let us prove (3.26). Derivating B(ξ ′ , Λ, φ(ξ ′ , Λ)) = 0 with respect to ξ ′ , we find

∂ ξ ′ φ = [∂ φB] -1 [∂ ξ ′ B] = [∂ φB] -1 (∂ ξ ′ L ε ) N ε (φ + ψ) + L ε (∂ ξ ′ N ε )(φ + ψ) +L ε (∂ φN ε )(φ + ψ) ∂ ξ ′ ψ
whence, in view of Proposition 2.1

∂ ξ ′ φ * ≤ C N ε (φ + ψ) * * + (∂ ξ ′ N ε )(φ + ψ) * * + (∂ φN ε )(φ + ψ) ∂ ξ ′ ψ * * .
From (3.28), (3.21) and (2.14) we deduce that

N ε (φ + ψ) * * ≤ Cε 2 . (3.31)
We also compute, recalling that |∂ ξ ′ V | ≤ CV 2 , and assuming that φ * ≤ Cε

V -4 |(∂ ξ ′ N ε )(ξ ′ , Λ, φ)| ≤ CV -2 (V + φ) 4+ε + -V 4+ε -(4 + ε)V 3+ε φ ≤ C φ 2 * whence (∂ ξ ′ N ε )(ξ ′ , Λ, φ + ψ) * * ≤ Cε 2 .
Lastly, using (3.30) and (3.21)

(∂ φN ε )(φ + ψ) ∂ ξ ′ ψ * * ≤ C V -3 (∂ φN ε )(φ + ψ) ∞ ∂ ξ ′ ψ * ≤ Cε 2
and finally we obtain

∂ ξ ′ φ * ≤ Cε 2 .
The estimate for ∂ Λ φ is obtained in the same way. We turn now to the second derivatives. We concentrate our attention on ∂ 2 ξ ′ Λ φ, since the estimates for ∂ 2 Λ 2 φ and ∂ 2 ξ ′ 2 φ follow from identical arguments. Derivating B(ξ ′ , Λ, φ(ξ ′ , Λ)) = 0 with respect to ξ ′ and Λ, we find 

∂ 2 ξ ′ Λ φ = [∂ φB] -1 ∂ 2 φ2 B.∂ ξ ′ φ.∂ Λ φ + ∂ 2 φξ ′ B.∂ Λ φ + ∂ 2 φΛ B.∂ ξ ′ φ + ∂ 2 ξ ′ Λ B (3.
∂ 2 φ2 B.∂ ξ ′ φ.∂ Λ φ = L ε ∂ 2 φ2 N ε .∂ ξ ′ φ.∂ Λ φ = L ε (5 + ε)(4 + ε)(V + φ + ψ) 3+ε + (∂ ξ ′ φ)(∂ Λ φ)
and in view of Proposition 2.2, we have to estimate

(V + φ + ψ) 3+ε + (∂ ξ ′ φ)(∂ Λ φ) * * ≤ V -2 (V + φ + ψ) 3+ε + ∞ ∂ ξ ′ φ * ∂ Λ φ * ≤ Cε 2
using (3.21) and Proposition 2.2. Estimating the other terms in the same way provides us with the announced result.

We are now able to prove the main result of this Section. From Proposition 2.3, we know that u = Û + ψ + φ defined through (2.16) (2.17) (2.18) is a solution to the initial problem if and only if (ξ, Λ) is a critical point of I ε = J ε ( Û + ψ + φ).

Proposition 3.1 We have the expansion

I ε (ξ, Λ) = C 1 + C 2 ε ln ε + C 3 ε + C 2 εΨ(ξ, Λ) + εθ ε (ξ, Λ) (3.33)
with θ ε , D ξ,Λ θ ε and D 2 ξ,Λ θ ε going to zero as ε goes to zero, uniformly with respect to ξ, Λ satisfying (2.4).

