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1. Introduction

The questions that we are going to investigate originate from the classical so-
called Plateau problem. T' being a Jordan curve in R3, the Plateau problem consists
in finding disc-type surfaces of minimal area spanning ['. Such a surface has mean
curvature zero, and may be parametrized by a function

w:D? ={(z,y) e R*/z®> +¢v* <1} - R®

which satisfies

f1.1) Au=0 in D?
(1.2) luz|®* — Juy|® = uguy =0 in D?
(1.3) ujgpz is a continuous monotone parametrization of I'.

Conversely, a solution to (1.1) (1.2) (1.3) parametrizes, away from branch points, a
surface with mean curvature zero spanning I', whose area is not necessarily minimal,
but stationary.

In order to give this problem a variational structure, one often prefers to consider
the related Dirichlet-type problem :

Au=0 in D?
(1) {

u=v on OD2%
where v is a given function from 8D? to R*®. Then, one can take advantage of
the freedom that we have in the choice of v as a parametrization of I' to get the

conformality condition (1.2) satisfied -see for instance [17] [18] [7] and references
therein.

A solution to the classical Plateau problem having mean curvature zero, a natural
generalization is to seek for surfaces spanning I' whose mean curvature is a given
constant I € R. Equation (1.1) is then replaced by

(1.4) Au=2Hu, Au, in D2
and we denote by (II) the corresponding Dirichlet problem

(D) { Au =2Hu, Au, in D?

w=+v on ODZ%.
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A further generalization is to look for surfaces whose mean curvature is pre-
scribed, but not necessarily a constant. Namely, H being a given function from
R? to R, we impose the mean curvature of the surface at the point u(z,y) to be
H(u(z,y)). This leads to consider, instead of (1.1), the equation

(1.5) Au=2H(uw)u; Au, in D?

and the associated Dirichlet problem

Au=2H(uw)u, Auy in D?
(II1)

wu=+ on OD%.

Equation (ITI) has a variational structure : solutions may be obtained as critical
points of the functional J defined by

(1.6) Ta(u) = B(u) + ng i)t At

for u € HY(D?,R?) = {u € H'(D*,R?®) s.t. wjpp2 =7}
Here E(u) denotes the Dirichlet integral

(1.7) E(u) = %/D IV

and Q(u) is the following map from R? to R?

(18) Q(’U,) = (/Uul H(t,UQ,U3)dt,f0u2 H(ul,t,’ltg)dt,/oug‘ H(ul,uz,t)dt) .

Note that in case H is a constant, @Q(u) = Hu.

In 1969, Hildebrandt proved the existence of a first solution to (III), provided
that the inequality

(1.9) 17| Lo (9D, R3[| H || oo (D2, RE) < 1

is satisfied [17]. From the observation of some special cases, Rellich had conjectured
that for constant H, there should exist pairs of solutions. Such a conjecture was
settled in 1984 by a result of Brezis and Coron [7]. Indeed, they proved that if
(1.9) is strictly satisfied, there exists a second solution, as well for (11 ) as for the
corresponding Plateau problem. However, their proof cannot be easily extended to
the case of variable H. The main obstacle is to analyse the behaviour of the so-
called Palais-Smale sequences, the functional J being noncompact. To overcome this
difficulty, Struwe introduced, as Sacks and Uhlenbeck in [28], a perturbed functional
for which compactness properties hold. He was then able to prove in [37] a partial
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multiplicity result for variable curvatures close (in a special norm) to a constant.
This result was slightly improved by Wang in [39].

In this paper, we focus on the existence of multiple solutions to (I1I). We are
then able to derive similar results concerning the Plateau problem. We propose a
direct approach to the question, relying on both a careful analysis of Palais-Smale
sequences and a priorl bounds for solutions. This strategy allow us to prove the
existence of a second solution to (III), as soon as (1.9) is strictly satisfied, and H is
close to a constant in L®-norm - see Theorem 4.2.

The paper is organized as follows :

- In Section 2, we recall the existence result of Hildebrandt, for the so-called
“small solution”.

- Section 3 is devoted to the result of Brezis and Coron concerning the existence
of a second solution to (II).

- In Section 4, we develop the arguments which will make possible the proof of
the main theorem, concerning the existence of a second solution to (III), provided H
is close enough to a constant.

- In Section 5, we the corresponding results that we can prove about the Plateau
problem (1.5) (1.2) (1.3) - see Theorem 5.1.

- Lastly, we state in Section 6 some geometrical inequalities linking the mean
curvature, the diameter and the area of a manifold, that the techniques that we used
allow us to prove, or conjecture.

The main results of this paper were announced in [5] [6].

(*) We learn that some of the results presented here have been obtained inde-
pendently and nearly at the same time by N. Jakobowsky.

Acknowledgements

We are indebted to J.M. Coron for bringing this problem to our attention and for
numerous references in the litterature. We also thank and F. Hélein for stimulating
discussions.




2 The “small solution”.

S. Hildebrandt proved in [17] the following result :

Theorem 2.1.— Let us assume that v € H'?(dD? R?®) N CY'(0D*,R?),H ¢
C'(R3,R3), with

V|2 (o02,3) | H || 2 (D2, R%) < 1
(D™ denotes the unit ball of R™).

Problem (III) has a solution u, which satisfies

lull Lo (p2,rR3) < |7l 200 (82, R3)-

Remarks

1. For the case H = 0, see the pioneering works of Douglas [10] and Rado [24]
[25] [26].

For the case H = constant, see the paper of Hildebrandt [18], and previous works
by Heinz [15] and Werner [43]. Similar results have been obtained by Wente [40] [41]
and Steffen [32] in case of constant H, by Steffen [32] for variable H.

The result of the theorem may also be found again by mean of the heat flow
associated to the equation -see [27].

2. Using a minimizing procedure for the energy of the solutions of (III) with
respect to the parametrization « of I', one obtains a solution to the Plateau problem
(1.5) (1.2) (1.3) -see [17].

3. The result is sharp when I' is a circle : Heinz proved in [16] that the problem
had no solution for H constant and H.|vy||re > 1.

4. u € C°(D?)N C**+*(D?), for any « €]0,1[.

Proof of the theorem. We sketch the proof in the case h = |[H||ze(ps,rs) < 1,
|7llzee(ap2,r3) < 1, and H smooth. The general case may be deduced using homo-
geneity arguments, an approximation method as in [17], and regularity results for
elliptic systems [38].

Let ' be such that
h<h' <1

and H : R* — R?® a smooth function satisfying

. 2 1
H=H on D®;H(lu))=0 for |u|>

E ;|!I§T|IL°°(R3,R3) < h’
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We denote by J; and Q the functionals corresponding to H through (1.6) and (1.8)
respectively. Note that we have

sup |Q(u)| <1,
wER3

so that i
gE(u) < Jg(u) <

Lo ot

E(u) Vue HY(D?,RY).

It follows then from a result of Morrey [22] that the infimum of J on H 2(D?, R3) is

achieved by a function u which is a solution to (III) with H instead of H. As we
have also

—Alu® = =2(|Vul? + w.Au) < -2|Vul*(1 - |u|H(w)]) <0,
u is subharmonic in D?, and the maximum principle yields
lu €1 in D?

H being equal to H on the unit ball of R3, u is a solution to (III).

Now, we state a result which will be of fundamental importance in the sequel.
Lemma 2.2.— Suppose that Hy is a constant, and
[Hol-[7[lLeeop2 ey <1

The second derivative of Jy, at u is coercive. Namely, there exists § > 0 such that

T, Wes0) = [ (06l + tHanpa ) 26 [ VP
for any ¢ € Hy(D?* R3).

For a proof of this lemma, see [7].

Remark. 6 may be chosen independently of 4 as ||y||r=~ goes to zero, Hy being
fixed. Indeed, ||u||ze < ||y||L=<, so that

7
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3. The “large” solution for constant H.

In order to prove the existence of a second solution to (III), a natural idea is
to take advantage of the characterization of the first solution as a minimum, to use
some mountain pass-type procedure. This program was performed by Brezis and
Coron in [7] for constant H, and Struwe gave another presentation of the result in
[35]. Namely, it is proved in [7].

Theorem 3.1.— Let v € H/2(0D* R?®) N L*(8D?,R?).

Assume that v is not a constant on 8D?, and that Hy # 0 satisfies

|Ho .17l Lo (ap2 R2) < 1 .

There exist at least two solutions of (I11).

Remarks

1. If 4 is a constant, if follows from a result of Wente [42] that u = v is the only
solution.

2. For the existence of a second solution under different assumptions, see Struwe

[34] and Steffen [33].

3.1 The behaviour of Palais-Smale sequences.

The main difficulty which one has to deal with concerning the functional Jg, is
that the Palais-Smale condition (P.S.) is not satisfied. A Palais-Smale sequence for
JH, 1s a sequence (u™) such that

Ja,(u™) is bounded

Jy,(u™)  goes to zeroin H™'.

(P:S.) condition is said to be satisfied if and only if any sequence of this type is
relatively compact.

