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Abstract

We extend to dimension 3 a result previously known in higher di-
mensions, concerning the topological effect of critical points at infinity
on the level sets of a functional associated to an elliptic problem with
critical nonlinearity.
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1 Introduction and results
Let us consider the nonlinear elliptic problem

Ay =uP,u>0 in
(P){ u =0 on 0f)

where 2 is a smooth and bounded domain in RY, N > 3, and p = %—j_g is the
critical Sobolev exponent. It has been known, since a work by Pohozaev [15]
that (P) has no solution when  is starshaped. On the other hand, Kazdan
and Warner [10] proved that a solution exists in the special case where
is an annulus. A major step was accomplished by Bahri and Coron [2] who
showed that (P) has a solution as soon as {2 has nontrivial topology, in the
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sense that Hop_1(€2;Q) # 0 or H,(; Z/2Z) # 0 for some n € N*. However,
contractible domains have been exhibited for which (P) admits also a solution
[8][9], pointing out that the geometry of the domain is of some importance.

A strategy to prove existence or nonexistence of solutions to (P) is to
compute the difference of topology between the level sets of a functional as-
sociated to the problem. However, such a functional is noncompact : critical
points at infinity occur, that is orbits of the gradient along which the func-
tional remains bounded, its gradient goes to zero, and which do not converge.
In view of further results of existence, nonexistence or multiplicity concerning
(P), it is therefore crucial to know the exact contribution of the critical points
at infinity to the relative topology between the level sets. This program was
performed in [3], adopting the following strategy. (P) is approximated by
the subcritical problems

—Au =uPc,u>0 in
(PE){ u =0 on Of)

where ¢ is a strictly positive small real number. To (FP.) is associated the
functional

1 1 .
O =g [V [ wem@

which is compact, and whose positive critical points are solutions to (F.).
Such solutions exist and it follows from [12] [20] that, as € goes to zero,
either they converge to a solution to (P), or they blow up at a finite number
of points in 2. Namely, (u.) being a bounded sequence in Hg () of solutions
to (P;), up to a subsequence we have :

k
(2) Ue = Uy + Z foP(SAg,:cf + v°

=1

with ug a solution to (P) or up = 0, v° goes to zero in Hj(Q) ,k € N.
Moreover, for A € R% ,z € RY

(5,\,;,;: RY 3R

) g o N4 N — )

N2
2

and PJ, ; is defined as the projection of §y , onto H}(Q2), that is :

(4) APGy ;= Ady; in Q ; Py, =0on 00 .




Lastly
N=-2

a; ER ,of —)@z(_{\T(N—Z))T
z; €Q,xf -z, €N
and
Xed(zg, 002) — +oo
(5)

%+ 3+ A0 laf — a3l = +oo

We note that the functions @dyz, A > 0,z € RY, are the only solutions of

the problem |
—Au=u", u>0in RY |

see [6] - and that Py, , A > 0,z € , satisfies

_ — 5P
(6) { APSy; =685, inQ

Py 4 =0 on 0N

(5) ensures that we have

N/2
7 () = Jo(uo) + k>~ +o(1)
where S = inf  |ul? H( Q)|u| o+ (o 1S the Sobolev constant, which de-

we H} (£2),u£0
pends on N only. Actually, a result by Schoen [19] says that, under the
previous assumptions, we have either k = 0 or up = 0. If k = 0, u, con-
verges in H} () to a solution of (P) ; if uy = 0, u. blows up as € goes to zero,
namely '

k
() |V, |2, upt? e SN2 N6, (0 is the Dirac mass at z;)
€ =1
Ta() > o = KE

Let us denote by G and H respectively the Green’s function of the Laplacian
with Dirichlet boundary conditions on , and its regular part, i.e.

(9) {G(w)T?W— H(z,y) (z,y) € 2 x Q
A:EH—OIHQXQ G:OOHB(QXQ)

For £ € N* and x = (z1,---,2) € QF, we set M(x) = (mij)1<ij<k the
matrix defined as

(10) my; = H(zi, 1;) ;mi; = —G(z4, x5) i




and p(x) denotes the least eigenvalue of M (p(x) = —o0 if z; = z; for some
i # 7). We define also

) Fy: (R*) — R
A= (A, Ay) = AAM)IA — S8 nA,

If p(x) > 0, Fx being strictly convex in (R%)* and infinite on the boundary,
F, has a unique critical point A(x), which is a minimum. On

(12) pt = {x e @*/p(x) > 0}
we set
- B o
(13) F(x) = Fe(A(x)) = 5 - Zﬁn/\_,;(x)

whose differential is given by

(14) F'(x) = %A(x)M'(x)tA(X) == Z Ati

In [3] it is proved :

Theorem 1 Assume that N > 4, and (u.) is a sequence of solutions to (F;)
which blows up at k points x1,--- ,zx of §) as € goes to zero. Then

(a) x = (z1,---,3x) € Q, with dy = do(Q) > 0 and Q, = {z €
Q/d(z,09) > do} ‘

(b) p(x) =0
(c) either p(x) > 0 and F'(x) =0, or p(x) = 0 and p'(x) = 0.

Conversely, if x € pt is a nondegenerate critical point of F , there exists for
e small enough a sequence of solutions to (P.) which blows up at xy,--- , T
. as e goes to zero.

Assuming that zero is a regular value for p, (b) and (¢) may be replaced
by

(b°) p(x) > po(2) >0
(¢’) F'(x) = 0.



Moreover, if p(x) > 0, the following estimates hold :

1

o0 ~ YA (X)EM? 5 Jo(ue) = ¢k + kyie|lne| + kyae + 2meF () + o(e)

v >0,y >0, are constants which depend on N only.
Using these results it is showed, denoting by

J={u e Hy(Q)/J.(u) < c}
the level sets of J. :

Theorem 2 Assume that N > 4, and zero is a regular value of p. The
contribution to the relative homology

cp+ Cp—
H, (J&_k n’ Jgk n)
SN/2

of the solutions to (P.) which blow up k times as € goes to zero, 0 < n < 25—,
is equal for € small enough to

. (@) 2 (04,5

with
o = {x € Q/p(x) <0}

As the result does not depend on ¢ for ¢ sufficiently small, intercalating the
level sets of Jy between the level sets of .J,, it provides us with the contribution
of the critical points at infinity to the relative homology between the level
sets of J,.