Proof. We claim that

I ε (ξ, Λ) = J ε ( Û ) + ερ ε (ξ, Λ) (3.34)
with ρ ε , D (ξ,Λ) ρ ε and D 2 (ξ,Λ) ρ ε going to zero as ε goes to zero, uniformly with respect to ξ, Λ satisfying (2.4). Then, expansion (3.33) is obtained estimating J ε ( Û ). Indeed, we have

ε 2ζ-1 J ε ( Û ) = ε 2ζ-1 J ε (ε 1 2 -ζ (U 1 + U 2 )) = J ε (U 1 + U 2 ) + 1 -ε ε 2 6 + ε Ω (U 1 + U 2 ) 6+ε = J ε (U 1 + U 2 ) + 1 6 - ε 2 ln ε + o(ε) 2 R 3 U 6+ε + o(ε ln |ε|) = J ε (U 1 + U 2 ) - √ 3 π 2 8 ε ln ε + o(ε) whence J ε ( Û ) = 1 + 1 4 ε ln ε + o(ε) J ε (U 1 + U 2 ) - √ 3 π 2 8 ε ln ε + o(ε)
and the desired expansion for J ε ( Û ) using Lemma 2.1 and (2.3). The expansions for the derivatives of J ε ( Û ) are obtained in the same way.

We turn now to the proof of claim (3.34). Validity of such an expansion for I ε and its first derivatives has already been proved in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF] (Proposition 6.1). Moreover, it can easily be found again from the arguments used below, concerning the second derivatives. Actually, we shall concentrate our attention on the second derivative with respect to ξ, Λ, for the second derivatives with respect to Λ 2 and ξ 2 may be treated exactly in the same way. The proof is composed of two steps : we show that

∂ 2 ξΛ [I(ξ, Λ) -J ε ( Û + ψ)] = o(ε) (3.35)
and

∂ 2 ξΛ [J ε ( Û + ψ) -J ε ( Û )] = o(ε). (3.36)
Let us prove (3.35). From a Taylor expansion and the fact that J ′ ε ( Û + ψ + φ)[φ] = 0, we have

I(ξ,Λ) -J ε ( Û + ψ) = J ε ( Û + ψ + φ) -J ε ( Û + ψ) = 1 0 D 2 J ε ( Û + ψ + t φ)[ φ, φ]tdt = ε 1-2ζ 1 0 Ωε N ε (φ + ψ)φ + Ωε (5 + ε) V 4+ε -(V + ψ + tφ) 4+ε + φ 2 tdt. (3.37) We recall that ζ = (2 + 1 2 ε) -1 < 1/2.
Differentiating twice with respect to ξ, Λ, we find

∂ 2 ξΛ [I(ξ, Λ) -J ε ( Û + ψ)] = ε -2ζ 1 0 Ωε ∂ 2 ξ ′ Λ [N ε (φ + ψ)φ] - Ωε (5 + ε)∂ 2 ξ ′ Λ (V + ψ + tφ) 4+ε + -V 4+ε φ 2 tdt (3.38) with ξ ′ i = ξ i /ε. Let us estimate the last integral. Setting ϕ = ψ + tφ H = H ε (ξ ′ , Λ) = (V + ϕ) 4+ε + -V 4+ε
we have

∂ 2 ξ ′ Λ (Hφ 2 ) =2(∂ ξ ′ φ)(∂ Λ φ)H + 2φ(∂ 2 ξ ′ Λ φ)H + 2φ(∂ Λ φ)(∂ ξ ′ H) + 2φ(∂ Λ H)(∂ ξ ′ φ) + φ 2 (∂ 2 ξ ′ Λ H) with ∂ ξ ′ H = (4 + ε)[(V + ϕ) 3+ε + -V 3+ε ](∂ ξ ′ V ) + (4 + ε)(V + ϕ) 3+ε + (∂ ξ ′ ϕ)
and

∂ 2 ξ ′ Λ H = (4 + ε)(3 + ε)[(V + ϕ) 2+ε + -V 2+ε ](∂ ξ ′ V )(∂ Λ V ) + (4 + ε)[(V + ϕ) 3+ε + -V 3+ε ](∂ 2 ξ ′ Λ V ) + (4 + ε)(3 + ε)(V + ϕ) 2+ε + (∂ Λ ϕ)[(∂ ξ ′ V ) + (∂ ξ ′ ϕ)] + (4 + ε)(3 + ε)(V + ϕ) 2+ε + (∂ ξ ′ ϕ)(∂ Λ V ) + (4 + ε)(V + ϕ) 3+ε + (∂ 2 ξ ′ Λ ϕ).
One the one hand, we deduce from the definition of V

|∂ Λ V | ≤ CV |∂ ξ ′ V | ≤ CV 2 |∂ 2 ξ ′ Λ | ≤ CV 2 (3.39) 
uniformly in Ω ε , with C independent of ε and ξ ′ , Λ satisfying (2.4). One the other hand, (3.21) and (3.26) provide us with estimates of ψ and φ in norm • * . Lastly, we notice that for any γ > 3