Note that we have the following property :

Lemma 3.2.— Any Palais-Smale sequence is bounded in H'.
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Proof. Ji; (u™) — 0in H™! writes
Au™ = 2HouZ Auj + f*, fa—0 in H™'.
Substracting from this equation the equality
Au=2Hou, Ny, ,

multiplying by ¢™ = u™ — u, and integrating on D?, we obtain
— | Ve P =2Ho [ (ug Auy —uy Aty )pn + oIl a).
D? D? i’ £ o
Integration by parts yields
G - [ Ve =at [ welagi+am [ onolngh+olle )

(see [7, Appendix |). On the other hand, we have

1 2H
(3.2) J(u™)=J(u)+ —/ [Ve™|? + 2H, / uy Aoy + —= P" .0z Ay
2 D2 D2 3 D2

It follows from (3.1) (3.2) that

[ o negl <€+ ol ).

Lemma 2.2 and (3.1) then show that (") is bounded in Hg, and Lemma 3.2 follows.

From this we deduce that any Palais-Smale sequence is weakly relatively com-
pact. It is easy to see that any weak limit is a solution to ([II). Indeed, observe
that

1.0 g
Therefore, for any test function ¢ € C$°(D?, R?)
1
(3.3) Ugp A Uy =—g U A Uy. Pz + Uz A Uy
D2 D2

and this last expression is continuous under weak convergence of u in H*.

However, the Palais-Smale sequences are not necessarily strongly relatively com-
pact in H'. Brezis and Coron have precisely analyzed this defect of convergence.
Namely, it follows from [8].




Theorem 3.3.— Suppose that (u™) is a Palais-Smale sequence for Jg,.

There exist

(i) u® € HJ solution to (III)

(ii) a finite number of nonconstant solutions wi, - - - ,wp of Aw = 2How, Aw, on whole
R2

(iii) sequences (a7)- -, (ay) in D?

(iv) sequences (¢7)---,(e;) in R}, lim, o€l =0, Vi

such that, up to a subsequence, we have

— _ z . 0
— Zw T

and »
/ |[Vu®? = / |Vu®|? + Z/ |Vw;|* + o(1)
D2 D2 — Jr2

p

Tro(u™) = o (u®) + ) J(wi) +o(1)

1=1

(with the straight forward definition of J for maps from R? to R3).

The proof of this theorem relies on a careful blow-up analysis inspired by the
concentration-compactness method [21]. This result emphazises the role of solutions
of the equation on whole R?. These solutions are completely classified, as stated in
the following lemma [8].

Lemma 3.4.— Let w € L (R? R?) be such that
Aw = 2Hyw, Awy, on R? / [Vw|? < 400 (Hy #0)
R2

w writes

1__ P(z)
w(z) = =II
=710
where Il : C — S? denotes the stereographic projection, P,Q are polynomials, and
C' is a constant. In addition

/ |Vw|? = 8—7; max(deg P, deg Q)
- H

0

)+ C, z=(z,y) =z +1y

and

34H2 max(deg P, deg )

(of course, the quotient P/ is supposed to be irreductible.)

JHO( )
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3.2 The mountain-pass lemma

We recall the mountain-pass lemma under its standard form.

Lemma.— Let F' be a Cl-functional on a Banach space V, which satisfies the
following conditions :

(i) F(0) =0
(ii) Ir > 0,p > 0 s.t. F(v) > p, Yo e V,|jv]|=r
(111) dvg € V, “’Ug” >r, s.t. F(‘Uo) <0

Setting
&= It mmaE Pl
with P = {p € C°([0,1],V) s.t. p(0) =0,p(1) = vy}, there exists a sequence (v") of
V' such that
F(")—e¢
F'(v")—=0 in V'

In case F' satisfies (P.S.), we infer the existence of a critical point at level c.

We apply this lemma to the functional K : v — Jg,(u + u) — Jg,(u) on the
space V = H}.

Lemma 2.2 ensures that condition (ii) is satisfied. Moreover, condition (iii) is
clearly satisfied, and the following lemma provides us with an upper bound on c.

Lemma 3.5.— We have
47

aHZ

c <

The proof of this estimate, which relies on careful computations along an explicit
path, is given in [7].



3.3 Construction of the large solution

The mountain-pass lemma provides us with a Palais-Smale sequence (u™) for
Ju,. Up to a subsequence, u™ converges weakly to a solution ug of (II). Moreover,
using Theorem 3.3, we know that either

u s ug in H', and Jg,(uo) = Ju,(u)+c

or
T, (wo) < Jao(u) + ¢ — inf{Jg,(w)/Aw = 2Hw; Awy in R? w # constant}
& Fun (i) + E—
= LHnS 3H?
< JHO(EL_)

according to Lemma 3.5.
Thus, in any case, ug # u, and Theorem 3.1 follows.

Remark : In fact, it is possible to prove that we are in the first case, that is (un)
converges strongly to uo.

Indeed, u is the solution to (II) with lowest energy. Let u be another solution
to the problem. Setting
p=u—u,

We have

1 o8
(3.4)  Jo(u) = Juo(u+ @) = Jr,(w) + 2, (w)(e, @) + = /m 0.0z Ny

2 3
1 2H,
(3.5) T (u) = Juy(v — ) = Ju,(u) + §J}}0(U)(so,tp) - TO /m ©.0c Ny

Summing these equalities, we obtain

Tt (W(e, ) = =T, (u)(#, )
On the other hand, we have

T, (w)( 05 0) — g, (W) (e, ) = 4Ho sz PPz A Py

Therefore
J,(w) (e, ) = —2H /Dz w.p: Ny

and we deduce from (3.4) and Lemma 2.2 that

:

JHO(U) = Ju,(u) + 6

T, @) (e, 0) 2 Jr,(w) + g /D |Vel|? .
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4. The second solution for variable H

In this section, we no longer assume that H is a constant. However, one might
reasonably conjecture that Theorem 3.1. is still valid for variable H “close” enough
to a constant Hy # 0 which satisfies

(4.1) [Hol-[[7]|lzo=(op2,re) <1

A natural approach to prove such a conjecture is to use a perturbation argument.
Unfortunately, the analysis of the Palais-Smale sequences which was exposed in the
previous section does not carry over easily to the case H # constant, even if H is
very close to Hy, whatever norm we may consider. There is a qualitative change as
soon as H is not exactly a constant. For instance, the argument that we used to
prove that any weak limit of a Palais-Smale sequence is a solution to the equation -
see (3.3) - does not hold any more. Indeed, the nonlinear term is not continuous any
more under weak convergence. In order to overcome this difficulty, Struwe, following
an argument originally developped by Sacks and Uhlenbeck [28] in the context of
harmonic maps between manifolds, introduced a perturbed functional, for which the
Palais-Smale condition holds. For measuring the deviation of H from a constant Hy,
he considers the affine space of Lipschitz maps H with

(4.2) [H — Ho] = ess félf{)s[(l + [u)(|H (u) — Hol) + |V H (u)|

@) = Byn| 4+ | P~ HiE] & o
He was then able to prove [37].

Theorem 4.1.— Assume that Hy € R — {0} satisfies (4.1), and v # constant.
There exists a number o > 0 such that for a dense set of curvature functions H in
the a-neighborhood of Hy, i.e. [H — Hy| < a, (III) admits at least two solutions.

This theorem was slightly improved by Wang, who showed that the same result
is true for a whole neighborhood of Hy in the (4.2)-norm [39].

Remark. In fact, Theorem 4.1 is proved just assuming that the functional Jg,,
corresponding to Hy, admits a strict relative minimizer in H }f Of course, according
to Theorem 2.1 and Lemma 2.2, this is the case when (4.1) is satisfied. In the
following, for sake of simplicity, we always assume that (4.1) holds. However, our
method and results could easily been extended to the case where the only assumption
is the existence a strict relative minimizer for Jy,.

In this section, we propose a direct approach to the problem, which allows to
prove the existence of a second solution with released assumptions on H. Namely,
we prove :
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Theorem 4.2.— Assume that Hy € R — {0} satisfies (4.1), and v # constant.

There exists a number a > 0 such that for any curvature function H € C'(R?* R)
which satisfies
”H - HOI'LOQ(Ra,R) <«

(IITI) admits at least two solutions.

The idea to obtain the existence of a second solution is to use, as in the previous
section, some mountain-pass procedure. However, the functional Jy that we have to
deal with is not C! any more on H % In fact, it is not even obvious that

1 2
Ju(u) = = /1;2 |Vul? + 5 /132 Q(u).ug Aty

is still defined on the whole space. Indeed, as soon as H is not exactly a constant
Hy, ie. Q(u) # Hyu, it is not clear that the last integral is convergent. However, as

the integral
/ UUgp A Uy
D2

could be related to a volume, and then bounded in terms of the Dirichlet energy via
some isoperimetric inequality, the same situation holds with @Q(u) instead of u. In
this case, the integral
Q(u).ug A ty
D2
may be related to a volume, computed on some manifold equipped with the suitable

metric, and still controlled in terms of Dirichlet integrals. (For more precisions, see
[32][4]).

Once Jy(u) is defined on H}, we have the formal expression

(4.3) Jy(u).o = / VuVe+2 H(u)ug Auy.p ,
D2 D2

for any admissible test function ¢. It is not possible to give a meaning to the last
integral for general u € H)(D?) and ¢ € Hj(D?), and we have to consider a smaller
space of admissible variations. For example, we can take ¢ € Hy(D*) N L°°(D?).