It is to be noticed that the relative topology (2%, p~) has been computed
in the particular case of thin or expanding annuli-domains [13] [14]. For large
enough annuli, this difference turns out to be zero for k£ > 2, whereas for thin
enough annuli, this difference is nonzero, at least for k¥ = 2. This indicates
that some solutions of Yamabe-type equations may transform into critical
points at infinity or, conversely, be produced by bifurcation from infinity (an
example of such a phenomenon is given in [16]), and this possible link shows
that a careful study of the critical points at infinity is necessary to get a good
understanding in this kind of problems.

The aim of the paper is to show that the results of [3] are true in dimension
3, namely :



Theorem 3 Conclusions of Theorem 1 and 2 hold for N = 3.

In fact, the only thing we have to prove is that the statements of Theorem
1 hold in dimension 3, since the statement of Theorem 2 follows exactly in
the same way as in [3, Section 5] (for N > 4, one can also use the Morse
lemma at infinity established in [4]). Concerning Theorem 1, the strategy is
the same as in higher dimensions, but we need a more careful analysis of the
properties of the v-part of u which occurs in (2).

The next section is devoted to the general setting, which will allow us
to prove, in Section 3, that the conclusions of Theorem 1 hold in dimension
3. Section 4 provides us with the estimates required to justify the previous
arguments.

Remark The extension to dimension 3 of results previously known in higher
dimensions relies on improved estimates of some integral quantities. Using
the same techniques we can also extend to dimension 4 the conclusion of
Theorem 2 in [17], previously known for N > 9, namely :

Theorem 4 Assume that N > 4, and zg is a nondegenerate critical point of
o(z) = H(z,x). For e > 0 small enough, problem

W[ —Au =wP+eu, u>0 inf
(PE){ u =0 on 052

has a solution u. which blows up at Ty as € goes to zero, that is |Vu,|? - Sl .
£

In this case, the assumption N > 4 is sharp, since in dimension 3 (P!) has
no solution for small ¢ when Q is starshaped [5].

2 The setting

From now on, we assume that N = 3. For a > 0, we define the subset of
Hg(€2)

k
D VR ¥ NNV
Fa:{C}:;P(S)\”Ii/}\d(i‘i,aﬂ)>E,VZ,A—j+E+AiAj|.’Ei—"$j| >E,V?,,j,$:,éj}

where @ (= 3Y/*) and P§y, are defined in Section 1. According to (3) (4),
_ we may write

_ (15) Pfs)\,a: = 5/\,m — Pz




with
(16) A(,D)\!x =0 in £ Yy Paze = (5)\@ on 02

and from the maximum principle we deduce :

(17) orz(y) = ‘)‘\'11/—2H(33ay) +0 (m) :

(ue) being a sequence of solutions to (P.) which blows up at k points (not
necessarily distinct) of 2 as £ goes to zero, it follows from Section 1 that the
distance in H}(Q2)-norm between u. and F, goes to zero with . Since we
know from [2, Proposition 7] that, provided that distpyq)(u , Fu) < a, with
a sufficiently small, the problem

k
Minimize |u — E oziPcSAl.@JHé with respect to the a;, M\, z;'s

i=1
has a unique solution in the open set

_ 1 . Ap Ay 1 ., .., .
| —a| < 4a, Aid(z;,00) > 1’ Vi; :\';f“i‘-)“\g;“i')\i/\ﬂfﬁi—ffﬂz > Z&')VZ'JJ:E #7,
we can easily prove the existence of a diffeomorphism between a neighbour-
hood of the eventual solutions to (P.) which concentrate k times as € goes
to zero and the open set

M= {m = (o, A, x;,0) € RF x (R%)* x QF x H}(Q)/

1
|O.‘2' —@| <1y, /\ad(mz,aﬂ) > ;‘-, Vi
0
A

;A 1
S+ DNz — P > — Vi, g, i # v e Eyx, |v|m < v
/\j )\, Ly 0

with vy > 0 some suitable constant, and (here and throughout the sequel,
Péi denotes Py, 4,)

Baw = {v € HY®)/ (0, Phbig = {0, 5803 = 0, §E5my =0,

(18)
lgigk,lngS}.



We know that u., solution to (F:) blowing up at k points as £ goes to zero,
may be written as

k
(19) Ug = Z afPé/\f,mf + v

=1

for € small enough, with m® = (of, A¢, 2%, v°) € M and of — &,

Afd(z$, 002) = 400 + = + XAz — zr;j|2 —+ 400 ,v* = 0.

£ &
4y
T j
Moreover, it follows from an argument by Z.C. Han [9] that the concentration
points cannot approach the boundary, that is there exists dy = do(2) > 0

such that for € small enough
d(z5,00) >dy 1<i<k.

Schoen [19] also showed that there exist dfj(€2) > 0 and ¢o(€2) > 0 such that
for € small enough

A
/\_25-<CO ISZ,jSk,'&#]

J

|$zs_xj| > d{) ’

A proof of the first property follows from Y.Y. Li’s work about the scalar cur-
vature problem [11], showing that isolated blow up points are in fact isolated
simple blow up points. The second property, concerning the concentration
parameters, makes the computations easier, but could be recovered by our
own analysis later.

Lastly, multiplying the equation —Au, = uf™¢ by Pdy: .+ and integrating
on 2, we obtain, using the expansion (19), together with the listed properties
of af, A%, 2%, v° and integral estimates in [18]

C

C+O(1):W

+ o(1)

,with C = @ [p, [V 4|? = 371/45%2. Therefore
elndi - 0ase -0 1<i<k.

