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RESUME. — Nous étudions les problémes elliptiques avec non-linéarité
critique et conditions au bord de Neumann de la forme (P,) : —Au + pu =

uz_i-_g,u > 0 sur £; g% = 0 sur 90 - ol £2 est un domaine borné et régulier
de R™,n > 3, et u est un parametre strictement positif. Nous montrons, pour
n > 7, que si u est une solution de (P,) d’énergie petite, u se concentre
quand p tend vers I'infini en un point du bord ol la courbure moyenne H est
positive, et critique quand elle est strictement positive. Réciproquement, nous
montrons, pour n > 5, que si ¢ > 0 est une valeur critique de H induisant
une différence de topologie entre les ensembles de niveau de cette fonction, il
existe pour y assez grand une solution de (P,) qui se concentre en un point
y du bord tel que H(y) = a et H'(y) = 0. Enfin, sin > 6 et 4!,---,y* sont k
points critiques distincts et non-dégénérés de H, il existe pour p assez grand
une solution de (P,) qui se concentre en chacun des points 3¢, 1 < i < k.

ABSTRACT. — We are interested in elliptic problems with critical non-
linearity and Neumann boundary conditions, namely (P,) : —Au + pu =

un=2,u > (0 in Q; % = 0 on 02 - where 2 is a smooth bounded domain in

R",n > 3, and p is a strictly positive parameter. We show, for n > 7, and
u a small energy solution of (P,), that u concentrates as p goes to infinity
at a point of the boundary such that the mean curvature H is positive, and
critical if it is strictly positive. Conversely, we show, forn > 5, and a > 0 a
critical value for H inducing a difference of topology between the level sets of
H, that there exists for p large enough a solution of (P,) which concentrates
at a point y of the boundary such that H(y) = a and H'(y) = 0. Lastly, if
n > 6 and y!,---,y"* are k distinct critical points of H, there exists for 7
large enough a solution of (P,) which concentrates at each of the points g,
1<i<k.

CLASSIFICATION AMS. — 36 J 65

MoOTSs-CLES. — problémes variationnels non-compacts, problémes ellip-
tiques avec non-linéarité critique, conditions au bord de Neumann, courbure
moyenne.

KEYWORDS. — noncompact variational problems, elliptic problems with
critical nonlinearity, Neumann boundary conditions, mean curvature.




1 - INTRODUCTION AND RESULTS

This paper is devoted to the study of elliptic problems with critical nonlinearity
and Neumann boundary conditions, namely

—Au+pu =uP in§d

(1.1) v >0 in
gu =0 onoQ

where p is a strictly positive constant, {2 is a smooth and bounded domain in R*,n >
3,and p = Z—fg

Such kind of problems appears in the modelization of activator-inhibitor systems
[16], as chemotactic behaviour of cells [12]. If n = 1,2, orn > 3 and 1 < p < 242
standard variational methods apply. In particular, Lin, Ni and Takagi [14], Li and Ni
[13] proved that (1.1) does not have any nonconstant solution for small x, whereas
it admits at least one for u sufficiently large. It was conjectured that this situation
was actually general : in contrast with the similar Dirichlet problem, in which the
exponent p plays a crucial role, u would have been here the most important parameter
to decide of existence or nonexistence of nontrivial solutions. However, by proving
that forn = 4,5,6,p = % and (2 a ball, the problem did admit a nontrivial solution
for any pu strictly positive, Adimurthi and Yadava [2] - see also Budd, Knaap and
Peletier [10] - showed that the feature in the critical case is different, independently
of the arguments which have anyhow to be modifed with respect to the subcritical
case.

Adimurthi and Mancini [1] - see also Wang [20] - established that for any
in R",n > 3, and p = %, (1.1) admits a solution for p large enough. They use
the same method as Brezis and Nirenberg in [9], which consists in proving, by the
choice of suitable test functions, that the infinimum of the functional associated to
the problem is below the first level at which a lack of compactness occurs. Any
minimizing sequence thus converges to a nontrivial solution. The considered test
functions are solutions to the equation

(1.2) —Au=u"3%, 4> 0in R

which, with the additional assumptions v € L%(R”),Vu € L?%(R™), may all be
written as

(1.3) Usy(z) = e A>0, yeR"




up to the multiplicative constant

(1.4) &= (n(n—2)"T .
Setting

oVl e _n+2
(15) Ip('u.) s Q(IQ |UIP+1);§; u € Hl(ﬂ)ap S n—2

a functional whose positive critical points, up to a multiplicative constant, are solu-
tions to (1.1), and denoting

Vul? 2
(1.6) S= inlf fQ| 11—2— =:+2
wenf @ ([o [up+1) 75

the best Sobolev constant, it follows from a standard application of the concentration
- compactness principle [15] that I, is compact below the level $/2%/, On the other
hand, expanding I,,(U, ) as y € 89, H(y) > 0, where H denotes the mean curvature
of 912, and A going to infinity, one obtains [1, Lemma 2.2]

S
i 8 inf I —
( 7) ueglé(ﬂ) ,_,,('U.’.) < 22/n

for u large enough, and the existence of a solution to (1.1) follows.

Note that in striking contrast with what happens in the Dirichlet case, where
the maximum of concentrated solutions cannot approach the boundary, Adimurthi,
Pacella and Yadava showed in [4] that for u large enough, a solution u, of (1.1),
which satisfies I,,(u,) < 22%, attains its maximum at only one point y,, € 2. Up to
a subsequence, (y,.) converges to some y° € Q2 as p goes to infinity, and u,, satisfies

Sn/2

2
(1.8) |V, e T byo

in the sense of measures in .

Furthermore, they proved that if n > 7 and u, minimizes I,,(yu) is a maxi-
mizing sequence for the mean curvature H of the boundary 89 of Q. Dropping the
assumption that u, is a minimizing sequence, it is proved in [5] that the accumulation
points of (y,,) are more generally critical with respect to H, and precise L>-estimates
are obtained.

Some partial converse results are also available. Firsteval, we know from [4]
that for n > 7 and any y° € 99 such that H(y%) > 0 is a strict local maximum
of H on 01, there exists, for u large enough, a solution u, of (1.1), which satisfies
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T (g =2 22% and concentrates at y° as u goes to infinity. In [3], Adimurthi, Mancini
and Yadava showed that the same result holds assuming that n > 6 and y° € 99 is
a nondegenerate critical point of H, with H(y°) > 0.

The aim of this paper is, adapting to the present context the methods that we
previously developped to analyze similar Dirichlet problems - see, for instance [17]
[18] [8] - to give a general setting for the study of problems as (1.1), whatever the
boundary conditions may be. The interesting point is that, although the results
are qualitatively different, the same kind of arguments allows to conclude. On one
hand, we find again the above results, with some extensions and improvements ;
on the other hand, we look for solutions which concentrate at several points at the
same time, and we prove that, in contrast with what happened in the Dirichlet case,
the interactions between the different concentrated peaks remain neglictable with
respect to the boundary effects induced by the positive mean curvature. Therefore,
such solutions behave as a superposition of single concentrated solutions.

' Namely, we state :

Theorem 1.1 —

a) Let n > 7 and u,, be a solution of (1.1) such that I,(u,) < 22% Let y° € 09 be
the point at which, up to a subsequence, u,, concentrates, as p goes to infinity (in

n/2 . . i %
the sense |Vu,,|? = ST by0, or y° is an accumulation point of the sequence
p—r+00

(yu) such that u, attains its maximum at y,). Then
H(y") >0

and
if H(y%) >0, H'(%) =0.

b) Let n > 6 and y° € 9 be a nondegenerate critical point of H, H(y°) > 0.

For y large enough, (1.1) admits a solution u, which concentrates at y° (in the
previous sense) as j1 goes to infinity.

In fact, the nondegeneracy assumption way be weakened in the following way.
Denoting

(1.9) H*={ye dQ/H(y) < a}

the level sets of H, we have

Theorem 1.2 — Let n > 5, and assume that a > 0 is a critical value of H such
that the relative topology (H®*, H2~®) is nontrivial for any § > 0 sufficiently small.
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There exists a solution u, of (1.1), which concentrates, as p goes to infinity, at a
point y° € 8 such that H(y°) = a (for n > 6, we prove that H'(y°) = 0).

Solutions which concentrate at one point may be glued together, and we obtain

Theorem 1.3 — Let n > 6, and y!,---,y* & distinct points of OS2, each one a
nondegenerate critical point of H such that H(y*) > 0. There exists, for u large
enough, a solution u, of (1.1) which concentrates at y*,---,y* as p goes to infinity

Sn/Z k

(in the sense ]Vu,u|2“ — 2 El 6yi)-

—+400

Of course, we could also prove that u, being a solution of (1.1) concentrating at
k distinct points y* of 92 as p goes to infinity, these points have to satisfy H (y*) >
0, H'(y*) = 0 (assuming, as in Theorem 1.1, n > 7).

Theorem 1.3 allows to state multiplicity results, in connection with the number
of critical points of H on

(1.10) Ht ={yedQ/H(y) > 0}

Theorem 1.4 — Let n > 6. Assume that H admits k nondegenerate critical points
on H*. For p large enough, (1.1) admits at least 2% — 1 solutions.

The nondegeneracy condition which occurs in Theorem 1.3 could be weakened,
as previously, leading to multiplicity results in relation with the relative topology
between the level sets of H. For instance, (1.1) should admit, for x large enough, at
least 2¢at(H™) _ 1 solutions, where cat (H¥) is the Ljusternik-Schnirelman category
of H*. Note that all our results are available assuming that n > 5,6 or 7, the low
dimension spaces being the most delicate cases. However, the same should hold for
any n > 3.

The proof of the theorems is based upon a parametrization of H'(f2) in a
neighbourhood of the potential concentrated solutions u that we look for. This
parametrization is performed in the next section.

In this neighbourhood, u splits into a small part v which is showed to be inessen-
tial, and a concentrated part which depends on a finite number of parameters, namely
the points and the speeds of concentration. It is proved in Section 3 that u being a
solution to (1.1) is equivalent to the fulfilment of a finite dimensional system, whose
study will give us the announced results in Section 4.

The proofs require some technical results which, for the convenience of the reader,
may be found in appendix. A serious amont of computations is also delayed until
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the end of the paper, so that the main arguments appear more clearly. However, and
unfortunately, these computations are as heavy as they are impossible to avoid to
make the demonstration rigorous.

2 - THE FRAMEWORK

Here and throughout the sequel, we assume that n > 3, and p = %‘_’—g

We proceed to a suitable parametrization of the variational problem that we are
interested in. Let us introduce the following notations.

For k€ N, o= (01, +,a5) €ERE, A= (Aq,---, M) € (RL)*,y = (%, -+, 9%) €
(0Q)F, we set .

Iy k
(21) (Io(aﬂ Aa y) = Pa,\y = Z aiUi
i=1

where U; = Uy, ¢+ and U,, ,: is defined by (1.3). For € > 0, B, denotes the subset of
{(a,A,y) € RE x (R%)* x (092)*} such that

n—2

%<ai<25z, with @ = (n(n — 2))"

(2.2) L [<LiEh
€

' -y P>e 1<i<j<k

We define
- V. ={u € HY(Q)/3(\, p) € (RL)F x (0Q)F s.t.

' (@A y) € Be and |V(u— (@, A,y))l2 < €}
with the notation & = (a,-- -, a).

We have the following proposition :

Proposition 2.1 — Let k € N*. There exists ey > 0 such that for any e, 0 < € < e,
and any u € V, the problem

Minimize |V (u — A,
(a,/\,y)elfiel (u = ¢, A, 9))l2

has a unique solution (up to permutations of the indices).
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This statement is a direct adaptation to our case of [7, Proposition 7). Its proof
is given in Appendix A.

Once the unicity of the solution of the minimization problem is ensured, it is not
difficult to see that it actually induces a diffeomorphism between V., and an open
subset M’ of the manifold

M ={(a, A, y,v) € R¥ x (R})* x (8Q)* x H'(Q)

2.4
2 (a, A\, y) € Bey,v € Eyy, |Vola < €0}
with
EA,y:{UEHI(Q)/V(i:j), 1<i<k,1<j<n
(2:5)

/VUVU /an(] fv ovdUi _ ol
Q oxi  Ja dy;

M' clearly contains some open subset N
N ={(a, A, y,v) € R* x (R})* x (00)* x H}(Q) s.t
(2.6) lo; — @& < mo, As > %,Vf syt — | >do,Vi,5,i#7;
v € Ey 4, |Vvla <m0}

for some constants ny > 0,dy > 0 (we note that, as d, dy may be chosen as small as
we want, provided that 79 > 0 is then taken sufficiently small).

Let us now consider the variational problem. The 0-homogeneity of I,, with
respect to u, which induces a simplified analysis in case of a single point of concen-
tration, is not an advantage in the case of several points of concentration that we are
interested in. Rather than I,,, we consider the functional

e dw=g [ d o= [ we

whose positive critical points are solutions to (1.1). We define on N the corresponding
functional

K, : N>R

(a, A\, y,v (Z o;U; +v)

(2.8)




(a, A, y,v) is a critical point of K, on N if and only if u = 2 a;U; + v is a critical
point of J, on H*(Q). We set, for1<z<kand1<3<n—1

i gbi(a,/\,y, ’U) = f V'U.VU,;
oU;
(29) J 'd)i(aa /\'.\ Y, U) = / a/\
oU;
\ gi,j(aﬁ As Y, U) = /‘(‘2 aTJ

where the T;’ s,1 < 3 < n —1, build an orthonormal system of coordinates on the

tangent space to OS2 at y*. Considering K, ¢;, %, & ; as functionals defined on an
open subset of R¥ x (R%)* x (0Q)% x HY(Q), (a, A, y,v) will be a critical point of
K, restricted to N if and only if there exists A = (4;)1<i<k € R, B = (B;)1<i<k €
Rk,, (= (Ci,j) 1<i<e € R(™=1% such that

1<5<n—1

k

n—1
(2.10) K, = (A} + B+ > Ci €} ;)

i=1 j=1

The next section is devoted to a careful analysis of this equation.

3 - ANALYSIS OF THE SYSTEM
We are going to solve equation (2.10) step by step, beginning with the variable v.

In order to make the statements simpler, we assume that

(3.1) i— 1<ij<k

where &) is a strictly positive constant, to be determined later. This assumption is
not restrictive, since it will turn out that (3.1) always holds for the solutions that we
look for. For sake of simplicity, we shall also denote, in the following, by 0(f())) a

k
quantity which is dominated by ¥ f();) as the Ais go to infinity.
i=1

Lastly, for v,w in H(Q), we set
=W > =/Vv.Vw+,uf'vw
(3.2) Q Q
I|v]|? =< v,v >
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3.1 The v-part of w.

Here is the main statement of this subsection.

Proposition 3.1 — There exists pg > 0,60 > 0, and a smooth map which to any
p > po and (o, A, y) - such that (a, A,y,0) € N, (3.1) holds, and, for 1 <i < k

s X
inf{-Le, 25 $ By < 5 ifn=5
AT A
2
(3.3) <“(L_(;g2”\i)_3<5oifn:6
§%<%ﬁn27

.

- associates U € E 4 such that, at the point (a, A, y, )

0Ky, _ [ , 06i | 0% R, 06y
(3-4) T ; (’41% +Big, t JZ::]_ Cii 5y

where A;, B;, C; ; are some real numbers depending on o, A, v, jt.

Moreover, there exists vy > 0, independent of a, \,y, it such that such a 7 is
unique in {v € Ej ,/|v|g < vp}, and we have the estimate

' 1 N AR ,
||fu||=0{(x+ inf ()\3/2’/\7/4 o 574 ifn=>57

1 (Log /\)2/3 . 1 U 3
— e e ooy — . —_ e >
(/\ + H N2 if n 6 ) N + N2 if n 7

Proof of the proposition.

(3.5)

We expand K, (a, A, y,v) with respect to v in a neighbourhood of 0. According
to the definition of K,,, we find

(3.6) K, (a,\y,v) = K, (a, A y,0) + Lyorg®)+Queryw)+ Ryoxy(v)

with

(3.7) Lu,cx,A,y(U) = #/Q‘Pa,z\,yv —fQ‘PZ,A,yU




1 _ i
(38) Quanru(v) = 5( Jvelsu[v-p [ soi,f,yv"’) ‘

and

(3.9) Ryay(v) =0 ([|o][nGr+D).

Moreover, the derivatives of R, 4 »,, satisfy

(310)  Riany(®) = 0(Iol™"®) ; RL, 5 ,(0) = 0(Jo]|""2=D)

uniformly with respect to u, a, A, y verifying the assumptions of the proposition.

At this stage, we need the following crucial result, about the uniform coercivity
of the quadratic form @ q,x,y-

Lemma 3.1 — There exists p > 0 such that for any p and (a, \,y) verifying the
assumptions of Proposition 3.1 (with pg large enough, 8y small enough)

Quary(®) 2 pllv|* Vv e Eyy .

