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Résumé. On étudie une équation aux dérivées partielles elliptiques du sec-
ond ordre avec conditions au bord de Neumann. Une analyse asymptotique
améliorée permet d’établir en dimension 3 des résultats précédemment con-
nus pour des dimensions supérieures : existence et multiplicité de solutions
concentrées, en fonction des propriétés de la courbure moyenne de la frontiere
du domaine.

Abstract. We study an elliptic partial differential equation of second order
with critical nonlinearity and Neumann boundary conditions. An improved
asymptotic analysis allows us to prove in dimension 3 results previously known
in larger dimensional spaces, i.e. existence and multiplicity of concentrated
solutions in connection with properties of the mean curvature of the domain.

Classification AMS. 35J65

Mots-clés. Equations elliptiques non-linéaires, exposant critique de Sobolev,
problémes variationnels avec défaut de compacité, conditions au bord de Neu-
mann.

Keywords. Nonlinear elliptic equations, critical Sobolev exponent, varia-
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1 Introduction and Results

How strongly differentiated structures may spontaneously emerge from an homogeneous
medium 7 A mechanism of pattern formation in some biological phenomena has been
identified, which relies on activator-inhibitor systems involving self-enhancement (auto-
catalysis) and long range inhibition [19] (see also [15]). The evolution of activator and
inhibitor concentrations is ruled by two coupled parabolic partial differential equations,
leading to steady states which depend on a unique elliptic problem, writing as

(1.1)

p > 0 and p > 1 are constants involving the significant parameters as catalysis and
diffusion rates. In the following, we assume that © is a smooth and bounded domain
in R” (n = 3, possibly 2, are the more interesting cases in view of modelling). Setting

i(z) = pTru (%ﬁ), (1.1) is equivalent to

-At+7 =wP,4>0 inf
1.2 _ ! K
(1.2) { g—"‘; =1 on 99,

with 2, =/l + z, . Consequently, the results that we shall establish concerning (1.1),

which hold provided p is large enough, apply to (1.2) on sufficiently large domains.
In the subcritical case, i.e. n=1,20rn >3 and 1 < p < 22, we know that (1.1) has

n—2"
for small ;1 a unique solution which is the constant ,up%l, whereas there exists, for p large
enough, at least one nonconstant solution which concentrates at one point of the boundary
as ¢ goes to infinity [16] [17]. In the critical case, i.e. p = ;‘—fg, studying (1.1) is more
difficult since, from a variational point of view, the problem is noncompact. (Actually, the




results may be different : when (2 is a ball and 4 < n < 6, (1.1) has a nonconstant solution
for any p > 0 [6] [10].) On H'(Q) we define the functional

_ Jo IVul? + p [ u?

(Jo L)

whose critical points u such that u 2 0 and u has constant sign are, up to a multiplicative
constant, solutions of (1.1). I, does not satisfy the Palais-Smale condition : there exist
sequences of H'(Q) along which I, is bounded, I ;. goes to zero in H'(Q2), and which do not
contain any convergent subsequence in H!(f2). The concentration-compactness principle
[18] provides us with a precise description of such sequences, from which it appears that
I,, globally noncompact, satisfies the Palais-Smale condition under the level S/2%" 8
denoting the Sobolev embedding constant

o luy R L
(1.4) = inf =n(n—2) (7—;—1)) ;

wen}@ |ul2 2t
uE0

(1.3) Iy(u)

Using suitably chosen test-functions, Adimurthi and Mancini proved that the infimum
of I, in H'(Q) is strictly less than S/2%" [1]. As, on the other hand, the energy of the

constant solution, I,(u = ,ur_iT) = ,u|Q|%%, goes to infinity as u goes to infinity, (1.1) has at
least one nontrivial solution for u large enough (see also [25]). Since this first result, many
works have refined our knowledge of the feature in the critical case. Adimurthi, Pacella
and Yadava showed that for u large enough, a solution w, of (1.1) with low energy, i.e.
IL(u,) < S/ 22/™ achieves its supremum at a unique point y,, which lies on the boundary
of the domain [4] (see also [20]). Up to a subsequence, y,, converges to some limit y° € 69
as p goes to infinity, and along this subsequence

n/2

(15) Va2 = 2

dy0 as p — +00

in the sense of measures, d,0 denoting the Dirac mass at y°. It was also proved, in the case
n > 7 and u, minimizes I,, that the sequence (y,) maximizes the mean curvature H of
the boundary. If u, is not a minimizer of 7,, the accumulation points of (y,) are however
critical points of H [5], result extended to the case n > 5 by Z.Q.Wang [26].

Conversely, assuming that n > 7 [4], or only n > 5 [26], we know that for any y° € 99
a strict local minimizer of H, with H (y°) > 0, there exists for large 1 a low energy solution
of (1.1) which concentrates at y° as p goes to infinity. The same result holds, assuming
that n > 6, for y° a nondegenerate critical point of H, with H(1°) > 0 [3] [23]. Moreover,
if n > 5 and a > 0 is an isolated critical value of H which induces a difference of topology
between the level sets of H (the relative homology H, (H**®, H%~?) is nontrivial for § > 0
small enough), there exists a solution u, of (1.1) which, up to a subsequence, concentrates
at a point y° € 9§ such that H(y") = a as u goes to infinity [23].




Unfortunately, the arguments which settle these results do not allow to conclude in
low dimensional spaces, whereas the three dimensional case seems of major interest. The
same kind of behaviour is expected in any dimension, but some cautiousness is to be
recommended, as it is shown by the qualitative difference which occurs between the cases
n = 3 and n > 4, concerning a similar problem with Dirichlet boundary conditions [9].
Unless on special domains with symmetries [28] [29], very few is known which holds for
any n > 3, excepted the existence for large p of a nontrivial low energy solution, and
some multiplicity results of such solutions related to geometric properties of the boundary.
Actually, Adimurthi and Mancini proved that (1.1) has at least cat(H™,9Q) nontrivial
solutions for u large enough, with H* = {y € 9Q/H (y) > 0} [2] (see also [27]).

The aim of this paper is to ameliorate our understending of the low energy solutions,
in such a way that we may extend to every dimensions n > 3 results previously known
for n > 5,6 or 7, and improve some other results as multiplicity of solutions in connection
with topological and geometrical properties of the boundary. For sake of simplicity, we
shall concentrate our attention on the most difficult case, that is n = 3, and we denote by
(P) the corresponding problem

(P) —Au+pu =vdu>0 inQCR
% =0 on 99 .

We prove :

Theorem 1.1 n = 3. Let u, be a minimizer of I, and, for p large enough, y, € 0K
the unique point at which u, achieves its mazimum in §). Then, H(y,) goes to H =
max,can H(y) as p goes to infinity.

Some additional informations about u, may be obtained. Namely :

(16)  Log (35 #Iu(up)) - -2 1o gl L~y +0 (ﬁ)

v denoting the Euler constant, and

VI

(1) Log|u|eo ~ g s s +00 .

Moreover, Cherrier [11] proved that for every n > 0, there exists a constant C(n) >
0, Cn= O(%) as n goes to zero, such that

19 Gor— ([ W) < [[wupecm [ wer®).

Actually, if n > 7, the best constant C(n) satisfies

CnH? 1
C(n) = —— +o(=) asn—0.
n n
with C,, > 0 a constant which depends on n only [5]. If n =3, S = 3“4/3, 225/n = 3'”:/3, and

we show :



Proposition 1.1 Ifn =3, the best constant C(n) in (1.8) satisfies

a2 1 1 2
1.9) ° C(n)==— Log|L it — Log2r!/3
(1.9) (n) 1 (Logn+ og| 0gnl+2+'r og2m +O(|L0gn|))

asn— 0.

Conversely to Theorem 1.1, we prove :

Theorem 1.2 n = 3. Let yo € 90 be a strict local mazimum point of the mean curvature
H of the domain boundary. For p large enough, there exists a low energy solution of (P),
which concentrates at yo as p goes to infinity.

Furthermore, denoting by f¢ and f. respectively the lower and upper level sets of a
function f, i.e.

f¢={z € Dom(f)/f(z) <c}  f.={z € Dom(f)/f(z)> c}

we state :

Theorem 1.3 Let a > 0 be an isolated critical value of the mean curvature H of 9%,
such that the relative homology H,(H,_s, Hyy5) is nontrivial, for any 6 > 0 sufficiently
small. There exists, for p large enough, a low energy solution u, of (P) which, up to a
subsequence, concentrates at a point yo € O such that H(yo) = a, as p goes to infinity.

This statement extends to the case n = 3 a result previously known for n > 5 [23]. (We
should also have H'(yp) = 0, as it is proved for n > 6.) Note that the solution u, that we
find is such that

3 1 2\/p
and
(1.11) Log|uy|eo ~ ? as p — 400 .

The same kind of arguments provides us with :

Theorem 1.4 Letc > 0. For y1 large enough, (P) has at least as many nontrivial solutions
as cat(H,,, H.), with ¢, = c¢(1+ "f), and p, is some strictly positive constant which depends
on ¢ only.

As a consequence, we recover the multiplicity result of [27] :

Corollary 1.1 For u large enough, (P) has at least as many solutions as sup,.. cat(H,, 65).

4




Indeed, cat(H.,, H.) > cat(H,,,08), and H., D Hy. for yu large enough. Then, for u
large enough, (P) has at least as many solutions as cat(Ha., 092). cat(Ha., 02) is an integer
which is less than cat(952,952), and cat(952, Q) is finite since 9 is a compact manifold.
Therefore, there exists ¢g > 0 such that sup,.qcat(H,, ) = cat(Hae, 9Q), hence the
result. From Theorem 1.4, we also derive:

Corollary 1.2 Assume that 0 is a reqular value, or an isolated critical value of H. For
i large enough, (P) has at least as many nontrivial solutions as cat(H*, HT), with HT =

Ho = {y € 8Q/H(y) > 0}.

