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RESUME. — Nous étudions les problémes sous-critiques (P.) : —Au =
wP~,u > 0 sur Q ; u =0 sur 90 - ou  est un domaine borné et régulier de
RV, N>3,p+1= ;\lef'z est I’exposant critique de Sobolev, et ¢ > 0 tend vers
zéro, afin de calculer la différence de toplogie induite par les points critiques
3 l'infini entre les ensembles de niveau de la fonctionnelle correspondant au
cas limite (Fp).

ABSTRACT. — We study the subecritical problems (P, ) : —Aw = uP~%,u >
Oon §2;u=0o0ndR, N being a smooth and bounded domain in RV N >
3,p+1= NE—_N—Q the critical Sobolev exponent and ¢ > 0 going to zero - in
order to compute the difference of topology that the critical points at infinity

induce between the level sets of the functional corresponding to the limit case

(Po)-

CLASSIFICATION AMS. — 35 7] 65

MOTS-CLES. — nonlinear elliptic equations, critical points at infinity,
limiting Sobolev exponent.



1. Introduction

In this paper, we come back to the study of the nonlinear elliptic problem

—Au =u’,u>0 on £
W) { u =0 on 00

where 2 is a smooth and bounded domain in RV, N > 3, and p = % The interest
in this equation grew up from its resemblance to the Yamabe problem in differential

geometry, which consists in finding u > 0 satisfying

— 9

&

_Au=u — Z({VN—_ER(:E)M on M

where M is a Riemannian manifold of dimension N without boundary and R(z) is
the scalar curvature (see [34] [2] [17] for example). In contrast with the subcritical
case p < —%, the variational problem corresponding to (P) happens to be lacking
of compactness, i.e. the functionals that we consider do not satisfy the Palais-
Smale condition (P.S.). This means that there exist sequences along which they are
bounded, their gradient goes to zero, and which do not converge. In the case of
(P) such a fact follows from the noncompactness of the embedding of Hj(Q) into
LPH1(§)). As well for the complete solution of Yamabe’s conjecture by R. Schoen
[30] as for (P) modified with a linear term a(z)u (8], it is possible to make the
functionals smaller than a certain level under which (P.S.) holds. Such an argument
is not available for (P), so that questions related to existence or nonexistence and
multiplicity of solutions to this problem remained open.

The first result concerning (P) was obtained by Pohozaev [24] : he proved that
the problem had no solutions under the assumption that € is starshaped. On the
other hand, Kazdan and Warner .[17] observed that (P) had a (radial) solution
when §2 is an annulus ; hence the idea of exploiting the topology of 2 to establish
the existence of a solution. This program was realized by Bahri and Coron [7], who
proved that (P) had a solution provided that € has nontrivial topology, in the sense
that Hyro1(2 ;Q) # 0 or Hi(Q ;Z/2Z) # 0 for some k& € N*. Nevertheless, Ding
[12] (see also Dancer [11]) gave the example of contractible domains on which a
solution still exists, showing that both topology and geometry of the domain play
a role. In fact, the good condition for existence and multiplicity of solutions should
involve the Green’s function of the Laplacian with Dirichlet boundary conditions on
(2, the importance of which in this kind of problems has already been pointed out,
see e.g. [6] [3].

As we said, the problem we are interested in is delicate from a variational view-
point because of the failure of the (P.S.) condition, more precisely because of the
possible existence of critical points at infinity, that is orbits of the considered func-
tional along which the functional is bounded, its gradient goes to zero, and which
do not converge [4] [5]. If we try to prove the existence of critical points by looking
at the difference of topology which occurs between the level sets of the functional, it




becomes essential to determine the part which has to be attributed in these differ-
ences to the critical points at infinity. The strategy that we develop in this direction
relies on the approximation of (P) by the subcritical problems

. —Au =uP"u>0 on {
(PE){ u =0 on dN

e > 0, for which (P.S.) holds. To the critical points at infinity which may occur in
the variational formulation of (P) correspond critical points in the usual sense of
the functional

(1) Jo(u) = /,\71 [ /|u|P+1 © . Vue HI(Q)

whose positive critical points are solutions of (F,). Such solutions exist (see e.g.
[21]), and as € goes to zero they may either converge to a solution of (P). or blow-up
at a finite number of points of 2. More precisely, if we assume that (u.) is a bounded
sequence in Hj(£2) of solutions to (P.), then (up to a subsequence) we have :

k
(2) Us = Up + Z afpé\:,xf + v°

=1

where up is either a solution to (P) or is identically zero, v¥ goes to zero in H2(f)
and k € N. Let us describe the singular part which occurs if k # 0 :
af € R, and

T

(3) of > a=(N(N-2)7

MeR:,z5eQ, 28 5 2,€0 and

(4) Afd(xf,00) — 400
A5 A8 ,
(5) e Toye H AN |ef — a5 o Hoo, i

i

Lastly, for 2 € RY and A > 0, Pé,, denotes the projection onto H} (D) of the
function

(5,\"L- i RN =¥ R.
y ,\N%z(1+,\2f;yw;rf|2)“wgz




defined by

(7) AP&y . = Aby, onQ; Pé, =0 ondd
The functions ady . are the only solutions of the equation
~Au=u",u>0, on RV

(See e.g. [1] [33] [21] [10] [19]). They are also the only minimizers for the Sobolev
inequality ([23] [14] [13])

_ 2 2 -2
(8) 5 = VuELz,lig£P+1‘tt$E0 !VHILQ(RN)IMLP“(RN}

= ue/—foll(lgy.u;o |“|?{5(Q)|“ L3+1(Q)
and responsible of the failure of (P.S.) for Jy

A decomposition as in (2) is given in [22] [32]. Heuristically speaking, condi-
tion (4) means that the boundary effect is small with respect to the concentration
effect, and condition (5), introduced in [7], that at first order the Pdy: ;<’s behave
independently of each other. Besides these results we have the estimates

|ug|i,01 = |u0|i{d +k A+o(1)