The proof of this lemma is given in Appendix B. (In fact, for n = 5,6, we do not
need (3.3) to be satisfied, but only 1z < bo, 1 <4 <k, with §p small enough.)

We claim that L, 4 ), which is a continuous linear form on E »,y equipped with
the scalar product (3.2), is going to zero as u goes to infinity, uniformly with respect
to a, A, y satisfying the assumptions of the proposition. Writing

Luaa,)\,y(v) =< E,U,,Ot,/\,ya v >
(3.11)

1
Quaxry(v) = 5 <Tyaryv,v >
2

with €, 03y € Exgy and Ty 0y € L(E) ) a continuous, symmetric and coercive
operator whose modulus of coercivity is bounded from below, the derivative of K "
with respect to v on E) , may be written as

(3.12) Luory + Tpanyv + 0 (o))
and the second derivative is equal to
(3-13) Ty + 0 (|lo|™nte-0y

9




Therefore, the implicit functions theorem provides us with a smooth map which to
any p and (a,A,y) as in the statement of Proposition 3.1, with pg large enough,
associates 7 € E} 4 such that (3.4) is satisfied. Moreover, we have the estimate

(3.14) 121l = 0 ([s,e2011)

and 7 is the unique solution of (3.4) in a suitable neighbourhood of zero in E) y.
It only remains to prove the claim which, through (3.14), will also provide us

with estimate (3.5). Using Hélder’s inequality and Sobolev embedding theorem, we
have, for any v € E) 4

i [ Gany=0 [u(f l|+)_Z(LUL)L} -

From the computations in Appendix D - see (D.36) - and (3.1), we deduce that

Ju’f Pa,A,yV
Q

(3.15) 2/3
p(Log))?/ Lo
l:||U||()\3/21fn 5; (—p)———lfnzfi;ﬁlfnZT)}.

The estimate forn =5 (p = %) may be improved in the following way. We write

ﬂL@a,A,yU:O MZI UU"‘PLZf

i QﬁB(‘yi,A]:_/ N\ B(yt, 1/0)
- 3 7/10
=0 u(f IUJION) Z(/ Uﬁ_ﬂ)
i Q2 7 QHB('yl ’ A%l/z )

1/2 1/2
ALY 2l
(Q ; N\B(y',573)
_of #llell , el
e U

according to (D.24,36). Noticing that, in view of (3.2), p|v|s < p'/?||v||, we obtain

(3.16) M/Q%,,\,yu:o [(;/4 )\5/4)”@”] forn=5.
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In order to estimate the second term in (3.7), we expand
(3.17) ©F sy =D 0fUP +0 (Z Uf‘lUj) .
i i,j
i+

On one hand, denoting by B, the ball of center y¢ and radius dj /2, we have, in view
of (1.3)

f Uf_lUj’U
Q

o Ug’-IUjH/ Uf’_lUj'u-i-f UPlUw
B; B; Q\B;UB;

1 o 1 1 .
- 2___2/{;;’ 1{U|+A2/U|v|+—f [v]
- A_2 Bi 7 A A 2 Q\B,_UBJ
S 1 B
1 (p=1)(p+1) \ PFI 1 (r+1) | PHL 1
=0 |'U|H1 = / U‘I, 4 + 32 f UJ # = =
A7 \UB. A \/B Bl =

using Holder’s inequalities and Sobolev embedding theorem. Estimates (D.36,38)
and (3.1) yield

_ | LogA)*/3 | 1.
(3.18)]90’3D 1UjU:0|i|U’H1(Flfn 5;%11'71:6;?11'7127)}.

On the other hand

1
Ul = ———f AU; - v because of (1.2-4
/Q n(n—2) Jo ( )

= X Integrating by parts, since v € F) ,,.
W= /oo B0 grating by p Ay

Using the embedding of H!(Q) into L= (69) and Hoélder’s inequality, we obtain

aU;
P, 1 okt
/QUiv_o ol (/6 ‘31}

There for, estimate (D.49) shows that

(3.19) fQUg’v=0 (lq’%) :

i §

—_—

(n 1) 2(n—1)




From (3.15-19), we deduce that

1, Y ity .
(X—I- inf (/\3/2,/\7/44—)\5/4 ifn=5;

2/3
(E+u(r‘ﬂi\)——) =6 : (1+ﬁ) ianT}

Hfu,a,«\,yu =0

A X2 A A2
The claim is proved and (3.14) makes the proof of Proposition 3.1 complete.

Before ending this section, let us show how the coefficients A;, B;, C; ; which
occur in (3.4) may be estimated. According to the definition of K, ¢;, 1,[)1,{, g (3.4)
means that for any w € H'(Q)

(3.20)

fV(Pa)\y‘l‘U)v'w‘i‘N/(‘PaA,y‘i“'U f|@ak,y+vl (‘Pof)\,y""”)

_ Z / il o Ui
3)\ b 37‘
Taking successively w = U;, gf\’ y gU, ,1 <j <n-1, we obtain k(n+1) equations

which build a linear system for the k(n + 1) coeffcicients A;, B;, C; ;. This system is

nearly diagonal, since the functions U;, %ﬂ, g—U} are nearly orthogonal for the bilinear

form (v,w) — [, Vv.Vw - see estimates (D.26). As a consequence, the system is
invertible, and computing the terms on the left hand side, which are equal to

81-{,_,, U (9.[(” oU; BKM 8UE 1< <k
R I ) Vi Bv'ar} lxfsnm—1

ov

respectively, we obtain an estimate of A;, B;, C;;. The result is given in Appendix C,
Lemma C.2.

3 - OPTIMIZATION WITH RESPECT TO a AND )\
Once the functional K, has been minimized with respect to v, we set
(3.21) Ku(a,)\y) = Ku(o, Ay, )
which is defined, for p > pg, on
N, = {(a, A, y) € RF x (RE)F x (8Q)*%/(a, A, ,0) € N, (3.1) and (3.3) hold} .

12




In order to determine the critical points of K »on N,, we consider the derivatives

of K p with respect to a and A. Our aim in this subsection is to find, for given
y € (0Q)* - such that |y* —y7| > do, 1 <4,j < k- (a,A) € RE x (R%)F such that
(a, A, y) € Ny, and

=0

0K, 0K, L 0K,
30!,; B 6041- ov aa,;

(3.22) e 15 <k
GKM_BK“+8K#. 0v —0
8/\i B 3%, ov 8)\2 N
Note that, in this subsection, we assume that
(3.23) U< Kok; 1<:<k

where ko > 0 is a constant to be determined later. This assumption, which makes
the computations and the statements clearer, will appear to be unrestrictive for our
purposes. Then, (3.5) turns out to be

o 1 .. . (Logh% .. 1.
(3.24) ]|U]|—O(/\3/41fn—5,——X—lfn—ﬁ,lenz'{' ;

From the definition of K, and (3.24), computations show - see Lemma C.1 in ap-
pendix

( OK o
5&? (@, A, 9,0) = =Com: — Cr )(\Zj )
L Log)\)3 | 1
; nh(mlfn:‘a;%lfhﬁsﬁxfny)}
(3.25) ¢ |
0K ) H(yi
o (X 1:0) =Ca g ) - Coxs
LR . (Logh) 1
+0 ,\z?'}‘ /\5/21f”:5’T1fn=6;ﬁ1fn27
with
Q;
n=—-—1
a

and Cg, C7,Cs, Cy are strictly positive constants which depends on n only. Let us

now estimate the remaining quantities, %’i . %_i_- and %‘i : %. According to (2.9)
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(3.26) 4

Since ¢ € By

(3.27) /VU VU_/vaUJvU_f a—(@.wzo }

oT;

k
n

leferentlatmg these equalities with respect to a;, we see that they are as well satisfied
with C"; instead of . This means that 6 - € Ejy, and it follows from (3.26) that

0K, 9%

528} 9o Do

Differentiating (3.27) with respect to J\;, one obtains

fVUV /V JVU—O
Q

0if ¢
80, /v #J
5 B W ” ” fizj
277, 0if ¢
;Ui g0v _ [ o 0% #J
Q 37‘3 3,\7; Q 3/\537‘8 o(l|a|]) if i =3
since N 5
0%U; 1 9%U;
/ vé?)\? 0(/\4) and / VB/\-ayé =0(1),

as a simple computation shows - see (D.30). Therefore, (3.26), the estimate of B;, C; ¢
given by Lemma C.2, and (3.24), imply that

(320)  OKu 00 _ ( 1, (Log\)3

i [
9o on mlfﬂ:S;Tlfn=6;A—3-1fn27).
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Finally, from (3.26-29), we deduce

( 0K,
do;

H(y")
E = —Cen; — Cr ¥

1 .
+0[7h~2+(m ifn=

y')
2

3
(3.30) ¢ -
0K, ¢,

H( B
)\ 2 O

)\3
1
£ ()\5/2 if n

Let us assume now that

7]

+0 22

(3.31) Hy ) >c¢>0

With the change of variables

& u 1
Cs H(y') M

(3.32) G = ~1; &=

(3.30) writes

(0K, _ &

Oa;  u
1
+0 i ne=5
,u/

_C¢ H(y)
c§  wu

12
(3.33) {
8K|U' —

2
oh G+ )

4
3

113

oK,
O

Then, %ﬁ-

0y 154

fomr

where V;, W; are smooth functions which satisfy

Vi(n, 4,&,¢)

(3:34) Wi, y,€,¢)

Vi, Wy = O(_ll/g“ a=5; _—(Loi”)a ‘

15

(Log))#

(LogA)%

—Cepn; —

(Logp)*/3
+0 1 1f =5 i M
\ “

I

ifn==6; %ifﬂ,z?)}

it 7 =10 ; %ian?)}.

1<k,

1
CruH(y ))\—

1
ﬂnzepjﬁnz7)
I

1
ftn=8; FifnZ?).

< k, turns out to be equivalent to

1<k




in a neighbourhood of £ = { = 0. Therefore, Brouwer’s fixed point theorem ensures
the existence, for u large enough, of #¥ (#¥ such that (3.34) is satisfied. This
means that for any y € (0Q)F such that |y* —y7| > dp for i # j and (3.31) holds, and
any p large enough (g bounded from below in function of c), there exist a*¥ and
A®Y such that

—~

%{i‘u (anu‘sy, A.usy, y, @(a“!y, A#,y, y)) — 0
(3.35) affz 1<i<k.
8)"”‘ (a#ﬂy, A'u"y, y, ﬁ(aﬂay, ,\Myy? y)) — 0
Moreover, (3.30) implies
20,
(a::.z,,y oo Bt @CTCS H (y )
CeCo 1
L 4/3 ¥
+0( 5 ifn=5; LoB ™ o5y e 2T
(3.36) 4 n 1 1
Y
' Cs H(y")
+0(p?ifn="5; (Logu)?ifn=6; 1ifn>7).

-

We verify that the assumptions of Proposition 3.1 are satisfied by (u, a®¥, \*¥, y),

and
Aﬂay . ) . .
/\—L,gsnl,ﬂ<mz)\i“y LLigk, LLjLhk €49
]

provided that (3.31) holds and p is large enough, with

2 max H(y) 2Cg max H(y)
(3.38) o = e g HE
¢ Cy

We note that we have also, for u large enough

Csc

(3.39) RsAfY < 1<i<k, with k3= s
2Cy

Further computations, giving estimates of the second derivatives of K . with respect
to the ajs and Ajs - see, for instance, [19, Appendix C] - show that (a¥, \4¥)
such the assumptions of Proposition 3.1 and (3.35) hold is actually unique, and is a
nondegenerate critical point of the map

(@, A) = Ko, Ay, 5(a, A, y))
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As a consequence, implicit function theorem provides us with a smooth map which to
any y € (0Q)*, such that |y® — 7| > do for i # j and H(y?) > c for any i, associates
(a*¥, A®¥) such that (3.35) is satisfied, together with the estimates (3.36). (We
recall that do > 0 and ¢ > 0 may be chosen arbitrarily small, provided that u is then
assumed to be large enough.)

3.3 A function which depends on y only.
On
(3.40) Pea, ={y€ ON*/ly' —=9| > do,1<i<j<k; Hy) >, 1<i<k}
we set
(3.41) Kou(y) = Bu(a", 300, y) = K, (oY, MY, y, 5oV, 34, 1)) |

According to (3.36,24), we have

wira

1 L
(3.42)  [[5(a"Y, X0, y)|| = 0(;3—/; tn=s; (B

ifn==6:; -1—'1fn27
I

and from subsection 3.1 we derive

f{’p(an,y,,\u,y’ y) = K“(a”’y, MYy 0)

(X'

(3.43) (Logu)s .

L . 1.
-I-O(mlfn:S,—#2—1fn:6,;-2—1fn27).
The definition of K, yields

i 1 1
I(.U'(as /\v Y, O) = 5 (/{;('v@a,)\,yi? T+ ‘U’(Pi,f\,y)) - P + 1 Q wzr)\,y .

Therefore
1 k
Kyu(a, A, y,0) = 5[203 (/ IVUiI2+pf Uf)
3 (o) Q

(3.44) + Z ) Q05 (‘/;2 VU;.VU; + M\/QUin)
k
Zag;“f Ug’+1+o( > /UfUJ—)
' §2 1<4,j <k Q2

=1
i#
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and from (D.6,17,21,25,31,42) and (3.36,41,43), we deduce

k
B=— (n — 1)4(n— 3) pgni2 4 €10 S H2(y)

H i=1
(3.45) )
1 (Logp)s . .
+0(Iﬂ_§'ﬁlfn_5 —Mé—lfn=6,L—§1fn27)
with
s Cq C5Cs
= 4 ] T Mgz 4 — 332, - 2 :
Cho 2Cs ((n(n ) )C'GS &@*((n —2)2Cy — C1 + Co )) >0

According to the definition of I?”, we have also

0K, 0K, 0K, 00

GT; - 81"3? dv 'arj’;

(3.46) 1<i<k,1<j<n-1

at the point (a™¥, XY, y, 5(a*¥, A¥Y, y)). Similarly to (3.26), we have
0K, 00 %
. A
dv 3? Z( Ef 37‘
oU, U,
/ OXp’ TJ E Cgm/ VW Vo )

and, differentiating (3.27) with respect to yj., we obtain

(3.47)

i / VU,V /va—b@ V5 =0
Q 3?/ 51}3
S OUs 00 92U, __  [Oifi#¢
(3.48) ! 1= Vo, = .
3/\2 dy; Oyi0A; o(||g]]) if i = £
2 0if i # ¢
/vaU" |V 31. U"’E V5 =
Oy, 3'y;, a Oy;0yr, 0(N2||a||) ifi=2¢
since [, |V 62@)\ ? = 0(1) and [ V%’—]z = 0(A2) - see (D.30). On the other
hand, taking successwely W= B, %L, ‘g—Uf, 1<i<k,1<j5<n-1,in (3.20), we
obtain a linear system
BK“—ij AfVU VU+B/V6UEVU+§C IOk st
80.‘,; N =1 : Q & £ a/\g : el b 87‘2

18




k n—
1 0K aU; Uy oU,
o E (AELVUQ.V—+BQ 3)\42 E Cem/ VaTg )

@ O\ = AN
19K, < oU; U < oU; 9U;
. C m .

P ;(Aefngva e mzz: . /vaff o7
At the considered point, we have - see (3.22,28-29)

0K, 0K, 1 (LogA)3 | 1.

=0: = = ~ 2’ fn=6: — >
B, 0z o, 0(/\1/41fn 5 e if n 6,A31fn_7

A®Y and, according to Lemma C.1 in appendix - see (C.5,7)

0Ky o( LI :5;;1\-ifn26).

with A =

BT Al/2

Therefore, using (D.27), we deduce from this invertible linear system that

( 2
1 . (LogA)3 . 1.
Ag=0(:\3—/21fn=5,T—lf'n=6,ﬁlfnz7)

Log)\)3 1
3.49 IBi=o |2 itn=s5, LBV v 6. Linsy
N ) 3
Log))3
s = 1 —/\51/21fn=5;—-( 053)3 ifnzﬁ;%ifnz'f).

Finally, (3.47-49,24) yield

0K, 00 _ 1 .. (Log))3t B,
o BT;_O(WH‘R_5’Tlfn_GjﬁlfTLZT .

This, together with (3.46) and (C.7) - see Lemma C.1 in appendix - gives, for n > 6

3ng(y) Cs 0H . ; (Log\)s .. 1 ,
BT /\_167';( )+0 —:\777—é—lfﬂ—-6, mlfﬂZ?

with A = A*¥, so that, using (3.36)

0K, , . CRH(y)oH
3.503 o7t W) = 5 37'()
(Logu)s . " 1 ;
+0(—”7/6 if n==6; ———”inf(%jﬁ) ifn>7].
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We are now able to prove the theorems.