Indeed, there exists § > 0 such that H has no critical valuein (0, ). Then, cat(H,,, H,) =
cat(H*, H*) as soon as ¢, < §. Choosing ¢ such that 0 < ¢ < 4, ¢, < 4 for p large enough
and Corollary 1.2 follows.

The proof of the theorems relies on a precised asymptotic analysis of the functional I,
in a neighbourhood of the possible low energy solutions of (P). We recall that the solutions
of the problem

(1.12) —Au:u%,u>01n R*,n>3
such that u € L7 (R"), Vu € L2(R"), write as
A"z

1.13 Uy,lz) = o
. 0= ey

AeRY yeR"

up to the multiplicative constant & = (n(n — 2))“T_2 In the critical case p = ’;—“_'3, a blow
up technique [14] shows that the low energy solutions of (1.1) are perturbations of the
functions U, ,, with y € 9Q and A goes to infinity as p goes to infinity [4]. Conversely, one
may try to construct low energy solutions of (1.1) in a neighbourhood of the approximate
solutions that the U, ,’s are. Unfortunately, in low dimensional spaces these functions are

not good enough approximations of solutions to make a perturbation approach effective.
We have

(1.14) —Aaly, + paly, — (U, ) = palyy, -

In order to get better approximate solutions to the problem, we could substract to al,,
a function 9 which satisfies —Ay + pyp = pal,, in , defined as

Wz) = ,ua/s;G#(:c, 2)th, (z)dz

G, denoting the Green’s function of the operator —A + p on Q with Neumann boundary
conditions. However, in view of further computations it is preferable to substitute to the
integral definition of 1) an approximate function ¢ given explicitely. In R", there exists a
unique tempered distribution E such that —AFE + uF = & [13], which is

(1.15) E(zx) = 1( vE )EZ—QK,IT_Q(\/me

™\ 2m|z|




where, according to standard notations [24], K, is a Bessel function

(1.16) Ka(t) = zsizaw(eiQ%J_a(it) —e 5 I, (it) a¢N
with

I VOl
L12) Jalt) = (3) gk! (k+c::+1) '

The definition of K, extends by continuity to the case o € N. K, satisfies on R the
ordinary differential equation

(1.18) K+ tK, - (*+a*)K,=0.

Note that, for @ > 0

(1.19) Ku(t) =Cut ™ 4 OfgFotlely ag¢ 3 0t

and we have

(1.20) Crp= 210k — 1! kEN*;Ck_F%t%:g! keN.
We set »

(1.21) ‘P,\,y..u(m) = )\; (]3: _2|n—2 —E C:,E(%@i yJ?Bﬁz)
and

(1.22) Vagu(z) = Usy(z) — @rgul(z) -

A direct computation shows that

I
1.23 —-Ap + =
( ) PRINT ru‘(loAsyvﬂ AT |.’L' . 'y[n__z
whence
- = _ nt2 _ 1
(1.24) —AdVsyu + paVy gy, = (aUA,y)nf2 +pa | Ung — —= .
AT |z —y|n2

@V 4., Will turn out to be a suitable approximation of the concentrated solutions that we
look for. We notice that in the special case n = 3 we are interested in throughout the
sequel, 242 =5 | g =31 22 =1 apd
Kyt it
(1.25) Kplt) _ e s,
Ci/2 Vi
The next section is devoted to the parametrization of the variational problem in a
neighbourhood of the approximate solutions of (P) that we defined. The study of the
parametrized problem will lead to the proof of the theorems in Section 3. The arguments
require some precise integral estimates which are established in appendix.
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2 Parametrization of the variational problem

We proceed to a suitable parametrization of the variational problem in a neighbourhood
of the approximate solutions. For € > 0, we set

(2.1) BE,“:{(a,/\,y)eRxR:xaﬂ/%<a<2c‘u, A>‘/TE}

and

3
&

(22) Vo, = {'u, € HY(Q)/300y) € R, x 02 > Y. [V(u = aViy)le < 5} |
Note that according to the previous definitions, in the 3-dimensional case that we are
interested in, we have

AL/2 1 — e~ VElz—Yl
T+ Ve =y~ WPy

(2.3) lV,\,y,M(:v) = (

From now on, we assume that g > po, with g a strictly positive constant. We prove the
following proposition :

Proposition 2.1 There exists €g > 0 such that for any e, 0 < e < gy, and any u € Ve,
the infimum.
inf V(v — aVagu)l2

(aa/\vy)EBds,p,

is achieved at only one point, which lies in By, ,,.

A similar proposition is stated in [23], whose proof is modelled on [8, Proposition 7].
We indicate in Appendix A in which way the arguments of [23] have to be modified to

conclude in the present case. (As we shall see further, the largeness of A > —‘E@ and the

smallness of % < ¢ ensure that V), , given by (2.1) is a perturbation of Uy, in H'(f2).)
For A € R} and y € 012, we define

(2.4)

V,
By = {v € HI(Q)/f V. VW g = f 'Vu.Va—V’}M = / VU.VM 2 [ e 1, 8
N = 0 5‘)\ QO 87_1'

(7:)i=1,2 denoting an orthonormal system of coordinates on the tangent space to 02 at y.
For i > iy, Proposition 2.1 induces a map from the open subset V., , of H*(Q) to the
manifold

M, = {(a, Ay, v) ERX R x 09 x HH(Q)/ (e, A y) € Baegp ¥ € Ergp, V]2 < E}

(,A,y) € By, being the unique point such that infiayy)ep,.,, V(v — aViy,)le is
achieved, and v = u — aVi,,. It is easily seen that this map is open, and induces a

7




diffeomorphism between V,  , and its image. This image contains, for 79 > 0 small enough,
the open subset

N, = {(O{, A,y,v) € Rx R: xaﬂle(Q)/|a—&| <My, A> —?,'L’ g E,\,y’”, |V’U|2 < ?’,‘g}.
0

Defining the functional

Iy = N — R

(@, A y,v) — L(aViy, +v)
(o, A, y,v) € N, is a critical point of J, if and only if u = aV), , +v € H*() is a critical
point of I,. The 0-homogenity of J,, even leads to define the functional

K,:0, =R

2.5
(2:5) Ry,0) = L(Vagu + )

with

7

(2.6) O = {(A,y,v) eRL x Q0 x H'(Q)/\ > \;ﬁ_ﬁ v € Eyyu V|2 < né}
0

and 7, > 0 is a constant sufficiently small. (\,y,v) € O, is a critical point of K, if and
only if u = Vi, + v € HY(R) is a critical point of I,. Then, & = (I,(u))*u satisfies

— AT+ pii = u® in Q ; ?—uzoonaﬂ.
ov

3 Proof of the theorems

This proof will follow from the study of the functional K, on O, showing the existence, for
p large enough, of (A4, yu,v,) € O, a critical point of K, such that w, = Vi, 4, , + v, > 0
in © - whence a solution of (P).

For w,u' in H'(2), we define the scalar product and the norm

(3.1) (u,u'y = /QVU.VH'+,u/ﬂuu' lu|| = (u, u)t/2

3.1 Minimization of K, with respect to v

In this subsection, we prove that for u large enough, % small enough, and y € 992, there
exists ¥ € F) , , such that the partial derivative of K, with respect to v vanishes. Moreover,
we estimate the norm of ¥ in such a way that this term will appear as negligible in the
expansion of K. According to (1.3) and (2.5), we have

V12 + 20 fo Vo + [Jo]?
(Ja(V +0)5)3

8

K.U»()\i y: U) =




with V' =V, , for sake of simplicity. We write
JoV+0)8 = [(VE+6 [, V415 [, Vi + O(|v|3)
= [ V®+ O(|v|m)

as |v|z: goes to zero, since V is bounded in L° as p goes to infinity and % goes to zero -
see estimate (C.3) in appendix. We have also

) 1/2 ) 1/2 u1/4
frelse () (L) =0 Gamtet)

according to estimate (C.2). Then, in a neighbourhood of v = 0, K, writes as

(3:3) Ky (A y,0) = Ku(X4,0) + Frgu(v) + Qagu(v) + Bayu(v)

with (omitting the indices A, y, p)

(3.4) Flo) =2 ( /Q vﬁ)m (,u /ﬂ Vo — 6(V) fﬂ V%)

Q) = (fv*) ™" [Mvw —50(V) [ V4?4 ([ V) (fu Vo) (Jo V)

+8 (V) V) (V)]

(3.2) T

(3.5)

(3.6) R(v) = O([lvll*lv]an)

where we set

(3.7 ()= ([ vorvie
Moreover, we easily verify that

(3-8) R()=0([v[)  R"(v) =0(ll)

in H'(Q2) equipped with || ||, uniformly with respect to y € 02, p and A, provided that
i is large enough and —‘{\—H is small enough. Concerning the behaviour of the linear form f
and the quadratic form (), we have :

Lemma 3.1 The norm of fy, . as a linear form on H(2) equipped with the scalar product
(5.1) verifies

1/2

1 I
(3.9) [l = O(A1/2u1/4 Ty )

uniformly with respect to y € 08, p, A, as p is large enough and % small enough.

9




Lemma 3.2 The quadratic form Q»,,, is coercive on H*(Q) equipped with the scalar prod-

uct (3.1), as u is large enough and % 18 small enough, with a modulus of coercivity bounded -
from below by a striclty positive constant independent of y € 09, A, .