(9) Jo(u.) = Jo(uo) = kB +o(1)

where A, B are constants which depend on N only :

_A = |‘\7{a5'\,1’)|i?(RN) = SrN/Q
SN/2

(10)
B = %lV(Q‘(S,\,J)&z(RN) = ;j—T'aé'\«ﬂf'Etil(RN) =25

In fact, a recent result of R. Schoen [31] provides us with a new and precious
information : in our setting we have the alternative

either k=0, or w=0

In the following we are interested in the case k # 0 (and then uo = 0), i.e. in the
solution to (P.) which blow-up at k points @1, -,z of Q as ¢ goes to zero. In a
first step, we give a precise characterization of the points at which the k singular

solutions wu. of (P) blow-up, in the sense, according to (2,3,4,5) :

k k
2 . oNJ2 g NJ2
s (I E Oy, 3 ul - SN/ E l O,
i

e—0 ) : &t
1=

(11) |V,




in the sense of measures, where §,, denotes the Dirac measure at 2,. From (9) (10)
we know that J.(u.) converges to

SN/?
N

(12) c=kB =k

In a second step we take advantage of the description of the k-singular solutions
that we performed to compute the difference of topology induced by these solutions
between the level sets of the functional J, across the level ¢, namely between

T = {u € Hy(Q)/Je(u) < cx + 1}

and
JET = {u € Hy (V) L(u) < e — )}
N/2
0<n< SN
2. Results

Before stating the results, we need some notations. We denote by G the Green’s
function of the Laplacian with Dirichlet boundary condition on 2, and by H its
regular part, i.e.

(13) Gl2,y) = ———— — H(z,y) for (z,9)€0xQ
|z — V-2
and
(14) AeH =0 on OxN,G=0 on (9 x0)
For k € N* and x = (1, -, %) € QF, we denote by M(x) = (m;)1<i,j<k the matrix
defined by
(15) g =i H{wyag) 1 my ==Glones) i
by p(x) its least eigenvalue (p(x) = —oo if @; = z; for some 7 # 7), and by r(x)

the eigenvector corresponding to p(x) whose norm is 1 and whose components all
strictly positive (see Appendix A for the proof that p is simple and that one can
choose r so that all its components are stricly positive). We also define the function

R
AM (x)'A — log A;...A

Fx (R}

(16) A=(Ay,-Ay) —

1
2

If p(x) > 0, F is strictly convex on (R7)¥, infinite on the boundary ; so Fy has
in (R3)* a unique critical point A(x), which is a minimum. On the subset of QF

(17) pt ={x € 9"/p(x) > 0}
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we define the function

~ . k
(18) Flx) = Fa AMx))] = e log Ay(x)...Ax(x)

4

whose differential is given by

Al = 1 ! t _ L A':(X)
(19) F'(x) = 5A(x)M (x)PA(x) = —g A ()
Now we are able to state the following results
THEOREM 1. — Assume that N > 4. Let (u.) be a sequence of solution to

(P.) which blow-up at k points x1,---,x) € Q ase — 0. Then
(a) x = (z1, -, 2x) € Vb, with dy = do(Q) > 0 and Qy, = {2 € Q/d(x,09) > do}

(b) p(x) =0
(c) either p(x) > 0 and F'(x) =0, or p(x) =0 and p'(x) = 0

The index of these solutions as critical points of J. 1is at least ¢ + k (and at
most (N + 1)k), where ( is the index of X as a critical point of I' (or p). If x is a
nondegenerate critical point of F', the index of u. s exactly ( + k.

Conversely, if x € pT is a nondegenerate critical point of F', there exists for ¢
small enough a sequence of solutions to (P.) which blow-up at xq,---, 2 as ¢ — 0.

Under the assumption that 0 is a reqular value for p, (b) and (c) may be replaced
by

(b7) p(x) = po(2) >0
(c) F'(x)=0
Moreover, if p(x) > 0, we have the estimates
1
oz ~ Yhi(x)
(Af)

Jo(ue) = ek + kyelloge| + kyae + 2712 F(x) + o(¢)

~1/2
-

~ > 0,91 > 0,7, constants which depend on N only

Remarks : 1 - In the case £ = 1, M(z) = H(x,z) > 0 everywhere, A(z) =
H(z,z)"'?, and F(z) = 3 + 3 log H(z,z). Solutions to (F:) which blow-up at one
point as ¢ — 0 always exist - see e.g. [26] - and we find again that they concentrate
at a critical point of p(z) = H(z,z) - see [9] [16] [29].

H(xy,21) -G, 29)

2-Inthecase k=2, M(x) = —C(aray)  H(xa 1)

H(z;z;)Y* 1
H (s, 2) 172 g(x)

A¥(x) = P45, and F(x)=1+log¢(x),



with
$(x) = H(zy,21) 2 H(29,22)"% — G(x1, 23)

As

p(x) = S[H(z1,21) + H(22,22) — ((H(21, 1) — H(22,22))% + 4G (21, 22)%)?]

o =

p(x) > 0 is equivalent to ¢(x) > 0, and (b) (c) may be replaced in Theorem 1, for
k =2, by
$(x) 2 0; ¢'(x)=0

(since for p = 0, p’ = 0is equivalent also to ¢’ = 0, as a simple computation shows).
This result was presented in [29].

3 - For k large enough, there are no solutions to (P.) blowing-up at k points as
¢ — 0. Indeed, conditions (a) and (b) cannot be satisfied simultaneously ; Hiz.m)
is bounded on §24, whereas G(z,y) goes to —oo if z,y € Qq, get close from each
other ; then, for & large enough, p(x) < 0 on Qﬁo.