4 - PROOF OF THE THEOREMS

4.1. Proof of Theorem 1.1 a)

Let n > 7 and u, be a solution of (1.1) such that

_ Jo IVuul? + p [ ul, S
(fo lulpttys 227

(4.1) I (up)

Multiplying (1.1) by u, and integrating on 2, we get

(4.2) f|VuM|2+pfui=/uﬂ+l
Q Q Q

As a consequence, there exists z € €2 such that u,(z) > ,uw+1, and maxg u, goes to
infinity as p goes to infinity. It follows from a classical blow-up analysis - 8ee [11], or
[4, Lemma 2.2] - that maxgq u,, is attained at a unique point Y, € 0 in 2, and

(4.3) V(s = &, )2 = 0 25— +o00
with
s 1/2
(4.4) e (Wﬁl) >
(8 n—2

Therefore, Proposition 2.1 ensures that, for u large enough, there is a unique way to
write

(4.5) Uy = auUAL,yL +uu (o, )‘:ny:;,?ﬁﬂ) gy

where NN is defined in (2.6). Since (ay,A},y,) minimizes |V(u, — aUy )|z with
respect to (a, A,y) in a set containing (&, A, y,), (4.3) implies that

(4.6) |[Vogla =0 as pu— +oo.

Then, it follows from Lemma A.1 in appendix that
(4.7) a”-e@—uql,)\”)\uyp—yuzﬁo as p— +o00.

20




From (4.1,2) we deduce

Sn/2
(4.8) / |VUH|2+,UJ] u? < .
Q a ' 2

In view of (4.5), estimate (D.6) yields

gn/2 H(y!) 1
4.9 fVu 2=a? — — 20— 055
(4.9) .QI : “9(n(n - 2))"2 o A (’\ug

+ |V’U,_L|§)

so that, using (4.4,6-7)

/ | Vi | / O(l) as H— 100
2 2 |
Q

As a consequence
(4.10) ,u/ﬂui =o0(l) as p— +oo

and, since, according to (D.21) and (4.4,7)

Cs p
(4.11) f Uz, Ll = ,uz/\,2 + 0 (/\73) =0(1) as p— +oo
m
(4.6,10) imply that
p[R=0)  loulm =o(1) as - oo
Q

Proceeding as in Subsection 3.1, and using (4.11), we obtain

0 Cs
(4-12) u/ﬂ —,uaf“)\,2 -Hbf v, +0 ()ﬁ vl pr + /\,3) :

Following again the arguments of Subsection 3.1, and using (D.17), we have also

gl H(y,) 1
4.13 p+l _ P+1—____n SN, pp g e SN P T
1) [ = g el Oy 40 (Pl + 3
From (4.9,12-13), we deduce
S 2% (n(n-2))*F H(y) Lop
I(u,) = - = == | v
u(uy) 92/n + 252 ( Cn X, + 05/\;3 + a2 fﬂvu)

(4.14)

1 M K 2 2
+0| —=+—5+ | 1+I'U | 1
D) 7 H ulH

(A“ )‘.f-? )\Mfz

21




with

0
)~
On-1 r(% r 25_4)
>0
Cs =5 T(n—2)
Therefore, as i
H K 2 2 K
v T s T yeltulm + vl = o(1+ 75)
Al Al AR "’ Al
(4.1) shows that necessarily
7
(4.15) -/izz_ = o(1)

as u goes to infinity. It follows from (4.15) and Proposition 3.1 that, actually
v = B(ap, Ay Yp)

for p large enough. (3.5) yields

|v |i2=/]\7v |2+,u/v2=0 i—i—ﬁ-z— .
H ~ © o P /\;3 )\;:1

Hence, coming back to (4.14), we find

(4.16)
S 2T (n(n-2))"F H(y,) |, u 1 w2
Tulws) = g + = gamz (‘Cﬂ X, C"’TE) 4 (F " ,\—z)

Then, (4.1,15) show that, necessarily

(4.17) H(y,) >0
whence, if y? is an accumulation point of (y,,)
(4.18) H(y°) 20

since (4.7) shows that y° is also an accumulation point of (v,)- If H(y°) > 0, we can
assume that for p large enough, H(y;) > ¢ > 0. (4.1,15-16) ensure that, for p large
enough, we have
2 H
Cn T (y)

p < A :EQ/\L.

. Cs "
Thus, it follows from Subsection 3.2 that
(a,, )‘L) = (@ Yu, APV

and, u,, being a solution to (1.1), ;, has to be a critical point of ?fu- Then, it follows
from (3.50) that H'(y°) = 0.
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4.2 Proof of Theorem 1.2

(3.45) shows that, for n > 5 and k = 1, up to additive and multiplicative

constants, K ,(y) is close to H2(y) in L°®-norm on
H®={y € 0Q/H(y) > c}

for any fixed ¢ > 0, provided that p is large enough. Indeed, defining on H¢

L) = o (Rutw + 22225

Cio
we have

(Logu)*/® ;

1 1
(4.19) Lu(y):H2(y)+0(ﬂl/2 if n=25; f n=6; 7 ifn27) )

We assume that a > 0 is a critical value for H such that, for any § > 0 sufficiently
small, the relative topology (H®t%, H®~%) is nontrivial. By excision, the relative
topology (H2t®N H®, H*~%N H®) is nontrivial, where ¢ > 0 is chosen such that ¢ < a
(and then, ¢ < a — 6, for ¢ sufficiently small). (4.19) shows that for y large enough,

Lﬁa—é)z—c# g Ha—é NHSC HetS N HE C LLG+6)2+C#

with ¢, going to zero as p goes to infinity. It follows that L, has a critical point
between the levels a® — ¢, and a® + c,. This means that, for x large enough, (1.1)
has a solution u, = a,Uy, 4, + v, which concentrates as p goes to infinity, up to a
subsequence, at a point y° = lim, .1 ¥, € 0%, such that H(y°) = a. y, being a

critical point of K, it follows from (3.50) that, if n > 6, H'(y°) = 0.

Remarks.

1 - If a is an isolated critical value for H, by intercalating the level sets of
L, between the level sets of H2, we see that in fact (1.1) admits at least as many
distinct solutions u,, of the previous type as the relative topology (H3+®, H*~%) has
generators.

2 - What we find is actually a critical point of K, which provides us with a
solution u, = a, Uy, 4. + v, of

—Auy, + puy, = |uy[P"lu, in Q

(4.20) %
Ov

with y, € 09, and @y —» a , A\, — +00, |lv]| = 0 as p — +oo. Let us show
that in fact u, > 0 in Q. First it is clear, since ||v,|| goes to zero, that u, # 0 for

=0 on 0N
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p large enough. Secondly, multiplying the equation in (4.20) by u; = max(0, =)
and integrating over {2, we obtain

IVu;F +p (u;)2 = (u;)pﬂ
Q - Q

As, from the continuous embedding of LP*1() in H'(£2), we have also

(fﬂ(u;)p“) & < Cq (/Q V| +ﬂ/ﬂ(u;)2)

1
Cn/2 2 K

this implies

either /(u P+ >

On the other hand
0<u, = max(0, Uy, ., — V) < |yl

and |vy|p41 — 0 as g — +oo. We conclude that for u large enough, u, =0, and
u = 0. Since u,, satisfies

—Auy+puy >0 in 25 u, >0 in Q; u, Z0

the strong maximum principle ensures that u, > 0 in £, and then u,, is a solution to
(1.1).

4.3 Proof of Theorems 1.1 b), 1.3, 1.4

Since Theorems 1.1 b) and 1.4 are straight forward consequences of Theorem 1.3,
it 1s sufficient to prove this result.

Let n > 6, and 7',---,7" k distinct points of 99, each one a nondegenerate
critical point of H such that H(3*) > 0. We set

1 1
c= 513111ng( 7') do—i_lp 17 — 7|

and we consider the function I? u defined on P, 4, as in (3.40- 41) In order to show
Theorem 1.3, it is sufficient to prove that for p large enough, K p admits in P g, a
critical point y, = (yﬂ)1<z<k such that for any i, 1<i<k, y, — 7 as p — +oo.
(This provides us with a solution u, = Y5 ;o U» wi + vy of (4.20) and, according

to the argument of the above remark, u, > 0, and is then a solution to (1.1) which
concentrates at g',---,7* as y — +00.) For any i, 1 < i < k, we set, for 3 in a
neighbourhood of 3
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and we denote by (5;-)15 j<n—1 the coordinates of £* obtained by projecting y on the

tangent space to 9 at 7. Since 7* is assumed to be a nondegenerate critical point
of H, it follows from (3.50) that

~

0K,

2
Brj

(7)) =0 1<i<k 1<j<n—-1

is equivalent to
(4.21) G=VhiE) 1<i<k 1<j<n-1

where V;"j is a smooth function such that

L 4/3 .

/i’j —
V(€)= 0 o p

6'n-2

Thus, it follows from Brouwer’s fixed point theorem that, for u large enough, there
exists £ € (R™1)* such that (4.21) is satisfied, with

: I 4/3
é‘;:O((ﬁl—i})——— if nZG;T}Q'T if n27)
'ul Mm

6'n—2

Hence the result.
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APPENDIX

A. A minimization result

In this appendix, we give a proof of Proposition 3.1, adapted from [7]. We recall
that, for k € N*, € >0

2 1
BS:{(a,A,y)Eka(Ri)kX(BQ)’“/%<a¢<2&,/\i>g 1<i<k;
Iy"—yj|2>s,lsi<j§k}

V.={ue H(Q)/3I(\,y) € (Rf‘,_)’c X (Bﬂ)k/(d,).,y) € B. ,|V(u— (&, A\ y))2 < €}
with

k
(P(aa )\: y) = Z CE,;U,\:. yt
i=1

and

We have :

Lemma Al.—

Let (e,,) be a sequence in R such that e, goes to zero as m goes to infinity,
and (™, A\™, yn,) € B;,., (@™, A\™,§m) € B.,, such that

(A.1) |V (e(a™, A™, ym) = (@™, A™, Gm))l2_—> 0

m——400

~1

Then (up to permutations on the indices of (&, 5\;’”, §o1izr)

] A o
(A.2) o' =& =0  F=—=1  APAPy, - G2 -0
i

asm— 400 ,1<i1<k.

Proof of Lemma A1l

Integral estimates show - see Appendix D and [6] - the uniform convergences

S'n./2
2(n(n — 2))* 5

(A.3) VU yl2 — as A — +oo
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Af
(A.4) /QVUA,y.VUx,y: —0 as AN, % Lok s My -y > 40 .

Thus, assumptions of Lemma Al imply the existence of C' > 0 such that

YmeN, Vi,1<i<k, 35,1<ji<k

such that
A':n ";n miym|,,i ~7 |2
(A.5) S\—m*-i"/i;‘i‘)\z‘ AP G = Th" £ € .

J

Such a j is unique. Indeed, assume that (A.5) holds for another index £ # j. We
would have
NP5 = Tl < 27N (5 = il + 5 — Tal)

oo XE e

< 2TE AN i — Fial® + 255 AN i, — Gl
i ?.

< 4C?

a contradiction for m large enough, since (&™, Ay,) € B, means
j\m;\m ) ~{ 12 1
7L U — U™ > T

m

and &,, goes to zero as m goes to infinity.

Up to a permutation of the indices, we may assume that j = i. With this choice,
we note that for j # 1
; e i L : o I3
Yo = Tl 2 |G — Tl = Wi — G| > €2/% = CH 26 > =
for m large enough, so that

R
AT Y, — T2, >E

and, according to (A.4)
/ VUrp gy -VUsm om — 0 as m — +00 .
Q ¥ i Y5

Consequently

k k
|V(Z(Q?UA;",3¢; - &?Ui?,g;))lg = Z IV(Q?UA?,% - &?Uir,g;'n)@ +0o(1) .
i=1

i=1
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(A.1,3) then imply, for any 7, 1 <17 <k, that
ai* — & —0 as m— 4oo
and
(A.6) IV (Unp i, — U;\?,%)@ —0 as m— +co.

From (A.3) we have

|V(U/\;",y}'n - Uj‘\:n,ﬂf_n)l% = Sﬂ/2 S Q\LVU/\?’y%‘-VU’.\T’,i + 0(1)

Ym

and from (A.4,6) we see that the quantity

Am o \m - _
So o+ S T APAT I - P

7 (3

is bounded. Then, up to a subsequence, we may assume that

i . .
-0 ER], AN(,—uh) —aeR™

7

Thus, with a change of variable in the integral

|v(U)\f"=y1"n — Uzm g )|g = / |VU1,0 — VUjsm o |2
S AT Q=) X AT (T =)
1
= 5 f |le,o == VU;S,@‘? + 0(1)

using Lebesgue convergence theorem. It follows from (A.6) that § = 1 and a = 0,
and the proof of Lemma A.1 is complete.

Lemma A.2.—

There exists €g > 0 such that for any ¢,0 < € < €g, and u € V.,

o V(e ola
(a,A,lzfl)EB4El (u— (e, A, y))l2

is achieved in By, and is not achieved in By, \ Ba,
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Proof of Lemma A.2.
Let us show first that the infimum is achieved in By..

Let (a™,A™,ym) be a minimizing sequence in By.. Up to a subsequence, we
may assume that, for any i, 1 <: <k
0
2

ot — o

(Tlil-—\M|Q|

)\;fn-i/\?
yh, — Y € 00

with |yg — yf;[2 > €,1 <1< j<k. The only thing to prove is that A? is finite. Since
u € V, there exists (A, y) such that (a, \,y) € B and v € HY(Q), ||v|| < &, such that

(A7) u=p(a,\y)+v

and we have
V(@ A\ y)+v—p(@™, A", yn)l2 <&

Therefore
(A.8) [V(e(@ A y) = 0(@™, A™, ym))|2 < 2¢ .

Proceeding as in the proof of the previous lemma, we deduce from this inequality that
for £ small enough, up to a permutation of the indices, o, Yl %{;- have to be close

to oy, y*, 1 respectively. This implies that A? is finite, and the infimum is achieved in
By

Suppose now, arguing by contradiction, that there exists a sequence u,, in H L)
such that u,, € V¢, with e, going to zero as m goes to infinity, and such that for any

Em

m the infimum of [V(u — ¢(a, A, 9))l2, (&, A, y) € Bae,,, is achieved in By, \ Bs.,..
Writing u as in (A.7) we obtain, similarly to (A.8), a sequence (A™,yr,) such that
(@, A™, ym) € Be,,, (@™, \™, im) € Bye,, \ Bze,,, and

[V (0(@& A™, Ym) — (@™, A™, §im) |2 = o(1)

Lemma A.1 applies, which gives, up to a permutation of the indices of (@am, 5\"‘, Um)

(A.9) == =1+0(1) 1<i<k.

(@, A™,ym) € B, implies that \™ > ;1—, and (dm,im,ftj) € By, \ Bo., that
AP £ ﬁ, a contradiction with (A.9). Hence the lemma.
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Proof of Proposition 2.1

We argue again by contradiction. If the proposition is false, Lemma A.2 ensures
the existence of a sequence (&) in R% going to zero, a sequence of functions u,, in

V..., and sequences (@™, A™, y,) and (&™, A\™ yUm) in By, such that, for any m
(A.10) (@™, 2™, Ym) # (@™, A™, Gm)
and

inf [V(u— (A )l = [V(w— (@™, A™, ym)|2 = [V(u— (@™, X™, im))|2
(aa)\,y)Gqum

As a consequence, for any 7, 1 < ¢ < k, and any m

Um = Um — (lo(am:)‘m:y ) = E)\m, i IV’U |2 <Em
(A1) o m oy ’ T
Um, = Uy — (,o(am, /\m,ym) S Exm,gm |V’Um[2 < Em -

Lemma A.1 implies, up to a permutation of the indices of (G, 5\"“, Um.)