Collecting these informations, we conclude that there exists a diffeomorphism
between a neighbourhood of the eventual solutions to (P.) with k£ peaks and
- the open set



M, = {m = (o, A, x,v) € R* x (R3)*F x Q@ x H}(Q)/

1 .
lo; —al <wvy, i >—, eln); <y, 1<i<k;
Yy

Ai . .,
)\_I_'(CO?!xi_le>d,0:1S37.7Sklz%j;veE/\,leU!H&<VU}
J

vy, Co, do, dy being some strictly positive constante suitably chosen. Defining
on M, the functional

(20) B M, —R
m= (o, \,x,v) — J; (Z g 0P8 F0)
we have

Proposition 1 m = (o, A\, x,v) € M, is a critical point of K. if and only if
k

u =Y a;Pby . +v is a critical point of J.. This means that there exists
i=1

(4,B,C,) € RF x RF x (R3)* such that

(((Bay) =0 1<i<k

(Br) G =BT v)my + E Cij (bt o)y 1<i<k
0K, __ 82 P¢; P§;
(E(ml)J) m - Bi<ma )HOI o EE%CM(m,’U)Hl 1<i<k

0 1<5<3
k
(B) o Z‘(A;Péi + Bi&l 4 _Z Cij aﬁgf‘);)
J=

‘1

r
o

3 Proof of Theorem 1 for N =3

3.1 The v-part of u

We first look at the last equation of (E), concerning the derivative of K,
with respect to v. The result is the following :

Proposition 2 There ezists a smooth map which to any (e, a, A, x) such that
e is small enough and («, A, x,0) € M., associates 1 € E) x, |95y < vo, such
that (E,) is satisfied for some (A, B,C) € R* x R¥ x (R®)*. Such a ¥ is



unique, minimizes K.(a, A\, x,v) with respect to v in {v € E)\’x/|'U1H6 < v},
and we have the estimates

(21) Pl = 0(c +3)
A =0(8]+ % +eln) +€7)
(22) B = 0(1+¢N)
C =0(5+5)
with
(23) ﬂ:(ﬁl;"'aﬂk):(d’_al:"'a@_ak)-

For sake of 51mp1101ty, bemg bounded for any %, 7, 0(f()\)) denotes any
quantity dominated by Z F().
i=1
We sketch the proof of Proposition 2. Expanding K. with respect to v,
we obtain

K. (a,\x,v) = K.(a, A\, %x,0) — f Za%P6 P+ = /|V’v|2

0”4 Reapx(v)

with
Reapx(v) = 0(10l3), Re g x(®) = 0(Ivl5)s Beanx(V) = 0(|v|m3)

uniformly with respect to &,a,\, %, (o, A,x,0) € M, and £ small enough.
Moreover, we know that the quadratic term in v is coercive, with a modulus
of coercivity bounded form below as (a, A,x,0) € M, and € is sufficiently
~ small - for a proof of this fact, see [1][17][18]. We claim that

(24). fn (zz; P8y =0 ((E + §)|U|Hé) .

Consequently, the implicit function theorem yields the conclusion of Propo-
sition 2, together with estimate (21). Let us prove the claim. Since v € Eyx

10



and PJ; satisfies (6), we may write
k k 5,
f(z az_Pé‘i)s—‘Ev [ ( ZOZZP(S Z )\5/2 (515) v
Q=

i=1 )
|U|HI)
5

using Holder’s inequality and Sobolev embedding theorem. Clearly, far from

E 5.¢
=0 ( (Z‘iaiP(Sif‘E— Z% i

=1 i

k g
the concentration points z;, say outside _LJl B(z;,d), with d = min(dj, %Q),
—

1
6;,P(52 = O(W), and

k
O aiPs) - ‘i 07

i=1 i=1 "%

On B, = B(zj,d), we write

5_5 5 5 5:75 5.;1
- —
Z alP5 Z /\5/2 62 Od (SJ' - /\5/2 + O(/\1/2)

i=1 ] J

since in this subdomain P§;, 0;(= ¢a;z;) = O(537),¢ # J, and §; > AIL/

2
for some strictly positive constant C. (We note that, e/n)\; being small, a
quantity as d; is close to 1 uniformly in Q, for any i.) We remark that

A
(55
= exp(—efnd;(z)) — eXP(—gg”Aj)

= (—=1)mem 2 2y\n n
=Y e (X — (1 + Xo - 25)" = (Eny)")

+00 en
=0 (Z — ((enX)™en(1+ X2Jo — 25[%) + (bn(1 + Xz - xﬁ))”))

n—=1

=0 (eln(1 + M|z — z;])) .

Therefore, on B,

=]

5—:-:

b—¢ i
. P§;) —Z-—/\E/Qéf

=1 )

524/5
= () (56/5(12’71(1 + M|z — z;]%))5/°68 + )\3/5

11



As we have, performing the change of variable y = (z—z;) and using spherical
coordinates

Ad 2
9 redr
/Bj (en(1 + Xz — z;)%))%°65dx = 4w/0 (bn(1+7 ))6/5—(1 e 0(1)

Ad 2
245,  Am rédr 1
/B,- 55!' dz = )\3/5/0 (1+T2)153 “0()\3/5)

we finally obtain

and

6
5 —€ 5

ZazPé Z /\5/2 615

t=1 i

= 0(e%® +

75

hence the claim.
To complete the proof of Proposition 2, it only remains to show that
estimate (22) holds. We proceed as follows : we take the scalar product in

H}(2) of (E,) with Pd;, 3;1‘5‘, g(];‘s‘)' respectively, 1 < ¢ < k,1 <37 <3. On

the righ hand side, we get a linear system involving the quantities A;, B;, Cy;,
which is nearly diagonal, invertible, and whose coefficients are given by

[ VP6; - VP§; =T16;5 + 0(3)

voPs _
(25) Jo V5L - ;;g = 536, + 0()
fﬂ, \v 65:5)& Vaa{f] = F3A,_., 5@360,!7 + 0(%)

dij, 0ap denoting the Kronecker symbol and I';, Iz, I's being strictly positive
constants, and

VPtV =00
(26) Jo, VPS; - Va(z) 0(3) ;

oP0;
Jo Vo Vit = 003k) -

These estimates follow easily from (3)(4)(17), and may also be found in

. [1][17]. On the left hand side we find

(e psyy = OBe, Ok OO L OK, OK. OPb, 1 OK.
Py ' HH T Oa; ' Ov ' O\ a; 0N Ov ’ O(x;); Ho — a; 0(;);

and we have :



Proposition 3 For € small enough and (o, A\, x,0) € M., the following es-
timates hold

0K,
8&1'

with Vo, a smooth function which satisfies

(27) ((}.’, A} X, ’l_)) = _Klﬁz + Va; (Ea «, )\: x)

1
Vai(Eg Of, ,\,X) = O(ﬂf + X + EgnA +52);

(28) %—I)&(a, Ax,0) = 3 (Kzt” — Ky (Htmm = D e AGl(/Ez 'ng))
+W (e, 04 A, %)

with Vy, a smooth function which satisfies

nA nA 1
Ve d ) =0 (G 4252+ IS + )

0K, =Y — 1 0H 1 8G ..
(29) a(x:); (Of, ')\) X, U) 7 K4 (A Ba (‘T'H ZI;;) Zeyéz Wﬁa(mh xf))
+W:{.‘;)j (Ea «, )\, X)
where 2 (resp. denotes the derivative with respect to the j-th component
Ba Bb

of the ﬁr.st (resp. second) variable, and Vi, ); 18 a smooth function which
satisfies

- ; p
Viz); (€2, A, X) = ()\3/2 )\1/2€2+i/\|)

K, Ks, K3, K, are strictly positive constants.