Once we know the results of Theorem 1, we are able to prove :

THEOREM 2. — Assume that N > 4, and that 0 is a regular value of p.
The contribution to the relative homology

}I*(J;k‘,"?‘ J:k'”n)

of the solutions of (Pe) which blow-up at k points as & goes to zero, 0 < < %ﬁ, is

equal for € small enough to

H.((5p7) x (D*, 5571)
with
(22) b~ = {x € 9/p(x) <0}

This result points out the importance of the behavior of the least eigenvalue
p(x) of the matrix M(x) on QF, which already appeared in [6] [3] (see also [27]
[28]). It shows in particular, since the functionals J, satisfy (P.S.) and the differ-
ence of topology between the level sets may only come from critical points, that if
(9, p7) is nontrivial, (P.) does have, as ¢ goes to zero, solutions which blow-up at
k points. This gives a meaning to Theorem 1 without any further assumption of
nondegeneracy etc. (Note that for k = 1, Hy(Q,p7) = Hn(Q) # 0). The stability
of the result that we obtain with ¢, will allow us to transfer it to the functional Jo.
Then, Theorem 2 should make us able, through the study of the Green’s function,
to answer to questions related to existence and multiplicity of solutions to (£), this
last question raised by R.Bott.



3. The general framework

The framework is similar to the one considered in [29]. For a > 0, we define the
subset of H} ()

k
1
9 5= I ii iy 5 ’
» Fo= (03 Po o) > L
% e .. .. .
/\—j+/\—z+1\i)\j|-’b‘i*1'j|2>Evvzvjﬂ’?éj}
N-=2

with a = (N(N = 2))"© and P§,, € Hy() as stated in the Introduction, i.e.
(24) Péy, = 8jz— Pz

8y, being defined by (6) and ¢, » such that

(25) Agrz =0 on 1 @rg=18xs on an

The maximum principle yields

(26) orely) = —amz H(w,y) + 0(—gzz) » d = d(z,00)
ATz A2

If (u.) is a sequence of solutions to (P.) which blow-up at k points of ) as € goes to

zero, it follows from what was said in the Introduction that for any a > 0 fixed, the

distance between u. and F, goes to zero with . Moreover, it is proved in [7] that if

u € Hy(Q) satisfies distyy(g)(u, Fo) < @ with a small enough, the problem :

k
Minimize |u — Z dl—Pé,\hrJHé with respect to the a;, A;, s

i=1

has a unique solution in the open set :

1
‘Ctz' — CI‘| < 4da ,/\,‘(l(fb‘i,aﬂ) > EE,VE

)YEEED ¥ 1
2 il — > — Ve g i
¥ /"\_;‘+ $les— &4 >4a.’ i, g0 g

Therefore, there exist a diffeomorphism between a neighborhood of the possible
k-singular solutions of (P.) we are intersted in and the open set

M ={m = (a,\,x,v) € R" x (Ri)k x OF x H&(Q)/

1
lo; —a| < v, Aid(2;,00) > — , Vi
140

Ay . M

TR

1 oL .
+ Xidglai — 25 > —\Vi,ji# 53 v € Eyx, o]z < vo}
0

/i




with vg > 0 some suitable constant and

OPé;

Pé;
(27) Exx={ve }IOI(Q)/(U,P(%)H& = (v,—a—X—)Hé == o 9

Oz,

(we write Pé; = Péy, z;)
u. solution to (P.) and satisfying the assumptions of Theorem 1 may be written,
for € small enough, as

k
(28) Ue = Z afpéz\f,:cf -} v°

i=1
with m® = (af, A%, x,v°) € M, and the following properties

af — a, Aid(25,90) — +oo,j\é ¥ ,\_J + ANz — 2 = oo, v° — 0
7 1

One can even get more precisions :
1) It is proved in [29], using an argument of Z.C. Han [16], that there exists
do = do(§2) > 0 such that for ¢ small enough

d(z;,00) > dy , V1
2) On the other hand, it follows from recent results of R. Schoen [31] that there
exist dy(2) > 0 and ¢p(2) > 0 such that for € small enough
TR TIEY
e~ oy T << Ve, 5t #£

J

3) Lastly, using (28), multiplying the equation —Awu, = u?~¢ by Péye e and
integrating on (2, we obtain

)
Cn +0(1) = —g= +0(1)

(X))
with Cn = a fpn [Vérz)? = of fpa 65F. This implies
‘glogAf -0 as e—0, Vi

Finally, we see that there exist a diffeomorphism between a neighborhood of the
possible solutions to (F.) satisfying the assumptions of Theorem 1 and the open set

M. = {m = (a,\,x,v) € R¥ x (R})* x O x H}(Q)/
(29) lai — o] < vo, A > i,elog A < v, Vi
14}

A

T < o | — 25| > dg, V1, 5,1 # jiv € Exyx, lvlpy < vo}
j



where vy, co, do, dj are some suitable strictly positive constants.
Let us define the functional

K.: M, — R

(30) m= (o, A, x,v) = Jo(TF, Py, o + V)

It follows from the previous material that we have

PROPOSITION 1.

m = (o, A, X,v) € M, is a critical point of K. if and only ifu = Y P8y, ot
is a critical point of J., i.e. if and only if there exists (A, B,C) € RF x RF x (RM)F
such that the following holds :

(Eo) 222 = 0,Vi

t o

K, _ 92Ps, . a2Ps; . g
(Bx) G = BilTgtoduy + G- (i vl Vi
(E) . s 5 ps
(EI“) gc%\:- = Bz’(g‘\[a“"‘iﬂv)ﬁé + Ci ! ( ;9:1:? 3U)Hé'»VQ'
(B,) % = TE(APS+BEE+Ci- )

4. Proof of Theorem 1

The results of Theorem 1 will be obtained through a careful analysis of (E) on
M,. As usual in this type of problems, we first deal with the v-part of u, in order to

show that it is negligible with respect to the concentration phenomenon. The study
of (E,) yields :

PROPOSITION 2.