Ωε V γ = O(1) (3.40) 
as ε goes to zero, uniformly with respect to ξ ′ , Λ satisfying (2.4). Using these informations, straightforward computations yield

ε -2ζ Ωε ∂ 2 ξ ′ Λ (Hφ 2 ) = o(ε).
The same arguments applied to the first integral in (3.38) lead to a similar estimate, establishing (3.35). We turn now to the proof of (3.36). A Taylor expansion gives

J ε ( Û + ψ) -J ε ( Û ) =ε 1-2ζ I ε (V + ψ) -I ε (V ) =ε 1-2ζ DI ε (V )[ψ] + 1 0 (1 -t)D 2 I ε (V + tψ)[ψ, ψ] . As DI ε (V )[ψ] = -Ωε (∆V + V 5+ε )ψ and ∆V = ∆(V 1 + V 2 ) = -V 5 1 -V 5 2 = R ε -V 5+ε , we obtain DI ε (V )[ψ] = - Ωε R ε ψ.
On the other hand

D 2 I ε (V + tψ)[ψ, ψ] = Ωε |∇ψ| 2 -(5 + ε) Ωε (V + tψ) 4+ε + ψ 2 .
Then, integration by parts and ψ = -L ε (R ε ) yield

D 2 I ε (V + tψ)[ψ, ψ] = Ωε R ε ψ -(5 + ε) Ωε (V + tψ) 4+ε + -V 4+ε ψ 2 .
Consequently

J ε ( Û + ψ) -J ε ( Û ) = ε 1-2ζ - 1 2 Ωε R ε ψ -(5 + ε) 1 0 (1 -t)( Ωε (V + tψ) 4+ε + -V 4+ε ψ 2 )dt
and

∂ 2 ξΛ J ε ( Û + ψ) -J ε ( Û ) = ε -2ζ - 1 2 ∂ 2 ξ ′ Λ Ωε R ε ψ -(5 + ε) 1 0 (1 -t)( Ωε ∂ 2 ξ ′ Λ (V + tψ) 4+ε + -V 4+ε ψ 2 )dt .
We first consider the last integral. Denoting by

K = K ε (ξ ′ , Λ)(x) = (V + tψ) 4+ε + -V 4+ε
we have

∂ 2 ξ ′ Λ (Kψ 2 ) =2(∂ ξ ′ ψ)(∂ Λ ψ)K + 2ψ(∂ 2 ξ ′ Λ ψ)K + 2ψ(∂ Λ ψ)(∂ ξ ′ K) + 2ψ(∂ Λ K)(∂ ξ ′ ψ) + ψ 2 (∂ 2 ξ ′ Λ K) with ∂ ξ ′ K = (4 + ε)[(V + tψ) 3+ε + -V 3+ε ](∂ ξ ′ V ) + (4 + ε)t(V + tψ) 3+ε + (∂ ξ ′ ψ).
A similar expression holds for ∂ Λ K, and

∂ 2 ξ ′ Λ K =(4 + ε)(3 + ε)[(V + tψ) 2+ε + -V 2+ε ](∂ ξ ′ V )(∂ Λ V ) + (4 + ε)(3 + ε)(V + tψ) 2+ε + t(∂ Λ ψ)(∂ ξ ′ V ) + (4 + ε)[(V + tψ) 3+ε + -V 3+ε ](∂ 2 ξ ′ Λ V ) + (4 + ε)(3 + ε)t(V + tψ) 2+ε + (∂ ξ ′ ψ)(∂ Λ V ) + (4 + ε)(3 + ε)t 2 (V + tψ) 2+ε + (∂ ξ ′ ψ)(∂ Λ ψ) + (4 + ε)t(V + tψ) 3+ε + (∂ 2 ξ ′ Λ ψ).
Once again, the estimate

ε -2ζ Ωε ψ 2 (∂ 2 ξ ′ Λ K) = o(ε)
follows directly from (3.21), (3.26), (3.39) and (3.40).