The proof of this proposition is delayed until the next section.

Proof of Proposition 2 completed. From Proposition 3 we deduce that

%{f =0(|B|+ 5 +elnr + %)

(30) %a’,f},{ =0(,§z+§}?

hence (22), using (25)(26) to invert the linear system involving A;, B;, Cy;.

Once (E,) is solved, we are left with a finite dimensional system of equa-
tions (E,), (Ex;), (E(zy,),1 €4 < k,1 < j < 3, whose left hand side is given

13



by Proposition 3, and whose righ hand side may be estimated using (22),
namely

Bé(%ia—: 0+ g C%J<afa}(3i) 0y =0 (llirl +Y0 |Céjl) lfleg)
=0((&+%) Iolm)
since, as straight forward computations show
02 Pé; _ 0(i) ' 9?Pé;
ON? A2 0Xi0(Z:)j | i1

(31)

= 0(1);

Hg

in the same way
2ps. _ 3 2 B; _
Bi{ 5t Dy + Lo Citlayyotsye Vg =0 (( o z-e|)|v|Hul)

= 0( (k= +20) Jol)

since
9% Pé;
32 et | =2
( ) ‘8(:&9,)38(2:2)2 Hé ( )
and
&P || 2
(33) (m:’“)yé = 0(/\—1/‘2“)

(32) follows from an explicit computation, whereas (33) is more subtle and
is proved in the next section.

These estimates, together with Proposition 2 and 3, show that with v = 7,
(E) is equivalent to a new system (E’)

B; = Vo, (e, A, 2)
(Ef) Kye — K, ( s Ef#t %ﬁfl) = f}/\i (E: a, A, 33)

A1l/2 gf (331: 371) Zg?ei N7z ggj (SEI, -'178) = Wﬂii}j (53 (6780, :E)
J

1<i<k 1<j<3

“where V., Vs, V( »); are smooth functions which satisfy

IZ (e,a,Az)  =0(B + 5 +elnr+€7)
Vas (6,0, 1, ) 0(fﬂ*+a2£n/\+|ﬁl(s+ 5))
Vis; (610, A, 1) = 0(E + €21 + 541

We are now able to prove Theorem 1 for NV = 3.

14




3.2 Proof of the first part of Theorem 1

The argument is quite similar to what happens for n > 4, we repeat it for
convenience of the reader. w,, satisfying the assumptions of Theorem 1,
writes as (19), with m® = (af, A%, x%, v%) a solution of (E). As v¢ goes to zero
in Hy(R), it follows from Proposition 2 that v* = @ for & small enough.
According to the previous subsection, (E,,) implies that

1
(34) B = O(F + eln)® + €7)

with 3§ = @ — of. From (E),) we deduce that

£ gf EIE :
Koe—Ks (H(xﬂmz) _Z (mz :CJ) ) 20(—1 +5L?n)\ +622n)\5) :

X & Do) COEAT
Setting
1 KQ 2
— = —=A A; >0
(35) Vil J€ >
we notice that, since
AL
A = 400 elnXi =0 3 <G
J
we have AS
(A% =0 elnA; =0 A—Z < ¢
.l i
and (E),) provides us with the equation
(36)  1—H(af,a)(AD)” + ) Glaf, 25 AfAG = oA +1) .

££i

Dividing each of these equations, 1 < i < k, by Af respectively, we obtain

(37) M)A+ ol|A]) = () + ol
with q i 1
A= (A, Ay) K:(Y\T""Ak)

The scalar product of (37) with r(z¢), the unique unit vector with all its
components strictly positive associated to the least, simple, eigenvalue of

15




M (z®) (for a proof of the simplicity of p and that the components of an
associated eigenvector have the same sign, see [3, Appendix A]), leads to

1 1
(38) p(x)r(x°). A7 + o(|A%]) = r(x°)."(57) + o5y
A |A%|
From (E(s;);) we deduce also
a_HEEE_%Eee_ 1/2521
o9) (e - 3 e =0 (220 + )

Three cases may occur :
A =0 )A° — Ae (RY)F i6i)A° — +oo(i.e. Af = +oo Vi) .

Actually, the first case is impossible, as (38) shows. Indeed, the left hand
side would go to zero, since p is bounded from above on Q’;n, and the right
hand side would go to infinity. Considering the second case, we denote by
% € OF the limit (ut to a subsequence) of (x¢), and (38) yields

N\ o\t T 1
PR R = r(0)(5)
hence p(x) is strictly positive. Moreover, the limit in (37) provides us with
— 1
M X F - = .
®)F ==

This equality means that A is-a critical point of Fy in (R%)*, i.e. A = A(%)
according to notations of Section 1, and the limit in (39) yields

oM, ...,
o (X)'A(xX) =0
which implies, through (14)
oF ,_
o (X}=0.

Concerning the last case, it follows from (38) that p(x®) goes to zero, and
then p(x) = 0. From (37) we have

M (x°)* A% = o(|A%])
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so that A® writes as
(40) A = (xF) -57°

with v¢ = 400, '7.r(x%) = 0, and |[7*| = o(y¢). Indeed, since p(x) is simple,
the other eigenvalues are bounded from below far from zero as p(x®) goes to
zero, and (40) follows from a decomposition of A® in a basis of eigenvectors
for M(z¢). From (39) we know that

oM .
5 O A" = o(|A%)

Pk
av s oM oM

7 G O ) + G = o)

The components of the matrix gg’f (x) are bounded on any set {x € Qf /p >
po}, for any py € R. Therefore

(41) L) =)

Derivating the equality M (x).'r(x) = p(x)'r(x) with respect to z;, we find

oM ., Bty ap , ., Btr
o, 09709+ M) 5T (00 = 220770 + p(00 5 (x)

Taking the scalar product with r(x), this yields

) 3 () = 22

and then (41) implies that
dp
8:.51( x)=0.