There ezists a smooth map which to any (&, a, A, x) such that (a, A\, x,0) € M,
associates U € E\x,|0|m < v, such that (E,) is satisfied for some (A,B,C) €
RF x RF x (RN')k. Such a ¥ is unique, minimizes K (a, A, x,v) with respect to v in
{ve E,\'X/L'U|Hd < o}, and we have the estimate

_ R logh . 1
ol =0 |e+ (57 ¥ N<6;—5%T J N=6-mz i N>0)

(for sake of simplicity, the A;’s being of the some order, we denote by f(A) any
quantity as f(A;) or i, f(\i))
The proof of such a result may be found, up to minor modifications, in [3] [25]

[29].

9




Once v is defined by Proposition 2, we estimate the corresponding numbers
A, B, C by taking the scalar product in Hj () of (E,) with respectively Pé;, 881;5, , 88};‘5 :
Thus we get a quasi-diagonal system whose coefficients are given by

aPs,; 1
| vrsvps; :N(N-2)I‘15ij+0(AN )i [ VP&V 5 = V)
oPs, apa o OPS; ) 1
/QVP&V . “O(AN i || e N(N+2)A26,J+O()‘—N)
OPS; _OPS; 1 aPs; _OPs; 1
1 1 - N 9
/va,\,-va:, (=), Bai; © Bz, = VWV TNy + 0(553)
with é;; the Kronecker symbol and
dz (N=22 1 (1= o) : jaf?d
Ti=f = = 7, = dz,Ty = (N—2 o ARLER
= S TR = T T s = 02

The other hand side is given by

(O pgy = O K OPS 1 9K, 0K, OP§, 10K,
v’ T Oy du

"IN Yy = a 0N (B’ ox; Yy = o; Oz

Explicit computations, using (6) (24) (26) (31), and whose details may be found
in 3] [25], yield

.

(32) Sor =~V + Va6, 000, %)
with
(33) Br(ﬁ]a"'a/}?k):(a~als°"1a_ak)

and V,, a smooth function which satisfies

. 53 1
1"a. = O[Hiz + m =+ EIOg /\]

In the same way we get

81\5 . H(fffiaﬂfz’) G(’{,., .?)
@ Yeongon [t g des)

)-I—V\(ca’/\x)

where V), is a smooth function verifying

1
m)”

I log A

(36) Vi, = O35

+ *log A + |8|(s +

10



and

o2 z[*)lo |z|?
I, = —W2 (NN —2)V/? [ 0= £1|+|;i]2g)(1+ Bda >0
Ty = —WE(N(N = 2))V/? fr =Bl da > 0

(1+[z?)7 T

Lastly, we have

0K, 1 0H 1 G
(37) aaci = FG (F—%(mi,ﬁh‘) — ; Wa(ﬂh,iﬂj)) + Vn!—(E,a, /\,X)
i J

where % and z; denote the derivatives with respect to the first variable and the
second Vauable of the functions (a,b) — H(a,b) and (a,b) — G(a,b) ; I's = 2_1“55’
and V, is a smooth function such that

- log A 18]
(38) in:U[EZ)\-l—(ﬁ if N=4; N f N>5)-I-)\N_2
Noticing that these estimates imply
K. oK. 1 e, OK. | 5
Fo; ~ VAL \N o Teloghtet)i g =05 +3)ig =0 +e Y

the solution of the system in A, B, C shows that

(39) B =0(5= +€2))

{ A =0(|pl+ 7= +elog A +&7)
C =0(z +5)

This makes us able to evaluate the right hand side in the equations (E},) and (Ey,),
namely
PP . 0RPS;
o 2% By + G (Bmia/\.{"v)H&

o((55s + IC:) oy )

(40) = 0((\N r+ 5 )l”'H])
and
d*Ps; . OFP,
<@,\ dx;’ By L ( Oa? ) hg
L ;
(41) =0((m+f\5)|'“|ﬂg}

11




sinee d*Psé; 1, O%°Pé 9% Pé;
G = 0, 1228~ 01, | 28, = o2
I 8A2 IH (/\?)5|a)\tal_tlH0 0(']')1| a 2 ‘Hl O( 2)

Let us now prove the results of Theorem 1. We consider a sequence (u.) of solutions
to (F:), satisfying the assumptions of the theorem. u, reads as (28) with m® =
(o, A%, x%,v%) € M., and it follows from Proposition 2 that v® = (e, af, A, x%).
Then, (E,,) yields, taking account of (32) and (34)

& 1 €
(42) He = O(W:E + clog A%)

From (E);), (35)(36)(40) and (42) we deduce that

€ H(z;, z7) G(xf,z5)
P4/\_5—P5 (W—Z 2)

OON05)
log A®
(43) =0 /\E((\E) + e?log \%)
Let us perform the change of variables
1 Iy
44 L (Zyzp e
(44) = = ()

Note that the properties
E

Ai = 400, elog Af —vO,/\E

<C0

are translated in Ae
Aie'? 50, clogAS — 0, /\— < ¢
7

and that (43) reads as

1= H( .51 1 (A )2 +z_;:,ézG(?’11‘ J)A AE
= 0((A*)2(A%e!/?) 7= Jog(A°cV/?) +c|10gf‘f€”2l)
= 0(|A%]* + 1)

Dividing each of these equalities by A we get

(45) M(x*)IA* + o |A%]) = (=) + of

A TR
with i ! i
= (A 7 g =
A ( 1 ’ AL) L] A (A] 3 ] AL)
The scalar product of (45) with »(x¢) yields
NP . 1 1
(16) PO K¢+ o{IA]) = () () + ol i)




On the other hand, we deduce from (£,,), through (37) (38) (41) (42), that
0H 0G

(47) Ba (zf, 25)A; _Z%(wiij)!\j
J#i
L
-2 N 2
- (ufsw; F (AP i N = 45 |A| ¥R log(|A%€V?) i N 2 5))

We distinguish three cases

e 1)A* >0

o 2) A*—> Ae (R})*

o 3) A° — +oo(Af — +o0,Vi)