In order to complete the proof of (3.36), it only remains to estimate the quantity

ε -2ζ ∂ 2 ξ ′ Λ Ωε R ε ψ = ε -2ζ Ωε R ε (∂ 2 ξ ′ Λ ψ) + (∂ Λ ψ)(∂ ξ ′ R ε ) + (∂ ξ ′ ψ)(∂ Λ R ε ) + ψ(∂ 2 ξ ′ Λ R ε ). (3.41)
Among the four integral terms which occur on the right hand side of (3.41), let us consider, for example, the first one

I ε = ε -2ζ Ωε R ε (∂ 2 ξ ′ Λ ψ).
Let R > 0, and

Ω ′ ε = Ω ε \ B(ξ ′ 1 , R) ∪ B(ξ ′ 2 , R) . We have ε -2ζ Ω ′ ε R ε (∂ 2 ξ ′ Λ ψ) = O ε -1 ∂ 2 ξ ′ Λ ψ * R ε * * Ω ′ ε V 5 = O ε Ω ′ ε V 5 using (3.22
) and (3.21), and

Ω ′ ε V 5 ≤ C +∞ R r 2 (1 + r 2 ) 2 dr ≤ C ′ R with C ′ a constant independent of R. Therefore ε -2ζ Ω ′ ε R ε (∂ 2 ξ ′ Λ ψ) = O ε R . (3.42) 
On the other hand, according to the definition (2.8) of R ε there exists a constant c i such that

ε -1 R ε (ξ ′ i + x) -→ V 5 0,Λ * i ln V 0,Λ * i + c i V 4 0,Λ * i uniformly on B(ξ ′ i , R) (with Λ * i = (c N Λ 2 i ) 1 N -2 ). We recall that ψ = -L ε (R ε ) is the unique solution of    ∆ψ + (5 + ε)V 4+ε ψ = -R ε + i,j c ij V 4 i Z ij in Ω ε ψ = 0 on ∂Ω ε < V 4 i Z ij , ψ > = 0 for all i, j for some numbers c ij , with |c ij | ≤ C R ε * * ≤ C ′ ε.
Then, proceeding as in [START_REF] Wei | Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical Sobolev exponent[END_REF] (proof of Proposition 3.3), we obtain that, up to a subsequence, ε -1 ψ converges uniformly in B(ξ

′ i , R), as ε goes to 0, to a solution Φ i of      ∆Φ + 5V 4 0,Λ * i Φ = -V 5 0,Λ * i ln V 0,Λ * i -c i V 4 0,Λ * i + i,j d ij V 4 0,Λ * i Z ij in R 3 < V 4 0,Λ * i Z ij , Φ > = 0 1 ≤ j ≤ 4 |Φ| ≤ CV 0,Λ * i (3.43)
for some number d ij . Multiplying the equation by Z ij , 1 ≤ j ≤ 3, and integrating in R 3 , the orthogonality relations satisfied by Φ and oddness of Z ij with respect to the variable (x -ξ ′ i ) j yield d ij = 0, 1 ≤ j ≤ 3. On the other hand, the kernel of the operator L i = ∆ + 5V 4 0,Λ * i in W 2,r (R 3 ), 3 < r < +∞, is spanned by the Z ij 's, 1 ≤ j ≤ 4 (Lemma 2.3 in [START_REF] Wei | Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical Sobolev exponent[END_REF]). |Φ i | ≤ CV 0,Λ * i implies that Φ i ∈ W 2,r (R 3 ) for r large enough. Then, if Φ i and Φ ′ i are two solutions of (3.43), Φ i -Φ ′ i ∈ Ker L i , and the orthogonality relations < V

4 0,Λ * i Z ij , Φ i -Φ ′ i >= 0, 1 ≤ j ≤ 4, imply that Φ i = Φ ′ i .
Since the solution Φ i of (3.43) is unique, it is radial (otherwise, a rotation of Φ i would provide us with another solution). Proceeding in the same way, we would prove that, up to a subsequence

ε -1 (∂ 2 ξ ′ Λ ψ) -→ ∂ 2 ξ ′ Λ Φ i uniformly B(ξ ′ i , R). ∂ 2 ξ ′ Λ Φ i being odd in the variables (x -ξ ′ i
) j , we finally see that

ε -1 B(ξ ′ i ,R) R ε (∂ 2 ξ ′ Λ ψ) dx = o(ε) as ε goes to 0.
Since R may be chosen as large as desired, this result, together with (3.42), shows that

I ε = o(ε).
The other terms in (3.41) may be treated in the same way, completing the proof of (3.36).