. Thus, for any u € H}(D?), we define Jj;(u) as the continuous linear map from
H} N L™ to R, which satisfies (4.3). We note that for any fixed ¢ € Hj N L, the
map u — Jy;(u). is continuous. We set

(4.4) ()l = sup  |Tu(u)-e|
wEH NL™
”ﬁ"”H(I]:I
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This norm may of course be infinite. If it is finite, there is a unique way to extend
Jy(u) to a continuous linear map from Hj to R, i.e. to an element of H~!, since
Hj is complete and H} N L™ is dense in H{.

Let us denote by u” the small solution, given by Theorem 2.1, corresponding to
Hy, and by Kp the functional defined on H. %,
(4.5) Kp(u) = Jg(u+u®) — Ju(°) .
Suppose that Kp satisfies the three conditions (i) (i1) (iii) of the mountain-pass
lemma, i.e.
(i) Kn(0) =0
(ii) Ir > 0,p >0 s.t. Ky(v) > p, Vv e H&,HUHHé = ¥
(iii) v € Hy, [vollzz > 7 s.t. Ku(ve) < 0.
We set as usual

. = inf K
(4.6) ot = lof Cu(p(t))

with
P ={pe C°([0,1], Hy) s.t. p(0) = 0,p(1) = vo}.
Let us assume now that there is no sequence (v") in Hj such that
(4.7) Eu(v") = cu i [[Kp@™)| = 750" +u)| =0,
whence, by continuity , the existence of ¢ > 0,1 > 0, such that
| K@) >n, Yv € Hy s.t. |Ku(v) —cg| <e.

The main point is that even if K};(v) may not be defined as an operator on the whole
space Hg, its definition on the subset H} N L* is sufficient to deform a path in ..
Namely, following the usual procedure to construct a pseudo-gradient, we get the
existence of a locally Lipschitz continuous vector field w(v) € H N L*°, defined on
an open neighborhood V of K;;'(Jey — €, ¢y + €[), such that for any v € V

lw(w)[gz <1
Ky(v)w(v) < —n/2
Then, by mean of the flow associated to this vector field, we can push any path p € P,

linking 0 to vg, such that

max Kg(p(t)) <cy+e¢
tef0,1]

under the level ¢y — ¢, that is deform it into a continuous path p', still linking 0 to
v, and such that

max Kgy(p'(t)) <cyg —¢

t€[0,1] H(p( )) =
in contradiction with the definition of cy

The previous argument allows us to state :
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Lemma 4.3.— There exists a sequence (u") in H. such that

(4.8) JH(un) —y JH(QU) +cy

(4.9) 175 (u™)]| =0 .

Proof. The only thing that remains to be verified is that conditions (i) (ii) (iii) are
satisfied by K. We see that

(1) and (iil) are clearly satisfied.

(ii) will follow from Lemma 2.2. Let us introduce the quantity

(4.10) Bu = Sélﬁ’a[(l + [u])|H(u) — Ho| + [Q(u) — Houl] .

Assume that By is finite. We have
2 2 1
(4.11) Tar(w) = Ta, (u)] < gﬁH/ Vul?, Vue H.
D2

Hence

Ku(e) = Ja(u® +¢) — Ju(u’)

2 2
S TP o) == Ty ) 5 B / V(e + ) — 2B f VP
3 D2 3 Dz

According to Lemma 2.2, we know that
0 0y~ O 2
T + @) = Jm(u’) 2 5 [ [V
D2
for any ¢ € Hy, ||¢||z1 small enough. Consequently, there exist r, p > 0 such that

Ku(p)>p, Vo€ Hy,llollm: =,

provided that g is small enough.

Let us now give the proof of Theorem 4.2, with this transitory additional assump-
tion on the finiteness and the smallness of fy. A priori estimates on the L®°-norm
of solutions to our problem will then give us the full conclusion.

Once we got, as in the previous section, a Palais-Smale sequence as stated in
lemma 4.3, we have to show that such a sequence is bounded in H!. Namely, we
prove :
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Lemma 4.4.— Any sequence (u") in H. which satisfies
Ju(u™) bounded ;|| Jy(u™)|| goes to zero

is bounded in H', provided that By is small enough.

Proof.
The argument is the same as for Lemma 3.2. ||Jy(u"™)|| — 0 means that
Au® =2H(u" )uy Auy + f* in D,

with f® — 0 in H~!. We multiply this equality by ¢™ = u™ — u°, and integrate on

D?. Note that this is possible, since u’ € L*°, and we assumed that |H(u)u — Hou|
is bounded for u € R?®. We obtain

/1)2[—/390“ + 2Ho(uj Auy —ug Auy)lp™ +2(H(u") — Hojug A uy.o™ = o([lo" || z)
where each term is well defined. This yields
[ e+ 280 A = A" = ol "Ly) + 0Bl ) -

Integrations by parts give (see [7 , Appendix])
(4.13) f |thn|2+4Hg/ go.c,og/\go;‘—J—QHo/ "0z N @y

D2 D2 D2

= o(lle™ | mz) + 0(Balle™ ) -

On the other hand, we have
Ju(u™) = Ju(u’ + ¢")

1

:5] IV(u® + ™) + / Qe + ©™).(u’ + ™)z A (1’ + @)y

1 1
= “f IVu°|2+ﬂ/ |Vgo”[2+/ Vu.Ve™
2 D2 2 D2 D2

2
4 3Ho [ (W@ + 9" A+ ")y + 00F(L + e )
D2

1
= JH(@O) 4= / |V(p”|2 —2Hs / o™l /\gg
2 D2 2
9 2
+ gffo/ u’ (o Aug +ug Aoy 4+ ©p Apy) + gﬁ’o/ ™. (1 + ™) A (1’ + ™)y
D2 D2
+0[Br(1+ [l |[32)]
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Integrating by parts, we obtain

1
(4.14) Ta(u) = Tn@)+ 5 [ Ve 2 [ utengg

2 i n n n
w38y [ ol ngh +0lBa(1+ ")
Comparing (4.13) and (4.14), the boundedness of Jg(u™) yields
[ emet Agp1 < O+ 00B(1+ " 3]+ ol )
Then, (4.14) and Lemma 2.2 imply that (") is bounded in H}, provided that fy is

small enough, and Lemma 4.4. follows.

What we need at this step, in order to give a complete description of the situation,
is a precise analysis of the behaviour of the Palais-Smale sequences. Since such a
sequence is bounded, according to Lemma 4.4, it is weakly relatively compact. Up
to a subsequence, we can assume that (u™) converges weakly in H! to some limit .
However, the nonlinear term of the equation is not continuous any more under weak
convergence, and new arguments have to be developped, in order to prove that u,
weak limit of a Palais-Smale sequence, is a solution to the problem. This result was
established in [3], i.e.

Theorem 4.5.— Assume that H : R® — R satisfies

sup |VH(u)| < 400 .
uERS3

Let (u™) be a bounded sequence in H,}( such that
Au"™ =2H(u")uy Auy + f* in b o
with f* — 0in H,
Any weak limit u of a subsequence of (u™) satisfies
Au=2H(u)uz Auy In D?.
We are now able to prove an equivalent to Theorem 3.3 for variable H, char-

acterizing the lack of compactness of Palais-Smale sequences. The statement reads
as :
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Theorem 4.6.— Assume that H : R?® — R satisfies

(%) S;lga(l + |u)[VH(u)| < +oo

Let (u™) be a bounded Palais-Smale sequence for Jy. Then there exist

(i) u® € H}, solution to (III)

(ii) a finite number of nonconstant solutions wi,- - ,wp of Aw = 2H(w)w, A w, on
whole R?

(iii) sequences (a}),-+-,(ay) in D?

(iv) sequences (1), -, (ep) in RY, limy y o€l =0, Vi

such that, up to a subsequence, we have

™ — _sz “Hlu:oco

and

n|2 __ ’11.02 - wi? 0
vt = [ 1ver 3 [ iwet o)
Ta(u™) = Jg(u®) + Z T (w:) +o(1) .

This theorem is a consequence of the more general Theorem 5.6 below, the proof
of which, relying on a careful blow up analysis, is given in Appendix.

We do not have at our disposal an equivalent to Lemma 3.4, describing exactly
the set of solutions to the equation Aw = 2H(w)w, A wy on the whole space, with
finite energy. However, we have the useful estimate :

Lemma 4.7.— Let w € L, _(R? R?) be such that
Aw =2H(w)w; Aw, on R?, w # constant, / |IVw|? < 400 .
R2

Then : 5 i
dulw) = = /Rz |Vw|2 o 7 - Q(w).wg Awy > 3H2 +0(BH) -

Proof. First note that u € Li, (R*,R*) and [, |Vw|* < 400 implies that u €
H'(2,R?) for any bounded 2 C R2. Then if H € C'(R?, R) with bounded gradient,

w € C*THR2, R, Vpu € (0,1)
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- see [13] [2]. For z = z + iy, the function
$(2) = (lwa|” — |wy|*) + 2iws.wy

is holomorphic in R?. Moreover, ¢ € L'(R?), since [, |Vw|? is assumed to be finite.
Therefore, ¢ has to be identically zero, and w is conformal. As a consequence, w is
bounded on R? - see the proof of Theorem 4.8 below. This implies that

(4.15) —/ [Vw|? =2 H(w)w.wz Awy .
R2 R2
Indeed, as in [23], let ¢» € C$°(R?*, R) be such that
P(z)=1 for |z| < %; iy =0 for |z]>1

and
Yn(z) = P(z/n) .