From (46) we see that case 1) cannot occur, since in this case the left hand side
would go to zero (remember that p is bounded from above on % and |r(x)| = 1),
and the right hand side to infinity. Let us consider the second case. Denoting by

X € Qﬁo the limit of (x%) (up to a subsequence), from (46) we obtain

pR)r(R)A = r(%).4(+)

Hence p(X) > 0. Moreover, passing to the limit in (45), we get

M(%)A =

=1 =

This means that A is a critical point of Fx on (R})*, i.e. A = A(X) according to
our notations. Then, the limit in (47) yields

%(a %)~ T %(% EAL(R) = 0
This may be written |
gi(i).%()—c) =0
implying .
| %(X) =0

i.e. exactly what we wanted to prove. Let us now consider the last case. Still

denoting by X the limit of (x), (46) shows that p(x*) = 0(|—A1—,—|) and then p(x) = 0.
(45) gives
M(x*)A® = of|A%])

so that A® may be written under the form
(48) A =pr(xf)+7°

13



with f° — 400, 7#.r(x) = 0, and [r¥| = 0(5°). This follows from a decomposition
of A® on a basis of eigenvectors for M (x®) ; since p(x) is simple, all the other
eigenvalues remain bounded from below far from zero as p(x®) — 0. (47) leads to

oM
ox;

(x)."A* = o(|A%])

which means, through (48), that

OM oo o, OM
011( )7(X)+a$2

g (x9).17° = o( )
The matrix 24 ( ) being bounded on the set {x € Q¥dy/p > po} for any po € R, we
get

oM

(49) B%;

(x%).tr(x®) = o(1)

Let us consider the equality

and derivate it with respect to x; ; we obtain

oM ’r . _ 0 i
8:62- (X).iT‘(X) & M(X)am1 (X) = agi (X)ir(}() + ,O(X) aa,: (X)

The scalar product with r(x) gives

oM d
r(%)- 3~ (x).r(x) = 52 (x)

since |r(x)| = 1 and 7(x).2 ’I(x = (0. Therefore (49) yields

dp

() = o{1)
and so 9
P

a12() 0

This concludes the proof of the first part of Theorem 1. Furthermore, we see that
if 0 is a regular value for p, the last case that we considered cannot occur, and even
that there exists pg > 0 such that p(X) > po. Indeed, there would exist otherwise
a sequence (x") in Qf such that p(x*) > 0, p(x") — 0, F'(x") = 0. Let X be its
limit (up to a subsequence). Taking the scalar with »(x") of the equality

14



we get

1
A(x”))

Then, p(x") — 0 shows that necessarily A(x") — +oco. Therefore, we can repeat

p(x™)r(x").AA(X") = r(x™).Y

the previous argument (case 3)), which leads to
p(%) =0, f(%) =0

in contradiction with the assumption that 0 is not a critical value for p ; hence the
announced result. Lastly, a simple computation, taking account of (6) (24) (26) (31)
leads in the case where p(X) > 0 to the following expansion for J(u.) :

(50) Je(ue) = ¢ + kyie|loge| + kyae 4 271 F(X) + o(e)
where 7, = N—Fj—g >0 and v, = _Nr_2 log %i are constants which depend on N only,

and X € QF is a critical point of F.

Remark :
For x € Qf , we have
Ai(x)
Aj(x)
where A is a constant which depends on ,dy only. Indeed, on QﬁO,H(:c,;z:) is
bounded, and on €} x Qﬁg, G(x,y) remains far from zero. Therefore, the equality

<A Vi, j

M A =
which implies
H(zj,25)Ai(x) 2 Gz, z5)Ai(x) Vij i # ]
leads to
A{(X) < f](.’ﬁj,.’ﬂj) < SuprEQdo H(xam)

_ : —— =4
Aj(x) = G(zj, ;) ~ infyeq, Glz,y)

On another hand, on the relatively compact set in Q¥, p*(do) = {x € Qf_/p(x) > 0},
there exist r,7 > 0 such that

r<r(x) <7 Vi, Yx € pt(dy)
Then we deduce from the equality

r0)-M(x) 400 = (0704400 = (). 7)

the existence of g, ji > 0 such that

p < p(x)AL(x) < i Vi, Vx € pt(do)

13

15




As

l\.)|?"‘

k
ZogA

there exist two constants v, v such that
(51) v+glogp(x) < F(x)<v+3 Iogﬂ(X) Vx € p" (do)

Let us assume that 0 is a regular value for p, so that there exists pg > 0 such that
all the critical points of I in p*(do) are in fact in the set {x € QF /p(x) > po}. This
implies that the critical values for J, corresponding to eventual k-singular solutions
as € goes to zero are bounded from below for € small enough by

(52) d. = c. —ce
with
k
(53) ce = ck + kyie|loge| + kyee j¢ = —2m(z+ 5 logpo) +1

This follows directly from (50).
(Note that these critical values are also bounded from above by d. = c. + ¢,
with ¢ = 2y(7 + 2 log m)+ 1, and m = SUPxeqk p(x)).

We turn now to the converse part of Theorem 1. Thus we consider a point X in
QF such that p(%X) > 0 and X is a nondegenerate critical point of F. We set

oy = (B)V2(A(R) + (e
@y = T b

where (; € R and & € R are assumed to be small. With these changes of variables,
according to the previous computations, the system (E) appears to be equivalent to
(with v = 9(e, @, A, X)) :

(54) ﬁi = V'Ot.'(saﬂvc-:g)
(55) (2H (Z7,70)A; — _ G, %5)A;)G — D G(T T5)AG
i i
oH e oG, e oG
(‘ZFG—(L,“)’\J Z 3, (;Ifi.l;,)f\;) & Z%(I“rj)[\“’\’i’
J#FL J#i
= ‘/‘\z‘(es ﬁ'ﬂ C\‘g)
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(56) 5o (@ TG — ; 55 (@ TG
PH . .. ez FH,. o —
+ ((‘—) 2 (‘I”T?)Al aaab(:c‘i’x?)A! ; 'EEE(CLH;EJ‘)AJ) 61
_Zﬁaab zTi)A
J#i
Ei(saﬂ':CaE)

where V,,, Vi,, V;, are smooth functions which satisfy

Voi = O(e|loge| +[B]*)
(57) | Vo = O(e™=|loge| + |8+ [¢I* + [¢[%)
Vee = 0((eY2if N = 4;e%=3|loge| if N > 5) + |8]+ |¢|? + [¢]?)