- AT S
o' —al =o(l)  Th=1+ol)  APNPlYh - Gl = o(1)
i
for any ¢, 1 < i < k. Setting
\m .
af =of =& W =Sh -1 =3 - i)

we have
ai* = o(1) b" = o(1) e =a(l)

T
and our aim is to prove that a]* = b* = 0, ™ = 0. For sake of simplicity we omit in
the following computations the index m, U; denotes U A yioand U denotes U-m T
We are going to show, successively, that

(4.12) a; = o(Z;(|az| + [bj| + |¢;]))
(A.13) bi = o(Z;(laj| + |b| + l¢;1))
(A.14) ci = o(Zj(laj| + [bj] + lc;]))

for any i,1 < i < k, whence, for m large enough, a; = b; = ¢; = 0, a contradiction
with (A.10) - from which Proposition 2.1 follows. To make the proof complete, let
us show, for example, (A.12). We have

(A.15) LV(@(@,)\,@;) T I = f ).VU; = fVUVU 7,)




because of (A.11). It is easy to see that, for any 7,1 < j <k

_ Az
. ] v . . . . J
Indeed
) A2 . : ) ; ; )
Ao =P = X5 (lo =7+ 17 - 72 + 20z - 7). — 7))
J
= (L+0(I;))(Ajlz — 7 + 2 + 0(lej | Aj |z — 7))
so that

1+ Xz — o7 |?
1+ Ajlz — 92

= 14+ 0(|b5] + |es])
uniformly with respect to x € Q2. Therefore

N Y -s
TRz -y )R T (14 X2 - 923

[VU; = VTj| = (n - 2)

nt2 -
TS Cruall W Y FE5. L LY

(1+ M|z —yi]?)2 Aj 1+ A2z — 92

n+4-2
(n—2)A;% ( . le;]

. (001 + Il =l + (2

(1_;_/\?'33_?;3]2)2 J J I ()\J)

2Z

= . . . . J

hence (A.16). From this we deduce, for i # j

2z
b : YU - J ) VU;
(|g!+|cjv)/ﬂ(| J|+|CJ'(1+,\g[x_yJ,z)g)| Uil

= o(|bj] + |c;l)

/ V(U; = U;).VU; = 0
Q

since, as simple computations show - see the estimates in Appendix D - the integral
goes to zero as m goes to infinity. Thus

(A].?) LV(ajUj = &JﬁJ)VUZ = O(|(1j| + lb_7| + |le) for ¢ =,éj' )
As we have also, according to (A.11,16) and straightforward computations
[ vovwi-=o [( 190 = 92| = ofjtsl + i)
Q Q
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(A.15) yields
(A.18) /Q V(osUs — &05)-VU; = o(3;(las] + [bj] + |e;))

On the other hand, we claim that

(A.19) fV(U@-—f}i).VUi:o(]b?;|+lci|).
Q

Indeed

1 _
mL(VUi—VUi).VUi

n42 ~ng2 nt2

:/ A -2) N (i —a) AN i-a)

a \(L+A2ly" =222 (14 X2|gi — z|2)n/2 ) (1 + N2yt — z[2)n/2

_"f ( T 3 (1+bi)%((1+bi)x_ci)) T iz
- \A+2?)E 1+ +b)z — ) ) (1 + |f2)n/?
n+2 c;-x — b;|z|? ) 5 5 ] &
_ z— (1 +220)z - ¢ + n ST B L 02 4 [aD) | ——da
- o= (025 TF o R T

n+ 2 n|z[* n|z|? ) dx
= b; 2_ 3.2(1 — 0(b? z-2 o c——
/<m( (ol = ) + ool = ) 00+ 16 ) e

Ai(y* — Q) goes to a half space P of R™ such that 0 € P. With a good choice of
the coordinates, we may assume that P = {(z',z,) € R"~! x R/z,, > 0}. Because
of oddness

n|z|? dz :
|t T+ 1P [T 7 2P =it

and, integrating by parts with respect to z,, we have

n|z|? dz d 1 |z |2 By
Tn 2 Nm )\ 7 dr = | ————adz .
p o 1tz (1+]z?) pdzn \ (14 [z[?) 2 p (1+|z[?)
Still integrating by parts, we have also
] n|z|4 dc__ _n_ /’+°° rt3dr
pltle(1+z)m — 2777 fp (1472t

_ Cnei /*+ooi ___l___ _,rn+2 .
2 0 dr (1 + Tg)n 2

_n+2o_ /‘+°° pntl -
T4 0 (1+7r2)n

n+2 / |z|?
= dx
2 Jp(1+]z)"

32




Finally, we find
/ (VU; = VT;).VU; = o(b; + i)
Q

and (A.19) is proved. Coming back to (A.18), we obtain
(0= ) [ [VUI® = o(;(1as| + b5] + Ies)

hence (A.12), using (D.6).

(A.13) and (A.14) may be proven using the same arguments, just changing in

(A.15) Uz,U by gf\f , % and g—gl, g—q’* respectively. The computations are quite

similar, and we omit them.

B - THE COERCIVITY OF Q,a,,y

aU; aU;
Ey,=<{ve HY{(Q /vv.vm:/vv.v f =0
Ay { (£2)/ g L T 3 o

l=n= k= 1§j<n}

On

(2.4)

we consider the quadratic form

Qpu,any(v (/ |VU|2+#/U —p/fﬂa,\y ) :

We want to prove that @, 4,y is coercive, with a modulus of coercivity independent
of (,a,A,y) € Ry x RF x (R%)* x (8Q)F for

,LL0<,U,<(50)\12 1< <k
lo; — @| < mo 1<i<k
B.1
( ) )\i>_1" 1<i<k
o
lv* — 97| > do 1<i<j<k

where do > 0 is a given constant, and 79, p10, 8o are strictly positive constants which
have to be chosen independently of each other. We remark that

Cony = Eioﬂ’ P 0 UPT? it (Ui, Uy))
i=1 1,7
i#'?j
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and, using Holder’s inequality and Sobolev embedding theorem

-

(p=2)(p+1) +1 ;L-“i-i
/ Uf‘%nfwi,vj)vzzo[nvn ([ mtope,v 55 ) J — o(|ol)

as Aj, A; — +00, as it follows from (D.47). Therefore, choosing 7, sufficiently small,
and noticing that pa?~! = n(n+2), we have actually to study the coercivity on Ej ,
of the quadratic form

(B.2) Quiry(v) = % (/Q |Vol? +#fﬂq;2 —n(n+ 2)5:/9115’—1@2)

In the context of Dirichlet boundary conditions, a similar result has been proved by
Bahri [6]. It has been adapted in [4] to our case, for k = 1. What we need here is a
result which holds for arbitrary & in N*. For 1 < i < k, we define

. d
QizﬂﬂB(yz,-ég).

We remark that, if i # 7, Q; N Q; = 0. For v € H(Q2), we consider
V; = 'U.]_Qi

where 1g; is the characteristic function of ;. We set also

OU;  oU;

E = 29 Ay ) Ao g
. Vect(U, , 6‘y;"-

1<j<n)

E{'_:{wEHl(ﬂi)// VUi.VHJ:/ van.szf van.Vw=0,1§an}-
Q a, O\ 0

;o
HY(Q;) = E7 @ E;, so that there is a unique way to write

v =vi +v] vl e€E v €Ef

On one hand, according to [4, Lemma 3.4], we know that there exists p; > 0 such
that, for any v € H}(Q)

1
- / |Vv27"|2+u/ Ufg—n(n+2) Uf_lv;"Q
2\ Jq, Q; Q2

> p; (/ IVv;*|2+uf v;”)
Q; %
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provided that p and ); are large enough, and p/A? is small enough. On the other
hand, let us estimate v , assuming that v € E) ,. We write

(B.4) vy = aili + bt oL +Z JaU
Byj

and, as usual, we are going to evaluate a;, b;, c§, multiplying the gradient of (B.4) by
VU; Vgg{ ,V@L successively, and integrating on £;. We obtain a nearly diagonal
and invertible hnear system whose left hand side is given by

1
/ VU;VUz = / V’U.VUz' == V’UVUZ =0 ( ) f |V?)l) =0 (HHL_IL)
Q; Q; Q\Q; ,\?’" Q ,\i‘?‘

and, in the same way

= oy O [[o]] _ o
/;ZthzVa—)\z (/\2) /V v _0()\ 2)

Then, using (D.27) to solve the linear system, we find

ai:g(ng_nz) b_O(“U”),cJ—O(”ﬂL)
AT AP A%

and, from (B.4) and (D.26) we deduce

(B5) o7 I =0 (s 1+ )bl

Combining (B.3) and (B.5) we get, for any v € E} ,,

(/ |VU|2+H/ Uz—n(n+2)/ﬂ Uf—lv2)
(/ IVv|2+uf >+0(/|\':“22)

provided that p and A; are large enough, and p/A? is small enough. We write

k
éy,k,y(v) = %(fn |VU|2+#/ v? —n(n+2)Z/ Ur~1y?)

Q

(B.6)

k

=gl =533 (f ol [ o)+ 530 ([ 190l [ 0

1 i i

—n(n+2)f Ug’—luz) —~ MZ/ Urtel.
Q 2 o

i
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As we have

f U-p_l'U2 - 0 (i/ 'U2> == O (”U”Z)
o A7 Ja ny

it follows from (B.6) that, for u, A; large enough, ¥; small enough, 1 <i <k

k
Guos®) 25 ([ 090 [y o) #3325 (1008 [ )
v) > = Vol +p v+ = == Vol + u v
Qu,A.y( ) 2 ( Q\Ui_c=1Qil | Q\Ui,‘::lﬂi 9 g: 9 Qi] | Q
k
1 1 9
+0 (Z(A?—_z + bl )

=1

Consequently, setting p = 3 min(3; 45,1 < i < k), and choosing in (B.1) g large
enough, 1y and §y small enough, we obtain

Quay(v) > pllv]? Vv e Exy

This concludes the proof of Lemma 3.1.

C- THE DERIVATIVES OF K, WITH RESPECT TO a,\,y
In this appendix, we prove

Lemma C.1.—

Let p,a, A,y satisfy the assumptions of Proposition 3.1, be such that
(E:1) 1< Ko 1<i<k

with ko a strictly positive constant. We have

0K i

aafb (o, A\, y,0) = —Cem; — Cr /(\y )
(£.2) i :

1 . (LogA)4/3_ 1
2 . o
+0 [77?; ;o ()\3/2 1fn:5,-—-—-A—2—1fn—6 ,Flfnz 7

with
(C.3) o0 = (L4 1)
and

2n
Ol = n/2
" (nln—2)F

C7 = C_M(Cl = @p_104)

>0

L wies

OREESE

= (n(n—2))"T (n—1)(n — 2)on_2
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i, 5 gl = G

Cot

O\ X2 T3
e ml, (1 (Logh)"”? 1
+0 [Tf__;_ (mlfn=5;T1fn=6 v 1fn27)]
with
&2 - p(&tl r(z=3
Cs = 7(01 — (n—2)2Cy) = (n(n—2))"% (n—2)%0n_ 2413(1@() 2 ) >0
& a2 T(RD(25Y)
Cy = '—'2-05 = (n(n — 2)) 2 Jn_l"m >0.
Lastly,
0K, ~ 1 . C(Log\)¥2 1,
(C.5) 31’} (af,/\,g,r,v)zo()\l/2 lfn:S,T- Hn=46 Y ifn>7]).
Moreover, if n > 6, and
(C6) h)g/\z' < U 1<:1<k
with k3 a strictly positive constant,
oK Cs 0H , ;
;'u(a,Aﬂy?'U) = _'Xia i(y )
(C7) d e
o (BN 6L a7
+ \i/6 =0 N ) B o )

As a byproduct, we obtain also

Lemma C.2.—

Let A;, B;, Ci,5, 1 <4 <k, 1 < j < n—1 the coeflicients which occur in (3.4).
With the same assumptions on u,a, A,y as above, we have

1
A= 0(fn| + 3)
B; =0(1)

1 | .
Cig=0 )\sz—lfﬂ=5;/\—31fn26 .
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Proof of Lemma C.2

It is a direct consequence of Lemma C.1. Indeed, considering the linear system
in A;, B;, C; ; that we obtain taking w = U, %j‘,%{f{- 1<i<k1<j<n-1,in
il
(3.20), it follows from the definition of K, that the k(n + 1) terms on the left hand
side are equal to

0K, 0K,

v 'Uz N (90!2'
0K, 0U; _ 1 9K,
ov 3/\1 - o 8/\z
0K, oU; _ 1 0K,

v 'BT} ; 87';: '

Using estimates (D.27) to invert the system, estimates of A;, B;, C; ; follow from
(C.2,4-5,7). We also remark that from (C.2,4-5) only we derive

[ A= 0(nl+3)

(C.8) J B; =0(1)
(Logh)*/3

1 1
C'i,-=0(—ifn:5, 1fnz6;—ifn26).
| J 25/2 FE A3

Proof of Lemma C.1

According to the definition of K, we have

0K,
Bai

(o, A, y,0) = f V(panry +7).VU; + '”’f (Pary + 0)U;
(C.9) 4 i
- -/;I |‘Pa,)\,y + ﬂlp_l(ﬁpa,)\,y + E)Ui

.. " oK OK 4 : 4
and similar expressions for —3£ and —~#, replacing U; by o; %? and «o; ‘;—yU} respec-
i i j

Ay !
tively. Thus

0K, / 5 k
= VU;|* + a-/VUi.VU-+ ai/ Uf-l—u a-/ U;U;
Jda; nl ‘?:‘? 7 Ja g v Q ; o

J#L J#l

—afLUf+l+ﬂ/§2Uiﬁ—paf_1/§2Ufﬁ

k k
+i{) ZfoUjJrZ/U;T’Uj +0</ U{"lﬁZ)-}-o(/ Ui|ﬁ|pifp>2)
=1 YQ =1 Y8 Q Q

i i#i
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since
[Pany + 0P (Pany + )
= |osUs + Y o5U; + 0P~ HouUs + Y a;U; + B)
i i
= afUF + po;UF P71 (> a;U; + %)

J#i

+0 [UP2Q Ui +0) | +0 | O U + o) if p > 2
J )
J#i i

Proceeding as in the proof of Proposition 3.1, we obtain

,uf Uiﬁ—paf_I/Ufﬁ
Q Q

1 2/3
=0[||1‘}||()\3/4 ifn=35y %f =il 3 %ian?)}

and Holder’s inequality, Sobolev embedding theorem and estimate (D.17) give

/ UP~152 = 0(||5]|?) f Us[o? = o(]|7||P) .
0 Q

Therefore, (3.5) and (C.1) yield

,u/ U;o — pat™ fU’“ +0(/Up % 2>+0(/Uilﬁ]pifp>2>
Q

1, (LogA)4/3

1
ifn=6;j\§ifn27).
Thus, using estimates (D.6,17,21,26,31,42) and (C.1), we obtain (C.2).

(C.4) is obtained exactly in the same way, noticing that = 0(—1) and using
the estimates of Appendix D. The computations are quite smnlar and we omit them.

It only remains to estimate 2%, Without loss of generality, we may assume, up

to a translation and a rotation of the orthonormal referential of R™, that

(C.11) =0 (Tigign-1 = (¥})1<j<n—1 ,

39




Because of (C.10), we have
(C.12)

=< A
—— VU; V + a;a; | VUV
9y; Q 8yj ez; ? “

J
e

aU; k
+,ua-2/U- ?"-I~,uu a-angg
7 - Zay; % 3 -

‘ / 100
1 ayJ

U, Hm./ oU;

oy} “Ja oy}

oU; 3U
_ p—1 p—1
po; ZQJ/U y?UJ /U1 8y
J#t

J

ZUP+|U|p) if p>2

Jvh

+0 fufz ZU2+@2 +0
Q2
J#t

Proceeding again as in the proof of Proposition 3.1, we deduce from estimates
(D.41,50) and (C.1)

paf [ U 12 Syt = 0.

Bo;
Byj

Noticing that |g—$| = 0(\;U;), Hélder’s inequality and (D.17) yield
3J

L vr gt = 00utei s [ gt = o0xole),

Therefore, from estimates (D.8,19,23,26,31,43-45), (3.5) and (C.1), we deduce (C.5).

Proof of (C.7)

All the equalities of Lemma C.1 are proved, except (C.7), which is the most
delicate to obtain. To improve our estimate of 6Ki , we inspire ourself of an idea of

3].

We remark that with our choice of coordinates - see (C.10) -,  is nearly sym-
metric with respect to the z,-xaxis in a neighbourhood of 3* = 0. Therefore, there
exists ¢, a diffeomorphism close to identity in a neighbourhood of 0, such that (Q)
is symmetric with respect to the n-th axis in this neighborhood. B—UL 1< j<n-1,

being odd with respect to z;, %} = le o ¢~ ! is nearly odd w1th respect to j-th
j

coordinate. At the same time, we spht ? = vo ! into an even and an odd part
with respect to the j-th coordinate, and we are able to show that the odd part is
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smaller than the even one. Therefore, through this transformation and this splitting,

we may get improved estimates of integrals where both %} and ¥ occur.
i

Let us now prove this in details, for ¢ = 1, j = 1 (according to our choice of
origin and basis in R™, y' = 0 and R™~! x {0} is the tangent space to 9 at 0). We
take R > 0, small enough, such that

(C.12) QN B(0,R) = {z = (z',z,) € R*! x R/z € B(0,R),z, > f(a')}

with
n—1
(C.13) flah) = Z fiz} + Z gijezizize + 0(|2'[*).
i=1 1<i<j<e<n—1
We set
(C.14) ¢:R"1xR-R"! xR
. (z'yzn) — 2= (2 Zn) = (m’,zn - f(x!))