We multiply the equation Aw = 2Hw, A wy by ¥,w, and integrate over R*. We
obtain

Pow Aw = —/ Pn|Vw|? — / Vipp.wVw =2 Y H(Ww.wy Awy .
R? R? R? R?
Remark that

[ TVl < o= |19 )% Va2,

n/2<]z|<n

Since fRZ |Vpn|? = [ga VY%, |Vw|? € L1, and w € L, Lebesgue’s theorem yields
(4.15). Hence the estimates

(4.16) [ el 42 [ Qe nwy| < [ 9l

(4.17) / |Vw|2+2H0/ w.wg A wy SﬁH/ |Vwl|?
R? R2 R

For any ¢ € H}(Q,R?), where  is a bounded domain in R?, we have the isoperi-
metric inequality [40)]

1
. 2 < ———— | |Vp|?.

Applying this to ¢,w, Lebesgue’s theorem proves that

1
] = /\ 2/3 < —__/ V 2 .
I sz w “"yl — (32?7)1/3 B2 | Ldl
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Thus, (4.7) implies that
8T
Vol 3 ok e,

0
On the other hand, according to (4.16), we have

Ta(w) 2 (5 ) [ Vel

hence the result follows.

Let now n be some strictly positive number, such that

5 4
(4.18) 2n <cpg < ﬁ — 3y

inf{Jp(w)/Aw = 2H(w)w; A wyon R?,w # constant,/ |[Vw|? < 400}
R2

_ 4
3HZ

(4.19)

The existence of such an n follows directly from Lemmas 3.5 and 4.7, as soon as Sy
1s small enough.

Lemma 4.3 provides us with a Palais-Smale sequence (u™) for Jg, with
Ja(u™) = Jg(u®) +cg as n— +oo.

Moreover, assuming that fgy is small enough, this sequence is bounded in H!, as
Lemma 4.4 shows. Therefore, assuming that (*) holds, we can apply Theorem 4.6.

As a consequence, we know that up to a subsequence, (u™) converges weakly to a
solution @ to (I1I), and either

Tu(a) = Tu(u®) + cu

or

Tua(u) < Ja(u’) + cn
—inf{Jg(w)/Aw = 2H(w)w,; A wyon R* w # constant, / |[Vw|? < +00}
R2

Note that u® and u realizing respectively the infimum of Jy, and Jg on a bounded
subset of HZ, it follows from (4.11) that

(4.20) [ Tr(u’) = Jr(u)l <7

for Ay small enough.

19




Comparing (4.18) (4.19) and (4.20), we see that either
Ju(u) = Jua(u) +n

Ju(a) < Ju(u) —n .

In any case, & # u, and we have a second solution to (III), provided that (*) is
satisfied and By is small enough.

In fact, we are able to prove that we are in the first case, i.e. the convergence of
(u™) to @ is strong. The argument is the same as in Section 3. Setting ¢ = u —u, we
have

Ju(w) = Ju(u+ )
= Jr,(u + ¢) + o(1)

1 2
= JH,(u) + —/ [Ve|? + 2H, / wpz A py + “'Hof P-pz Apy +0(1)
2 D2 D2 3 D2

as fg — 0. (Note that Lemma 4.4 provides us with a H'-bound for %, independent
of By as soon as By is small enough. Then we use (4.11)). We write also

Ja(u) = Ju(T — )
= Jg,(@ — ¢) + o(1)

1 _ 2
= In @+ [ Vel 2t [ wprne, = Ho [ o ngyto)
2 D2 D2 3 D2

Summing these equalities, we obtain, taking account of (4.11)

/ |Vp|* +4H, f u.pz A py +2Hy / w.pz Ny =0(1) ,
D2 D2 D2
so that we have
1
T(® = Tn(w) + 5[ Vol + 4t [ wpenpy)+o(1).
6 D2 D2
As u goes to u’ as Sy goes to zero, (4.11) and Lemma 2.2 yield

(4.22) Ju(a) > Ju(u) + g/m IVl +0(1)

hence the conclusion follows.

The last ingredient that we need, to complete the proof of Theorem 4.2, 1s an a
priori bound for the L®-norm of the solutions in terms of the H'-norm. Namely, we
prove :
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Theorem 4.8.— Assume that H : R* — R is smooth and bounded on R?®. Let u
be a smooth solution to (III). There exist C' > 0, depending on the L*°-norm of H
only, such that

(4.23) = < Irllm + € 19ul*+1)

Proof of Theorem 4.2 completed. Let By be such that, for any H € C'(R?*,R) close
to Ho, with

(4.24) Ba < fo

and () satisfied, there exists, according to the previous argument, a second solution
% to (III). Lemma 4.4 provides us with a H!-bound for %, namely

2flm <R

with R independent of H satisfying (*) and (4.24). Then, Theorem 4.8 yields

@llzm < 7= + C(R +1) = R
There exists o > 0 such that, for any H € C'(R3?,R) satisfying

|H - Hollz= < o

one can find H € C'(R?,R) such that

H(u) = H(u) YueR? |ul<R
sup (1+ [ul) [ VH(w)] < +oo

uER
/Bff < Bl’] 3
(we may take H = Hy for |u| > R' + 1)
The two solutions u, @ corresponding to H being such
| oo, |E]| Lo < R

they are as well solutions to (I11) for the initial curvature function H, and the proof
of Theorem 4.2 is complete.

Remark. In fact, Theorem 4.8 assumes that H is smooth. Anyway, let H be only
C' : we consider a sequence H™ of smooth curvature functions such that H* — H
in C*. If (u™) is a sequence of solutions to (III) corresponding to H™, we have

Au™ = 2H(u™)ug A u; + "
with
P =2(H"(u") - H@u")uz Ay
If H* — H in C' and (u™) is bounded in H! N L, f* — 0 in H~!. Then, one can
apply Theorem 4.6 to the sequences (u") and (@™), and energy arguments -see for

instance (4.22)- impose a strong convergence in H! to solutions u and @ for (II1)
with curvature function H.
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4.2 A priori bounds for smooth solutions.

Before ending this section, we give the proof of Theorem 4.8. This result is
closely related to the conformal invariance of the equation. More precisely, we have
(see for instance [36], and references therein) :

Theorem 4.9.— Let u be a smooth solution to (III). The function
(4.25) B(2) = |us|® — |uy|?® + 2iuzuy z=z+1y

is holomorphic in D?, i.e.

o . 5
(4.26) 2% = 0 in D

The function ¢ is called the Hopf differential. A simple proof of Theorem 4.9
can be derived multiplying the equation

(4.27) Au =2H(u)ug A ty
by nuz + &uy, where 1, £ are any test functions in C§°(2). The resulting equality
yields directly (4.26), in the weak sense.

Note that if ¢ is identically equal zero, u is conformal, i.e.
lue? — |uy|? = uguy =0.

In other words, the Hopf differential ¢ characterizes the “defect” of conformality of
the map u : this intuitive statement will be made precise in the course of the proof of
Theorem 4.8. Conformal maps have very interesting properties. For instance if w is a
conformal map in H'(R? R?), w is smooth as standard complex analysis shows (this
results extends partially to “quasi-conformal” maps, which belong to W']fj'f(Rz, R?)
for some p > 2, see [11], [12]). If w takes its values in R?, this is nolonger true,
as easy counterexamples show (one may consider conformal representations of maps
with peaks). Nevertheless, if w is moreover solution to a nonlinear PDE, we may
obtain again uniform bounds, as the following theorem shows.

Theorem 4.10.— Let Q be a bounded domain in R?, A > 0, and w be a conformal
map in C*(Q,R*),k € N*, such that

(4.28) Aw| < A[Vwl|? .
Then, we have
@) follm < lolam 0 (A [ Vel ([ 9uPP?)
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The argument of the proof of this theorem is due to Griiter [13]. We postpone
it, and come to the proof of Theorem 4.8

Proof of Theorem 4.8.

We first remark that v satisfies condition (4.28) of theorem 4.10, with A =
|H||Le. Therefore, if u were conformal, (4.29) would directly yield (4.23), and
Theorem 4.8 would be proved. When u is not conformal, a construction is necessary,
in order to use again Theorem 4.10. Following an argument of Schoen [31], later
extended by Griiter [14], we are going to choose two functions v; and vy such that

(4.30) A'Ul = A'UQ =0

(431) / ”m = / Vg = 0
D2(1/2) D2(1/2)

and
(4.32) ¢(z) = |U > = |U,)? + 2U,.U, =0,

where we have set ~
U=(u,v,12) ER* xR xR.

(4.32) means that ¢ is conformal. We readily follow the construction of [14]. For
zo € D? to be determined later, we consider the holomorphic function Y defined by

(4.33) lz) = —% /z ¢(z)dz

Clearly .