Lemma 3.2 is proved in Appendix B. Before proving Lemma 3.1, we note that the
derivative of K, with respect to v vanishes if and only if g + Av +7(v) =0 in E, , ,, with
9,7(v) € Exypu, A € L(E)y,) such that

1
flv)={g,v) Qv)=5({Av,v) R'(v)=(r(v),.).
Applying the implicit theorem to the map

Bt By % Bog  —F B
(hyv) = h+ Av+r(v)

which verifies F(0,0) = 0, 2£(h,v) = A + v'(v) invertible in a neighourhood of (0,0)
because of Lemma 3.2 and (3.8), we obtain :

Proposition 3.1 There exists 6y > 0,5) > 0 such that, for u large enough, there exists a
smooth map

{\y) eR: x 0Q/YE < &} — By,
(A,y) |—>®#(A,y)

such that 9, (A, y) is the unique point v € Ey, ,, ||v]| < 6, satisfying %ﬂ()\, ¥, Tu(A,y)) =0
in Ty y,5,0u. Moreover

_ 1
(3.10) |7, (A v)|| = O()\I/Q_W)

uniformly with respect to y € 0 as p, A go to infinity, % < dp.

We turn now to the proof of Lemma 3.1. Estimates (C.1) (C.2) (C.3) of Appendix C
show that (V = V)

(3.11) /ﬂv"' — ngrO(%) {(v) —3+O(%}

as {1 goes to infinity and % goes to zero. We write (¢ = @y, U = Uyy)

(3.12) fﬂV"’v:fﬂ(U—cp)svzfQU5v+O(/ﬂU4<p|U[+/Q<,05|U|).

On one hand, Hélder’s inequality, Sobolev embedding, (C.49) and (C.12) imply that
5/6
(3.13) / Utplv| < C (/ U24/5a,06/5) |z = O (-‘{\EMHI)
Q Q

10




and

5/6 #5/4
.14 [oi<e([o) 1l =0 (Szbin) -

On the other hand, from (1.24) we deduce that

fU%—/ (uAV+,uV—u(U—/\1—/2!.1——_“—y|))’U

whence, integrating by parts and using the fact that v € Ey,,

1 av 1
.| UPy==|- /V — fU——“——— ) .
-5 /ﬂ ! 3 ( a0 BVU_HJL TR Q( 1\1/21 : ¥y|)v

As a consequence, (3.4) (3.11) (3.12) (3.13) (3.14), imply that

v 5/4
(3.16) f(v)zO(fBQa—Vv +— w +pu‘/ /\1/2 ST+ ‘f|v|ﬁ,1) |
We have
G1% v 5\ B |v] g2
(3.17) fna—y ( 5] ) [v[gr =0 72,174

using Holder’s inequality, the embedding of H!(f2) in L*(9%2) and (C.52), and

5/6
1 6/5 "
/ﬂ (U—m)’f) < p (fﬂ ) |v] a1 —O(ﬁ|’”|H1>

using Schwarz inequality, Sobolev embedding and (C.51). (3.16) (3.17) (3.18) (3.2) show
that (3.9) holds, hence Lemma 3.1.

1

S XT3l

L —

3.2 Proof of Theorem 1.1 and Proposition 1.1

Let us state the following proposition :

Proposition 3.2 Let u, be a low energy solution of (P), i.e. u, solves (P) and I,(u,) <
3 4/3

m—. For p large enough, there exist (ay,A,,y,) € R x Ry x 6Q,a, — 3Y4 A,

Ea‘—x\;lé.ﬁ‘i,% — 0 as p — o0, such that

(3.19) U = (Vi + (A Y))-

11




The proof of this proposition is delayed until the end of this subsection.

Proof of Theorem 1.1. According to Proposition 3.1, there exist & > 0 and 77 > 0 such
that the function

(3.20) K.\ ) = K\ y, 54N )

is well defined, for p > f, on {(A,y) € R} x 89/% < 7j}. From (3.3), (3.5) (3.6), (3.9)
and (3.10), we deduce that

~ LA
(321) Ru09) = Kulh0) +0 (5= + %)
and estimate (C.4) provides us with the expansion
(3.22)
3 3 VI H(y) A1 B VB A )
=2t [ = +2%— — e —— —L ;
K,(\y) T ( B + Y 3 (Logz\/ﬁJr 5 7)) +0O \/_+ =+ og\/_

Choosing § € 852 such that H(7) = maxycaq H(y) = H, and X such that Logk = 2‘/_) +
Log2,/u + v + =, we obtain

(323)  K.(0g) = 3”53 _ 3}5 (H+ 0(%)) exp (%}I‘C e %) |

On the other hand, if u, is a minimizer of I, for p large enough Proposition 3.2. applies
and, according to (3.19) (3.20) (3.21) and (3.22)

3m VB H(y) X 1 ) ( 1 ,u \/E A )
I = orl/3 pML o B g L =Y 140 L =0y

As a consequence, H(y,) > 0 and, minimizing this expansion with respect to A,, \/in/A,
going to zero, we find

B21) D> Tl T2 (0 + 02 ) exp (52 ~v-3)

4 VI H(yu) 2
Negessarily, I, (u,) < f?#(j\,gj), whence, in view of (3.23) and (3.24)
H(y,) 1 ( 1 1 )

==+ O(—) > exp | —2 = ;

n TOCE 2o Vg gy
This proves that

= 1

(3.25) H(y,) :H—I-O(;) as 1 — +00 .



Moreover, as A, minimizes K, (A, y,) with respect to A, we obtain using (3.22)

2./ 1 1
b/ LogA, = —— + Log2 — —) .
(3.26) oghy, = —7— + Log \/ﬁ+7+2+0(\/ﬁ)
(1.6) follows from (3.25) (3.26) and (3.22). (1.7) follows from (3.26) and Proposition 3.2.
Proof of Proposition 1.1. We just proved that for p large enough,

Jo IVul® +p Jo u? 3m/?

Iﬂ'(u) = (j‘n U6)1/3 2 I,’-L(U,Lt) = 4 = T] V’U, € Hl (Q)
v _ 1/3H+O( ) 2y/p 1
Then 2 /i \/_ )
Logn=——— f—a—’y—FLOgﬂ'l’[s—l—O(—ﬁ).
This implies that /1 = %|Logn|(1 +B(n)), with 8(n) = o(1) as n goes to zero, and we find

1 1 1
= Log|L - — Log2x'®+ 0O
B(n) LR ( og|Logn| + 5 T — Log2m ™ + (ILognl))

hence (1.9).

Proof of Proposition 3.2. Let u, be a low energy solution of (P). i.e. u, solves (P)
and I,(u,) < 32 Since

(397 /1Vu”|2+u/ui:fuﬁ
Q2 Q Q

there exists = € € such that u,(z) > pt/*, and supg w, goes to infinity as ;2 goes to infinity.
From [4, Lemma 2.2], we know that this supremum is achieved at only one point y, € 09,
and

(3.28) |V (uy — 374Uy, 42 = 0 as p— oo
with

' 2
(3.29) X, = (“‘?‘)S’f)) % 50 aspu—0.

(3.28) implies that |V (u, — 31/4Vy, 4 )| = 0 as p — oo, since

|§
!

(330) |V(Uk,y ,y, )l2 - ]V(Pf\y,ub — 0 as p — 00

13



as estimate (C.43) shows. Therefore, Proposition 2.1. applies and we may write
(3.31) U = (Vg + V)

with % < a, < 23Y4y, € 0Q,v, € Ey, wuw [VUu]2 = 0 and ‘/\/—f — 0 as p — oo.

Actually, in view of (3.28) (3.30) and (3.31), we have

IV (eUx, g — 31/4UAL,yL) |2 = 0 (vesp. |V (@, Va, g — 31/4%1‘%:#) 2 = 0)
as pu — oo whence, according to [23, Lemma A.1] (resp. Lemma A.1 in appendix)
(3.32) a, — 314 M/X, =1 ANy — P =0 asp— oo,

Consequently

\ (maxg u)? VI

— =0 aspu—co.

=B i

Note that we have also [|v,|| = 0 as p — co. Indeed, I,(u,) <

93/2,.2
/|V’u#!2+,ufui< sy
2 Q 8

Then, (3.31) and estimate (C.1) show that

372 33/272
o (?4—0(1) —|—/ |Vq;#|2) +ps/uﬁ <——
Q Q

We know that o, — 3% as u — 00, s0

2 _
,u/QuM = pfl)

Estimate (C.2) shows that u [, Vi = o(1), therefore u [, v2 = o(1) and |jv,|| — 0 as
p — oo. Then, Proposition 3.1 shows that v, = 7,(A,,y,). This completes the proof of
Proposition 3.2.

3W4/3
4

and (3.27) imply that

3.3 Proof of Theorem 1.2

3

Assuming that p is large enough and l/x_‘f small enough, we look for critical points of

I?#()\,y) = K,(\9,9(A,y)), which provide us with critical points of I,. Such critical
points are actually solutions of (P) :

Proposition 3.3 There exist p* > 0 and n* > 0 such that for any p > p*, K, is well
defined on K, = {(A\,y) € R*. x BQ/‘/T‘_L <n*}, and if (A, y) € Ky is a critical point of K,,,
there exist a > 0 such that u = a(V),, + 9,(\, y)) is a solution of (P).