From these definitions, we see that there exists V' a neighbourhood of 0 in R" and
R" > 0 such that ¢ induces a diffeomorphism between V and B(0, R'). As a con-
sequence, ¢ induces a diffeomorphism between W = V N Q and (W) = Bt =
B*(0,R'), with

BY(0,R)={2=(7,2,) e R* ' xR/z € B(0O,R'), z, > 0}.

In the following, for u a function defined on W, we denote by 4 the corresponding
function defined on B¥ such that

u(z) = t(z) with 2= ¢(z).

Let ( € C*°(R™,R) a smooth function such that

(C.15) 0<E<L; ¢t)=1if0<t<=; ¢((t)=0ift>1.

B —

We set, for T > 0, and z € R®

(C.16) Cr(z) = ((T|2])

and we notice that if T is large enough, supp(Cr) C B(0, R'). For obvious reasons,
we denote by (7 the function defined on R™ as

(C.17) (r(z) =(r(z)ifz eV ; (r(z) =0if s e R*\ V .
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For T large enough, (T satisfies

Nl

(C.18) r(z) =1 for |$|§$;CT($)=O for |z] >

In the following, we assume

(C.19) T =\ O<GS%.
We set
S U =0 4+ V2 + v3
with
: n(z) = 31(2) = 5Er()(5(2) + 5(2))
(C.21) vo(z) = Uy(2) = %ET(z)(%(z) —5(2))
vs(z) = (1 = ¢r(2))v(z)
and

2=(—z1,z2,-~-,zn) .

v1 and vy are assumed to be zero out of V. The crucial point is to get a good estimate
of va, which represents the “odd part” of v with respect to z;. But before estimating
vy itself, we need a convenient estimate of vz in a fixed neighbourhood of 0. In order
to perform the next computations, we remark that

dz
(C.22) (@) =1%]=1 on R"
0 3] of 9 . 0 0
a = — — —_— <1<n— _ = —
(C-23) Or; 0Oz 0Ox;0z, Osisn—1 or, 0Oz,
and
n—1
(C.24) jaf? = |22 +2 3 fiz2zn +0(2]4)
i=1

Therefore, for any § € R

n—1
(14 X[z]) = (14 X[2%)° + 260 (1+ X*|2*)* 71 (Y fizd)zm

i=1

(C.25)
+0 (A2(1+ A222)012]4)
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Estimate of v3

More precisely, what we need is an estimate of v3 in W. For this purpose, we
set

(C.26) va = (sv3 = (s(1 = (T)v

where S > 0 is a fixed number which is chosen such that

= 1

=1 VzeW (ie. =1Vze€ BT, thatis §> —
cany 1@ (e Cs(2) =7
(s(z) =0 VzeW’, aneighbourhood of {3 ---,3*} in Q.

In order to estimate vy, we write

=~ U
(C.28) vs = aly + b ch 3 11 + v
with
(C.29) / VUV, = V% Vil = VgUll Voy=0 1<j<n.
Q 1

Multiplying the gradient of (C.28) by VU, V%l, Va—UJl respectively and integrating

on {), we obtain an invertible linear system in a,b,c; which provides us with an
estimate of these coefficients. On the left hand side, we have quantities such that, in
view of (C.26)

/VUl.VU4=D (f o [VUi[(IVE] + T0])
Q TEN

a7 Szl

=o(u+ iamm/'q”vv|r”)

4T

The integrals fQ vg—{{}.vm and fﬂ V%}.sz may be treated in the same way, and,
using (C.6,19) and estimates (D. 29) we get

T
t/vva=m —lIgl)
Q Al
n—2
(C.30) < / v-aﬂ Ve = 0(— a])
Af
T&
vaUl Vg = 0(—— I3l 1<j<n

8yJ )\12

e
w




Therefore, through (D.27), the linear system yields

(C.31) =0 (T_ nﬁn) b=0 (TI nvn) ;=0 ( ff; ||vu)
;2 Ay AL

1 1

In order to estimate v}, we take w = v} in (3.20). On the right hand side we find

k -1
R = Z A; VUZ'.V’U:I + B; VaU o VGU‘ .Vv; :
Q Q Y T
=1 J

From (C.28, 29) we deduce

A Z( /VUVU4—aU1 OU; Zn:cj%),_

0A1

U, 2. oy
'1)4 - (IUl = b'ﬁ* — ZCJ'—')

+ZCM/V— V(v _atr — 991 _ cha_@.)) ,

o\

We note that, for 2 < ¢ < k, since (s is identically zero in a neighbourhood of #°

I -
/Q VU, Vg = /ﬂ VULVl ) = O /Q (V3| + TJa])

i

and similar expressions for [, Vg—gﬁqum and [ VBU .Vug. In view of (C.19) and
(C.6), we find

r

|

I
oU; ”’17

V—Vu =0

(C.32) ! /Q o Vo=

oU;
31‘

/VU Vg = 0(—(=)

)

:y

S el

V’U4 = 0(

=)

(2<i<k 1<j<n-1,

I\J

)\.

This, together with (C.8,19,31) and (D.26), leads to

(C.33) R=0 [(A'”'z + 5l
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The left hand side is equal to
(C.34)

L= / soa,\y+v)Vv4+uf(soaA,y+v f|@aA,y+U| HPany + 0)vy

Let us compute the first integral

f V(@any + 9).- Vg
Q

az-f VUz-.Vfu;-{—/ V5.V
7 Ja Q

UL 6U1
/QU V(v —aly -5 - Ecjayj

M-

(]

M?r

1=2

+ / V(vi +v2 + (1= (s)vs + v}). Vo
) B

k

6‘U1 = 8Ul
= E oy VU;. Vv -—a/VUi.VU -b/ VU;V— — E /VU V—-
= (/n ! Q ' Q O\ = £ Q dy}

+ f |VU:1|2 + / V(v +va+ (1 = {s)vs3).Vuy
Q

M ~— 80U,
va—m) V(“U‘+ba)\1 —I—;cj_

/ |V’U4|2 / (Ul +vg+ (1 — Cs)vs)V (Cs’v:;) +0(—

using (C.30-32) and (D.26). Moreover, we have
fQ V(o1 +va + (1 = (s)va) V(Csvs)
—/V(vl—l-vg) va—l—fQV((l—Cs)U3)-v(CSU3)
fv V((1-{¢r)v /\7 ((1 = ¢s)v3)V(¢svs3)
- [at-iwer+ [~ 2nverove- | 1vertiop
+ [ o= Vel + [ (1~ 265)VesanVun - [ V53

20(7 [ jolvel +7° Lok [ fualvual+ [ o)

L o
>0 (5100?)
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using Schwarz inequality, (C.19) and (C.6). Therefore

]
(C.35) /V((Pa)\,y-i-’v ).V, > ‘/.|Vv4|2+0()\1/2|[v||2 ol y

Let us consider now the second integral in (C.34). According to (C.28)

:"LZQ’?‘-/S;U( aUl—bB—/\l ;CJ f’U4

oU oU
+,u/(v1—|—vg+(1—gg)v3—}-aU1+b 1+Z_, 1
Q

= 5‘U1
(CS’US i)y — b 21 J 3yJ
We have
/ Urvg = / Cs(1 = {r)UrD
Q Q
=0 (f U1|?7|)
7 <zl
=0 ((f ,52)1/2(f 13 )1/2)
y) <z
hence
n—4
Tz ..
(C.36) fzmMzm —lIal)
Q A2

because of (D.25) and (C.6), and, for 2 <i < k

[ vwi=0 ([ i) =
Q RN

because of (C.6). Therefore, using (C.1,31) and (D.21-23, 31)

- Uy <~ OU T%
uzai/;lUi aUl - b_l Z Cj 1 n—3 ) :
i=1 =

3y;, AT

0(—= Il
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Lastly

U . aU oU . 9U
H/;Z(Ul+v2+(1—§8)v3+aU1+b—1— cha,l Cgvg aUl_ba_,\llhzcj—;)

- uf (Cr+ (1= s)(L = ¢r))Cs(L = Cr)o? — u/ (aUs + baU1 + Z JaUl

Uy o 9l
aU; +b—+ ci—)(v1 +v2+ (1 —2(s)v
S ACER ggay})(l 2+ (1~ 2s)us)

oU -
5 2 2 1 /
>0 p/ﬂ( Ul-l-b 3/\1 E i )

=1 .7

oU = Bk
aU1+b—1+ch l

n—2
T= .
20| == ||'v||2)

Az

because of (C.1,6,19,31) (D.31) and, still using (C.6) (D.31)

Josi=o ([ iy [ v2ye] = o (sl
[ 15t =0 (53101

(9U1 L
|6y1|l'v O\ xzzzloll) -
Thus

Q Q A=z

The third integral in (C.34) writes (note that for n > 6, p < 2)

/Q [0 oy E 0 i e & T

k
:/Q ((alUl) + p(a Uy )P~ ZQJU +7) 4+ 0( Z;UJ +]v|p) /
J:

j=2

:f (pal lUp 1ZaJU +0(ZUP+|UIP)) (v4—aU1—b%— B_U.l_

i)
+ ol /Upv4 + pal” /U{' L2 —l—pa:’f_l/Uf_l(ﬁ—Ufl)U;
2
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We have, for 2 < j < k, using Holder’s inequality, Sobolev embedding theorem and

(D.38)
- [l (=)(pt) | 7T
/Uilu Uj'v4 =0 — (/ Ul P )
Q )\jT Q

2/3 1
=0 1o (B it n =6 2 itm27)]
2

/ Uf|v4l=0(/\,'; / |a|) o(Aia &)

J

because of (C.6). Since we have also, using Holder’s inequality, (D.17), and noticing
(

that §% = %),@L = 0(\U;)

- oU
(C.38) fU1|v|P—on ) fl !

(D.42), (C.19,31) and (3.24) lead to
(C.39)

& . U, <~ AU
e - 1 1
L pa T UPTEY " + 00 UP + [ofP) ’U4—GU1—53—/\1 Zcﬂ"a—yl)
j=2 j=2 j=1

f IaUlnvw = 0\ []?)

Log\)4/3 1
(|| ||((°g) fn=6: 71fn>6))
n—2
‘We have also
/UP - . //_\U v
o 1t an=2)Jom
1 U

= RrEnI BVI vy integrating by parts

1 U, U, < aul
= — - oy B,
n(n — 2) 50 v (U4 BAI Z 7 3y3
) OU; | 2x=1) oU S 10f
=o(||vn(f o 1oy P 4 [Tt + +cha )
; Yj
4T<|z]
Using (C.19,31) and (D.51,56), we get
b i
(C.40) Uivy = 0(—=l7l)) -
Q X2

1
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Lastly
R
Q2

oU > U ", 8U
p=1l= _ i ! E: U—b——l—E: L)
/QU (F-w+a 1+b8A1 e CJa 1 B aXq jc‘i‘yj

- _ U1 = 0U;
= L Uip 1 ((1 — (1 - CT)CS)U +al/; +b8—/\1 +;Cja—yl)
_ oU; < U
. ((1 — CT)CS’U == aU1 = ba—/\ll' = Z Cja—y;;)
j=1

U1 | oUL| ,
aUl+b8_)\1+Zj

=_0[fQU{"1 (||

ULy = ,,0U
2 2 142 2 142
a?UZ + b (a/\l) +jzcj(—ayl) )

Using (D.2,17), and the fact that, in view of (C.6)

1 g T
[ . o =o(5z [ o) =o (Ssler?)
127
we get, because of Holder’s and Sobolev inequalities, (C.19) and (C.31)
R CEEA
Q

0 {nvn (lal+ bl +Zmlcj|) +a?+ 2 +A22c3+—nv1 ]

7=1

T T
=0 o]|? | .
((An -+ 35)llol )

This, together with (C.19, 39-40) and (3.24), yields

L [Pary + TP (Pary + D)vy = pajlj_l fﬂ Uf‘1”42
(C.41)

n—4

L (T= (Logh)¥/3 . |
0 fn=6;—=ifn>7
5| (AﬂT_z + ( 32 if n = ifn>7)
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and, from (C.33-35,37,40), (3.24) and Lemma 3.1 we deduce

_ Log\)%/3 T 1
It = o ol (TEEA— it n =6 s 537+ g it 2 7).
Then, (C.1,19,28,31) and (D.26,31) allow to conclude

~ Log))?/3 T 1
4l =0 o) (TS it =635+ it 7).

Estimate of vy

We are now able to evaluate ||vz||. We proceed as previously, writing

ol 3U1

== il ! f

(C.43) 'vg—_aUI—l-ba/\l-i-Z 75

with

(C.44) /VUI.vasz%V'— ng}vz_o 1<j<n
Q 1

We multiply the gradient of (C.43) by VUl,V%L,V%},l <j<n, respectivelyg

and integrate over {2, in order to obtain a linear system in the coefficients a’, ¥, ¢ J,
whose left hand terms are [, VU1.Vvs, [V gg{l Vg, [ Vg—i}.va respectively. Let

us estimate these quantities. Using (C.14,21-23,25), we have

/ VUl.VUQdI

n+2

Z/ 71—2 2 Z; SUde
- 1+)\2|$|2 n/2 ailf

- (%,

ndd (s fiedza)a

1+/\2lz|2)n/2 - (1+)\2]z| )n+2
22|z Bt v 9u(z)

0((1+A2|Z| )) T @GR - 92 + (@) (g, — =5,)

" ~ . 8y 0v(2).]
~(2fizs + 0T 5 (TD(F(2) = 5(2)) +r(e) (5 — 7. 2)) | d=

Zn M (I fi7) 7 22|z[3 :
+fa+ [(IH%IZP)”” A+ O\ T E )
TN EE - 5 + e 66”)} dz) .
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Performing the change of variable Z — z for the terms in which %(2) or %?l occur,
and using the symmetry of B with respect to z; = 0, we get

L VU, Vvpdz = 0 (Af“ fB o T /\l%zlljlz)“ S(T5()|+ |V %’(z)ndz) .

2 ~
Noticing that [z, v (2)dz = [y, 9°dz and [g, |V v(2)|*dz = 0( [}, |VD(z)|?dz), this

yields
_ zf2 / |2/° 1/2 T .-
fQVUl.vadx =0 [/\1 ( B+ (1+ AfIzP)“) (L u”z)”?}” '

Using (C.6,19) and (D.58) we get finally

Log)1)/? 1
(C.45) fQVUl.vadx:O [(% itn=6;5ifn >6) ||@||J.
In the same way, we have
. oU; [((Loggz\)l/2 ) 1 . ) ~ ]
G 46 V*—Vvda:—() ——ifn=6;=ifn>6||3]|.
Similarly, we compute, for2<i<n-1
oU
Va 11 V'Ugdl'

/ 6‘ Ul 3’!)2
= E —dzx
(3‘313 Oox;

2 nA2z;x; v
- 2y % — L A8 Ld
-y | (it s e

=(n-— 2))\:;2 (Z /B+ A (RS fez}) zndiy

1+ A? z|2) (1 + A2|z]2) 3"
__ nAlzgz i n(n+ M (55, fezd)zizizn 10 A3zt
(1+ A3]2[2)"F" (1+ A2z2) ™ (1+ A2[2[2) "5

2 ~ s 8v  0v(2)
: ng (Tl2)(v(2) = v(2)) + {r(2 )(azj B2 )

~(2fy7 +0(|2]%) (Tf;”le'mzn(%(z) -5 + L 6{;“))} 2

o

| 'Tzfé'mzm%(z) -5 + bl - 8;(2))] dZ}) |

—n/\%zzzn 3 n(n + 2)/\%( ?:_11 fgzg)zizﬁ +0 )\‘{|z|6
42 n n
(14 A\2)z[2)"%3* (1 4+ X2|z2)*F* (14 A2|22)%*

o1




The dominating terms have no contribution to the integral since they are odd with
respect to z;, and we get

/ VaUl Vvgdz =0 (Al—"’— fB K /\lg’":lz)n/z (T|5(z)| + |V 5(2) ])dz)

= (13 Ell
= (5 T 0 )

Thus, using (C.6,19) and (D.59), we obtain

(C.47) v‘ngv 2dz ..o<”””) 2<i<n—1.
1 E

It remains to estimate [, V%}.vadm. We remark that, since 7 € E}
1

(C.48) / vaUl ZZI / va_U_l Vg -
1

On one hand

1/2
aUl _ ol
.Vvz =0 ?
VGt Voa =0 |l ( [ o ¥ |)

lz1z %

Indeed, according to (C.21)

L =o( [ vep+22 [#) =otal)

because of (C.6,19). (D.29) then yields

(C.49) vaUl Vg =0 ( T: IIEH) :
dy1 Sz

52




On the other hand, using (C.14,21-23,25)

ol
V%{.Vvl

_Zf 3 U1 6’01
Oy10z; 8;15:J

s nAiz z; v,
g Z/ ( 1+A2|$;2 O+ ) o5,

nt2 61; n/\z(z gzg),:qrl
—-2)A &+
('n/ (Z L+ I + A2 2,‘, (1 + A Izr2)n+2 1.7
_ n)\lzlzj n n(n + Q)Atf(zg':_l fng)zlzjzn + 0 /\%|Z|4
(Al (1+ Af2f?) "% (1+ Agls?) 3

av  070(2)
[ P |£(Tl 2)(V(2) + ¥(2)) + r(z )(azj+ 52, )

—(2szj+0(|zl2))( TR +36) + i) (g ”+35(’?))”dz

0z, 0z,
“,
B+

_ nA{ziz, 4 (e fﬂze)zlz Aflz]®
L+ 2P E nn+ 2N D1+ a20z2) +0(<1+A2|z|2)”*“)]
T2 () + 52) + G2 + 22E)
|z| AN TN o2 T "0z, |V

1 (,\f? /B+ ﬁ\%m V() + |V %(z)ndz) .