This system may also be written

B = V(B¢
(58) { L(C,€) Wi(e, B,(,€)

1l

where L is fixed linear operator of R¥N+1) and V, W are smooth function satisfying

gy VEn0O = dellogel +13P)
W(e.8,6,6) = O((M7 i N = 4567 loge] if N 2 5) + 18] + I + [e])

Moreover, a simple computation shows that the determinant of L is proportion-
nal to the determinant of //(X). % being a nondegenerate critical point of F by
assumption, L is invertible, and Brouwer’s fixed point theorem shows that (58) has

a solution (4%, (%, £) for £ small enough, such that

84 = Ofcllogel)
I¢5] = 0('/?if N =4;e7=2|loge| if N > 5)
€] = 0(eY?if N = 4;e7=2|loge| if N > 5)

By construction, the corresponding u. € H}() is a critical point of J,, i.e. u,
satisfies on Q

(60) —Aue = |u [Py,

Multiplying this equation by w7 = max(0, —u.) and integrating on 2, we get

(61) f1vucr = [y

17



On the other hand, the Sobolev embedding theorem yields

(62) (@@= <o [ [VugP
Q Q
(61) and (62) imply that either ul = 0, or |u;|p11- is far from zero. As
|uZ |pr1-e < |9%|pr1-e and ©° goes to zero in H}(§)), we obtain that u; = 0 for

¢ small enough. Since u. is a nontrivial positive solution of (59), the strong maxi-
mum principle ensures that u, > 0 on §2, and then u. is a solution to (F.), which
blows-up at Zy,- -, & as € goes to zero. The index of this solution as a critical point
of J, is £ + k, where £ is the index of X as a critical point of F. Indeed, considering
K., the procedures that we followed consisted firsteval in minimizing with respect to
v, then maximizing with respect to the a!s (contribution k to the index), minimizing
with respect to the M s and lastly in taking x as a critical point of a C?-perturbation
of F in a neighborhood of %X (contribution ¢ to the index). One could get directly
convinced by these arguments in computing the second derivatives of K., as in [15] ;
as a byproduct we obtain that the k-singular solution u. to (F:) corresponding to X
is unique. These arguments also apply to the solutions of (F:) that we considered in
the first part of the theorem, except that the index may be larger than ¢ + & in the
case where x is a degenerate critical point of F or a critical point of p ; nevertheless,
the index is bounded from above by Nk + k = (N + 1)k.

5. Proof of Theorem 2

From now on, we assume that 0 is a regular value for p.

Let n be a fixed number, 0 < 7 < i% Our aim in this last section is to
compute the contribution to the relative topology of J&**7 with respect to J*7" of
the k-singular solutions to (P:) that we studied before. From (52) we know that, in
fact, we can compute this relative topology between the levels ¢t + 7 and ¢, — ce,

with ¢ > ¢ and ¢ given by (53). Assume that V. is an open neighborhood of the

eventual k-singular solutions to (P.) such that, on the boundary of V., either —J]
is pointing inward V., or J is less than ¢, — ce.

Thus, what we want to compute is exactly the relative topology
(WL VN L5 (T M)

Tt remains to define ¢ and V. in a suitable way, in order to satisfy the previous
conditions and to make the computation possible. We define successively some
quantities whose choice will appear in the following. Thus, we set

p1 s.t. p has no critical value in [0, p1]
¢ > max(0,¢) st 2y F(x) < -2 implies p(x) < pr
(63) P2 st p(x) < py implies 27 F(x) < —do
Co L. dpp(R]) s —F implies~ p(x) < p2
03 s.it. p(x) < pa implies 2y, F(x) £ —4dey




X being assumed to be in Qf . The existence of quantities verifying the listed
conditions follows from (51). They will allow us to include level sets of £ between
level sets of p.

Now, we choose Ag > 0 small enough so that for any x € {x € Qf /p(x) > p3}
and |A — A(x)| = (Z5, (A = Ai(x))?)/2 < Ao, we have

21nFx(A) £-% implies 2715‘()() < —
(64) 2mFx(A) < -2 implies 27, F(x) < —2
2y F(x) < —4q implies 27, Fx(A) < —2¢

mF(x) < —4dc implies 2y Fx(A) € —dey
Note that for x € ﬁgo,p(x) > 0, and d(z;, 9§2) = dy, we have for dg small enough

oF

83;;-

(x).n; > k(do) >0

where n; denotes the outward normal to 9§y, at z;. For a proof of this fact, we refer
to Appendix B. Then, we choose Ay small enough so that we have also, for same x
and |[A — A(x)| < Ao

)

&) dx;

Fx(A)n; > k'(dg) > 0

Lastly, we remark that

8 i : — (X 2
(A = A()). 5 Fe(A) = (A = A(x)).M(x).4(A = A(x)) + ; (/\A__Kf_\é)i
(66) > p(x)|A = A(x)[?