14



Proof : If (), y) is a critical point of K, & = Vy,, + 8,()\,y) is a critical point of I, i.e.
there exists w € R such that

(3.33) —Aii + pii = wit’ inﬂ;g—"f:OOn o9 .

v
Note that @ # 0, provided that y is large enough and % is small enough, since [|7,(A, y)|| =
0 and [|[Vyyul> — % (see estimates (C.1) (C.2)) as p — oo and ‘F — 0. Multiplying the

equation by % and integrating on §, we find w = 3+0(1) as p goes to infinity and £ £ goes
to zero, because of (C.1) (C.2) (C.3) and (3.10). Setting u = w!/*@, u satisfies

(3.34) —Au+uu=u5inﬂ;%’g:0 on €2 .
v

Finally, let us show that v > 0 in Q. We multiply (3.33) by v~ = max(0, —u) and
integrate on €. This yields '
lu|* = |u”[g

On the other hand, Sobolev embedding theorem ensures that
lu”]* > Clu~s

with C a strictly positive constant. Thus, either v~ = 0, or |[u"|s > C'*. Note that
0<u™ < w(pagpu+ 0.0 9)]). As oy, and T,(A,y) go to zero in L°(Q) as p goes to
infinity and ‘/_ goes to zero, u~ = 0 provided that g > p*, ‘/_ < n*, with p* and n* two
suitably chosen strictly positive constants. The strong maxnnum principle then implies
that u > 0 in Q, and u is a solution of (P).

Proof of Theorem 1.2. It is equivalent to consider, instead of K ”

1 = 3w

(3.35) L“:W p— g

Let yo € 99 be a strict local maximum point of H, H(yp) > 0. Then
(3.36) Ir>0st.VyeV,={yedly—wl<r}, y#yo= H(y) <H(y) -

Let

Loy = {()\,y)/ye V"’H\(/ff) < Log) < ;’I\(g)} ;

Note that for u large enough, £, C K,. On the compact set L,., the continuous function
L, achieves its infimum. We claim that this infimum is not achieved on dL,. Indeed, in
view of (3.22) we have on £, the following expansion

L,(\y) - (QX/T'E _H) (Log Al —7))’ e B

(3.37) N AR S5 r

15




for p large enough, and A is some positive constant. Let Aq be such that

N 1 A

Loghy = —v— + Log2\/i+ 7+ = + =———— .
07 Hi) BT H(yo)y/It
For p large enough, (A, 7o) € £, and
H{yo) ( 2K 1 A )
3.38 L, (Ao, < — exp | — o B ot o e |,
A5 show) <=5 5 P\ THe) T2 Haova

On the other hand, let (A, y) € 9L,. Three cases are possible :

(i) LogA = H‘(/,i . Then, (3.37) implies that for u large enough

)
Vb
H (yo)

Lu(A\y) = /exp(— ) > Lu(Ao, Yo)-

(ii) LogA = ;E/E) (3.37) yields

3
L,(\y) > - pexp(hH\({E)) > L,(Ao, Yo) for p large enough.

(iii) |y — yo| = r. There exists § > 0 such that H(y) < H(yp) — J, so that, using (3.37)

L) 2 5 (2 (0 (yo)—é)(LOgEAf+l“/)\%)-

For LogA € ( Ve ,g‘(ﬁ), the right hand side achieves its minimimum at A such that
Logh = H(y%))*ﬁ( \/_— _jﬁ) + Log2,/f + 7 + 5. Therefore
H(yy) — 0 2./1k 1 A
L,(\y) > ————c¢ —_— Y —y— = > L, (A,
A2 P THa) - 72 e - ove) T o

for p large enough.
Consequently, a point (A, y,) at which L, achieves its minimum in £, lies in £, for p
large enough, and is a critical point of K,. According to Proposition 3.3, there exist a,

close to 3'/* such that u, = a,(Vs, 4.+ V(A ) is a solution of (P). Moreover, in view

of (3.35) o
3m

Iu(w,) = I?#()‘ua Yu) = + 27?1/311#()‘#1 Yuu)

and
Lyu(Auy yu) < Lu(Xo, 9o) <0

as (3.38) shows. Then, u, is a low energy solution of (P). Noticing that |y, — yo| < r, and
that 7 may be chosen as small as desired as p goes to infinity, we can impose y,, to go to
Yo as i goes to infinity, and the proof of Theorem 1.2 is complete.

16




3.4 Proof of Theorem 1.3

Let a > 0 be an isolated critical value of H on 95, such that H,(H,_s, Hy,s) is nontrivial
for any ¢ > 0 sufficiently small. We fix ¢ > 0 such that a > ¢, and we set

3
L, = {(A,y) e R, x 0Q/H(y) >c,§ < Log < #}

with A = maxsq H. We note that £/, C K, for y large enough. Therefore, a critical point
of L, in L], provides us, through Proposition 3.3, with a solution of (P). The strategy
consists in proving that the difference of topology between the level sets of H induces
the existence of such a critical point. Noticing that the expansion (3.37) holds on £}, we
proceed as follows :

(1) We compute

2 1
(3.39) miIlL#>—2Lexp (—#~7—§+—A ) = By .

(i) For y € Hy=H'™ = {y € 9Q, H(y) > 0}, we set

2/1 1 A
3.40 LogA(y) = —— 4+ Log2/u+v+ -+ —+— -
B0 BN Hy) TPV 2 H(y)ye
A(y) realizes the minimum of (A, y) — 2@ - H—(”’—)(Logﬁ +1-7)+ )\Aﬁ with respect

)
to A > 0. We notice that for x large enough, (A(y),y) € L, for any y € H.. Then, for
a — 6 > c, we prove the following properties :

(3.41) Vy€ Hos  Lu(Ay),y) <aq

1,6
with y 2 /i g p
1 ;a‘ — . K T .. .
Yt = "o h exp( a—s 2 (a—é)\/ﬁ) ’
(3.42) Y(\y) €L, Lu(\y) <a,simplies that y € H, 25 ;
(3.43) V(A\y) €L, L,(\y) < a5 implies that y € Hyys
with

n _ a+é (_2\/5_ 1 A )

AP 5 AP =
0 2\/,(_1: Xp a+5 fY+

2 (a+0)y/nm
We are now able to conclude. We first notice that for u large enough, aj ; < a), 5 <

bu. Let us assume that L, has no critical value between a; and a; ;. Then, using
!

the decreasing flow associated to the gradient of L, the level set LZ*‘"‘ N L), retracts by
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deformation onto the level set LZ“’J N L), (since a;, 5 < by, we know that the orbits starting

from L, ML, do not intersect dL;,). In view of (3.41), we consider the subset of Lo ML
defined as

{(A¥),y)/y € Has}

and follow its deformation along the flow. According to (3.42), y remains in H, 55, and

according to (3.43) y € Hyys as (A, y) € L NL,. Since a is an isolated critical value of H,
H,_;sis a strong retract of H,_o5 for § small enough. Then, the composition of the flow with
the projection (\,y) — vy onto 952 and the retraction of H, o5 into H,_; provides us with
a continuous deformation of H, s into H,.s, a contradiction with H,(H,_s, H,15) # 0.
Consequently, L, has a critical value between a,, ; and a, ;.

If all the corresponding critical points (A, y) € L, were such that y € Hgys, the previous
argument would still apply, that is it would be possible to deform H, s into H,,5. There-
fore, L, has a critical point (A, y,) such that a} 5 < L, (A, y,) < @, 5, and H(y,) < a+d.
On the other hand, (3.42) implies that H(y,) > a — 26. As p goes to infinity, 6 may be
chosen as small as desired, so that, for u large enough, L, has a critical point (), y,) such
that H(y,) goes to a as p goes to infinity. Hence, according to Proposition 3.3, the exis-
tence of a solution u, of (P) which, up to a subsequence, concentrates at a point y, € 92
such that H(yo) = a as p goes to infinity. (3.35) and L,(A,,y,) < a),; < 0 show that u,
is a low energy solution.

To complete the proof of Theorem 1.3, it only remains to prove assertions (3.39) (3.41)
(3.42) (3.43).

Proof of (3.39). Let (A,y) € 9L,,. Three cases are possible :

(i) Logh = % Then, using (3.37), we have

_VE " xH(y 1 A
L) 2 e 7 (2= T2 va+ ) Logyi— 3 +7) = ) =0
for p large enough.

(ii) Log\ = # In this case

Lu\y) > e~ ((2 = 3{(y))\/ﬁ+ H(y)(Log2/f — % ) = %) = —%\/ﬁe-aﬁ?

for u large enough.

(iii) H(y) = c. We have

L#()‘a y) 2

> =

(Wﬁ = C(Logzj/ﬁ + % -7 - %) :
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The right hand side achleves its minimum, for A € (e\ﬁf_ e \cf) at a pomt A such Log\ =
‘c/_ + Log2\/n+v+ 3 — c—\/—ﬁ‘ Therefore, if (A,y) € 0L, with H(y) =

c 2/ 1 A
D it —— _ = b

N
and (3.39) holds, provided that p is large enough.
Proof of (3.41). According to (3.37) and (3.40), and assuming that H(y) > a — 8, we

have
H(y) a—06 2/l 1 A "
Lo < =50 <5 ten (70 -3 ) =

Proof of (3.42). From (3.37), we know that

L) 2 5 (2 HO)logg 45 -7 - 7)Y €L

Minimizing the right hand side with respect to A, we find

Hw), (2E_ 1A ,
Lo -5 Bow (-5 -1 s+ ) TOWEs

Consequently, L,(A,y) < aj, ; implies that
2/ A 20/ A
il s - b _
(@-demp(- 2L - ) < Bl exp (~ 05 +
whence H(y) > a — 26 for p large enough.
Proof of (3.43). From (3.37) we deduce that for (), y) € £},

L) 2 § (VA - HO)Losg =+ 5 =) - 22

Minimizing the right hand side with respect to A, we find

H(y) 2 1 A
L,(\y) >~ 2\F ( 2w " 2+H(y)ﬁ)'

The right hand side is, for large p, a strictly decreasing function of H(y), hence (3.43).