As previously, for the estimate of fﬂ V vads: we obtain, using Schwarz inequal-
ity, (C.6,19) and (D.59)

(C.50) f vf?g—l Yoy = 0 (”/\%“) .

Combining (C.47-49) and (C.19), we get

(C.51) f vaUl Vg =0 (”/\i') :

ayl 1
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From (C.43-44,49) and (D.27) we deduce

r r 1/2
6 = (%—ifﬂ= ,/\21f'n>6)[|'u||]
1/2
(C.52) oy —of(LBNE 6 Litnss) o
A )
Il
\C;; =0 F .

It only remains to estimate vj, taking w = v5 in (3.20). On the right hand side,
we find

k
R’=Z( /VU w2+B/va)\ Vo +ZC,J VgU% Vv2)
i=1
. k n—1
aU o Ui ,0U; , 001y
Z(/ i,J az)v(vz—’aU_baAl ECE )

=2

because of (C.42-43). It is easy to see, from the definition of v, in (C.21), that, for

2<i<n
1
fVUi.VU2=O( o /IVU2|)
Q PVERNEAY

7

= 0 ( n1—2 /
A2 Yzl

7

A L\; Tl ((/§Z|V512)1/2+T(/Q'52)1/2)]

(3

(IVo] + Tl’vl))

2
T

w3

using Schwarz inequality. Finally, taking account of (C.6,19), we find

] VU;.Vvy = 0(— p 17]])
Q AT T3
aU; 1 . .
(C.53) 4 Qa/\i'v“2_0(A%T%||U|l) 2<i<k,1<j<n-1.
aU; 1
o o7 Vv, —0(/\ =g L1}

This together with (C.8,19,52) and (D.26) leads to

1 1
R =0|(n] + =) ———1||8
(il + 3) sz I
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The left hand side is equal to
(C.55)

L= [ v(‘Pa,c\,y + ﬁ)-v"”z 3 #/S;(‘Pa,)\,y + ﬁ)vé - -/s; |(Pa,)ny + 77|p_1(‘190z,)\,y i ) ﬁ)vé
Q

We begin by computing the first integral.

V((pa,,\,y + 17).‘7?)5

S~

I
Ma-

a,,f VU; Vu2+/VU Vvl

i=1

oU: , OU
Otz'/ VU,LV(’UQ — a’U1 — b’a—/\l - _7 o :) / V(’Ul + ’1)-’2 + vg).va
Q 5 Q

M-

II
o

1

=¥ e (/VUva—a/VUVUl—b’/VUV Z /VUvaUl)

ko

=2

+ \V/ oU , OU
112 / AV, _/ = ; ! / 1 1
/ | fu2| + QV(vl-%—vg) () V(0 —v2).V(a'Up + b — » e E : c

8yj
= / vaélz +/ V(U]_ + ’U3).V’U2 +0 (”’U”( 1 + i))
Q Q = T A5
using (C.19,43-47,51-53) and (D.26). Moreover
/V’Ul V'UQ
_ Zf avl B'UQ
ox; (‘EP:C1

~(2fiz+ (1= (T (Tiznx%‘(z)+%(2))+6T(z)(@+a‘_’(z))}

2/ + 52 + ErlGL + 200

8Zn azn
Z'E ’ ~ (et T 6% a%(z)
TEE@EDEE - 52) + aGe - B2

—(2fiz + 0(|2)(T3

e (T1al))(3(2) - 5(2) + () (o - 36(2))] iz
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)
B+

Zn ., ~ ~ s 8v  071(z)
THE (T|2[)(v(2) — v(z))+CT(z)(£— 5 )J dz

0zp 0z,

T (T1al)(5(:) + 52) + G )(3” 35(2))]

=0 (/ 12]2(|V Y |? + T?| v |2)) using oddness properties with respect to 2
lz|<F

0 (?12-(/ |Vo|? + T2172)) coming back to the variable z through (C.14)

0 (i)

because of (C.1,19). We have also, for any o > 0

1
|f V. Vg =|/ V0. Vg < (/ [V'U4|2)1/2(f |va|2)1/2§a/ |03+ [ .
0 9] Q Q Q 4o

Thus, using (C.19,42) and (3.24), we get
(C.56)

[ ¥ (Pany + )90 = (14 0(0) / 03 ?
19} Q

[, (Log\)i  T(Log)) 1 .1, T 1. |

Wit

We compute now the second integral in (C.55). According to (C.43), we have
(C.57)

#/(soa,,\,y + 9)vh,

U1 = ,0U; '
— Q; ’U =5 O U —_p =1 _ Ut 3 A f 2
MZ / 9 2 S agr) T H s

U1 < ,0U; U1 <~ ,0U;
, bn’ I‘_ ! I = sl ."_— .
-4—!1/9(111-#’03-1-& Ur + ah +j=lcg 5@)(”2 al;—b OA; j=ICJ By})




Using (C.21-22,25) and oddness properties with respect to z;, we may write

n—2
/UI’UQZ/ /\12
Q B+

e () E() - 5E)z

_ (i 24 =~
~0 j;l_ Tl s

T

r 1/2
—0 /\n-2|-2 /* ﬂf_ (/‘ %2(z)dz) 1/2
. lzi<k (L4 Aflz2)m B+

n—_8
=z Log\)1/2 1
=0 | 2ol (L itn <7 LB g gy Lt g
L 1 )\1 /\1—2'

1 (n 2)}‘ (Z?_ll f?» ) + O( A%|Z|4 )
(14 X2|z[2)"F (14 Aflz[2)m/2 (1+A%2%)%

using (D.60). Therefore, (C.6) yields

8—n

T (Log))1/2 |
(058) I_L/K;Ulyzz(}li(/\n__s 1fn=6,7,v—1fn— /\5/2 ||’U||

2

For 2 < i < n, we have also

w [ U =0 (L5 [ 1) =0 (EL s
Jovm =0 (5t [ ) =o (o)

so that, taking account of (C.1)

(C.59) ,u,/ U;vg = (%;”-3—) 2<i<n.
Q n=3

2

Because of oddness with respect to z; - see (C.21) - we know that

We write

oUy 5‘U1
C.60 = = o +a :
( ) .U/Q’Uzvs N/Q’Uﬂhz #/{2(”2+&U1+ba)\1+§3

On one hand

/ 1
1) 1 [ vpual < 2 [ 2yl [ 2 < on [ o+ gl
Q 9 Q @
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On the other hand

(C.62) / oty = 0( ||v]]) s e b (586
and similar computations show that
ol T _ ol T
; =Ly =0 Loy =0 .
(C.63) T (AnTH l1211) o B V4 (AnT_z 1211)

Note that the same estimates obviously hold for vz instead of vs. Lastly, using
(C.21-22), (C.1) and (D.31)

U, < ,0U;
_ b= !,
#/ﬂ(fuz v1)(a'Ur + W jEzlcj 5

—o(»\lﬂn S+ 5 +Zl’l)

Collecting this last estimate with (C.58-63,52) (3.24) and (D.21-23,31), we deduce
from (C.57)

¥ [ o 0005 = (1 +0(0) | o

2/3
o [ 1 (T(Log,\) i

(C.64 i
= Y372 ifn==6; A3/2+Eifn_>_7)|]ﬁ||} .

It only remains to estimate the third integral in (C.55), i.e

/ I‘Pa,/\,y + mp_l(ﬁpa,/\,y + @)’Ué
Q

= j=

k k
=fn (<a1U1>P +p(aU)P (D oyU; +9) + 0> UR,UP + Iﬁlp)) ’

=fg( PUP 4 plaq Uy )P~ lza, )+ 0( ZUI’HUIP))

Jj=2 j=2

oUy 6U1
(2—GU1—5’8A1 ]Zg J

+pa1f_1/QU{’_lv;2+paf'1/QUf_1(1‘:—vg)v’2.
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We have, for 2 < j < k, using Holder’s inequality

1 pF+1 (p=1)(p+1) \ p+1
/ UP™Ujva = 0 {—"nﬂz (f |’U2|p+1> ( u, ) }
y) A’ Q 0

and, from (C.21)

= ( fB ) |%(z)|P+1dz)
= UW |@|P+l) .

Therefore, Sobolev embedding theorem and (D.38) yield

¥ _ [ (Log\)?/3 | 1.
/U];_) IUJ'UQ"—_-OI:”’U”(%lf’ﬂ,:ﬁ,mlfﬂz)? §
(9] ATz

Because of (C.21) and (C.6), we have also, for 2 < j <k

1 1 v
fUp|“U2|_0( _/lvzl) 0 (tf Iﬂl) =0( -
’\j2 Q Ajz IIIS% /\j2 T2

and, through a change of variables z — z, it follows easily from (C.21) that

|t = 0P+
Q

Thus, (C.19, 38, 52) (3.24) and (D.42-43) lead to

(C.65)
k
/ Bl )= Z‘*J ) +0( ZUerIvI” v2-aU1—b’aUl Z JgUl
=2 7= F=t yy
Log\)*/ 1
UH(LELL—ﬁn—G—TEwnETH
n—2

noticing that 2%+ = 0(%) and a—UL = 0(A1U1). Then, we compute
fQUf(a’Ul + b’aUl + Z JaUl
| lb’ | '| :
0(la’| + = + Z according to (D.17-19)
Loeg) 1/2
=0 [(%— ifn==6; )\ljf if n> 7) ||17||] according to (C.52)
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and, in view of (C.21-22,25)

/ UP’UQ

( __m+2n%2?§£>n+0( vwmeﬂ
1+A2lz| (1+Af[z?)7 (1+ Af|z[?)
Slr(z

9(2) - U(2))d2

o (x| LI TP
= 2 | v(2)|ag
Y e (L A2 22) 2

o i ([ o) (f 7o) ]

where we used oddness properties with respect to z;. Therefore, (C.6) and (D.61)

imply
Ulvg = 0(—55) -
fg 2T ()\:15 2)

t\DIr—l

2

Thus, we obtain

U1 <~ ,0U, 1]
P P i ! — ’—_ — f.— =
(C.66) anlUl (va—a'Uy —b T jZICJ (‘By}) 0 ( )

Lastly

JRaCEEAT
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-_—/S;U{’ ! ((vl+vg)vg+(2v2—v)(aU —l—b’a)\l1 Z C; 1

oU;
At '
(aUl+b3)\1+E -’Byj )

g=1

On one hand, using (C.21) and (C.6)

/QUf_lvg'uQ i (/| U{’"l@2) =0 (f—:fgv?) ~0 (/\3 ||U|J2) .




On the other hand, using (C.21-22,25)

/U{’—lvlvg

Q

=/ )‘2( 1 _4’\%(2':1:1 fiziz)zﬂ +O( /\%|Z|4 ))
g+ \(1+A3]2[?)? (1+Af[2[?)3 (1+ Af[z[2)?

LBEEE -56)

= 1 —————Iz|4 5(2)|dz
0 (,\1 [ o T T B )

e
|ZIST

_ 4 |2[® i =2 i
‘0(’\1% o TR, T e )

U
o)
AT

where we used again oddness properties with respect to 21, (C.6) and (D.65). It is
easy to see, using (C.21), (D.17), and noticing that @L =0(%), 20 = 0(Ajuy), that

A1 Y3

U1
p—1 Y, / 1
LUI (2vg — 0)(a'Uy + V' — W + E: s Byj

=0 (|l (|a'| ey lc}l”

[/ (L 1/2
=0 (%imza;%img?) ||@||2}

because of (C.52). It follows also from (D.17) and the previous remark that
2
U BU
Up—l U bl 1 1

—O(a’2+——+ i )

Log A 1
=0 K (;i if m=6 ‘N if n> 7) ||ﬁ[]2] using again (C.52).

1
J

From (C 65-66) and these last estimates, taking account of (C.19) and (3.24), we

conclude

- _ - =1 v
A e a  a  C
Q Q ATTNR Tn=3
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Then, collecting (C.54-56,64,67), a1 being close to @ and o being chosen small enough,
Lemma 3.1 applies and we obtain
(C.68)

|h4n2=:o{((“‘%A)g+-ITL°g”5)ifn=:6;< Lz iu>ifn;37)|wn}.

T2 )\3/2 \T2 T A\3/2 + Y —

n=—2

Then, (C.43,52) and (D.26) allow to conclude
(C.69)

Log\)§  T(Log)\)% . . L. T 1.
nwW=o{O(g) + (g))ﬁn=6x——+—g+7@ﬂﬂnzﬂnw].

T2 23 X2y

n—2

In order to make ||v|| as small as possible, the best choice for ¢ in‘.(C.IQ) isg=1.
In"this case (C.42,69) (3.24) lead to

[lvall = 0 (Log))*/® ifn=6; —F—0ifn>7
.70 /3 inf(deEy) S
o _o(EosNE ifn>7

”’UQ”— /\7/6 1In = ,ml n -~ 5

Estimate of %—I;{i
1

We are now able to prove (C.7) - which means, with our assumptions, obtaining
the suitable estimate for %—[;‘i. Since we can write, forn > 6 (p<2)ando,2—p <
1
o<1

|‘iga,)\,1 5 ﬁlp_l("roﬂfa)\ay + fB)

k k
» _ -1) _ -
= oBUY + pay~'UP I(Z a;U; +9) + p(p2 )af 2y Q(ZajUj + )2
=2 i=2

k
+0 [ UT71D a;U; + ot
=2
Arope —1) e
= ajUT + paf lUf 1ﬁ+p_—(p2 )af 2uP—22
k k k
0| U Y U+ UPTESY UZ+ UTT Y UPY - U fofPte
j=2 =2 j=2
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we have

0K, / aU; / o, / o,
=« VU1.V— + aja vU;.V o U —
dy1 o 159%;139 31#19131&
k
olu; oU,
+ u aa-fU--———afprp—
JZ:; B Q Jay% ! Q lay%
10U _ p(p-1) —2/ 20U,
— pa yr-1 7 — oF UrP—*_—_—=p°
poi” / ! @% 2 1 Jo ! 9y
. U
=0 f up” 1ZU +UP™ 2ZU%UI > UP U folte ey
0 1
j=2 j=2

Estimates of Appendix D - see (D.8,19,23,26,31,43-44,46) - give

) 5 oU; ,
QI/VUl sl -I-ZalaJ/VU V—r- 1 /Ul +u2a1a3/UjaUl

OUy Z Z Z‘“ oU
_ pYY1 p 1 p 2 2 - +o 1

=2 j=2 j=2

s 0l 1
= _,\_13_1;}(3’) +0 (Ainf(?,(n—'z)(luo-)))

and, noticing that |@L| = 0(A1U1), Holder’s inequality, (D.17) and (3.24) yield

| v 5 = oulal+)

Log))3(@+2) 1
:0(%1)_;—1fn26,ﬁ1fn27 .
n(n—4

Choosing o = W—Lﬁ’ we get

oyt T oyl \675 N

U oU.
+| 1 4 fUp 212
/n A oyl

and it only remains to estimate the two last integrals. We have

oK 5

(C.71)

_1 00U 1 oU
UP 1_1—:_ A 1‘_
/Q 1 8yllv n(n+2) Jo ayll”
1 92U, _

_ 0 integrating by parts.
n(n + 2) 80 Buay% HLee & BE D
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We note that

0T, - (( N )

dz; 0y} L+ Mz 2 (14 A2|z[2)"3
Therefore
(C.72) oo AT
' o0yl ~ % NP

and, in QN W - since, according to (C.12,13)

1
)= e

21z + O(II,P): oy 2fp1Tp—1 + 0(|?7'|2), —1)
we have, noticing that on 89, z, = fiiz') = 22:11 fiz? +0(|z'|?)

nt2
62U1 1 (n’ — 2)/\12 n/\lccl
oyl ~ A+ VTP L+ Ry \ 2T T T2 - Zfzi' +0(|z]?) | .