Then, our aim turns out to be the computation of the relative topology

(JEHTAY, , JETaen V)
(67) = (K*t O V., Ke=5 V)

where V; and V, are corresponding through the diffeomorphism described in Section
2, and

(68) I/E = {(Q’.‘ /\,X,U)/IQ’,‘ - Cll < Q’UJd(IiaaQ) > dO ) V?ap(x) > P3,
A —A(x)| < Ag, vE E\x, and
[0 — (e, @, A, )| < v (¢ if N < 6;¢|loge| if N =6;eT7 if N > 6))
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The link between A and A is, as stated previously

1 Ty 12 :
N3 — (—;> A,'El/z
pzo M

t

and v is defined by Proposition 2. From Section 3 we known that V. is a neigh-
borhood of the eventual k-singular critical points of K. we are interested in. The
constants ag and 1 are chosen in the following way :

We take v large enough so that we have, for (o, A, x,v) € V., |v — |y = wo(e if
N < 6;¢|loge| if N > 6), and ¢ small enough

0K,
dv

(v —v). (a, A, x,v) >0

We take ag small enough so that, for (o, A, x,v) € V. and ¢ small enough, we have

af\e.ni >0 if d(z;,00) = do
11
K
(A — A(x)) Ix, >0 if |A—-A)|=Aq

"IN
Such a choice of 1y is made possible by Proposition 2, the existence of ay follows

from (37) (65) and (35) (66).

Lastly, let us remark that (32) implies, for (a, A\, x,v) € V., |o; — | = ap and ¢
small enough
K (o, A x,v) <c —ce

If p(x) = p3, then by (63) and (64), 271 Fx(A) € —2¢;. As an expansion of K, for
(a, A, x,v) € V. yields
Koo A x,v) < ¢ + 29 Fx(A) + o(e)
p(x) = ps implies that
Ke(a, A, x,v) < c. — e

provided that ¢ is suffiently small.

As a consequence of the definitions and properties that we gave, we see that we
reached our goal to construct a neighborhood V; of the k-singular critical points, on
the boundary of which either — A’ is pointing inward V;, or K, is less than ¢, — ¢y :
K. is even less than c. — ¢



We turn now to the computation of the relative topology (67). The first step is
concerned with the v-variable. We set

Ke(a, A\ x) = K.(a, A\, x,7)
for (e, A,x) in
V. = {(a,\,x)/|a; — a| < ag, d(z;, ) > do,Vi; p(X) > p3, |A — A(x)| < Ao}

From Proposition 2 and Morse theory we deduce, since ¥ is a strict minimizer of K,
in a fixed neighborhood of v = 0, that
I(;—‘k""-‘? nv. = V.

— {(a,,\,x,v)/(a, \x) eV,
N2

v € Exx N Dy (v,m0(e if N <6 ;¢elloge|if N =6 2P N > 6))

and
KA = {(a,)\,x,v)/(a,/\,x) € 17’5,1};’;(&,)\,}() <c —ce, v € D(a, A\, x)}
where D(a, A, x) is a subset of E) x topologically equivalent to a disk. Therefore
(K& NV, Kemen V) o~ (Vi, KE™95 0 V)
The next step consists in defining
K. =R.(ax)
for (X, x) in
Ve = {(\x)/d(z:, 00) > do, ¥i; p(x) > pa, |A = A(x)] < Ao}

and a = a(A,x) is such that %(d,,\,x) = 0. Such an a, |&; — | < ag, is unique,
and corresponds to a strict and nondegenerate maximum (see (32), and [14] for an
estimate of the second derivative of K. with respect to o). Morse theory yields

Ke—asny,
= {(a, A\, x) € TZ/?;;C(/\,X) <e¢ —c¢e, and a€ D}
U{(e, A\, x) € V./K.(\X) > cc —cie; and  a € C(A,x)}

Here, D denotes the k-square |a — ag, @ + ag[, topologically equivalent to the unit
disk D¥ of R¥, and C(),x) is equal to D deleted from a subset equivalent to a disk,

whose radius goes to zero as (), x) goes to ¢, — c;c. At the same time

Vo= V. xD
Then, we have a natural injective map

= —Ce—C1€ =

Ve, K, NV x (D81 - (., K=" nV,)

Since all the critical values for K. on V. are larger than ¢, — ce > ¢, — ¢;¢, this map
appears to be also surjective, and then is an isomorphism.

.')1

<

}




On V., a simple computation provides us with the uniform estimate

(69) Ko(X,x) = ¢ + 2116 Fx(A) + o(e)
The way we chose py, pa, 1,2 gives us now, together with (69), provides us with
the following properties (for € sufficiently small)

T—Ce—C2€ =

K. nV. c {(\x)€V/p(x) < ps}
C :I—_..{;EE 1

C {(Ax) € Ve/p(x) < pr)

— - —_—

On the boundary of 17'5, either —K:E points inward 175, or R:S is less than ¢, — eqe.

B —ce—cie =
Moreover, as K. has no critical value between c. — ¢y and ¢. — ¢i¢, I, nv.
—Ce—C2E =
retracts by deformation onto A, NVe.

On the other hand, —p’ points inward Q’:}O on the boundary of this set for dp small
enough and py < p(x) < p1 (see Appendix B) As p has no critical value between

p1 and p; , we obtain that {(Mx) € V. /p(x) < p1} retracts by deformation onto
{(A\,x) € V/p(x) < pa}. Therefore

(VoK.  nv.) I@{AmeV/m )< pa)
{x € QF /p(x) > pa}, {x € Qf /ps < p(x) < p2})

(
(
(Qﬁ Ax e Qdo/p(x) < pa}) by excision
(2
(

1R R

F{x e Qf /p(x) <0})
0%, {x € 0¥/ p(x <0})

21

since —p' point inward Q* for d(x,d0) < dp and 0 < p(x) < p2, and p has no critical
value between 0 and p,. This completes the proof of Theorem 2.

Appendix

A - In this appendix, we prove that the least eigenvalue p(x) of M(x) is sim-
ple, and that the corresponding eigenvector may be chosen with all its components
strictly positive. Indeed, we have

I - r.M(x).'r
%) = i _
d -:-ER’}—{O} 7|2

and the corresponding eigenvectors are those elements of R* for which the infimum
is reached.