Remarks.
1. We have _
0K, B 0K, 0K, 09,

A ax T ow o
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Proceeding as in [23], we find

0K, 8'5# B Log)\]l !
dv  OA b

and using the same arguments as in Subsection 3.1, we obtain

0K,

T (A u8) = EO,0)+ 055+ )

AQ\/_ A
Therefore, it follows from (3.10) and (C.47) that
(3.44)

0K, 1/3 Vi H(y) B i o 2 1 B VBN
aA(Ay)-SBvr (2)\2—}— 32 (Logg\/ﬁ i’ 2) + O /\2\/_+)\3+,\3Lg\/ﬁ :

In the same way, proceeding as in [22, Appendix C], and using (C.48), we have

(3.45)
a;ig (A y) =4r 1/3( \<_ Hy )(LOgQ\)/\—_7_1))+O(A3\/— i, +£L0g%ﬁ)

or

2K, 2 0K s H(Y) 1 B VB A
= 2N /3Y) L1
(3.46) EIY (A ) D) (A, y) + 27 P +0 (/\3\/_ - ¥ - Log\/ﬂ) :

. " VE 3
From these formulae we deduce that for any y € H,, there is a unique A\ € (e%, eiﬁ)

such that aK“ (A, y) = 0, which minimizes K 4(A, y) with respect to A.
2. Since aj,, < L,(Ay,v,) < aj,, we have

2E B 1 A

a-6 B2a-0) ' 2 -0da

2./ T 1 A
SLog(—Lﬂ(/\p,yu))_—a—Jr\C_LOg vE_

2wte) T2 Grovi

whence, as d may be chosen as small as desired as u goes to infinity

24/ 1
Log(—Ly(Au yp)) ~ — \c{_

or equivalently

3 1 2./l 5. b
(3.47) Log (-8— - WI“(U’”)> ~ —T\/_ as it goes to infinity
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that is (1.6). Actually from (3.44) we derive

2y/1t
Log), = Hé—)
1

Therefore, using (3.35) and (3.37)

LN S SN S Y/ LN DALY/ PV S Ve
Lo (7 - gt =~y ~ Wizl ~7 5O

hence (3.47), since H(y,) goes to a as p goes to infinity. Moreover, from Proposition 3.2

1 1
£ Lo/ 5+ =+ —]) 4
g2/l +y 5 (\/E)

we know that A\, ~ (S as u — 0o. Therefore
@ V3 2

VB
Log|up|eo ~ as . — 00
inles ™~ HGy,)

whence (1.7).
3.5 Proof of Theorem 1.4
We choose A", A < A" < A+ 1, such that

i 2/ I A

4 b’ = — ORI A s — — b

(3 8) K 2\/ﬁexp( c Y 2+C\/ﬁ)<ﬁ

is not a critical value of L,. From the Ljusternik-Schnirelman theory [12] we derive that
L, has at least as many distinct critical points in Lf,.,“ NL, as cat(L?{‘ NL,, LZ“ NL,). On
the other hand, we claim that for p large enough

A+1
+ e

(3.49) (Lfci‘ a ‘CL) D Fu={(A\w);y)/H(y) > cu} cu = (1 i

).

Then y "

cat(Ly N L), Lk N L},) > cat (Fy, L)
whence y y

cat(Ly' N L, Ly N L) > cat(H,,, H) -
Indeed, if F, may be covered by k closed sets F;, 1 < i < k, each one contractible in ,CL, H,,
is covered by the k closed sets G; = {y € H./3\ € [eVF/H VP (N y) € F;},1 <i <k,
each one contractible in H,. As shown previously, each critical point of L, in £, provides

us with a solution of (P). Therefore, for u large enough, (P) has at least as many distinct
solutions as cat(H.,, H.) - hence Theorem 1.4.

Proof of (3.49). From (3.37) and (3.40), we know that for any y € H,,

CH{y) ox 2yp 1 A
L,(A(y),y) < o) < W p( o 773 cm/ﬁ)'
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Then

and the announced result follows, since

Cy 1 1 A A 2+ A-A 1
== 2 By T0T) 2o e = _
c exp( \/ﬁ(c C,L) Cu/IB O\ L+ =

as p goes to infinity, and 2+ A — A" > 1.

APPENDIX

A Proof of Proposition 2.1

The equivalent of Proposition 2.1 has been proved in [23], following an argument by Bahri
and Coron [8] with, instead of V), ,,, Be i, Ve, defined by (2.3), (2.1) and (2.2), Uy, B, Vi
respectively, where U, , is given by (1.9) with n = 3 and

B.={(a,\y) ERX R} xaﬂ/% <a<2,A> %}
and i
Ve={ue H (@)/3(\y) € 02,1 > -, [V(u—alx) <e} .

We are going to use the same kind of arguments as in [23], with the suitable modifications.
We first state the following :

Lemma A.1 Let (g,,) be a sequence in R, such that e, goes to zero as m goes to infinity,
and (Qum, Ams Ym) € Bep oy Qs Ay ¥l) € B, such that

(A1) V(@ Vam yms = Vi )|z = 0 as m — +o0.

Then

A
Um—ap, =0 == =51 ApA|ym —Y> =0 asm — +oo .

! m
A

Proof. From the integral estimates of Appendix C - see (C.42) (C.43) - we know that

3m?
(A2) L V0E =T o) [ 1Verult = ot

as A — +oo, ‘—g—ﬁ — 0. As A, A, are larger than Eﬂ, with &, going to zero, (A.1) implies

that
V(o U,y —ot Uy )2 — 0 as m — 400 .
myYm m miYm

Then, the same arguments as in (23] [8] apply and the conclusion follows.

The next result is :
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Lemma A.2 There exists 9 > 0 such that for any €,0 < e < &g, and any v € V, ,,

|V (u— a’VA,y,#”?

in
(Q!Av'y)eaée,p

is achieved for some (&, A,y) € Ba,,, and is not achieved in By, \ Bac -

Proof. In a first step, we prove that the infimum is achieved in By ,, and in a second step
that it cannot be achieved in By, j, \ Bae,y, for € small enough.

Step 1. Let (o, A*, 4¥) be a minimizing sequence in By ,. Up to a subsequence, we may
assume .
o’ — & b y* = § asm — 400

with % <a<?2a, % < X < +00, § € 8Q. The only thing to prove is that A < 400,
provided that € is small enough. Arguing by contradiction, let us assume the existence of
a sequence (e,,) in R’ e, going to zero as m goes to infinity, a sequence (un,) in H' ()
with u,, € V;, ., and a sequence of minimizing sequences (af , AF yE ) in Bie,, , such that
for any m, A goes to infinity as k goes to infinity. um, € V., means the existence of
Ay = g , Ym € 0Q and y,, € H(Q) such that

Un = 0V g +Vm |[VUnl2 <é&m .

(@, Am, Ym) € Be,,, C Bie,, - Therefore, the infinimum that we are interested in on By,
is strictly less than e, and (af, Ak 4k ), being a minimizing sequence, for k large enough,
say k > K(m), we have

|v (a’V/\m,ym,p + U — aﬁzv)\ﬁvyﬁ#) |2 <E&m

whence
iv (dVAm,ym1” - a?lg'lvf\ksy#ur!-") |2 < 25171 ®

From Lemma A.1 we infer the existence of M such that, for any m > M and any k > K(m)

3

=
373

>

[N R

a contradiction with AF going to infinity as k goes to infinity. Hence the first step.

Step 2. We still argue by contradiction. Let us assume the existence of a sequence (&,,,) in
R’ converging to zero, and a sequence (uy,) in H'(Q), tum € Ve, 4, such that the infinimum
of |V (tm — aViyu)l2, for (a, A, y) € Ba,, ., is achieved in By, , \ Bee, . Consequently,

there exist A, > g and y,, € 052 such that

}V('U.m - av)\ms?}m:ﬂ)b < Em
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and, since (@, Am, Ym) € Baepn ur S0me (aly, A, Yh) € Baeyup \ Boepn,u Such that
|V (um - a;zv)\in,y;q,u) |2 < &m .
Therefore

;/_rf and

and Lemma A.1 implies that A,,/A. goes to 1 as m goes infinity. As A, >
AL < %, this is a contradiction, hence the second step and Lemma A.2.

Proof of Proposition 2.1 completed. Once again, we argue by contradiction. If Propo-
sition 2.1 is false, we derive from Lemma A.2 the existence of a sequence (g,,) in RY,
converging to zero, a sequence (u,,) in H*(Q), u,, € Vs, .., and sequences (m, Am, Ym) and
(s Ay, Ury) in R x RY x 02 such that for any m, (o, Am, Ym) and (o, Ay, ¥,,) are in
Bzam,p 3 (am: /\m: ym) # (a;n’ )‘;m y;n,)’ and

inf |V (tm — Ofvz\,y,;t)|2 = |V (tm — amV»\m,ym.#)b = |V (tm — af:nVA%wyimﬂ)‘? .
(aaA,y)eB‘iEm.u’

We may write
_ N !

with v, € By, ymous Vi € Ex_ g 4, and, since Um € Ve, ) |[VUm|z < €m and |V, |3 < e
We set .
Am

Am
Lemma A.1 shows that a,,, by, ¢ g0 to zero as m goes to infinity. We are going to prove
that for m large enough, a, = 0,b,, = 0,¢, = 0 - a contradiction with (aum, A, Ym) #
(s Aty Up)» hence the desired conclusion. Omitting the index m, and V denoting V), ,,
V" denoting Vi 4, (A.3) implies
(A.4) / V(aV - &'V).VV = [ V(' — ). YV = / Vo V(V = V)
Q Q Q

since v € By ,,v" € Exy ,, whence, as m goes to infinity

(A.5) /ﬂV(aV —dV').VV =0 ((/ﬂ IV(V — V’)|2)1/2) .