The first part of Theorem 1 is proved. We note that 0 being assumed to be
a regular value for p, case iii) cannot occur. Moreover, there exists py > 0
such that p(X) > pp. Otherwise there would exist a sequence (x") in e
such that p(x") > 0, p(x™) = 0 and F'(x") = 0. Up to a subsequence, we

may assume that x" converges to some limit X in Q" It follows from the
definition of A(x™) that




The scalar product with 7(x") gives us the equality

(). A ") = () (7))

Then p(x®) — 0 implies that A(x™) — 400, and the previous argument may
be repeated, which shows that

p(x)=0 p'(%)=0

a contradiction ; hence the announced result. The expansion of J.(uf) given
in Theorem 1 follows from direct computations, using (21) to estimate the
v-part.

3.3 The converse part of Theorem 1.

Let % € O such that p(X) > 0 and % is a nondegenerate critical point of F.
We perform the changes of variables

1 _Kg B 9 o ‘
v K3(Az(x)+g}) e T;=T;+&

¢; € R and & € R? being assumed to be small. With v = 9(e, @, A, x), the
previous estimates show that solving (E) is equivalent to finding (8,¢,€) €
RF x R* x (R3)* such that

(42) ﬁ% = V.ﬁs (5: /61 C: 5)

(2H (54, %) — X1 G(@i, ) A5 (%)) G — T G (@i Z5)Mi(R)G

(43) + (SR R VaH (7:,3) = L @R, (R VG (@ 7)) &

— ¥ MR A (R) VoG (T4, 75) &5 = Vi (e, B, € £)
VoH (%i,T:)G — 2z VoG (i Ti)G + (Ki(i)vizH(fi, z;)
4ﬁ®%ﬁ@m%zwﬂwﬁﬂ@@0@

— 3 N (R VEG(E:, 35) & = Ve(6, 8,6, 6)
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with Vj,, V., V¢, smooth functions which satisty

{ Vs, = 0(elfne| +|6]%)

(45) Ve (e|nel + |81 + ICI* + [€1%)

0
Ve =0(2+ |8+ €2 + 1)

Equations (42)(43)(44) may be written as

B =V(B,¢8)
(46) { L(¢, &) =W(e, B,¢,€)

L being a fixed linear operator in R* x (R%)* and V, W smooth functions
which satisfy

V(e,5,¢,6) =0(c|tne| + |81
(47) {W(E,ﬂ,C,E) 0(e1/2 + | 8] + |CI2 + €12) -

Moreover, the determinant of L is equal, up to a strictly positive number, to
the determinant of F"(%), as an easy computation shows. X being assumed
to be a nondegenerate critical point of ﬁ, L is invertible, and Brouwer’s fixed
. point theorem ensures, provided that € is small enough, the existence of a
solution (8¢, (¢, &%) to (47), such that

165 = O(e|tnel) |¢°| = 0(e"/?) &5 = 0(¢'/%) .
By construction, ue = Y, 0 Péxe oz + 0(g, 05, A%, 2°) with

1 K.
of=a-f =M@ =T+

is a critical point of J., whence

|*~*ue in Q .

—Au, = |u.

Multiplying this equation by u; = max(0, —u,) and integrating on 2, one
obtains

(48) [ izt = [

From Sobolev embedding theorem we derive that

(49) ( f (u;)ﬁ-s) Y [ Vg

19




(48)(49) show that either uZ = 0, or |u |g—e > > 0. We know
that |u7|¢—e < |0°|¢—. and ¥° goes to zero in HI(Q) Therefore, uZ =0fore
small enough, and u, satisfies

—Aug—u ez 0inQ, ye=00n 80 ,u. £0.

The strong maximum principle implies that . > 0 in 2, hence the desired
result.

4 Proof of proposition 3

We concentrate our attention on formula (29), that is the derivative of the
K, with respect to (z;);. Formulas (27) and (28), concerning the derivatives
of K. with respect to o; and );, may be obtained in the same way, with
easier computations which moreover do not differ with the case N > 4. The
method that we developp will also allow us to prove estimate (33).

In view of the definition of K., we have

1 0K, apa
E,;a(a:) o, \, X, 0) = /vzaepag Bl

= dPé;
/|Zach5¢+v|4 (D eePde+) 50
=1 B

This may be written as

(50)
aaas (@ ,0) = [V (X1 ePSy). Vc‘:‘?(f:a) — Jo(Tter ePO)* 36251'6)3

—(5— &) Jo(Couy ceP8) e FEb g — (55=gli=a) [ (S | 0, PGy G207

+0 ( Sk, 0e P2 o 122 o)

The terms where © does not occur may be computed explicitly, using (3)(4)(17)
and one finds - see the integral estimates in [1][17] :

fn Ze 1 @ Pog). Vaa(f:é fQ Ef 1agP53)5 633(1;33

(51)
= K | 5805 @0 %1) = s 7507w b @, xe)) (5 5 4 B
) 4

6P6;-

bl
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It only remains to control the integrals involving ¥. In particular, it is of
crucial importance to obtain estimates of lower order than 1/A as A goes to
infinity, in order to keep the previous term as a dominating term. The two
last integrals in (50) are easy to treat. Namely, using Hélder’s inequality and
Sobolev embedding theorem, we have

(e[

We note that, according to (3)

OPé;
7] (mi)a

35)\’3( ) _ )\5/2(1{ = E)j
Ox; Y= (1+ X2|z — y|2)3/2

(52) y € R

and, according to (4)(15)(17) and the maximum principle

aﬁoA,x

(53) —

1
(y) = 0(-)‘—1-/—5) uniformly in Q

z being assumed to remain far from the boundary of Q (d(z,99Q) > dp). As
© a consequence, we have

OPY;

(54) o

= 0(\;¢;) uniformly in .
me 6§,m(y)dy being a constant, depending on N only, it follows that
O0P9;

(53) /n O(z;);

In the same way, writing (35_, @, Pd;)? I%H =0(\ X5, 63), we get

|5]°~¢ = 0(\|B ?;;) :

OPé;
.'Ei)j

(56) fn ; oy Pé;)? = 0(\[af}y) -

.
Let us now consider the linear and the quadratic terms in . Outside |J By,

=1
with By = B(ze, d), P6; = 0(53) and 22%

a(z }_; O(,\lfz) Therefore

k
OPé; 1
apPé, 4ﬁ£——z—’t_)=0(—|?_}| 1)
Iy Q2P 30, = Yl
=1
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k
dPd; 1
agPo)** —252 = 0(== 7|24
[L’B Bt)“(gzz; s 9(z:); (yalPliy)
=1

using Holder’s inequality and Sobolev embedding theorem. On B, , ¢ # i,
k

> P8, = 0(4,) and g2% = 0(57), so that

=1

Azi); —
BPéz = _ 24/5 5/6
/B q ;aepag " =" ( o f §24/5)5/6 5]
. OP¢; 1 ¥
/ (Zafpé’f 3(z2); =1 (A1/2 (/ JE/Q)WSIULZ’I’&)
By p=1 .