4 Proof of Theorem 1.1

According to the statement of Theorem 1.1, we assume in this section that there exists a and b, a < b < 0, such that H * (ϕ b , ϕ a ) is nontrivial. In order to prove Theorem 1.1, we have to show that for ε small enough, (P ε ) has a solution, which blows up at two points ξ 1 , ξ 2 as ε goes to zero, with a ≤ ϕ(ξ 1 , ξ 2 ) ≤ b and ∇ϕ(ξ 1 , ξ 2 ) = 0.

In view of Proposition 2.3 and Proposition 3.1, we have to prove the existence of a critical point of

I ε (ξ, Λ) = C 1 + C 3 ε + C 2 εΨ(ξ, Λ) + εθ ε (ξ, Λ) (4.1)
with θ ε = o(1), D (ξ,Λ) θ ε = o(1), D 2 (ξ,Λ) θ ε = o(1) as ε goes to 0, uniformly with respect to (ξ, Λ) ∈ O δ (Ω)×]δ, δ -1 [ 2 , and Ψ is given by (2.2).

First, we remark that for any ξ ∈ Ω 2 , such that ϕ(ξ) < 0, Λ -→ Ψ(ξ, Λ) has a unique critical point Λ(ξ) in (R * + ) 2 , such that

Λ2 i (ξ) = - H(ξ j , ξ j ) 1/2 H(ξ i , ξ i ) 1/2 1 ϕ(ξ) i, j = 1, 2 i = j. (4.2) 
Note that ξ ∈ O δ1 and ϕ(ξ) < -δ 2 , with δ 1 , δ 2 strictly positive constants, imply the existence of

δ 3 > 0 such that δ 3 < Λi (ξ) < δ -1 3 , i = 1, 2. Note also that (∂ 2 Λ 2 1 Ψ) (∂ 2 Λ1Λ2 Ψ) (∂ 2 Λ1Λ2 Ψ) (∂ 2 Λ 2 2 Ψ) ξ, Λ(ξ) = 4H(ξ 1 , ξ 1 ) 1/2 H(ξ 2 , ξ 2 ) 1/2 ϕ(ξ) < -δ 4 < 0
for some δ 4 > 0. Therefore, the implicit functions theorem provides us, for ξ ∈ O δ1 , ϕ(ξ) < -δ 2 and ε small enough, with the existence of Λ(ξ) close to Λ(ξ) in C 1 -norm as ε goes to 0, such that

∂ Λ I ε ξ, Λ(ξ) = 0.
Then, in view of (4.1), finding a critical point of (ξ, Λ) -→ I ε (ξ, Λ) reduces to finding a critical point of ξ -→ Ĩε (ξ), with Ĩε (ξ) = Ψ ξ, Λ(ξ) + θε (ξ) Arguing by contradiction, we assume that for any δ 1 > 0, Ĩε has no critical point in the subset ξ ∈ O δ1 (Ω), a < ϕ(ξ) < b. We note that ϕ has isolated critical values. This property follows from the analyticity of ϕ on Ω 2 \ ∆, and the fact that (ξ n ) being a sequence of Ω 2 \ ∆ such that ξ n → ∆, ϕ ′ (ξ n ) = 0, ϕ(ξ n ) cannot be bounded (see the proof of Corollary 1.1 below). Then, assuming that b is not a critical value of ϕ, ϕ has no critical value c in (a, a + η] ∪ (b -η, b] for some η > 0 sufficiently small. Consequently, ϕ b retracts by deformation onto ϕ b-η , ϕ a+η retracts by deformation onto ϕ a , and H * ϕ b-η , ϕ a+η = 0 (on the boundary of Ω 2 , -∇ϕ points inward, see Lemma 4.1 below).