Take now
v(z) =v1 +ive =z + a+¥(z)

where a« € C will be chosen later. We have

On the other hand
g 0 |2

a—zv —u = —(|UIJ — |vy|* — 26v,.0y) .
Therefore, (4.32) is satisfied. (4.30) also holds, since
g 0
g E’U = Np=0,
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We then determine a so that (4.31) is satisfied. Note that

(434 </ i+,

Combining (4.27) and (4.30), we see that U satisfies (4.28), with A = ||H||z. Since
U is also conformal, we may apply Theorem 4.10. In order to get the estimate (4.23),
we are going to distinguish two cases :

(a) = € D?(1/4) (Interior estimates)
(b) z € D? \ D?(1/4) (Boundary estimates)

Case(a)— We claim that we may choose zp in (4.33) such that

(4.35) j;%U”I¢ISCXj£2Hh4),

where C is an absolute constant. Indeed, for a € (—-%, %), consider the segment
P(a) = Ay N D?, where A is the point (a,0), and A, denote the line parallel to the
y-coordinate axis containing A. Fubini’s theorem ensures that we can choose gy such
that

(4.36) /pm) 4] < fD |#]

We take zg = ag. For z € D%(1), we write

1

aop+1iy
W =-7 [ sy

Thus ,
1 ] pEta

wl<g [ i+ [l
P(ao) ao+iy

1 / ] fetiv
&2 |w+-/ 14|
4 D2 4 au+i?f

Integrating on D?(1), we obtain (integrating first with respect to y)

(437) Lrami=c [

On the other hand, we have
|¢] < 2|Vul> on D?,
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which, combined with (4.37), yields the claim (4.35).
From the definition of v and (4.34) (4.35) we deduce that

/| PRCEL [ 1vuf)

Since vy and vy are harmonic functions satisfying (4.31), we deduce from standard
elliptic estimates that

(4.38) loill o213y < C v < C(1+ j Vul?)
D2(1/2) D?

(4.39) (Vosllzsessasy £ € / o] < C(1 + ] Vul?)
D2(1/2) D?

Fubini’s theorem ensures the existence of rg €]1/4,1/3[ such that

/ Vul? < 12] IV
8D2(ry) D2

which implies, by standard arguments, that

(4.40) |[u||zes (aD2(ro)y < ClIVullz2(p2y + |7 oo (a2

Hence, combining (4.38) and (4.40), the estimate

(4.41) Ulimopny < €A+ [ 1V6)+ lim o
Likewise, (4.39) yields

(442) IVUliawac < €+ [ 19l

Applying Theorem 4.10 to U on D?*(ry), we obtain

U302 < 10 Lz @p3ra + C (nﬂm [ e |w|2)1/2)
D?(rg) D2(ro)

which, taking account of (4.41) and (4.42), yields

(4.43) u(2)] < [l7llze + C(1H][z= +1)(1 + /m [Vul?)

for any z € D?(3) N D?(rp).
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Case(b)— This case reduces to the previous one using the conformal invariance of

the equation. Indeed, let z, € D? \ D?(1/4). There is a conformal transformation
z — f(z) of the disc D? such that

f(D*) = D? f(0D*) = 8D*; f(z.) =0 .

Since the equation is invariant under conformal transformations, v = u o f is also
solution to (4.27). Therefore, applying (4.43) for v, we get

9(0) = hu(a2)| < vl @) + OBz + 1) [ 1V0 +1)
<l +CQUH = +1)( [ | IVul*+ 1)
Thus, (4.43) holds for any z € D%, and the proof of Theorem 4.8 is complete.

We turn now to the proof of Theorem 4.10.
Proof of Theorem 4.10. Let zy be a point in §2, and r > 0 such that
dist(w(zo),w(00Q)) > r .
We consider the ball B¥(w(z),r) in the target space R¥. Note that
B¥(w(z0),7) Nw(0Q) =10 .

We define the sets
W (z0,7) = w™!(B*(w(20),7))

V(zo,7) = OW (z0,r)

B(z0,7) = /W( v
Z0,T

We simply note W(r), V(r) and @(r), when no confusion is possible.

and the function

By Sard’s theorem, for almost every r,V(r) is a union of a finite number of
smooth curves in D?. Let v be the outward normal to V(r), and 7 the unit tangent
vector, so that (v, 7) is direct. Since w is conformal, we have

| l—l
and

Ow
2 _ 2
(4.44) |[Vw|* = 2'31}' .

B ol
Y(r) = fv =15

Clearly, ® is an increasing function of r. Following [13], we have :

We set

26




Proposition 4.11.— We have

%@(r) > 20(r) .

Proof. Without loss of generality, we may assume that w(zg) = 0. From (4.44), it
follows that

Vol = 2122 = 22l 2 (e + 2( L ol

ov " |w|
Therefore
0 d
4.4 o A o g 2
(4.45) #0225 ([ Igllty =25 ([ vkl
since | 2 |w|| = |V|wl||. Indeed, V(r) being a level set for |w|, 2 |w| = 0. We deduce

from the coarea formula of Federer that

f(r Vol = /(](U)F'“"Dd
Thus

d O|lw
(4.46) i fo 19t = [ 15 - v
w(r) ¥ir)
(4.45) (4.46) give the announced inequality.

We have then the following result :

Proposition 4.12.— We have the inequality

29(r) — Tdi@(?") < 2Ard(r) .

T

Proof. Integrating by parts, we have

@(r) = |Vw|? = —Aw.w + w.a—w
d
W(r) W(r) v(r)y OV

9
<af Vel +r [ ad
W(r) v(r) Ov

< A/ |w]|Vw|2 + r9(r)
W(r)

< Ard®(r)+ = 2 dd o(r),

by Proposition 4.11. This yields the inequality.

Next, we prove :
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Proposition 4.13.— Assume that |Vw(zq)| # 0. Then

mr__yo @(2?") 2 2m .
r

Proof. Since w is C?, there exist C' constant such that for z close to zg
|Vw(2) — Vw(zo)| < Clz — 20] .

On the other hand, the conformality of w yields, for any vector n in R?

1
V() = V()

Therefore ; o
lw(z) —w(z0)| < —2|VW(20)||Z — 20| + —=lz — 20/

V2 V2

It follows that
Dz(zﬂa P) C W(T’)

with p > 0 such that
1 C
i N2 — % =
\/i' w(20)|p e \/ﬁp r

Then, the inequality

B(r) > [ Vol > / (IVeo(z0)| = Clz — zol)?
D2(z20,p) D2(zo,p)

e aC
> 7(|Vw(zo)p* + 7.04 s “§“|VW(ZD)|P3)
yields
@(;) >2r —C'r
r

where C' is some constant, as r — 0. The proposition follows.

The last result that we need is the following.

Proposition 4.14.— Foranyr, 0 <r < 5,
2

(1)(1") > —ﬂ-:r'2
e

Proof. We compute

d ,®(r) _1d 2 ] i B
420y L) - Za(r) = Lrtar) - 20()
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From Proposition 4.12, we deduce that

(4.47) 2y < 94 20)
Setting

x(r) = @:r: ) ;
(4.47) writes as
(4.48) ééwnxoﬁ)z-—zA

For ¢ € (0,r), we integrate (4.48) between ¢ and r. We are led to
Inx(r) > —2Ar + Lnx(e).

We let € go to zero. In view of Proposition 4.13, we obtain
Inx(r) > —=2Ar 4+ fn2r |

that is
x(r) > 2me™2AT

This yields the conclusion.

Proof of Theorem 4.10 completed. Let z; be a point in D?. For £ = 1,---,k, we
denote by w’(z) the £-th coordinate of w. w being continuous, we have

w(0D?*) = [a,f] a,BER.

If w(z1) € [a, B], there is nothing to prove. Otherwise, w¥(z;) < a or w¥(z1) > B.
We consider first the case
wf(zl) > ﬁ .

We set
A= max(h, ([ [vult))
D?
d=wiz)=8.

Let p such that
dA—1<p<dA.

We claim that

(4.49) p < fi:[—eA?/ |Vw|? .
D2
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Indeed, if p # 0, since w is continuous, we may find (p — 1) points 23, ,z, in D?
such that, for any ¢,7 € {1,---,p},i #J

(4.50) lwh(z:) — wh(z;)| =

b

=1 =

and, for any 7 € {1,---,p}
(4.51) wiz) > B+ = .

We deduce from (4.50) that

S

Bk(w(zi):\ ' 9A

57) N BH () 57) =0 Vijgi# i,

and from (4.51) that
B*(w(z), é}[{) Nw(@D*) =0 Vi.

It follows that

f Vol > f Ve|?
D2 UE e B (), g 1)

i=1

> / Vul?
y 1 W(zililf\')

=

Thus

and (4.49) follows.

As a consequence, we obtain

P

"3
+
—t
AN
=t
B
+
| &
=
S
P
5

From the definition of A, we have




whernce

o) =p=d <1+ 28 [ [9uf
™ D2

<o(af v+ [ weryr) .

Likewise, if w’(21) < a, we obtain

a-wiz)<C (A/m [Vw]? + (/Dz ]V“’|2)1/2) 1

and the proof of Theorem 4.10 is complete.