still using Hélder’s inequality and Sobolev embedding theorem. A simple
computation leads to

(57) ( / | 534/5) " () ( /

q

2/3 .
2 —
53/ ) = 0(/\1/2)

whence
k c [%] g1
9 {fo(zleaePa IrdT =0
1J‘| 1
Joe (Xt aePS) = 255 = 0(—2)

We turn now to the last and most delicate part, the integrals on B;. We
first note that

(59 {UB (i 00 50 < 56 Lo stjo] = ()
|’*7| 1

|fB ZE— afpéf) —3%77 | < )\1/2 fB 63|U|2 = O( )

proceeding as previously. In order to estimate the terms involving =2 Bz, ) , we
write on B;

o

(60) Zaepag—aaé + (D agPdy — i) (z2) + O( iz )
=1 £

and

(61)

(Xo1 ePS)* = al—5i~ ( = €)0 ™ (s POt — cvipy) ()87
+0( Lﬁ,.f" )
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Concerning the last quantities in (61), we have
1 090; 5/6
— | &|—=|l7| < 35| — 18/5 g
AL{ z‘amillv|_0Li5i|U| Ol:(/;téz |U|H&
1 95i | _ )
57 [, e 5;::\ ol<ON [ o —ai o
5/6
=0 l/\l/? (/ 24/5|$ $i|6/5) |'U|H&:| '

Straightforward computation yield

(62) f6'18/5 5/6:0(—1”) / 6.24/513:—$'|6/5 5/6:0(L)
B; ' A B; ! ' )\3/2

so that the contribution of the last term in (61), multiplied by a 3@, O 1o the

and

: : : 19
integral on B;, is dominated by —AH‘IL Let us now compute the contnbutlon
of the first term. We recall that

~AP6y, =363, in R

so that
OPdy 4

aﬂfj

00z

- 5

= 156,

As 7 € E) x, we know that
/ 3P6 /‘ABP:S @:15/53 851-@:
0 3(332‘)3'
a6; 1 a6;
6 —— 1‘;:/5;.* 6;7¢ — ——
/n O(:); Q ( Xt 2)3(9«"@')1
Therefore

k o . 523
fﬂ(zﬁzl a2P65)4 E;zif) = 4 EIB ‘54 o; © m)g&‘ilhv

(63) _ ; 171213
+(4 — €)™ (X 1y 22 Poe — iitpi) () [, 6~ Ea—gc‘%ﬂv +0 (—;i‘l)

and

Concerning the quadratic term in ¥, we write on B;

3—¢

k 52
(Z azPaz) — a4 000
=1
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As

1 5 i 1 N gn/\)zja B

8901_ 9/2 . .
62| 2 <C< /61-/ 281512, =0 (|9]%,
Mﬂf (L a2 inty =0 (1o

;) c 1%
/53|@45»M/awwmf—w(Aw
B;

and

we have

k 3—¢
dPS; 95,
& f Pl | SN = a,?—ff 8¢ ——v" + 0(|9l}
( ) Q (; . e) a($i)j B; a(fi)j (I |Hg)

Using, as previously, Holder’s inequality and Sobolev embedding theorem,
and the fact that 2% = 0(\G;) , 6;¢ — # = 0(eln(1 + M|z — z;]?)), we

o(zi);
find, in view of (63) (64)

1 a6 5/8
4 s _ i - 6 2 6/5 5l
/.idz- (61- )\fm) 3(:35);,-'” < Cel; (f S (tn(1+ Nz — z:]%)) ) |9] a2

= 0(e[oliy)

06;
?)“E T = < . ?4/5 5/6 — — 0 )\1/'2 —
[ 5| < O 8 1ol = 00 ol

i

09;
[ gt < O ahlaly = 00ty

i

In view of (21), we obtain for the #-part in the expansion of ~—(~—§— a quantity

dominated by 3+ + Ae?. This is sufficient to get (30), and therefore estimate
(22) in Proposition 2. However, we need sharper estimates in (63) and (64)
to prove (29).

For these purposes, we remark that &; is even and % is odd with
respect to the variable (z — z;);. Splitting ¥ in an even and an odd part
with respect to this variable in a neighbourhood of z;, we are able to obtain
a better estimate than (21) concerning the odd part. As the even part has

no contribution to the integrals, because of the oddness of 6?‘5’) the method

will provide us with a suitable control of the quantities involving ¥ and %2.
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Let us make this precise. Firstly, we set

k
(65) g= Z v +w
i=1

with v; the projection of 7 onto Hj(B;), that is
(66) Av; = At in B; ; v; =0 on 0B;

v; being continued by 0 in Q \ B;. Note that w € H}(f) is harmonic in B;,
and is orthogonal to v;, that is

(67) Aw:OinBi;/Vw.VUizo Vi,1<i<k.
)

As a consequence, we have

(68) L|Vﬁ|2=2i:/n|Vvi|2+/g|Vw|2.

~ We split v; in an even part v° and an odd part v° with respect to (z — z;);.
On B;, 7 = v+ v° + w, whence, in view of (63) and (64)

12 96, 1 09d;
645*—— ’ﬁ:f&f 67— — | =—("+w
[ o I, ( ,\:/2) 8, )

1 09;
B 4 g g e )\
/J:F; 6; (51 /\:/2) 6(z3)1w+0(8 |U |H1)

a6; d6; .
6 0= [ 6 —(v°+uw) f535 4 SO gy
/B,» O(x;) B; d(x;) (A= )
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We claim that

a |9 2
(69) s =0 (k) -

estimate which will be sufficient to conclude. Concerning the integrals where
w occurs, we use the fact that w is harmonic in B;. Let 1 the solution of

A@b:éf(éf—#)%in&, 7 =0 on 0B; .
i ¥/

Thus we have

» 1 09; oy
70 fdf 67— —= —szfA.w=/ —w
(70) B, ( by 2) 0(x:); B; v om; On

Let G; the Green’s function for the Laplacian on B;, that is

1 d
e—ol  Jolly— Z2]

Gi(z,y) = (z,y) € B? .