Whence, since on 82 N W, because of (C.13-14), |z|2 = |z'|2 + 0(|z|?)
(C.73)

n4-2
9%, 1 (n—2)A;2 n/\lﬂrl
wdyl — (1+ VS22 (1 + X2|z'|2)n/2 fiz1 - T A2|$,|2 Z fiz? 4+ 0(|z'|?)

Then, in view of (C.20-21), we compute

s e = f P e ) T
a0 Ovdyl a 2€0Q auay v

[>

T3
=0 —=|7 using (D.57) .
\ AZ
o[ NE s
il O = , .
aq Ovoy; ? E;ET{;‘; (1+ A2|z'|2)2 2
g2 2n=1) ., 5T
—ofnE ([ L s
pees (14 A 2)P]
= 0(||v2]|) using (D.63) .
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Lastly, (C.14,21-22,25,73) lead to

92U, .
an 3V3y11 '

n+4+2
(n - Z)Al 2 nAIZI - ~
= = 2 .
foeners W (25~ T3 |2Zf 2 +0(2P) | Gr(2)(5(, 0)d=

- n+42
Az |2~ )
=0 / L 5 12 ,' =|v(2',0)|dz’| using oddness properties with respect toz;
iy T T3
4(11. 1) D)
d !
= o o
(RM ESYE R 1) ”"’”J
= ( using (D.64) .

From (C.20, 70), (3.24), T = ,\}/ 6 and the previous estimates we conclude

_10U; _ (Log))3/3 1 )
C.74 g Y e N S S >
( ) LUI ay%’u O( 3776 if m =6 i) fn>7) .

In the same way we compute, for 1 <7 < 3

=
ou AUy  pi1
e p—29U1 241 |
/QUI gyt 1 0 (/5, L% oy ) llvillllvs]|

o
l=lz 7r

T3, ,
=1 ")\—2”’0” using (D.39)

and, for 1 <¢ <2

_90U
/Uf 2—11’05?)2 =0 ()\1/ Uf_llvi| |U2|>
Q ayl L

= 0(Aq[[vs]| [Jvzl])
= 0(Adlll lv2ll)
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Lastly, using (C.21-22,25), we find

- [T
— (1 _ 9\ )4 21 2/\2(22 L fi2])2n AZlz|*
- (-2 [ ety (1 31+ A7) T TN
- 3EEER) + ()
5 ~2
== ()\ f ﬁﬁﬁﬁ (z)dz) because of oddness properties with respect to z;
B+ 112
5n
2 dz 2
=0 /\6 / |ZI 2 Sl5112
( 1( ™ (1+)\%|z|2)2ﬂ) ”U“

il :
0 —~— using (D.62).

A

Therefore, taking account of (3.24) and (C.70), we obtain
58U _ (Log\)4/3 | 1 .
p—2 1-2 — — @ > .

(C.75) /QU1 3y, 0 ( 776 if n =6; ) ifn>7
Finally, (C.71, 74-75) show that (C.7) is satisfied.

=

D. ESTIMATES

In this last appendix, we collect the estimates of the different integral quantities
which occur in the paper. In order to be as clear, short, but complete as possible,
we detail the computations each time that they are necessary to convince the reader
of the result, and omit them each time that they are similar to previous ones or may
be easily performed

We recall that, for y € 92, A > 0, z € R

4 Aﬂ';—z
Uy, = -
)\,J(-Tf') (1+,\2l$_y|2)72
(D.1) q ——aUA’y(x): n—2yaz6 1-MNz—y|?
oA 2 (14 22|z —y[2)?
(@) =——F7"2(z) = (n—2)A _
L 0Y; @ Oz; ()= (n =227 (1+ Xz —y|?)%
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We notice that
Uy

oA

U,
= O —22¥ A
( A ) Ay
From now on, we assume that n > 5.

For y € 0Q, H(y) denotes the mean curvature of the boundary at y. If we
assume that, up to a translation and a rotation, y = 0 and that, for R > 0 small
enough,

(D.2) QNB(0,R) = {z = (¢',3,) € R* ' x R/z € B(0, R),z, > f(z')}

with

n—1
(D.3) f(z") = Z fix? + > gijezmizime + 0(|7'|*)

i= 1<i<j<e<n~1 :
we have
(D4) H(O ——— Z fz y H, (Z Gijji b2 Z Giji + 39%3)

Jj=i+1
We set
271_71/2
D5) Op—1 = meS(Sn_l = n
( 1 ey
where S™~! is the unit sphere of R™.
We begin with the three crucial estimates
e H(y) 1

D.6 VU, 4| — C1— +0(—
(D) LIl = o= - e T o)
with 4 5

o = (n= 2?0 T2 (252

! 4 I'(n)

D.7 VU, V—2 = — 0(—
( ) ‘/;z Ay A\ 2 )2 + ()\3)

AUy G 3H( )40 (Log/\

(D.S) /QVU)\,Q.V = 3

1
— 3 > .
or,  2)on n=58ixginz 6)
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Proof.

(D.6) is established in [1], and the computations to show (D.7) are quite similar.
We do not reproduce them, since they can be easily deduced from the proof of (D.8),
which is the most delicate integral to estimate. We note that, according to (D.1)

PUsy _ (o gpyot? ( 6i; nA2(z — y)i(z - :u)j)

By0z; L+Xe-y)F (14 A2e—y2)" P

(D.9)

In particular

azU)\,y -0 /\2‘2-—2
ayiamj N (1 + /\2I£L' - ylz)% ’

Without loss of generality, we may assume that y =0, 7, = y; forany 7,1 <i <n—1,
and (D.2-3) hold. In the following computations, U denotes the function U ;. (D.1,9)
yield '

+0co n
/ vovl _ g ,\n+2] % =0 (A/ _’".‘il_g_)
Q\Br 0y; R~\Br (TA%[z]?) e (L+72)"

using the spherical coordinates and a change of scale. Therefore

D.10 / VUV— =0(—=).
( ) O\Br yi ()\"_2)

On the other hand, setting
Bt ={z = (z',z,) € R"! x R/z € B(0,R), z, > 0}

it follows from oddness properties that

/ VUV at =10.
o2 dy;

As a consequence

oU oU ou 1
D.11 . - _ ) : -
( ) /QVUVBy?; /MVUvayi%—fw”VUVa“-}—O(AH_Q)
with
(D.12)

w' = {z = (2',2,) e R" ' x R/z € B(0,R), f(z) > 0 and 0 < z,, < f(z')}
w' = {z € (',2,) e R"* ' xR/z € B(0, R), f(z') < 0 and f(z') < z, < 0} .

Let us estimate the integral on w’. For a > 0, we define
(D.13) Lo={zeR"/|z;| <a,1<i<n}.
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We choose a small enough, so that L, C Bgr. Proceeding as previously, it is clear

that
oU

VU.V =0
/w’ng Oyi ()\n . )

Therefore, from (D.1,9) we deduce

oU ou 1
/w' VU.Vayi = /w'nLa VU'VByi + 0(——An_2)
hence
-9 n+2u/n ?
[ voTg =t [ T+ N[z
ol |z|z;dx 1
+n(n—2)°A /w,ﬁLa (1 + AZ[g[2)nt1 +O_(.An—2)
or-
LoV =2 [t
(D.l4) w w/'NLa

r;dx

1

The same expansion holds with w” instead of w’. Setting

—~ —22/\””] ;
e P Y FOEMS

(D.15) Ay ={z' = (z1,-*,Tn1) ER™|z5] <@ ,1<i<n—1}
we have
/ z;dx f /f(ml) dzy dz’
i x
Joow, TF e = ) a0 \Jy  TF (P +a2)

_ Af(aly
1 I; (141227 |2)1/2 dy i
=< ———— | dz
) 1+ NPt \Jo a+v)"

f(= )>0

with y = ﬁ?ﬁﬁf—z We compute
Af(z")
[T A ME) () ’
: O N (e O VERR (e Y FIDE

b n—1 )
T+ /\2|$:|2)1/2(Z fiwi + Z
i=1

1<j<t<m<n—1
r14
+0 Az | .
(1 + A2[z/[2)172
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It follows that

/ x;dzx
wink, (1+ A%z(?)"

n-—1 D ! !
_\"g . | / T T de
_;‘f’/ sy, TRy T 2 O o G PR

f(:l':’))o ISjSESmSn—l _f(z")>0

+0] |xl|5d$f
s A+ A" )

f(z")>0

We note that the same expression still holds for w” intead of w’, with opposite sign
and integrals taken on {z’ € A,/f(z") < 0} intead of {z' € A,/f(z’) > 0}. Therefore

/ z;dx f T;dx
wnL, (L+A2z[2)™  Juag, (1+ A%z|?)™
x2z;dx’ T T LT dx’
= f'/ I+ g'em/ T
2 o T A s, A
+0 /* |$’|5d:1:"
s, 2T 2]

It follows from (D.15), oddness properties and

f jo'fPda’ [ 1 /* te pnt3dy _oL)
po L+ X227 antt (T2 ) At

that

/ z;dT / T dx
nL, (1+ /\2|93|2)” nnL, (1+ A%|z|2)»

o xida’ 1
9gjji + 9ij / S T oTe Qm/ + 0( ) -
Z 7 _Zh;l i) A, (14 22[z/2)n A, (L+22[/[2)n 7 72 xn+d

In the same way, we get

f s /‘ z;dx
ot TEREPTH ™ Jo, T Ry

z3zidx! zids’ 1
iji + gi f +9---/ Fllr—)
Z i) JXZ_:H ijj A, 1 +A2|$f|2)n+1 111 - (1 +/\2|$f12)n+1 A +4
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so that, in view of (D.14), with a rescaling in the integrals

(D.16)
oU ou
/L; VL Vayz . VU.Vayi
z2zidx’
=73 9jji T 9ij ( -2 2] St s S
[(Z i3 J;H- i) ( ) A, (1+|.’I7’, )

r2x2dx zidz’
_ -9 2 12 e - 2/ 1
n(n — 2) /MG —(1 n |$r|2)n+1) + Giii ((” )(n—2) \a, (L+ [2/[2)"
1

4d !

Integrating by parts, we have, forc =noroc=n+1,

rizids’ 1 dz
/ma A+[z'?)  2(e-1) /;Aa (1 + [a']2)=1
1 |z’ |2dz’
2(n—1)(e = 1) Jxa, 1+ |2'[?)—1

_ +o0 'n.d 1
_ Opn—9 / rdr o =
2(n—1)(c—1) 0 (14 r2)o-1 AN2o—n—3

/ zide 3 / zids!
o, T+ 200 —1) Jya, (14 ]2']2)71
Then, (D.11, 16) yield

and

/VU.VaU
[9) 0y;
(n - 2)20,_ 2 /+°o rrdr e rdr
= - i i 3 z'n T oNa—1
2(n — 1)\ Zgﬂ + ;_ng3+ gi (1 + r2)n-1 [o (1+r2)n
1
+0(,\_2) .

Therefore, using (D.4)

ouU (n—2)2%0,_90H G S 1
VUV — = — et Tole 5.
/n Ay 4\ Ay ©) /0 A+ " x

Since, as standard computations show

f+°° e _ TEhpEs)
o ([Q+r2)n 2T'(n)
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(D.8) is proved.

Similarly to (D.6-8), we have

S"/2 H(y) 1
P+1 —_
with ) .
04 — On—2 I‘\(n2 )F(ng )
4 I'(n)
aU, n — H(y) i
o Yo _
oU,y n-—2 2 04 oH 1
p Oy _ 1
(Dlg) LUA@ aTz— 2'”, A 67-3 ( ) + O( /\2) .

(D.17-19) are obtained in the same way as (D.6-8), and we omit the computa-
tions. In addition to these estimates, we remark that

Up+1 il (/+oo o I )
Ay - (1+,.2)n

lz—ylZp

so that, for % going to infinity

TTL
(D.20) f . B = o(/\—n) :

Concerning quadratic integral estimates of Uy ,, we have

Cs LogA . 1 .
(D.21) /U -I-O( 1fn=5;—1fn26>
i Ay T )\2 23 )3
with i
05 _ On-1 r(% r nT)
4 T(n-2)

oU, Cs LogA 1.
D.22 U Y — =5;— >
( ) L A5y 2/\3—|—0(/\ ifn=175; )\41fn_6>

s




OUy y LogAX . |
(D.23) ng’\’y 5 =0(A3 1fn:5;F1fn26 :

Proof. With the previous notations, we write

/U2=/ U2+/ Uz—f U2+/ U2,
p) O\Br Bf w! wh

We compute

xr—24 : 1 +o0 n—1g4
/ Ut=0 / Ty :0(“f T—QT—__):O('l_)
NBr lzi>r (1+ A%[z|?)" A Jar (1+72)n—2 An—2

/ [ﬂ:lf g2 _ Tnc f)\R r=1gp :an_lf(%)l“(”—;i)_*_o( 1 )
Bt 2 /g, 2 Jo (1+r2)n-2 4 T(n-2) An—2

since

Lastly

and

f") dz,, .
2|2 212\n—2 dz
fz')>0 0 (]'+)‘ |$ J _{_/\ 1’”)

s n—2 |$l|2d$’ .
=] (/\ / 0T 22 using (D.3).

Aa
f(z)>0

/ UZ s )\n-—Z/
w'NL, s

Proceeding in the same way to integrate U? on w', we obtain

! def
— U? U2 =0 /\n—2/ ||
/wf i " ( A, (14 A2z![2)n=2
_of L /M ridr
TA\N S G

L 1
- ( 0gn ifn=5;-;\§ifn26)

whence (D.21). The computations which lead to (D.22) are quite similar. Concerning
(D.23), assuming that 7; = y;, 1 <7 < n — 1, we write again

UBU:f yOU [ 40U _ U8U+f ;80
@ v Jase Oy Jpr Oui Ju Oyi  Jur Ous
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and we compute, using (D.1)

z|dz L
fQ\BR Byl = (f|z:>R (1+A2m2)”—1) = ( fR (1+r2‘§“ 1) :O(Tﬁl—_z)

I B 3% = ( because of oddness with respect of y;

fw'Ug;{ - f "ML, U@y1 +0(An 7)

=\ [ a4, ( Df(a:) (1+A2£:c’lcéﬁ:l)\2mﬁ)“"1) vyd’

flz")>0

Af(z")
2,7/121/2 d de’
=\t 1 A (14+A=]2']<) Y s it}
ff(m’t)z>o 0 4270 | (pazer2)n-2

(D.3) yields

Af(z")

f aniemr__ dy __ M(@) +o( X (@)
o (1 +y2)n-—-1 - (1 -+ )\2|x’|2)1/2 (1 L ,\2|xr|2)3/2

A =, Az |3
~ (1 + A% 2)i72 Z” e ((1 + AZJz'P)l/?) '

Therefore

- x2x.dr’ |$’|4d:1:’
n 3t n
/ 5Jz =4 Z /; f Aa (14 A2|zf|2)n—1 0 ()\ ] a0 (L4 X2|z/[2)n-1 | -

flz')>0 f(z!)>0

Treating in the same way the integral on w”, we obtain

oU ou = :c z;dz’
U U -\
Ay; /u E)y,ﬁ ;fJ/ (1+/\2|$’| yn—1

Aa

n |z’ |* e’
0 ()‘ /A A+ XpEp1)

The first integral vanishes, by oddness of the integrated function, and

,\n/ |z’ |*dz’ 5 1 /)“’”"1“ phtegy
a, (1+ X2[zZ)nT 3 (1+ r2)n-1

=0(L°g)‘ ifn=5;;—3ifn26) .

)\3
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(D.23) follows.

Remark.