5. The Plateau Problem

In this section, we deal with solutions to the original Plateau problem, that is
with maps u : D? — R? which satisfy :

Au = 2H(u)uy A uy in D?

(P) luz|® = |uy|? = uguy = 0 in D?

u|sp2 1s a continuons monotone parametrization of T

Similarly to Theorem 4.2, we have :

Theorem 5.1.— Assume that Hy € R — {0} is such that |Hy|.||T||p~ < 1 with T
not reduced to a point.

There exists a number a > 0 such that for any curvature function H € C'(R3,R)
which satisfies
|H — Hol|po(r3,r) < @

(P) admits at least two solutions.

Proof. The existence of a first solution to (P) is well known. It suffices to minimize
Ju(u), where u is given by Theorem 2.1, with respect to the parametrization v of

I'. The infimum is achieved for some u, which is a “small” solution to (P) - see
Hildebrandt [17].

One could think to use the same kind of procedure to obtain a second solution :
minimize Jg (%), where @ is given by Theorem 4.2, with respect to the parametrization
7y of I'. This was realized by Brezis and Coron [7], in the case of constant H. However,
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the extension of this method to variable H would require some assumptions on the
derivatives of H . To avoid this, one may also proceed as in the previous section, with
a set of variations including the parametrizations of the boundary. The solution of
the equation obtained by this method is also stationary with respect to the variations
of v parametrization of I', and then is conformal - see [36-Proposition II.2.8].

The proof of Theorem 5.1 follows the argument developped by Struwe in the
case of constant H [36,Section IV] ; we only sketch it.

Let v be any fixed, smooth and monotone parametrization of I'. Instead of H .1,
the set of variations is now

E =B x H}(D?,R?)

with
B = {v € C°(R,R)/v monotone ; v(t+ 27) = v(t) + 27, Vt;
v(%) = %,Vk = Z;/ |[VPv|? < 400}
3 3 b2

where Pv denotes the harmonic extension of v ov to D?, i.e.

APv=0 in D?
Pv=~0v on OD*.

The three-points condition is introduced in view of the invariance of the problem with
respect to the conformal transformations of the disc. Note that E may be embedded

" F = ({id} + H'/* n C°(R/2n)) x Hy(D* R?)

and equipped with the induced topology.

For U = (uy,uz) € F, we define the functional.
Ju(U) = Ju(u)

u:PU1+Uz

J is not C! with respect to the second variable us, but admits a continuons deriva-
tive in any direction of H} N L*. Thus we may define

Ta ()] = sup \TH(U). U~V] € Ry
VeE
ug—'UzeHéﬂLoo
IU=VIiz=1

We have :

Lemma 5.2.— U € E is critical for Jg, i.e ||Tg(U)|| = 0 if and only if U is
solution to (P).
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This lemma follows from [36 , Lemma III 4.4].

Following the strategy of the previous section, we apply the mountain-pass
lemma to the functional Jy, starting from the small solution U = (7_1ogp lap2, y_p) & 7
is by definition a local minimum for Jy. The existence of r, p > 0 such that

Ja(U)>p forany U€E,|[U-V|r=r

follows from [35, Section 4], provided that Ay is small enough. The existence of
Up € E, ||Uol|F > r, Tu(Us) < Ju(U) is straightforward. Setting then

dy = inf sup J t
2ep tE[OI’)l} H(p(t)

with
P={pe C[0,1],E) s.t. p(0) = U,p(1) = Uy} ,

there exists a sequence (U™) of E such that

Ju(U™) — dy

Tu(U™)[| = 0.
The problem is the following : in order to be able to extract a convergent subsequence
of (U™), we need to know that (U™) remains bounded in F. Unfortunately, the

argument of Lemma 4.4 does not allow to conclude, when the boundary values are
not fixed. To obtain boundedness, Struwe suggests the following strategy.

Lemma 5.3.— ([36 -Lemma III 4.10])

d
The map £ €]—1,1] — “UHOH s hot increasing
14£
Proof. For & < &3, there holds
1 1 1 22— & / ~12
51) ——J, U)———J U=~ Vil*>0.

We assume that £, and £; are sufficiently small, so that we still have
(1+ &) Hol Tl <1 i=1,2.

(14 &)H is close to (1 + &;)Ho, and the mountain-pass lemma applies. Let p® € P
be a sequence of minimizing paths for (1 + &;)H i.e.

sup Ju+enm (P"(t)) — datenm
t€f0,1] n—++00
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and t" € [0,1] be such that

Ja+enn (")) = P Ta+enu(@" () 2 dayenn

b

We have
ﬁd(wel)ﬂ > 1i_m1 5 J+ena (@™ (t"))
> Hﬂﬁﬂwam(?"@"))
2 _i& d(14+&,)H -

Hence the lemma follows.

Therefore, the map ¢ +— ﬂlli_:sﬁ is almost everywhere differentiable near 0. Still

following [36], we set

D= {fg €] — 1,1[/d1+¢)u is defined near &, and

1 d d
(daron (1+EO)H)<+OO}

Tt
e TEVTILE 14 &

As D is a dense neighbourhood of 0, we may approximate H by curvature functions
H"e D, H" = (14 £")H, " — 0 as n — +oo.

Then, we have the result :
Lemma 5.4.— For n large enough, Ty~ has a critical point at level dpn.

Proof. For fixed n, we choose a sequence £ such that £ > (" and £ — (" as
k — 4oco. Let (p};) be a minimizing sequence of paths for H™ such that

sup Jun(px(t)) <dpgn + & — &
t€[0,1]

Let ¢ € [0, 1] be such that
Jup(pi(t)) 2 dup — & + &7
with HP = (1 + éP)H. Setting
pp(t) =U = (u1,uz), and u= Puj+us,
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(5.1) yields, as H™ € D

[ v < g(LHERL +67) (dm +ep - dmp —f}:+£“)
p ST g T4 ¢ T+ &

(1+§?)(1+E”)(dﬂn 3 dH::) 6 1. o
%9 E e TrE 4+ 26" + 247

Sep < 4o

for k large enough.

Suppose now that there exits n > 0 such that
1T @) 2 7,
for any k large enough, and any U € E such that

JHE(U) 2 dH;; - 6;: + fn
/ |Vul® < ¢, .
D2

As in the previous section, one can build a pseudo-gradient vector field for 7, HY
which is also a pseudo-gradient vector field for Jg» on this bounded set. Using this
vector field, one could deform the paths p} into paths linking U to Uy under the level
d Hp for J, Hy, & contradiction.

We obtain therefore the existence of a sequence (U}) of E such that

[ vk <e.

liinJH:(Uf) = lilzanHn(Uf) = dpn
lim ||Tgp (UR)I = lm || Tg- (Ul = 0 -
In order to prove that the sequence (U}') converges strongly to a critical point of

Jun, we concentrate our attention to the part P(uq)} of uff = P(u1)p+(uz)f (Uf =
((u1), (uz)})). Note that P(u;)} is bounded in H?, since

[ war = [ wP@if+ [ 19l < e,
D2 D2 D2

and

1P(u1)il|zee = [Tl zeo

We need the following property :
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Lemma 5.5.— The injection

{w € H'(D?*,R*)/w|sp> € C°(OD?*,R?) ;w|sp> is a monotone parametrization of
T'; we’™*) =% £ =0,1,2} - C°8D?,R?)

1s compact.

The proof of this lemma, which relies on a result of Courant and Lebesgue, is
given by Struwe [36, Lemma 1.4.3].

Up to a subsequence, we may then assume that

(u2)f = (u2)f in Hg
P(up)f — P(u;)* in H*
P(up)? — P(up)® uniformly in D? .

It follows that P(u;)? — P(u;1)™ strongly in H - see [36, Lemmas I1.2.10 and IV .4.5].
We can now apply the following result, proved in Appendix :

Theorem 5.6.— Assume that H : R?> — R satisfies

sup (|H(u)| + (14 [u)[VH(u)[) < oo .
uER3

Let (u™) be a bounded sequence in H*(D?*,R?) such that
Au™ = 2H(u")uy Auy + " in *
with
f*—0 iz H.

Furthermore, we assume that u™|gp2 is bounded in H'/? N L*°(8D?* R?), and con-
verges to some limit -y, strongly in H*/?, and uniformly. Then, there exist

(i) u® € HY, solution to (III)

(ii) a finite number of nonconstant solutions wy,- -+ ,wp of Aw = 2H(w)w, A wy on
whole R?

(iii) sequences (a}),---,(a?) in D?

(iv) sequences (e7),---,(ep) in RY, limp—qooel =0, Vi

such that, up to a subsequence, we have




and

p
[ver= [ wuep sy |19+ o),
D2 D? i /R?

P
Ta(u™) = Ju(u®) + 3 Tu(w) + o(1) .

=1

We apply the above result to sequence (u})g. Similar arguments as in the pre-
vious section show that the convergence of (u?)j has to be strong. Passing to the
limit k — +oco, we obtain a sequence (u™),u" € H%n, which are the parametrization
of surfaces with mean curvature H™ spanning I". This completes the proof of Lemma
5.4.

To complete the proof of Theorem 5.1, it suffices to remark that (u™) will still
provide us with a Palais-Smale sequence for Jy which is bounded. Indeed, we have
the following lemma.