We are going to use the gradient of Ĩε to build a continuous deformation of ϕ b-η onto ϕ a+η , whence a contradiction. As Ĩε is not defined on whole ϕ b , we shall use the gradient of ϕ in the complementary regions.

We notice that a < 0 and δ 0 > 0 being given, ϕ(ξ) > a and d(ξ i , ∂Ω) > δ 0 , i = 1, 2, imply that |ξ 1 -ξ 2 | > δ ′ 0 , with δ ′ 0 a strictly positive constant. For δ 0 > 0 small enough and d(x, ∂Ω) ≤ 2δ 0 , we denote by n x the outward normal to ∂Ω at x ′ , with |x -x ′ | = Min y∈∂Ω |x -y|. We have the following lemma:

Lemma 4.1 Let a < b < 0, ξ ∈ Ω 2 such that a ≤ ϕ(ξ) ≤ b and d(ξ i , ∂Ω) = Min j=1,2 d(ξ j , ∂Ω) ≤ 2δ 0 .
Then, for δ 0 > 0 small enough, we have

∂ ξi ϕ(ξ).n ξi > 0.
Before proving this lemma, let us complete the proof of Theorem 1.1.

Proof of Theorem 1.1 completed. We consider

ζ ∈ C ∞ (Ω × Ω), 0 ≤ ζ ≤ 1, such that ζ(ξ) = 1 if d(ξ i , ∂Ω) ≥ 2δ 0 i = 1, 2 ζ(ξ) = 0 if d(ξ i , ∂Ω) ≤ δ 0 i = 1 or 2.
We set

F = ζ∇ Ĩε + (1 -ζ)∇ϕ
and we consider the differential flow

d dt ξ(t) = -F ξ(t) , ξ(0) = ξ 0 , a ≤ ϕ(ξ 0 ) < -δ 2 . (4.4)
According to the assumption on Ĩε , (4.3) and Lemma 4.1, F (ξ) does not vanish for a ≤ ϕ(ξ 0 ) < -δ 2 . On one hand, if d(ξ i , ∂Ω) ≤ 2δ 0 , i = 1 or 2, (4.3) yields

d dt ϕ(ξ) = 2ζ(ξ) |∇ϕ(ξ)| 2 ϕ(ξ) -1 -ζ(ξ) |∇ϕ(ξ)| 2 + o ε (1) < η 0 < 0
provided that ε is small enough, as Lemma 4.1 shows. Lemma 4.1 also shows that the orbits do not meet the boundary of Ω 2 . On the other hand, if d(ξ i , ∂Ω) ≥ 2δ 0 , i = 1, 2, and a < ϕ(ξ) ≤ b, we have

d dt Ĩε (ξ) = -|∇ Ĩε (ξ)| 2 < 0. ( 4.5) 
From (4.3) we deduce that if ξ 0 ∈ ϕ b-η , the orbit ξ(t) with ξ 0 as initial datum satisfies ϕ ξ(t) ∈ ϕ b for any t, provided that ε is small enough. Therefore, (4.5) is valid along the orbit, and (4.3) proves that for ε sufficiently small, there is some t such that ϕ ξ(t) = a + η. Finally, composing the flow with a retraction of ϕ b onto ϕ b-η , we obtain a continuous deformation of ϕ b-η onto ϕ a+η , a contradiction with H * (ϕ b-η , ϕ a+η ) = 0.

Actually, it is to be noticed that the previous arguments provide us, for ε small enough, with a nontrivial solution u ε of -∆u = u 5+ε + in Ω, u = 0 on ∂Ω. Then, the strong maximum principle ensures that u ε > 0 in Ω. The concentration, as ε goes to zero, up to a subsequence, of u ε at two points ξ 1 , ξ 2 such that a < ϕ(ξ 1 , ξ 2 ) < b and ∇ϕ(ξ 1 , ξ 2 ) = 0 is a consequence of the construction of u ε and (4.3).