1 is given by

06;
Gi(z,y)d; (6; —=)=——dx y € B;
f )\5/2 A(:);

and its normal derivative by

= [ G )(54(5- 1)85_i_)(x)dm y e o5,

on B, On /\5/2 a(mz)J
with 5 , 1
: zy—d s 1" =2y 1§
—_— x’y = —-—-——— > — .
oy Y = dla—yP T apy= 25~ =y

For z € B; \ B(y, %)

9G; 1 . 86
gt =0(1 dig-e _ :
any (‘7"1 y) ( ) 6’.‘, (61: A:/z)a(-’ng):’

(z) = 0(eAien(1 + A2|z — x;]%))

and for z € B; N B(y, %)

0G; _ 1 4reee 1 00 eln
e =0 (2 7p) WO = ) gy, @) = )




Therefore
oY

0(eA'?)

and

a'f,[) O(EAI/‘Z faB. |’UJ|)

8B; 8n
so that, from (70) we deduce

1 aé;
71 6| 6;7¢ — _w = 0(eX?|3] 1)
( ) /,;R!- ( Ai'lg) 6(2’_1)] ( I IHD)

Concerning the second integral in which w occurs, we set 1’ as

Ay = 6¢ B; ;¢! =0 on 8B;

—— in
0(w4)

[t [ 2,
B O(z:) aB; On

Proceeding as previousy, we have, for y € 0B;

o' ') dx
_— =01A §F 4 == T

“ and we may write

= 0(1)
and
04;
72 /535 *w = 0(|7|g1) -
(72) e = 007l
* Lastly, we define 9" as
Ay =8¢ 04, —— (20— w) in B; ;9" =0 on 0B;
6(-'131)3

and we write 3¢”
an

ww= [

/535
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dzx
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Note that, as 20 —w € WH%(B;), 9" € W*2(B;), and Vipjpp € L¥(0B;).
Actually, the integral definition of 1" yields

oy /' e 1/ _ dx
=0(A[ &]20—w|+= 20 — w)(z)|————=
5 (W) ( o | [+ 32 B(y’%)l( )( )||$_y|2

e = 24/5\5/6 1.
=0 (Al 2 + 35l

= 0(AV2[3] )

uniformly for y € 8B;. Therefore

09;
73 f&f‘f—“%—wwﬂ)\i/?@?l .
( ) & 8(271)]( ) ( | |Hu)
(71) (72) (73) and claim (69), together with (21), show that
apg—e _ Ly 00 1/2,2
fa 6 - )5 )jv—O(Am + A/22)
9é; i
6 ———0=0(x +
Li ’ a(mi)jv (’\ E)

aé; 1
3—e_00i _o 1/2
o B = )
Then, from (50) (51) (55) (56) (58) (63) (64) and (21) we deduce (29), that
is the desired estimate of 2Xs-.
We are also able to derive (33) from the above estimates. Namely, we

have

0*Pé; 0* P§;

<6Aia($i)j,U>H& - ONO(z;); v
00; 09; 026;
3 4 e o
/(6052 s (a1, + 154; (), — )+ v+ w).

The contribution of the subdomain Q\ B; to the integral is very small. Indeed,
outside B;

,00; 906 1

: —_t =0 4
o a(m); ~ ) % 530(z0);

%0, 1
= (57) -
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On B;, the contributmn of v°¢ is zero because of evenness with respect to the
first variable and, as o0 = 0(& ), a(z ha = 0(Ndy), 728 = 0(6;)

' Ino(z);
08, 06, 926, 0] 113
3 64 1
fB (606* o), T anam); )

,\1/2
according to (69). Lastly

dé;  04; 026 o oy™
: e _Jw= | Ay w=
/1; (6052 T Oz, + 154; T30 (); )w B Y ow fag- E

with

< CIU |Hl _‘O(

a6;  96; 02%6;
no__ 3 4 1 T mno_ Bi )
A" = 606; O D), +15 61—3)\ Az, in B; ;Y 0ond
For y € 0B;, @g’— satisfies
o™ oG 5 _ 1
G I <C [ |5 @) e = 0(555).

As a consequence

oY IBIH(}
/{; ——w = 0 ST )

B; on
and (33) follows.

Proof of Claim (69)

The estimate of [v°|; will make the proof of Proposition 3 complete. For
sake of simplicity, we may assume that ¢ = j = 1 and, up to a translation,
that z; = 0. We write

3

O0P6; Z 0P,

74 =g P
(74) v 1° + aPd; + b—— o : 636‘(3:1)3
with
. OPd6; _ o0Pé6;, _
P o = 0 =(— 7% = <f<3.
( 51)U ) 0 ( a)\l ) 1 a($i)g’U >HD 0 1 = £ = 3

Taking the scalar product in Hg(Q) of (74) with P&, Z, R 1 <2 <3,

provides us with an invertible linear system in a, b, ¢, whose coefficients are
given by (25) (26). On the left hand side, we find

(75) f VP6; . Vo° =0
B

29




since
V(Sl .V =0
B
because of evenness of §; and oddness of v° with respect to the first variable,
and
Vip.Vv° =0
B

because of harmonicity of ¢; and nullity of v° on dB;. In the same way

0P, f 0P,
76 V N1’ = v Vv° =0 =24 .
( ) 6)\1 B 6(.’13‘1)2
Lastly, we have
8P51 aP(Sl -
v No® = Vv Vo —-vt—w
B 3(&"1)1 B d(z1)1 ( )
0P, OPé;
= — V—r V7 \Y% NVw
Q\B; d(z1)1 B C3'(931)1

since ¥ € E x and v® is even with respect to the first variable, zero on 9By,
and %"I is harmonic in B;. On one hand

3P51 B | |H&
On the other hand, let ¥ be such that
OP§ 09;
AP = A1 = _156*—— in B, ;9 =0 on 8B; .
¥ a(z1), Ya(z) v '
Writing
oP)
®) =+ 0
w 6‘(1‘1)1
we have
oPé§,;
\Y% Nw:= V(¥ — §).Vw
f v = [, v -0
_ 00 w
8B 3?’1,
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since w and # are harmonic in B;, and ¥ is zero on dB;. Using, as previ-
ously, an integral representation for 1), we obtain for y € 0B,

o) 0G4 04y
=1 [ B (st50;) @

G, 06, 1
-5 [ (G0 +00eD ) ot + 06555)

since V, aG] (z,y) is bounded in B(0,2) x 0B, ,5%6?;11)1 = 0(537z) in By \

B(0, %) and Qgi( y) = 0(= F) in B; x0B;. 6} agfl being odd with respect
to the first variable, and

o) 1
4 1
... = 0(—
./B(O,% |SC|51 o 1_1)1 dz (/\1/2)
we find e
1
on oW 0()\1/2)
so that, noticing that an(a{}z}; f)l) 0(s3) on 8B,
00
8—?’?,:0(,\12) 0n331 .
It follows that " ]
P51 Ulg}
\Y . = 0(—=
/Bl 3, Y i)
and
aPé, 19|53
77 ? = 23 .
(77) By Va(fﬂl)l Vv 0 M2 )