We have

1
; 2 =0(—=) ifn=5.
(D.24) /Q o, U =0) i

A11/2 )
Indeed, we write

dzx

/Q\B(y,

hence, forn =5

1
;1/2) 13172

Q\B(y’A_llﬁ) Ay A2 Al/2 (1+T‘2)3

and the announced result. In addition, we remark that

Ufy = O (% /+oo Tn_;dr—Z)
! A Ap (]. T )n
A

so that, for % going to infinity, we have

T'n.—4
(D.25) / . URy=0 (Kﬁ—_?) .

lz—y|>p

U, =0(A"2 /
A ( B(0,25)\B(0,—-) (1 + A2|z[?)n=

|

We write now the following table, which is often used throughout the paper :
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(D.26)

s n/2 1
L Ivu = s 4 0(3)
2(71(”—2))“5“ A
[VGRE=53+05)  C=Caln)>0
’|2 = 03A§ +0(\:) Cs = C3(n) >0
ou; .1
4 /VU Vs )\2) fVU vayJ 0(5)
1 oU; 1
v oy, [ vl g0l _ o1 =y,
and, for 4 75 J .
__ ou; 1 LU 1
/ﬂvm.vuj = 0(55) 5 /VU v-aT 0(5a=7) ,/ﬂvm.vayg. = 0(52=5)
9U; _ 8U; 1 oU; _ aU; 1 oU; _ aU; 1
—V—==0(—): . : V—-. L=
/va'\i Va/\j 03 va)\i vc?yg 0(7=1); a Oyl vayfn 0(5=2)

with, as previously, U; = Uy, , and 0(f())) denotes a quantity dominated by
S L F(N). Setting, for 1 <i<k,3<f<n+1

n+1)(i-1)41 = Vi n+1)(i=-1)+2 = [y n+1)(i—1)+¢ = 3
(n+1)(i—1) (n+1)(i-1) A\ (n+1)(i-1)+ a7

and, for 1 <a,b< (n+ 1)k

ma,b:ngoa.V(pb
2

it follows from (D.26) that the matrix M = (myg ) is invertible with

n—2

£ n/2 -1 X
det M =C H )\?(TL—Q) + 0(/\2.1:(11—2)—2) 0 = S 0203
2(n(n—2))"=7

i=1

The coefficients of M~! = (m, ;) may be easily estimated through (D.26). Writing

M= = (Aij)i<i <k
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where the A;;’s are (n 4 1) X (n + 1) matrices, we have

| 0(1) 0(X%) 0(3) - O0()
0(35) 0(z) O0(z)
Az’z= 3 : O(A%)
0(x)
(D.27) 0Ge) 0Gs) 0(5x)
. { i |
[ (=2) O(z=) O(Gx) e 0(E)
03s) O() O(x) iy
A= 0Gx) O(z=) -y
: O(,\nlﬁ—z)"
L 0(3%)  O(5=) |

Proof of (D.26)
The estimates of the integrals over Q of |VU;|?, VU; Vgg{ , VU; Va—UL follow
from (D.6-8). The integrals of |V5%:[2, jv@—f&ﬁ Vo va—% and v% V—,-i are

computed in the same way, very easily since, m contrast Wlth (D.6-8), we are only
interested here in rough estimates.

Concerning integrals where both U; and U; occur, i # j, let us estimate the
first one. We recall that y* and y? are assumed to remain far from each other, i.e.
ly* — y*| > do. We write

/VUi.VUj:/ VU?;.VUJ'+/ VUi.VUj-l-/ VUZVUJ

Q2 B; B; Q\B;UB;

where B; and Bj; are balls centered respectively at y* and 37, with radius %‘l. 1L
follows from (D.1) that

1

IVU;| = 0(—=) on @\ B; ; |VU;| = 0(—

i ’\j

=) an 2\ By .

Moreover, using again (D.1), we have

n+2 +oo n
/WUH:O(,\%,Q/ ﬁé@_ﬂ):o Lﬁ/ o T
B; re (14 A7|z[?)3 Az Jo (1+12)2 A}

Therefore
LVUZ-.VUJ- = 0(/\”_2
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The other integrals may be estimated in the same way.

Remarks.

When y* and 37 are not assumed to be far from each other, and )\;, Aj are not
necessarily of the same order, it follows from computations in [6, Part 1.1], that

n—2
Ai /\j i 12 TR

In other respects, assuming that 7' and % go to infinity, we have

(D.28) f VU;..VU; =0
Q

4 o .
[ o= (Gr)
le—y|2 g
ou "2
(D.29) < / Y Ay|2—0( An)
lz—yl2 P
TTL
[, we=o()
\ Iw—y?Z:glf 0 A

Indeed, according to (D.1)

2dz
VU2 = 0 [ An+2 f o E e
VUl ( ol> 2 (14 A2|z|2)"

Too pntlgy
o[

[ERSb

2
&° [1Ar2)e
Tn—‘2
=0(57=2)
and comparable formula replacing U} , by L and g; :

Finally, concerning the second derivatives of U, ,, we state

02U, o0%U 02U
D.30 \V4 "9'2__0 / A;y2_0 / Ay2 4
(D-30) fgl 2 | Na/\a | 'vayjayg' 0(A%)

Indeed, it follows from (D.1) that

v aU,\yl_ A v BU“’I ( % )
ON? (1+ 22|z — y[2)* ONy; (14 22|z — y|2)%

hence the expected result.
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Our last quadratic estimates are

(fur=o [Gr=oge [Ghr=o

(D.31) < and,for i#j

o ou; 1 o 1
| [uvi=ogm) [ o= ot fQUzayg = 0(5amy)

Proof.

The first estimates are a consequence of (D.21), noticing that g—% = 0(%) and

%’— = 0(A\U;). With the same assumptions and notations as before, we deduce from
(D 1) that
. 2
(D.32) U; =0(——=) on 2\ B; Uj = 0(—=) on Q\ B; .
' da & A2
7 J

On the other hand
(D.33)

Adg
2

n-2 dx 1 " ldp
/ U = 0(; 2 f n_—z)zo(mf —2W)_0( 7)
B, i<t (14 A2|z]2)*3 Az Jo (L+r?)gt AT

i
2

Therefore

/UU s S

The estimate of [, U;3 /\’ follows from the fact that = 0(%) Concerning the
J

J
last integral, we remark that according to (D.1)

(D.34) i1~ o(—L;) on 2\ B,
Ay} /\jT

and

(D.35)

03

oU; +2/ |z|dz 1 / 2 rdr 1
AR —_— :0 —_— e :O i
/B |5Jg e wi<de (14 AFlz[?) ) (,\f 0 (1+T2)5) (A =)

J

hence the announced result.

We collect now some estimates which turn out to be very useful in the arguments
of the paper.
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(D.36)

P+l pFI
(fQUA,’; )p :O(AE,I/2 1fn=5;gf—‘—’xgé\)—-1fn:6,)‘2 1fn>7')
P
p+1\ p+1
PR o
(D.37) (me(y,ﬁ) U2 ) =0(57) ifn=5(p=1I)
P
(p—=1)(p+1) p+1
(D.38) (fQUA,y » ) = (2z ifn= ;@Eﬁi ifn="6;%ifn>7)
ﬂ
(2=2)(p+1) _1\ 7-1
(D.39) ( ; y\'|1>-1T Uy, "™ [Qgﬁl]ﬁ) = 0(3:—3) as T, 2 go to infinity
roylzg
au
(DA40) [ 12%2 P+t = 0(5) o 1282 41 = g(ar+1)
D.41 9w |55y 78T = 0(2) |
Q | ay; )

Proof.

According to (D.1), we have

p+1 n(n—2) d
U}\; =0 ()\ ﬂ+22 / 2 -3 )
Q lz|<25 (1 + }\2|$|2) o

where S is a fixed number such that  C B(0,S). Thus

_ 228 n—1
[ oo [7 )
0 (1472

n—1 i i s . 2 n—2
— =y is equivalent to m as r goes to infinity, and ”TE 3 )

(1+.,.2)n—+2 r nt2
is larger than 1 for n > 6, is equal to 1 for n = 6, and is smaller than 1 for n < 6.
Therefore

—n+1

n(n—2)

225 n ld‘r' 2n(n—2)
f —0(/\”_ n+2 forn<6;LogAforn=6;1forn>6)
0 (]_ -+ T'Z) n+2

and (D.36) follows. Concerning (D.37), we have to change in the previous computa-
tion 2AS by A2, and we obtain

1/2
A rn=1ldr

/O (1 + T2)n£1n+—22)

=il (A%(”_n—éh)) forn<6.




Taking n = 5, we get the result. Next, we write

(p-1)(p+1) - d 208 n—1
/U,\y P =0 ,\:—Hf e | =0 )\n+2'”f o SR Y
Q lz|<28 (1 4 A2|z|2)7+2 o (14+r2)»+

n—1
—— 1s equivalent to 1
—n+41
(1+7-2) n+2 TTL+2

than 1 for n < 6, is equal to 1 for n = 6, and is smaller than 1 for n > 6. Therefore

r as r goes to infinity, and =% —n + 1 is larger

228 'n,]_
/ —dL—O(Ilfn-—S Log Aif n=6 ;A" ﬂ+21fn>6)
o (1+4r2)n+z

and (D.38) follows. We have also

(p=2)(p+1) n(6—m) . nin 5 z
/ U)‘pny I aUAﬂU E% = A (64_)+_""“‘( 4+2) / |5C| 2 (i:i e
s dy; > (1+ A2|z[2) = a0 +%

o

whence (D.39). (D. 40) is a straightforward consequence of (D.17) and the fact that

/[aUM B A”] || %2 dz ot /+oorﬁ%+n—1dr o i
0y; R (14 |z[2)7F Atz Joo (1402)% Pz

since, for every n, the integrals are convergent. Then, (D.41) holds.

We state some additional integral estimates of the same type, where both U; and
Uj, t # 7, occur. Namely

(D42)  [oUPU; = 0(52ks)

(D.43) [ UP™ 1|°”‘—Ur~|U = 0(52=)

(D.44) [, UP? |‘3—UL|U2 = 0(5%)
)\n 2

(D-43)  [ol554IUF = 0(552)
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(D.46) [ U ng|Up+°’—o(m) forn>6,2-p<o<l1

—1
(p=2)(p+1) p+1 )’;;Tl

(D.47) (fninf(UfH,Ui PEUrT)

=0(5z) -

Proof.
(D.32) yields

1 1 1
foUj=0(n_2fo+n—+zf Uj+m)
Q A2 /B A% VB X2 XN 2

From (D.33), we know that

1
B UJ - 0( 11.;2 )
“ j )\j
and
nt2 dzx
/ Ui =0 A" / d 2|, |2) 22
B; lz|<%e (14 Af|z|?) 2
—0 1 /)"'%0' r*1dr
A2z Jo (1+ r2)‘nzﬂ
so that
(D.48) /B Uf = 0(%) :

This proves (D.42). (D.43) follows from (D.42) and the fact that |%| = 0(\:05h).

Concerning (D.44), we write

_o,0U; ) o 1 1
(7 ekl s EENY f p—72 2, -
/Q F Ty (,\?_2 5 '6""“' AP

J
because of (D.32,34). Moreover, (D.21) ensures that
1

[ v Sv2l

o2 (e oldz
B = Oy ' wl<de (14 A2|z[2)" 2 +%

i 1 /%ﬂ rdr
- )\?’_3 . (1 +’J"2)3
L

=0( (;g;\i ifn=5;%ifn26)

1 P

Lastly




since ﬁ ~ 1™% as r goes to infinity, and (D.44) is proved. In the same way, we
write
oU; 1 aU; 1 1 il
- [IP == [} — ? + — J/‘ CIP + — =0
/n|3yél ! AT T NT e T ATAE )

because of (D.35, 48). We assume now that n > 6, and 2 —p = 2=8 < ¢ < 1. From
(D.32-34) we deduce that

oU; 1 oU; 1
U7 | == |UPt =0 —'"—"—/ U7 % —| + f Uprte
/Q ¢ ]3y§| 4 Vo) Jp, ot |3y}'e| N\ (1-0) By 7
T

J

1
V2 (1-0) 252 (p+o)
i J

4_

On one hand

/ gote _ o [ 22wt f dz
B 7 ’ el (14 2 |zf2)"5 @)
. d

A
_0 1 /"1'2”2 r—ldr
A?—”T‘z(pw) 0 (14 r2)"5" (p+o)

whence

B I i (pt+o)

J
J

rn—l

e —
(1+T2)n—2-(P+c)

8 i _JL:gU nt2
[ U = (5T e
B; Yy lzj<de (14 A2|z[2)~ "7 o+

Aidg

~0 1 /‘ 2 rdr
/\1%4_,17_20 o (14+r)E-"Te

1
Y ;| [ S
(/\7‘_52'“‘”))

since the integral of is in any cases convergent. On the other hand

since

as r goes to infinity.




Combining these results, we find (D.46). It only remains to show (D.47). We have,
using (D.32)

11 (p 2)(p=1) p+1 g((s 121))

5 P T p-1  grP-— 1 n—

/mf (Ui U, U- =0 n(n 5 U + — )\
Q i

and -
n n
/ U2(n 2) __ n(6 n)f d.'l:
- d 'n.(ﬁ n)
lz|<2 (14 N|z|?)” =
)\ldn _
b /‘ T r*—1dr
n(n—2) n(6—m)
i 0 (1+'r2) 1
1
1
= 0 n(6—n)
4
i
since
rr-t nn=4) o
~ T2 as r goes to infinity.
n(6—mn)
(1+72)" 1
Then

o (g e e
inf | T U, °F Uup- —-0( 5)
Q A2

hence (D.47).

9

It only remains to estimate the boundary integrals. We have

o 2n—1)\ IieT) 1
Ay — =
(D.49) (/BQ E 0 (5)
22U 2(n=1) PICES]
D.50 o i ==
( ) /3 ovoT; U
(D.51)
U, 1 / Uy 4 3U)\y 1 / OUyy | OUNy
3 — 0 - e e E A ) —_— | — = = 0 ]. .
~/BQ dv U)\,y (A)’ a0 ov 8A 0(A2 ), a0 dv ayz ( )

84




Proof.

With the nonrestrictive assumptions that y = 0 and that  is defined by (D.2)
in a neighbourhood of 0, we write, for o = (2, f(z')) € 90

v )= 1+ /2(z")) -

1/2 (93:1 3::5Z Iz

Therefore, (D.1,3) yield

BU)\1y (0_) _ n—2 An+2 Z?_ll gm Iy — Ip

v - (1 +f!2($l))1/2 (1 +A2l3§| )%
or
(D.52) 3_U5.z§i(g) - _ n—2 nf2 St fix? +0(|2 )

ov (]_ +f’2(32’))1/2 (1 + )\2l$|2)%
Since
do
(D53) IZET = (1+ff2($.'))1/2
we obtain
2(n—1)
U,

4(11. 1)
(nt2)(n-1) |z’ | dz’
/ do=0(A 2| 7[2\n—1
snB(0,R) | OV i<k (1+ A2[z'|2)

using the facts that on 9Q, |z|? = |2|?40(|z’|*) and f%(z') = 0(|z’|?). With rescaled
spherical coordinates, this yields

6Uw 2("_71—1)_ 1 \R! - 2+4(nv1)dr
(D.54) ——— do =0 “3a=1) 2\n—1 :
8anB(o,R) | OV = dy (1 +r2)
. D+4(n 1) ( _2)2
e 5T as r goes to infinity, and ==L > 1for n > 5. The last

™ [
integral is convergent, and

1
/ do =0 (_2(11—1) ) :
80NB(0,R) AT

On the other hand, we deduce from (D.1) that

oU i i 1
(D.55) Ty—’ =0 (Z ) =0 ((1 n f\Qlei |)n/2) = 0(/\,,52 )

=1
85

2(n—1)

AU,
v

6UA,1J
3.%;




on 80\ B(0, R). Consequently

/aQ\B(o,R)

whence (D.49).

2(n—1)

AU y
ov

1 1
dO’ZO('/\—'G-_"Z")n(R—_l)-) :'O(/\Tn—f)—) for TLZE)

n

Remark.

From the previous computations - see (D.54) -, we deduce that

3UA 2(nn—1) 1 AR Tn_2+ 4!11“—1!
,ly o
/;mns(o,m v do =0 /\Q(Ln—li f,\ (1 4 .r2)n—1 dr

lz—31> o T
and
e T = = as = O TO 1Nnnity.
s (IFr2)nt ) i 8 y

4T

Then, we have

(D.56) f -

- =
|z y|24T

U,y
dv

2(n—1) 2(+—1j ] T n_;_ti
:O(X(X) )

The proofs of (D.50-51) are quite similar to that of (D.49), and we omit them.
We notice that, like (D.56), we have

(D.57) / -

1
lz=yl2 77

ki3
2(n—-1) 2(n—1)

8y
Avdy;

We end this section with the following technical estimates

1/2
(D.58) (fRﬂR Wd) :O(LLO—gAli/—z‘ 1fn-—6 )\n+6 1fn>6)

Bk 1z _
(D.59) (_[Rn Wd) =0( 2

2
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1/2 1:.-8
—olT=— ( z —
(D.60) (f] 2 EEsEE dZ) =il ( o ifn <8 ifn =8 gz if n > 8)

" 1/2
0.61)  (fur rrtiimyerdz) :o(:\—éﬁq)

(D.62) |{ [ga (1+A2|z[2)2ndz) =0(5r)

n

e 2(11-1) (n-1) 1
A =0(—
fRn 1 (1+)\2|$ 12)11 1 A__-zﬂ

(D.63)

(D.65)

4(n 4(n-1) 2(n—1) "
(D64) (IR” 1 (1+)\2|z |2)n, 1dz") = O(E)

| |8 dz % =0 1
| Rs% e - \oert )

All these estimates follow from stralghforward computations, using spherical

coordinates and a rescaling z — 2.2 %, 2 ZT
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