However, we may also write

(A.6) / V(aV - aV').VV = af IVV[? + a’/ v(V -V').VV
Q Q Q

We claim that

(A7) fQ V(V — V').VV = o(b] +|c])
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Then, we have also
_/wv V) = ofl + Il
and from (A.5), (A.6) and (A.2) we deduce that
= o([b] + ) -
Treating in the same way the quantities

av
8’1" 7

/ V(aV - a'V’).Va—V , / V(aV —d'V').V =12
Q oA Ja

we obtain
b=o(la|+1c])  c=o(lal+[b])

whence, for m large enough, a,, =0, b, =0, ¢, =0, as announced.

It only remains to prove (A.7). In [23] it is proved that
fQV(U _UN.VU = o(b| + |e]) -
Then, we have
/;ZV(V L% /Q V(U - U)o+ /QV(C,D — )YV + o(|b] + |e]) -

with ¢ = @y g @ = @ry - Easy computations show - see [23] - that
/\3/2
(1+ A%z - y|2)3/2) '

(A8) |vw—Uw=o(memvw+M

On the other hand
1— e‘\/mw*m s \/I-_I"x s yle_\/ﬁ{m_y)

h-9) Ve= NP2z — yf3 (#=1)
so that

1 .
(A.10) V| =0 (inf ()\52’ Mg = y|2)) uniformly in R? .

Using (A.8) and (A.10), straightforward computations yield

/QV(U _U).Vp =0 ((|b] + |c|)%\E)

so that

(A11) fﬂvwf U"). Ve = o([b] +|]) -
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The last integral to estimate is [, V(¢ — ¢').VV. Because of (A.10), we have

)\5/‘2
z— yif
\/»E 3 AICl r3d
T

For |z — y| > —”, we have

e
o —o/| = [z — | + O(%)
and from (A.9) we derive

oo L Rl — eV - G d)
7 N72[g — 3

@+ 00+ e - v+ o).

]
Consequently, noticing that 1 — e~VElE=v — /| — yle=vER=¥ = O(p|z — y[?), we may
i le|
write for [z — y| < Vi

Vo - ) = O (57— (Ylello = ol + lbllo = o+ Klello - o) )

and noticing that |1 — e=vFe=¥l —  /ilz — yle~vAl=—¥l| < 1, we have for |z — y| > %

! 1 '\/ﬁ |C‘
il = O | et T bl|z — e T
Therefore, using also (A.10), we have

= L ﬂ 3 K 2
) ‘,_ & f£S$< L A2[g)3 ( Y |c||z] + p|b]|z| +X|CHI|

No2|g] p
' ((1 TNl /wﬁ) dm)
1 AIVE VE A3/2p L
= 0 + — b d
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and

ko Ve-evv
le—y|> 7=

1

1 [y (Xl
=, f) vH il
(ﬁ@ﬁAmuP(A“W*”W”+A A+ WaP P WP

Lo yEd bl A2
-0 Bl Ll =
(/\1/2/”\/.&( 2 T+AT+)\) 2 7
_ o Yy
e O(/\|b|+/\2|c| .

Collecting these results, we obtain

.LVW-WWVV=4M+ED

and the proof of (A.7) is complete.

B The coercivity of ().

8

Our aim is this section is to prove Lemma 3.2. From (3.2) we know that for v € E, ,,

,LL]'/4
u [vo=0 (4l

and from (3.12) (3.13) (3.14) (3.15) (3.17) (3.18) (3.2)

1

In view of the definition (3.5) of @ and taking account of (3.11), we obtain

A

/V4 2:/U4v2+0(/U3fpv2+fgo4fu2) :
) ) ) a

2/3
/QUSQD'UQ il (/ U9/2(,03/2) Jv|%: = O (@h} %1)
Q

27

Q) = =3z (12 =15 [ V4 4 ollol?) o Y 0.

Wé write

On one hand




according to (C.50), and on the other hand

2/3
L
/ p® < C (/ ¢° v|3 =0 (—2|’U|§11)
Q Q A
according to (C.12). Therefore
2 2 4,2 2 Vi
(u) = —57 (”'UH - IS/QU v ) +o(||v||*) as < 0
and we are led to prove the coercivity of the quadratic form
Q) =0l =15 [ U4 +oflul?) v e Frg
)

Adapting to the Neumann case the arguments of [7] [21], it is proved in [4, Lemma 3.4]
that

B.1 VulP+w [ v =15 [ U > p( | |Vu>+w [ v?) YveEE,
Y
Q Q Q Q Q

w

provided that “\{\: is small enough, with p a strictly positive constant and

By, = {vEH‘ //WVU fve;v /anT _1,2}.

Let us deduce from this result the coercivity of @, provided that ”/Tﬁ is small enough. Let
v € By, . We write

ou ou .
(BQ) V=wW+ 2 wEEA!y ZGV@Ct(U,a,a—Ti,tzl,g)
that is
(B.3) z:aU+ba—[{+ cia—U a,b,c; eR .
A i—1.9 Bn

We multiply the gradient of (B.2) by VU, Vg{{, V 5., respectively, and integrate over (2.
On the left hand side, we find

/A
V'U.VUZfV’UV O( Vo )
/Q o =02Vl

since v € Ey,, and using (C.43). In the same way

390
f\“/’v \7— /V V O()\3/2|VU|2)
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and

M3/4
f V'U Vaﬂ / V'U Van (ﬁ'V’Ulg)

since V32|, = O( ,\;;:) nd |Va¢'| (Pﬁ) as easy computations show. Concerning the

right hand side, we have - see [23 Appendix D]

([ JoIVUP =3+ 0(58) Ja VUV = O(5F)
(B.4) § LIVEP =S5 +0(8) L VUVE =0(2)

L fﬂvgg Ve = LN, +0(N) [, VUV = 0(X8)

Thus, a, b, ¢1, co satisfy a 4 x 4 linear system which is nearly diagonal and whose inversion
provides us with the estimates

R » 3l
(B.5) g = 3 (-ﬁWU!g) b=0 (,u / \/XIV’U|2) o =i (/\5/2|Vv|2) ;
From (B.3) (B.4) (B.5) we deduce that

1/4
Vela =0 [ E=|Vols) .
VA

Straightforward computations show that

(B.6) [r=05  [Gr-og)  [Gor=ow

whence, using (B.3) and (B.5)
/4
=0 (E190l)

For h € H*(Q), we denote by ||h|| 4 the quantity

Inlle = [ 198+ v | hZ)m

Izl vz = olllvllyzy  llvllye = llwllya(l +o(1)

goes to zero, and

Then, we have

asf

ol =15 [U** = |lwl?z — 15 [, Utw® + O(lwll yallzll vz + 12152)
> pllulleg + oflfwl? )
ZP/QHUHf
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provided that u is large enough and % is small enough, because of (B.1) with w = /.
Finally, we write

Q) = wll*— 15 fUb* + (1 — /) foo*
> p/2|v| g + (1 — /1) [ v?
> p'|v]f?

21— l=p/2

S 7 ) > 0 for p large enough, and Lemma 2.2 is proved.

with p' = min(

C Estimates

In this last section we collect the different integral estimates which occur in the proof of
the theorems. Assuming that y € 012, u goes to infinity and % goes to zero, we establish
the following asymptotic expansions :

3 VHE H(y) A 1 i
C.1 2" g NT g TR T =
© [ 19Viaul = T e e (Logme G - v) + O )
H(y) 1
C.2 /P —) 0
(C.2) /Q Aloit ANE 4 A + ()\MS/Z)
’ H(y) Vi

C3 Vi, = e ag B THG) | /R

( ) /{; Ay, T 8 4m x 4 A & O( )2 )
where v denotes the Euler constant. From this we deduce

(C.4) |

3n  _ir  H(y) A 1 1 f

K, (A, ,0—21/3(— 24— — — — e ;

Proof. Up to a translation and a rotation of the coordinates in R?, we can assume that
y =0, and that for R > 0 small enough

(C.5) QNB(0,R) ={z = (z',z3) e R x R/|z| < R,z3 > f(2')}
with
(C.6) f(@) = fisi + fors + O(I2'")  |¢'| <R.

Note that we have
(©7) H() = fi+ /o
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and we choose some R’ > 0 such that
(C.8) @ c B(0, B) .

Let us begin with the proof of (C.3). It follows from the definition (2.3) of Vy g, = V that

1 e—\/ﬁ|m|
(C.9) Vi) =0 (/\5/2]:':' + A1/2|$|) uniformly for |z| > T > 0.
Therefore
1 e SRV
(C.10) angs, A A3/

For z € Bpg, we write (with U = Uy 0,9 = ©a0,)
(C.11) Ve =US — 6U5p + O(U*p? + %) .