[}
(8]




Let 7 = (ry,---,7r) be such a vector. Then, 7 = (|r1],---, |rx|) is also an eigen-
vector for p(x), since |r| = |r| and

F.ﬁ/f('x)_if = Zﬁ;l H(z;, 1'1')7'52 = Elffgjﬁk Gz l‘j)l?‘,‘?’j'
i#]
ot Zf:l H(zy,z)r? — S icij<k Gl@;, T5)rim;
i#)

< r.M(x).r
Moreover, if r; = 0
(7 + ner). M(x).(7 +ne;) rM(x).7F =2 Eé‘f} G(zi, z;)7; + 0(n?)
|7+ neil® - |72 + n?

for n > 0 small enough, in contradiction with the definition of p(x). Thus there
exists for p(x) an eigenvector 7(x) whose all components are strictly positive. If the
norm of 7(x) is imposed to be 1, such a vector is unique, since p(x) is simple. Indeed,
let (r(x),r™M, .-+ #(*=1) be an orthonormal basis of R* composed with eigenvectors
of M(x). From r(x).trl) = 0, Vi, we infer that for each 7, r¥) has some components
which are striclty positive, some others which are strictly negative. Setting

'F(Z) = (ITY)L R |r.£1)|)
we have |r()| =1, and
p(x) < 7 M (x).'7 < rO M (x). ) = pl0)

This proves that p(x) is simple

B - In this appendix, we are interested in the behavior of p and F, for p
positive, near the boundary of Q. Namely, we want to prove that for x close
enough to the boundary of QF p(x) > 0, then —p’ and —F”’ are pointing inward
Q*. We may assume, without loss of generality, that d; = d(z;,90) = inficickdi =
infi<i<k d(x;, 0N). Thus, denoting by u the outward normal to 084, at z;, we have
to establish that '

bk’ dp, . Op
IF oF
9 lalll] S ;
(B.2) B (% I, (x).n >0

for any x such that p(x) > 0 and d; is small enough. We have

F'(x) = A(x).M'(x).!A(x)
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and

p(x) = r(x).M(x).!'r(x) = inf r.M(x).'r

|T|:l

Then, in order to prove (B.1) and (B.2), it is sufficient to prove that

oM

.-a?(x)."r(x) >0

r(x)

and
oM,
rm X

As all the components of r(x) and A(x) are strictly positive, it is in fact sufficient

A(x) ).EA(x) > 0

to prove that all the components of 22 (x) are positive, and 'Eﬂf(x) # 0. The
components m;; of %ﬁl"(x) are given by
my = = H(x, )

B3 b W’ e
83 { mi; =—=Glzi,x;) il 1#]
Of course, we have
(B.4) mi =0 if {#£1;m;=0 if ¢#1 and j#1
According to [26], we have the estimates

OH N -2 | 1
(B.5) —8—a-(1"y) - _ - _2(13:?11"[\,{:.-; —y —2n,.(x — y)ne — 2dznz) + of e )

as dy = d(z,09) goes to zero, n, denoting the outward normal to d§ at ', where
2’ is the only point of 9 such that d, = |z — 2’|

In particular

oH N -2 1
(B.6) implies that
d N -2 1
my; = 5;1'1'(:?711-’171) T oN-2gN- + O(dﬁv“] )
since ng, =n + o(1) and Jil H(zy,2) = 2;{{ (o )
Then, it is sufficient to prove that
& ,
(B.7) %G(m],mj) <0 j7#1

We argue by contradiction. We assume that there exist a sequence (x") € QF
such that p(x") > 0,d} — 0.d" > d}, and Z-G(a},2F) > 0. In the case where
lima} = 2y # @; = lima?, the strong maximum principle yields a contradiction.

24




Suppose now that a; = ;. Two cases may occur :

dn
1) E;L,—i»—l—oo

d‘n

a7

-

is bounded

2)

Let us consider the first case. We have

o (2} —27).n bs)
— Gz )= —(N =2t 2" T pgn on
anG‘(:L,,a:J) (N =2) o7 =21 anH(:cl,:LJ)
and ( ) Wb
} —z").n —
W =B i~y
"er—ap ™ @

On the other hand, as y — 2 H(z,y) is harmonic in {2 and is equal to ﬁ(N—Q)——iﬁl;’_;l
on 0f), we have _

0 . oG, . (zF—1t)n
mr— . ") = — i —_— i B T
- Hla},a}) = (N )/aﬂ 5y (b Tt

where % denotes the derivative with respect to the outward normal to 89 at ¢. From
the strong maximum principle %% < 0. As (I—zi::—:f;- < 0 for t € 952 in a neighborhood
1

of z1, and Z2(t, 'r:;‘)(l—f{:t% is bounded for ¢t € 90 outside of this neighborhood, we
1

obtain

a n n
Finally
8 o g =D -
g 2 05) = g+ (g <0

for n large enough, a contradiction with the assumptions.

dﬂ
|z} —=

Lastly, we deal with the second case. Note that p(x™) > 0 implies that 3

remains bounded. According to (B.5), we get ’

3
%G(m?,m?)

(z7-z7).n -9 ;
- ] -9 1 1 N-2 T a9 PSR —_9 1
(N —2) PR + G (] — a] — 2n.(a7 — 2} ).n— 2din)n + of @ )

(ng; = n+0o(1)). From the equalities

(el —2%)n = d} —df + o(d]})
|21 — 2 + 2din|* = |2} — 2F|* + 4(d})® + 4d}(d? — d}) + o((d})?)
= Jo] = 27 + AR + of(d7)?)

we deduce that




dn—dn
ATls et o _ i N-2 n n 1
G(ll':l') - _(N 2)|l‘;l_l—?[N (|$?1’1_$§l|2+4d§ld}l)f\,/§((l] +(1) +O((d;)N7| )

< 0 for n large enough

again a contradiction with the assumptions. Therefore (B.7) holds, for dy = inf d;
small enough and p(x) > 0.
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