Lemma 5.7.— Any solution to (P) satisfies the estimate

[V < @) + L)
D2 H

2

where L(I') denotes the length of T.

Proof. We follow the argument of Struwe [36, Theorem IV 4.2]. Multiplying the
equation

Au=2H(u)ug A uy

by u, and integrating on D?, we obtain

Oz/ (—Au+2H(u)ugz A uy)u
D2

0
S/D2(|Vuj2+2Q(u)uxAuy)+ﬁHL2 |Vu|? — g

aD2 3n
Ju

<8au(w) = =) [ 1Val+ [ 12 e

<87u(w) = (5 =) [ Va4 Il L)

since u is conformal. With a suitable choice of the origin, [|T'||ze < L(I'), and the
results follows.

The same arguments as before show now that (u,) converges strongly in H' to a
second solution to (P). As in the previous section, the estimate of Theorem 4.8 allows
to replace the condition of finiteness and smallness of A by the only assumption of
the closeness of H to Hy in L*°-norm, and Theorem 5.1 is proved.
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6. Additional geometrical remarks

6.1 Imbedded spheres with prescribed mean curvature.

As a consequence of our analysis, we are led to the following.

Theorem 6.1.— There exists some absolute constant o > 0, such that if
Hy e R-{0}; HcC'R?R)

satisfy

k

(6.1) |

|H — Hy||p <

there exists some map u : S*(~ R%) — R?® ,u # constant, such that

(6.2) Au=2H(u)uz A uy

(6.3) usl? = fuy? = wpuy =0,

that is, u is a conformal parametrization of an immersed sphere in R?, whose mean
curvature at the point u(z,y) is H(u(z,y)).

Sketch of the proof. Set H(u) = HLOH(HLO) It follows from (6.1) that

IH = 1||p» < @ -

Let v : 8D? — R? be a smooth map, and for n € N* we define
Y=
n

Theorem 4.2 provides us with a large solution u™ to (III), for H as curvature function
and v™ as boundary values, as soon as n is large enough.

The constant « in Theorem 4.2. may depend on the boundary values . However, one
can choose « independently of v as ||y||L goes to zero, as it is easily seen returning
to the arguments of the proof.

Let h: D* — R? be the harmonic extension of 7y, and h™ = %h. We set
v =u"—h".
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Clearly, (v™) is a Palais-Smale sequence for Jz, with v™ = 0 on dD?. Theorem 4.6
then applies, i.e., up to a subsequence

(6.4) o™ _UU_ZM(-_@;?)”Hl =01
(6.5) Ta(") = Jz(") + Z Tg(w') +o(1)

v? satisfies
Av® = 2H (v°)v? Avy in D*v"=0 on 8D*.

Therefore, v° = 0, by a result of Wente [42].

On the other hand, u™ being a “large” solution to (IIT), (6.5) implies that
p = 1. Hence the existence of w satisfying (6.2) in R?, with H as curvature function,

w Zconstant. Thus
w

u:H—O

satisfies (6.2). Moreover, the boundedness of [;, |[Vu|? ensures that u is conformal -
see [42], or the proof of Lemma 4.7. This completes the proof of Theorem 6.1.

Remark. 1 - One might prove that these immersed spheres are actually embedded,
condition (6.1) ensuring that these spheres are close, in a suitable sense, of round
- 1

spheres of radius THGT

2 - In fact, Theorem 6.1 provides us with infinitely many non trivial solutions
to (6.2) (6.3). Indeed, instead of concentrating the boundary values of the large
solutions to (III) at zero, one could by translation concentrate them at any given
point in R%. Therefore, for any point a € R?, there exists a nontrivial solution to
(6.2) (6.3) passing through a.

6.2 Bounds on mean curvature of surfaces

" “Let M be a compact surface in R?, diffeomorphic to $2. Let A denote the area
of M, and D its diameter, i.e.

D(M) = —y|.
(M} = ma |5~y

We have the following.
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Theorem 6.2.— There exists some constant C, such that

D(M)
max |H(z)| > Cm ;

Sketch of the proof. By a theorem of Sacks and Uhlenbeck [28], there is an harmonic
conformal parametrization u : S* — M of M. u satisfies

Au=2H(u)ug Aty .

Then, from the estimates of Theorem 4.8-4.10, we deduce that
1
(6.6) 3D04) < llul= < Oz [ V0.

Indeed, (6.6) is a direct consequence of the previous theorems in the case A(M) =1,
and the general case follows from a simple scaling argument.

Note that C should be optimal in the case of a round sphere, i.e. C = 7.

In the case where M is not assumed to be diffeomorphic to S? any more, results
of Sacks and Uhlenbeck [29] lead to a similar estimate, with a constant depending on
the genus of the surface, 1.e.

max |H(z)| = C(QGMS(M))M :

6.3 Prescribing curvature in manifolds

An interesting problem would be now to investigate surfaces of precribed mean
curvature with values in a three dimensional manifold, instead of R*® - a question
which is related to the isoperimetric problem.
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APPENDIX
Behaviour of the Palais-Smale sequences

In this appendix, we give the proof of Theorem 5.6. Throughout this section we
assume that the function H : R® — R satisfies the condition

(4.1) sup (|H ()| + (1 + |u])|VH(u)]) < 400

uER3

We consider sequences (u™) € H'(D?*,R3?) verifying

(A.2) Au™ = 2H(u™)uj Auj + f* in D?
with

(A.3) f*—=0 in H™

(A.4) lu™||z1(p2) £ C

(A.5) |u™[|grrr2¢op2 + [|[u"||Leo (ap2) < C

We assume furthermore that (u™) converges strongly in H'/2(8D?) and uniformly,
to some v € (H'/2 N L*°)(8D?).

Since (u™) is bounded in H'/?(D?), we may assume that (u") converges weakly
in this space to a map u”. |VH| being uniformly bounded in R3, as (A.1) ensures, if
follows from a result of [3] that u° satisfies

(A.6) Au® = 2H(u®)u® A ug in D?

(A.7) u’=~ on OD?.

Moreover, by a result of Heinz (see also [2]), u® is smooth in D?. Since u° is bounded
on dD?, we obtain, in view of Theorem 4.8.

(A.8) |u®||feo(p2y £ C',

where C' is some constant.

~ 'Our aim is to give a precise description of the convergence of (u™) to u°, and to
show that the defect of strong convergence is due to the concentration of the energy
at isolated points. This phenomenon has been observed in numerous other situations,
starting from the pioneering work of Sacks and Uhlenbeck - see for instance Bahri-
Coron [1], P.L. Lions [21], Brézis-Coron [8]. Here, we basically adapt the strategy of
[8]. The main ingredient in the proof is the following :
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Lemma A.1.— Let 2y be a point in D?, and 0 < r < % There is some constant
g0 > 0 such that if

(A.9) f |Vu"? < e,
B(zp,2r)ND?

for n large enough, then (u™) converges strongly to u’ in B(z,r) N D

Proof of the lemma. The proof is divided in four steps.

Step 1. Given any n, there is some r™ €]r, 2r| such that

(A.lO) un|8[B(zg,r")ﬂD2] =¥ u0|6[B(z0,r“)ﬂD2]

strongly in H'/% N L.

Proof of step 1. Since (u™) converges weakly in H! to u°, (u™) converges strongly in
L?. By Fubini’s theorem, there is some r™ in ]r, 2r[ such that

(A.11) / IV(u" — u®)? < 252
8B (zq,r™)ND?2 r
and
(A.12) f lu* —u’? =0 as n— +oo.
8B(zg,r")ND?

We have the interpolation inequality
(A.13) [u™ = w’||g1r2oB(z,nnp2) < Cllu™ = vl g1(aB(z0,m)nD2)

||u” - u0||L2(3B(ZO’rn)nD2) .

Therefore, combining (A.11) (A.12) and (A.13), we see that
(A.14) u™ — v’ in HI/Z(aB(zo,r")ﬂDz) :
Similarly, (A.11) (A.12) and the Sobolev embedding show that
(A.15) u™ — u® uniformly in L*°(0B(z,r™) N D?)
Since u™ — u® in H'/2 0 L*°(8D?), (A.10) follows.
We set
Q" = B(zg,r™) N D?
T = 5"
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and
M = hm sup ||uﬂ“Loo(Tn) .
n—-+oo

It follows from (A.10) that
(A.16) M < +oo.
For k € N,k > M + 1, and n € N*, we set also

W(k) = {z € Q*/|u"(z)| > k}

A™(k) = /Wn(k) Vun?

and
A(k) =limsup A™(k) .
u—++00
Step 2. We have
(A.17) A(k) >0 as k— +oo.