The last terms are easy to estimate. Namely, we have

R' (1 _ —\/Er\6 3/2 pBR (1 _ ,—t\6 3/2
(C.12) /@6 PR ol WP / 0=V u-o0 (“—)
Q 0

=N, rd A3 4 3
and
BA(1 — e vir)? dop PR 2 I
: te? o i N 7 AT bl _ _di=0(L
(C.13) LU{,O _47r/0 s e fﬂ T 0 (%)
so that
4 2 6y _ B
(C.14) /Q(Ugo +¢)_O(A2).

Concerning the remaining terms, we note that for W a function defined in R®, we have

(C.15) f W:/ W—/W+f W
QNBr BE w! w'

with
B} = {z=(z',73) e R? xR, |z| < R, 13 > 0}

(C.16) w= {z=(z',23) eR2 xR, |z] < R,0 < 3 < f(z')}

w'= {z=(2',23) e R? xR, |z| <R, f(z') <23 <0}.

Let W = U®. We compute

Uﬁ 1 6 /\R ,r2 +OO ?,.2 O 1
= s —9 N ~ ' 4 bl
fgg ZfBR an ETs “/o T+ T Ol)
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that is
2

1
6 —_
(C.17) B;U =3 +O(,\3)'

Let a be a strictly positive constant such that

(C.18) A, = {z' € R?/|7'| < a}

and we denote by L, the cylinder

(C.19) L, ={z=(2/,z3) e R* x R/z’ € A,}.

Then we may write

(C.20) fUﬁ—f Uﬁ:f U5~/ U +0(55)
w! w' w'NLg w'NLg
since, outside L,, U = O(A~1/2), and we have
/ e / i / /f(ml) ___L d dx’
== = MH xT
WL, WNL Ao @+
_ f X2 / AT
—Ja, (1 + A2[z|2)5/2 1+z

-/, (e rela e ) ) i

¢ dz 1
C.21 —_— = ? = .
(C.21) fo DL a+ O(a”) fora>0,ﬁ>2

In view of (C.6) (C.7) we obtain

2d$r /\3le|3
[ﬁ—/ — )3 “f ——————+o(f ______MD
/ Zf NECESTETDE NECESYFIOE
:H(O) |$'|2dx) —!—O(l[ |z'|2dz’ )

noticing that

20 Jya, (L4 ]2'?)? A Jaag (L4 ]2'?)?
H +o0 3 1
_ (0) / redr + o
AJo (1472 A2
so that finally
H(0) 1
C.22 S—f P 3.




Lastly, in view of (C.11) and (C.15), with W = U®p, we compute

= AE
i B(1—eVvF)r AL e T
5 = = 2 = 2 /\zf = d = 2 / d
BEUQO Q/BRU(P N AR TDLE S A (1+r2)5/2 '
Writing 1 — g% = ﬂ'r + O(£7?), we find

271.\/— AR 2 m AR 7.3d7.
ra= —‘—*"O(ﬁfo )

B} 1+ r2)5/2 1+ r2)5/2
27‘._\/— +oo 2 7
(1+ T2 52 O(ﬁ)
that is
: 2
(C.23) Uy = 7;‘){_ + O( .
By

Outside Ly, USp = O(1/A%). Therefore

(C.24) /Ustp—/ Usgo:f US(,D—/ U@+O(A3)
w! w'! w'NLg w''NLg

\./n
(1 \2|z|2)572

Love= [ ve=0(ova [ armm )
~0 (v || )

= 0%

This result, together with (C.10) (C.11) (C.14) (C.15) (C.17) (C.22) (C.23) (C.24), com-
pletes the proof of (C.3).

We turn now to the proof of (C.2). According to (C.9), we know that

. ey S _|_
; QNBg AP AV
On QN Bg, we still use (C.15) with W = V2, and we have

TN 2
[v=3] vzzzﬂfﬁ’ Nz J‘“”)Tzdr
B 2 Jp, o \ (14 A%r2)1/2 A/ 2

2
_271'/’\R 11—\,
A (1+r2)1/2 r '
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and we have, since U’p <




As a consequence, we may write

whence

1 e Vi
C.26 PR il .
(C.26) /B+ Aﬁ+O(A2+Aﬁ)

On the other hand

—2a./1
/VZ—/ szf Vz—/ V2+O(i5+—e )
w' w' w'NLg w’NLg A A\/I'_'L

because of (C.9). We notice that V = O(AY?) for z € R® and

—V/Hlz| 0 1 ; 1
= ] + (—,\5/2]x|3) or |z| > 1

Therefore

[ 2 V2
'MLg w”r\L
f e— vzl O( 1 ))201 i+ 0 [
+ _ T T + z')|dz’
§< '|<a 0 )\1/2|$| /\5/2|$|3 ’ /jxflﬁ 7]
/ f(x’) ¢~ 2vial o [P 1 /
Lz /| A!mP * (A3|x14+>\54z16))d$3 &
+ 0 ()\/ |z’ |*da’
jerl<

(C.27) || =||(1+0(&'R)) e VAl = VA1 4 O(/El2']P)) for 7 € (' U w")

because of (C.6). Since |z'| < |z| and, using (C.6)

we obtain
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—2./plz’| e—2VEI'|
Vz—/ szf (_‘?_ﬁ___ff +O(( |Ef|2+ ,U,CL"B
/L:J"ﬂLa w'NLg %<|m;|<a Alx’lz ( ) A|$I|2 ( \/_l | )

e_\/ﬁimrl 1 ! d I O 1
+)\3|:c’|4 + )\5|$f|5) |f(‘“)1)> ok (ﬁ)

1 e 2vElz"| 2
= = E fif —tdg’
A i—1o %<lm’|<a |$-’|2
L[ s e VHr 1 1
_ -2./pr (.2 4 =
v (/\/— (e b )+ )\41"3) et /\3)

20/ 4
= @/ e ldg! 4 0 | — / ’ ue‘t(tz w2 d
2 %<|m’|<a /\#3/2 2% '\/E

1 [ovk e‘fd 1
—— S t —
LB fg ;e
o VE

H +oo & +o0 1 Log)\
=1 (©) f e_’"rdr—f Y e Trdr —/ e "rdr +O( =+ i )
4)41' 0 0 20/ A‘u’3/ AS

—2a./1
4Ap Apd/? T

hence, collecting this result with (C.25) (C.15) (C.26), we find (C.2).
We prove now (C.1). According to the definition (2.3) of V, we have

\5/2, 1 — e—VAll _ ~VAlel)g,
(C.28) BV AT - PR 1/;/ﬁ|3$|e e
0x; (14 A%|z|?) \72|z]
and so
|VVI2 _ /\511"2 _ 2)\2(1 = e_\/ﬁl-ﬂ — \/ﬁimle_ﬁlml)
(C.29) T+ 2zf2)? (1 + A2|z|?)%/2|z]
" (1- e—VElzl _ \/ﬁ|:§|6_\/ﬁ|$|)2
Alz|*
We have
-2./pr
C.30 VV[F=0 - gl uniformly for |z| > T >0
A8 Ar?
so that
1 \/ﬁe‘zRﬁ)
( : QNBS, | | A8 A
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On QN Bg, in view of (C.15) with W = |VV|?, and (C.29), we compute

A?|z|? ARy
T = Dy i
Bg (1+A%|z]?) o (1477
+00 r4dr +00 dT +00 d?" )
_QW/O (1+fr2)3_27r/m 1+72 O(/,\R (14 r2)2
32 1 1
=g = QTFATCtgAR + O(XE)
_ 3 2m (i)
8 AR A8
2(] — e—vlal _ ~ Vil| R _ o=vir _ ~ VB
/ e VHlzle ) T = 271’/ = \Q/ET: 2\rdr
o (T RRETR o T )
_9(1 _ »—RVE _ N R i
=2 21 —e — fRy/ue ) —I—Zy/ A
(14 A2R2)1/2 o (L+ X2p2)1/2
VE
_ 2 1 ﬁefﬂ\/ﬁ 2’11 /n\R te——t
=2 (—m-l-O( )t ), Tt
. ot po N pe VR e
—op (-2 4 2F #E
(ot r (/ it) ) +0 (5 +45
_ _Am A ue R
S Al (
(L —evPel — alale VPl or PR (1—emVF" — e VPT)?
dz = —/ dr
B Alz|* A Jo T2
2 /B TR (1 —et — b
= = dt
0
9 00 (1 _ o=t _ 4—1)2 +oo —t
= ﬁ;/ﬁ f Qe e )dt—f (12+0(6_))dt
0 t R\/ﬁ t i
LOV/TRE” e RVE
=——-—+40 .
A AR T ( A )
Therefore
C.32 yp=3T _ g,k vee VTN
(C.32) [B+|V\ 5 — o A+O(A2 7

To estimate the contribution of the subdomains w' and w”

following expansions. Let S > 0 such that

(C.33) AS = 400, Sy/up—0 as A p— oo,
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to the result, we consider the

VH

3 —0.