Proof of Lemma 4.1. We prove the result for any dimension N ≥ 3. From [START_REF] Rey | A multiplicity result for a variational problem with lack of compactness[END_REF], we know the uniform expansion with respect to y ∈ Ω This expansion shows that d x , d y and |x -y| are of the same order as these quantities go to 0. Then [START_REF] Rey | A multiplicity result for a variational problem with lack of compactness[END_REF] provides us with the expansions Proof of Corollary 1.1. We have to prove that for a small enough, ϕ a retracts by deformation on ∆. We are going to show that ∇ϕ(x, y).(y -x, x -y) < 0 when ϕ(x, y) < a, with a small enough. (4.8) According to the definition of ϕ, we have : ϕ(x, y) = H(x, x) 1/2 H(y, y) 

1 W

 1 .20) Estimates (3.3), (3.11), (3.16), (3.17) and (3.18) prove that g * * ≤ C h * * whence, in view of Proposition 2.* ≤ C h * * .

  32) and we have to estimate each term of the right hand side in norm • * * . Let us consider the first term. According to the definition of B and (3.28)

  and θε = o(1), ∇ θε = o(1) as ε goes to 0, uniformly with respect toξ ∈ O δ1 (Ω), ϕ(ξ) < -δ 2 . Λ(ξ) being C 1 -close to Λ(ξ), (4.2) yields Ĩε (ξ) = -2 ln -ϕ(ξ) -1 + θε (ξ) (4.3)with θε = o(1), ∇ θε = o(1) as ε goes to 0, uniformly with respect to ξ ∈ O δ1 (Ω), ϕ(ξ) < -δ 2 .

H 6 ) 1 2 1 d

 611 (x, y) = b N |x -y + 2d x n x | N -2 + o 1 d N -2 x as d x = d(x, ∂Ω) goes to zero. In particular H(x, x) = b N 2 N -2 d N -2Assume that a ≤ ϕ(x, y) ≤ b and d x goes to 0. Then |x -y| has also to go to 0, and we have the expansionϕ(x, y) = b N y| N -2 + 1 |x -y + 2d x n x | N -2 + o

d y -d x |x -y| N + d x + d y |x -y| 2 + 4d x d y N 2 + o 1 d N - 1 x.

 2211 y) = -(N -1)b N d y -d x |x -y| N + d x + d y |x -y| 2 + 4d x d yThis last quantity is clearly strictly positive as d x ≤ d y and d x goes to 0.

(4. 11 ) 1 d N - 2 x 2 N 1 d N - 1 x 1 (

 11122111 If x and y remain far from the boundary, say d(x, ∂Ω), d(y, ∂Ω) > δ > 0, H and its derivatives remain bounded, (4.9) implies that bN |x-y| N -2 > -a, and (4.11) yields ∇ϕ(x, y).(y -x, x -y) < 2(N -2) a + C δ < 0 for a small enough.If x and y approach the boundary, (4.9) implies that |x -y| goes to 0, (4.7) that d x and d y are of the same order and |x -y|/d x is bounded. Moreover,[START_REF] Rey | A multiplicity result for a variational problem with lack of compactness[END_REF] provides us with the estimate∂H ∂x (x, y) = -(N -2)b N x -y -2 n x .(x -y) n x -2d x n x |x -y + 2d x n x | N + o as d x → 0and a similar expansion holds for ∂H ∂y (x, y). Therefore, taking account of (4.6) and (4.10), we find∂ϕ ∂x (x, y) = (N -2)b N n x |x -y| N + x -y -2n x .(x -y)n x -2d x n x |x -y + 2d x n x | N + o as d x → 0.The same expression holds for the derivative of ϕ with respect to y, interchanging the roles of x and y. Note that we can writey = x -(d y -d x ) n x + τ + o(d x ) with τ.n x = 0, |τ | = O(|x -y|). Noticing that n y = n x + o(1), we obtain ∇ϕ(x, y).(y -x, x -y) = 2(N -2)b N -1 |x -y| N -2 -(d x -d y ) 2 -d y )2 -|x -y| 2 (d x + d y ) 2 + |τ | 2 d x goes to 0, |x -y|/d x bounded, since dx+dy) N .

  * may be estimated in the same way, concluding the proof of the lemma. , Λ) provided by Proposition 2.2 is C 2 for the norm • * , and there exists C independent of ε and ξ', Λ satisfying (2.4) such that
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