Inverting the linear system involving a, b, ¢;, whose coefficients are given by
(25) (26) and whose left hand side is given by (75) (76) (77), the following
estimates are obtained :

(78)

|| D] g2 || 12 || 2
azo(w;) b=0(A5/2°) c1=0()\5/2°) cg=0()\7/2°)£’=2,3.

Using again (25) (26), this implies through (74)
0o __ ~o |EIH1 0 7° \ﬁ]fqul
(79) |‘U —1}|H&:0(W{L) l \Hl—"l 21“|‘0 3 .
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We turn now to the last step, which consists in estimating ° in Hj(f2). The
scalar product of (E,) with v° yields the equality

(80)
k k k
/V(Z a,-PcL-—l—'E).VUO—/IZaiP5i+6|4_s(Za,-P5i+ﬁ)v
2 =1 Q =1 i=1

3 3

OPs; OP$; dP6, apal
fQVZ (A;Pé; + B;—— > ZC’ija(mi)J)V(aPél-}«b Z Jaml)

=1 j=1

whence
k k k
/ V() Ps;+ ).V’ - / 1) " 0iP6; +9|*(D_ asPé; + o)
(81) /e 2 3 =

i=1 =1
_ 1 g2
=0 (lle& (:‘\'5/—2 - /\Tﬂ_))

using (22) (25) (26) and (78). Concerning the first integral, we know that

k k
/ V(Z a; Pé; + 0).Vv° = -3 Z a | v+ [ |Vl
L i=2 By By

since —AP§; = 382 in Q, v° is zero in Q \ By, ¥ = v* + v° + w in B; with
v¢ even and v° odd with respect to the first variable, and w harmonic in B;.
Therefore, as 6] = 0(5s) in By for 2 < i < k, we find, taking account of
(79) :

k _
9] a3
; ; 7 o ~0|2 0
(82) fQV(E a;PcL—i—v) Ny = B1|V’U| +0()\5/2)

i=1

Let us consider the second integral, which may be restricted to B, since
v° is zero in By \ . We expand

k k
f | ZO{ZP(SZ + ?j|4_5 (Z ()diP(Si + ’lj‘) v°
By

i=1 i=1

k
= a?“g[B P&y 4 (5 — s)a’f‘gf P& (Z a; P6; + 1‘)) v°
1 By

1=2

k k
+0 U (5?(26? +o?) + 8+ |@|5*E) |v‘°|] :
By i=2 i=2
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Estimating the last term is easy, namely

k k }
3 7|2 =|5—¢€ 0 |
[ (8 () st i

1 AN o s | e
0 [; (/B 5% 0%l + [0l + Se7a 1Vl + 191571
0 1

Concerning the remaining terms, we write

—€ 0 —£,,0 =& = ¢
[ piee= [ v —o—a [ o (w0 +oE )
B B, B

1
+0(—/ 631)") .
A B, 1| [

 Using evenness of §; and oddness of v° with respect to the first variable, and
noticing that

5/6 5/6
1 1
545 g 6/5) =il (—) (/ 538/5) =0(<
([Bl ' | | )\3/2 B (A)

we obtain

|v°| g2
83 P&y = 5F,

In the same way, we have

k
f P(S%_E (Z O@P&;) v°
By i=2
_ 54—5 5% - I"El o
= A 1 + O(W) Z:O:,'P(si(ﬁl) + O(W) v
1 =2

1 1
=0 — 64 0 - 53 o
(/\1/2 Ll pz(|v| /\_/Bl 1|v |)
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whence

(84) fB o (i a,-Péi) v =0 ('”0|H5) .

A3/2
=2

The last term to consider writes as

(5—-¢)af® /Bl P& —f50° = (15 + 0(5))/

P& (v® + v° + w)v°
B

On one hand

/ P& (v + v°)v°
By

- fB (645 — (4 — )67 (1(0) + 0()[1)2)) +0( )] (0 +voe

E 2 0
st o(sa [ 86+ 5z [ Rl + 5 [ o)
1
- 5;‘( 4 +0(a£nA1v |H’+A1/2(/ 59/2)2/3[ oli%
B
1

9/2 /3. 2/3, _
# gl S g oy + 5 8ol )

. B In))?/3
= [ st + ol + 0ol lo7ly)
1

because of (57) and

(/31 5?’2|:c|3/2)2/3 =0 ((fn;)m) (/31 53’) " ((6”)‘)2/3) .

A
On the other hand

()
[P5‘14_€wv"=f AT/)(s).w:/ ol
By B 9B,

on "
with 1®) defined as

AyY® = Péf_sv" in B; ;4® =0 on 6B,

34



The normal derivative of 9®) at y € 9B, is given by

) 0G4

— ol P 4—¢ 0 d
o = |, Fo (@ YPE (@) (a)do
0| [, olhelds+ ;f |v°||$"i—$|2]
| eyl $ l=—yl>§ v

— 24/5 5/6 | iHl
B
v |H1
_O(Mﬂ)

because of (57). Consequently

and so

19| g2 v°| a3
P&y =0 (—-——0——0—) .
/;?1 1 \L/2

This yields finally, taking account of (82)(83)(84)
k k k
f V(> a;Ps;+17).Vo° - / 1> ;P +3)** (Z a; P6; + @) v°
£ =1 2 = i=1
. ; [0lm [v°
[ 1 =15 [ ot o (1) + o0 (L)

o - i 01k 19y 1007
/|Vv 1 — 15/64 +o |H1)+0( E ot
because of (79). Comparing with (81) and (79), and the quadratic form

UH/|W|2—15/5‘592
Q Q

L
being coercive on the subset [Span(Pdl, %L, g(—zp‘s)l— L€ < 3)] o’ (69) fol-
0

lows.
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