According to (C.29), we have

N8|z |2 A p|z| ©?
VVI? = g B
(C34) Ivvi= (1+ A|z]?)? ‘G ((1 + A2z|2)32 A for |o| <25

just writing e~VP#l = 1 — /fi|z| + O(u|z[?), and

(1 +2y/Ele] + plaf)e™ml (1
Alz|4 3|z |6

writing (1 + A[z|*)™* = szaize (1 + O(5zzp)) for [z] > S. Note that, for u large enough,

z € (W Uw"),|z'| £ 8, implies |z| < 25 because of (C.6) and (C.33). In view of (C.34) we
compute, using (C.6) and (C.27)

Aulz
o, o (setiors + ) do

(C.35) |IVV|? = ) for |z| > S

s 2
0 (J5 (et + &) ridr)
AE
=l (%fo (1;%)35“;’2\&254)

whence, taking account of (C.33)

N plz| [ e
0 /Tims ((1 ) ﬁ) 4 =0(50)

and the same holds for w” instead of w’. On the other hand, we have

AS|z|? 1 1 )
e L, A - d
L, uéksﬁl+vum2 T+ 3y ) ™

|l='|<S

The same holds for w” instead of ', so that

/ A5|ZE|2 dm_f /\5|$|2
W' 2 2\3 W' 2 233
g TN e T W)
f(z') 1 1
= )\3f / — ) d dz'
lﬂﬁ(o (v~ arm) &) &
_ 53 / 1 f<—f|‘—i%f dz
=N s \ T Uy i+ 77
B 1 /{1+AA2J;;|J5)!)1?2 dz 4’
@+ 7252 \ J, (1 + 22)3
1 1
= \° 1] ( — ) z2dz’
z-;zf ey AL AR (LR
erS
+o(x ——L———M)
( wj<s (14 A%[z'|?)?
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using (C.6) and (C.21). This yields because of (C.7)

/\5[3:[2 /\5|$]2
/ (1+A2xx:2)3d9"[u; (1+A2|a;|2)3

lo'|<s lo'|<S
AS 1 AS 4d
_ mH(0) / L a0 (2 / m)
A Jo (1+72)2 A2 o (1472
wH(0) /*5 dr 1 3dr f+°° 1 /+°° r3dr )
&= —+ + —=)dr— —
A . T o (1+72)2 1+'r r o (1+472)3
1 S
=+ O()\3S2 + X)

and finally, taking account of (C.34) (C.36) and (C.33), we obtain

3 1 S

|2'|<S l2’|<S

The last terms that we have to estimate are the integrals of [VV|? for z € ' or z €
w" ,|z'| > S. For |z'| > a, (C.35) shows that |[VV|>* =0 (”E:\T:;Fm' + A3|1:s|5)’ hence

[ovve- [, v

z'|>5 z'|>S
(038) \/—6—20\/—
S<|a’|<a S<|z'|<a
In view of (C.35) we compute, using (C.6)
dz 1 dz' 1
e L ehl ol
§<"$I|<a’ )\3|$|6 A S(II"(& |'T" I /\382

and the same holds with w" instead of w'. On the other hand we have, using (C.27), (C.6),
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(C.7)

/ (14 2,/plz| + y|3;|2)e—2\/mm! / (14 2/alz| + pi|z|2)e~2vElkl
dz — dz
3. Alzl* " Az

w
S<|z'|<a

_1 I (1+ 2/Ale’| + pla'[? + O(|a' + p¥21a'[P))e”2vPe :
dzs | dx
S<|z’|<a 0

S<|z'|<a

A IE’I4
1 fi/ (1 +2/al7| + ple'|)e VR
i=1,2 S(l.’lﬂ(ﬂ;

= = afda

']

H 2\/ﬁa 1 2‘\/Ea’ 3
s (O)f (—+1+£)e‘*’dr+0 —1—/ (1+7~+,~2+T—)e‘rdr .
A 2/m5 \T 4 MNE Jayps VB

We have

2y/fa —r 1 d el - _1 400 -1 +o0 -7
/ € dr:/ l+/ £ d'r+f < dr—[ € _dr
2yms T 2,85 T oS T 1 r 2 ma T

1 o—r 00 -7
= —Log2,/pS + . dr + f dr+ 0O ( /pS +
0 1

T

1 1 '
+0 (— f (-— + B+ ple'| + ,u3/2|3:'|3) g2Vl 1d:c')
A S<lz|<a

e—2a\/ﬂ)
T

e»Zaﬁ
:—LogQ\/ﬁS—7+O(ﬁS+ 7 )

since
1 R | +oo -7 +00
/ dr +/ dr = f e "Logrdr =T1"(1) = —v,
0 r 1 T 0
2\/ha
[ (1 *: z) g df= > + O (/i8S + /e 2*VF)

2 /i8S 4 4

and

fwa( Fak (1)
l+r+r*+—)e "dr=0(1).
2/ES VI

It follows from these results and (C.38) (C.35) (C.39) that

L e,

4
(C40) S<|z'|<a S<|z’|<a

1 vBS 1
+O(A\/ﬁ+ 3 +A332)

H
IVV|? =“T(U) (wLogQﬁS —y+ 5)
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Together with (C.37), we find, choosing S = A~%3u~%/6 so that (C.33) is satisfied

cay  [ive- [ 1ove =T (Lo te -1+ 3) + 0

and, considering (C.15) with W = |[VV|?, (C.31) and (C.32), (C.1) is proved.

Remarks

1. Proceeding in the same way, we find

(C42) [ 19037 = 5 - )22 40
(C.43) f IVeryul* = "’r\/_ H(y )Log\/_ ()\) '

Estimating further terms in these expansions would involve the whole shape of {2, whereas
(C.1) only involves the shape of Q in a neighbourhood of the point y € 99 at which V),
concentrates as A, u go to infinity, because of the stronger decreasing of V) ,, away from
this point.

2. The estimates that we obtained may be derivated with respect to A. Indeed, using the
same arguments as previously, we would get

6V A 1 1
(C.44) fVVA,w Do L 3TvE L THY) 105 2 17— Y+ 0(2)

2 A2 2 )2 2./fi N2\ /i
o) %)\ 0y T H(y) 1
C.45 V; . z _
(845} /ﬂ ST ovegs T 1w TOGER)
Wayu _ 27 /18 H(y) Vi
C.46 1% Wit
(C46) /n e gr =g a0 )\2)
and
(C.47)
0K, VI H) A 1 1 TR/ THED
X y,0) = 27/3 — 2 — e = e e i M
a)\( 1;0) = 2% ( ,\2 32 ng\/ﬂ v+ )+O(A2\/_+/\3+,\3L0g\/ﬁ>_

In the same way

(C.48)

a;)\g Ay, )_47r1/3( \<; H(s)L 2—%—7—%)+0(A31/_+F+£L0g%) :
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We end this appendix with some easy estimates which occur in the arguments of Section
3. Still assuming that pu goes to infinity and ‘/_ goes to zero, we prove :

(i) o ()
050 (foseaten)” =0 (%)
- (I ") -0 ()
3 (fio)" =0 (s

Proof. Again, we may assume that y = 0, and that (C.5) (C.6) (C.8) hold. According to
the definitions (1.9) and (2.1) of U = U, and @ = ¢, we have

U24/5,8/5 < Ar R A12/5 (1*6_‘/&)6/5?20!?,
0 = o (L4 A2r2)12/5 \3/5,6/5

!

1

O = Sife =y

R 2d
9/5 3/5 r-ar
< 4AmATPp /0 (1 + A2r2)12/5

using (C.8) and the inequalities 0 < 1 — e~V#" < /ur. Therefore

U4/5,8/5 < 471_&3/_5 AR ridr
o 2\6/5 (1 + r2)12/5

and (C.49) follows. The same kind of computations leads to (C.50). Concerning (C.51),
we write

6/5 AL/2 S 2

Jo U - A1/2| || < dm fo (,\1/2 (1+,\2r2)1/2) redr
< kel 1"y
A12'75' ;’ T @iz rear

hence the result since the integral is bounded as A goes to infinity. It only remains to prove
(C.52). According to (C.28), we see that

ov _ ( 1 e“%\/ﬁ

Fr Xg/—z--l-w) uniformly on N Bgp,1=1,2,3
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whence

aV 4/3 1 eng\/ﬁ
(6-53) /BQch | 31/‘ O ()\10/3 + )\2/3 '

R/2

On 02 N Bg, using (C.6) and (C.28), we have

v _ ofov_ov
ov (1 + f?‘ 1/2 356'3 oz; 03

/\5/2 1 — e“ﬁixl - \/E|1;|6_\/E|II i
=0 ESHFREE + 72|73 ' |
As a consequence
av |z’ 1
(C.54) ol @) (/\5/2|3:’|2 + )\im') for z € 9Q N Bp, |z'| < 3

and, using (C.27)

A% e VARl (1 +  /l2')) 1 1 . R
i Z < =
(C.55) 5 2 ( EP] + N for x € 9Q N Bg, 5 & |z'| < 5

assuming that for |2'| < £, |z| = (|2/|* + f3(¢'))'/? < R, which is true provided that R > 0
is chosen small enough, because of (C.7). Then

! 4/3
—4/3d —0 / ()\5/2 $r2+l$|$\) da’
/z-JQnBR/2 | v | ( |z/|<1/A =1 AL

! 4/3
+f Bl }(1 + \/ﬁ[r’]) 3 1 / dz’
1/A<|z'|<R/2 AY2| 5! Xo/2|3'[3

noticing that |42 | = (14 f2(z'))/2 = O(1). On one hand
5/2|3112 1 plz' |\ A 10/3,11/3 , M 7/3
' I i
/WM (,\ 2+ ,\1/2) di' = 0 fo (NO/3g18 . By gy
1
= O(W)
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On the other hand

] 4/3
[ (e‘«/ﬁ'm L+ Val)) |1 ) A
/2[00 21|3
1/x<)z’|< & A/2|g| AS/2|7|
1 [RR o 1 1 [RPdr
= —_— -3V 2/3 —
0 (Az/s -/l/A e (,r1/3 +uPr)dr + \10/3 -/I/A r3
1 VB 1 1

VEB/3A
1
o ()\2/3#1/3)

so that, finally

f |QK|4/3___ (___1_)
99NBr)2 dv )\2/3H1/3 :

(C.53) shows that the same estimate holds integrating on whole 0, hence the desired
result.
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