Proof of step 2. We adapt an argument of [4]. For m € N, let {,, be a smooth
function from R to [0, 1] such that

(A.18) (m(t) =0 if t<2m
(A.19) () =1 if &39mH
and

(A.20) Dielit 2 2,

We set

sy == B 6™ | Ju™

Note that vy, (z) = 0 on 00", if 2™ > M and n is large enough, and that v™(2) =
u™(z) if [u™(z)| > 2™*1. Moreover, we easily verify that v? belongs to H'(D?).
Now, we multiply (A.2) by v?, and integrate on 2". We obtain

(A‘.Q'l) ~ /. Vil . Vu® = /n 2H(u"™)vpuy Auy + (f",vp)

We have
/ Vol Vu" = / Cn ()| Vn? + ] ¢ (D IV )
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so that, from the definition of A™, and the fact that ¢}, > 0

(A.22) AP < [ Cu(ut)IVe R < [ VR Vun
Qn Qn

Since Cm_1(Ju®]) =0 if [u®| < 2™, and (m—1(|u™]) =1 if |[u"| > 2™, we have
(423)  H(")hulAul = Bl (o (0™ )u")e A (Gma (0" u™),

In view of (A.1) and (A.20), we verify that

(A.24) IV(H(u")vy,)| < C|Vu"|
and
(A.25) IV(Cm—1(lu™u")] < C|Vu"],

where C is some constant.

Let o™ be the solution of

A" = (Cm—1([u"Ju™)z A (Cm-a(Ju"u™)y in Q7
e"=0 on O0".

By a result of Wente [43] we have, since the right hand side is a Jacobian

/ﬂn Vo2 < C (/S;n |V(Cm_l(|un|)un)|z>2 '

Hence, using (A.25)

2
[ |V<,o“|2sc(/ Wunﬁ) ,
Qﬂ. Wn(zm—l)

that 1s

(4.26) | 1w < can@nyy
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We write, in view of (A.23)
| . H(u" v, uy A uy|

=1 [ Hu")og ((n1([u)u™)z A (Gro1([u")u")y|

an

= | 3 H(u"™)op, . Ap™|

=[ [ V(H@" ). Ven
o

< [ V@IV

<C |[Vu™||[Ve™| by (A.24)
W (2m)

<c ( / Nu”P) ([ 1we)
Wﬂ(zm) Qn

< C(A™(2™)Y2A"2™ ) by (A4.26) .

Finally, we obtain

(A.27) | L H{w™ ugll ful| £ GIATE™ 1% ,

On the other hand, v}, being bounded in H!, and f™ going to zero in H~!, we have
(A.28) (f"or)—0 as n— 4+oo.
Combining (A.21) (A.22) (A.27) and (A.28), we obtain
(A.29) A2 < C(AM2™1))3/2 £ o(1) as n — +oo .
By (A.9), we have
A"(k) <ey forany k, andany n large enough
so that, iterating (A.29), we obtain
(A.30) AM2™) < Cel® +o(1) as n— 4oo.

We first let n go to infinity, then m, and (A.17) follows (one can assume that g < 1).

Next, we set, for k > M + 1
F*(k) = {z € Q"/[u™(z)| < k}

)= [ v -
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and

A(k) =lim inf A™(k).

n—-4oo

Step3. We have

(A.31) A(k) -0 as k— 4oo

Proof of step 3. For m € N, let £, be a smooth map from R to [0,1] such that

(A.32) En(t)=1 if t<2™
(A.33) Em(t) =0 if ¢>2mt!
and

(A.34) —-2<t,(t) 0.

Let %™ be the solution of

{Azp”:O in Q"

Pt =u" —u® on OQ".

Since, according to step 1, u™ converges strongly to u’ in H 1/2(T™) and uniformly
on this boundary, we have

(A.35) p™ — 0 in H'nL®Q").
Set
un,(} - 'U-U + ijn ’
so that
n,0 0 . 1 [e%e] n
u™ — v’ in H NL%Q"),
and
Au™® =2H(u’)ul Auy in Q"
(A.36) 0
=0 e 5" .

We consider the function w?, defined, for m € N, by

Wl = Em((u)(w" = u™)
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Note that |[w} ||z~ < 2™+ + M for n large enough. We use w?, as a test function
in (A.2) (A.36), i.e. we multiply these two equations by w?, and integrate on Q.
Substracting the second equality to the first one, we obtain

an
_ zfn H ) uf Aug =2 | Hwhal Al + (", uh)

We write
(A.37) - /Q Vwp, V(u" —u™) = I} + I} + I} + I
with

=2 s Hu™)wk.(u" —u®); A (u™ —u?),

I} = -4 L H(u™)wp,.(ug Auy +ul Aug)
and £ :Q/R(H(u”)—H(uU))w;.ug/\ug

I = (f"wp) .
We fix m for the moment, and let n go to infinity.

Since f* — 0in H~! as n — +o00, we have

(A.38) I} -0 as n— +4co.

n,0 0

u™ —u™" converging weakly to zero in H', u™ — u™° converges to zero almost every-
where, and therefore

w,, — 0 almost everywhere

On the other hand, wy, is uniformly bounded. Hence we may apply Lebesgue’s
theorem, which yields

(A.39) I} -0 as n— +oo
and
(A‘.ﬁl(‘]) I3 -0 as n— +4o00.

We turn now to I7". Let @™ be the solution of

AD™ = (u" —u®); A (u™ —u®), in Q"
d" =0 on OO
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By the above quoted result of Wente, we have

(4.41) [wees< ([ ve —u“)rz)z

We write

(4.42) 7| =

f 2H(u™)wy, A"

= 2

V(H(u™)w).VE"
Qn

<o ([ womeeyne)” ([ wer)”
<o [ quersmen)” [ war-wor,

where we have used (A.41) and the facts that

V| < C(1Vu®| +[Vu®l)

[V(H (" wp,)| < C(IVu"] + [Vu']) .
Note that the last inequality strongly relies on assumption (A.1).
By (A.9) we are led to

(A.43) 7| < 053,/2/ V(™ — uO) .

Qﬂ
Hence, we see that the right hand side of (A.37) may be estimated by
(A.44) I+ D+ IP| < Cel? / V(" — )| + o(1)

as n — 400

We handle next the right hand side of (A.37). We have
(19 [ venvee-wnt) = [ v ey
n Qn

# Gl = (V" )

From the definition of ¢,, and the boundedness of ©u™? in L, which follows from
(A.8) and (A.35), we deduce that

(4.46) [ el (T D™ = (T~ )
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1/2 1/2
<C (/ |Vu"|2) (/ IV (u" — u"’O)F) .
Wwn(2m) Wwn(2m)

On the other hand, we easily verify that

(A.47) Em([u™ )|V (" — a2 > ] V(um — um0)2 = An(2m) |
Qn Fr(2m)

Combining (A.37) (A.44) (A.45) (A.46) and (A.47), we obtain

1/2 1/2
(448)  ar@msC ( / WP) ( [ - u”’”)IQ)
W (2m) Wn(2m)

+osf,/2/ IV(u™ — u®)? + o(1)

as n — 4oo0. Note that (u”) and (u™?) being bounded in H?, the first term in the
right hand side is less than CA™(2™). On the other hand, we claim that

(A.49) /m [V(u"™ —u®)|* = A™(k) + A™(k) + o(1) ,

as k — 4o00. Indeed

/wmn—u“)ﬁ: f V(" — u®) + / V(" = u®)P
n Wn (k) Fr(k)

— A"k + A™(E) + / VUl — 2Vu™ V!
wn (k)

and

/ [Vul|* -0 as k— 400,
wr (k)

since u® € H' and mes (W"(k)) — 0 as k — 4o0.

Choosing eq such that Csé/ ot 1, we deduce from (A.48) the inequality

(A.50) A"(2™) < CA™2™) + o(1) .

as n,k — +00. (A.50), combined with (A.17), yields (A.31)

Step 4. We are now able to complete the proof of Lemma 1.1. We write, for & > M
19 = a0 = 4700 + AR) + o)
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by (A.49) and (A.35). Passing to the limit n — +oco0, k — +00, a standard diagonal
argument shows that, up to a subsequence, by steps 2 and 3

/ IV(u™ —u™®)> -0 as n— +oo.
Since u™® — u® strongly in H', we obtain
/ IV(u" —u®)? =0 as n— 4oo.
Hence, since (B(zp,r) N D?) C Q",
(A.51) / IV(u™ —u)]* = 0.
B(z0,r)ND?

In the course of the proof, we have extracted many subsequences. However, in order
to prove that (A.51) holds for the full sequence, we may argue by contradiction, and
assume that for some subsequence n' — 400 we have

/ V™ — ) > g
B(ZQ,T')ﬁD?'

for some p > 0. Repeating our arguments, (A.51) would hold for a subsequence (u™")
of (u”’), a contradiction. This completes the proof of the lemma.

Proof of Theorem 5.6 completed.

For r > 0, let (B(z{v%))lgige

the balls (B(27,7)), ;< cover D?. Set

Jr={ie {1,---,1?}/1iminf/ Va2 > 6
n—=+00 JB(27,2r)
In view of (A.4), there is some N € N such that for any r,0 <r <1
N =§J"<N.

Hence, passing to a subsequence rg ; — 0, we may assume that
oo

—

be a maximal family of disjoint balls such that

N™ =N,
and, relabelling the points if necessary, that
J* ={1,---,N}
z* »a; Vi,1<i<N
where the als are points in D’. Lemma A.1 ensures that up to a subsequence, for
any compact subset 2 of D’ \ Uscicmiail
" > u’ in HYQ).
This proves assertion (i) of the theorem.

Assertion (ii) (iii) (iv) then follow from a standard blow-up analysis at the points
a;, and may be proved exactly as performed in [8], in the case H = constant.
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