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Concentration of solutions to elliptic equations
with critical nonlinearity

by

O. REY

ABsTRACT. — We study the asymptotic behavior as & goes to zero of
solutions in H§ (Q) to the equation: —Au=|u|*N"?u+eg f(x), where Q
is a bounded domain in RY. We show the existence of solutions to the
problem which blow-up at some well-defined points, depending on f, for

£=0.

Key words : Nonlinear elliptic equations, variational problems with lack of compactness,
limiting Sobolev exponent.

REsuME. — Nous étudions le comportement asymptotique quand € tend
vers zéro de solutions dans HJ (Q) de I’équation:
—Au=|ul*N"Dy+e f(x),
ou Q est un ouvert borné de RN. Nous montrons I’existence de solutions
du probléme qui explosent en des points caractérisés précisément en fonc-
tion de f, pour €=0.

Classification A.M.S. : 35J 65.
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202 0. REY
1. INTRODUCTION AND MAIN RESULTS

In this paper, we return to the problems of the form
—Au=uP+f(x,u) onQ

u>0 onQ (P)
u=0 on 0Q
‘ . . N N+2
where Q is a smooth and bounded domain of RN, N=3, p= N and

f(x,u) is a term of smaller order than u?, i.e.

S(x,u)

u

-0 whenu— +o0

The exponent p is critical from the viewpoint of Sobolev embeddings, in
the sense that the injection of L?*!(Q) into H} (Q) is continuous but not
compact. It follows that the functional:

_l 2_—1_ p+1 __
J(u)_szu| p+1L|”‘ LF(x,u)

associated to the problem, with F (x, u)=‘[ f(x,t)dt, does not verify the
0

Palais-Smale condition: there exist ““critical points at infinity”, correspond-
ing to concentration phenomena which may occur at some points of the
domain.

In the following, we will focus more specifically on the asymptotic
behaviour with respect to € of the solutions to the problem (P,)

—Au=uP+¢ f(x,u) onQ
u>0 onQ Py
u=0 on 0dQ

as £>0 goes to 0.

The existence and multiplicity of solutions to (P,) for & sufficiently small
has been proved for some special f—([BN1], [R1], [R2]). On the other
hand, for £¢=0, the problem becomes more delicate, and we know for
example that if Q is starshaped, there is no solution [P]. As a consequence,
solutions to (P,) may disappear for £=0, either vanishing uniformly, or
blowing up at some points of the domain.

In the case where f(x, ) =u, for instance, one has the following results:

(1) If N=4, and () is a family of solutions of (P,) concentrating at a
point x,€Q as £ » 0 (in the sense: |Vu, |*—SV23_, 3, the Dirac mass
at x, and S the best Sobolev constant). Then, x,€Q and

0 (x0)=0

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CRITICAL NONLINEARITY 203

where
¢ (x)=H(x, x) (1.1

and H is the regular part of Green’s function of the Laplacian onQ,
denoted by G, i.e.:

Hry)= —— =Gy, Vape®  (1.2)
| x—y ‘N 2

(i1)) Conversely, if N=5 and if x,eQ is a non-degenerate critical point
of @, there exists for small enough ¢ a family of solutions of (P,) concen-
trating at x, as € —» 0.

(iii) Finally, if N=5, for & small enough there are at least as many
solutions to (P,) as the category of Q, concentrating as € — 0 at critical
points of @.

The same results hold for the problem

—Au=uP"* onQ
u>0 onQ ®)
u=0 on 0Q

Furthermore, we have very precise estimates about the shape and the
speed of concentration of the solutions of (P}) as € —» 0— ([H], [R3], [BP)).
Here we will establish what happens in the case

Sx,w)=f(x), f#0
We denote by (Q,) the problem

—Au=|ulf"tut+ef onQ
u=0 on dQ Q)

(at this point, we do not impose to the solution u to be positive), and let

f be the function defined by
TA=f Qe sy
f=0 on dQ

We prove the following results:

TheorREM 1. — (1) Assume fe C?(Q). Let x,€Q be such that
(1) J(x0)>0;

(2) .x, is a non-degenerate critical point of x — /: ())CZ/Z,
o (x
Then there exists a family (u,) of solutions of (Q,) concentrating at x, as

£—0,1.¢e.

|Vu£|2—>SN/25xo, |u5’p+1—>SN/28x0

Vol. 9, n° 2-1992.



204 0. REY

in the sense of measures, where 9, is the Dirac mass at x, and

S= inf J’V”IZ
ueHy (@ YO

|1‘|p+1=1

is the Sobolev constant. If f=0 on Q, (1) is automatically satisfied, and
u.>0 on Q.
(2) Assume =0, and fe C* (Q). For & small enough, (Q,) has at least as
many strictly positive solutions as the caftegory of Q, each one concentrating
(x)

PN as € —0.

at a critical point of the function x —

Remarks:

o If feW"?(Q), Ip>N, then fe C2(Q). If fe W-?(Q), (I+1)p>N, then
feCl(Q).

e The results of the theorem provide us with equivalents to results (ii),
(iii) in the case where f(x,u)=u. One can conjecture that an equivalent
J)
¢ ()"

Concerning the existence of solutions to (Q,) with minimum regularity
assumptions on f, i.e. fe H™1(Q), one deduces from a result of Brézis
and Nirenberg [BN2] the following proposition, whose proof is given in
appendix:

to result (i) is also true, with ¢ replaced by the function x —

ProposITION 1. — For f=0 and ¢ sufficiently small, (Q,) has at least two
solutions. One of these solutions converges uniformly to 0 as € — 0.

COROLLARY. — From the proposition and Theorem 1-(2) we deduce that
if T is positive and regular [i.e. fe C* (Q)], (Q,) has for € sufficiently small
at least cat (Q)+ 1 solutions, one of them converging uniformly to 0 and the

J()
@ (x)1?

The study of problem (Q,) allows us to state the same type of results

concerning the problem

others concentrating at critical points of the function x —

—Au=|ulP"'u onQ
b 0 r
u=ecg on dQ, g7 Q)
We get: )
THEOREM 2. — The results from Theorem 1 and Proposition 1 are valid

for problem (Q.), provided that in all statements f is replaced by g and f by
g, where g is the function defined by:

Ag=0 onQ
g=g ondQ

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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Indeed, if we change the variable in (Q,), writing:
u=u+ sf
we are led to consider the equivalent problem
—Au=@w+ef)’ onQ

u=0 on 0Q Q)
(where for sake of simplicity we write »” instead of |v |7~ v).
In a similar way, writing
u=u+e §
(Q)) turns out to be equivalent to the problem
—Au=(u+eg)’ onQ @)

u=0 on 6Q

which is exactly (Q,) with 7 replaced by g. Hence the results for (Q?) follow
immediately from those for (Q,).
We turn now to the proof of the theorems.

2. PROOF OF THE THEOREMS

2.1. Notations.

We introduce the functional
~ 1 ~ ~
J(w)= - J |Vul|>— b J |u+eflp*? 2.1
2 Jo p+1 Jo

on H} (Q) whose critical points are solutions of (Q,).
For xeQ and A >0 we consider the functions

AN—2)/2

OV e -2

and their projections P 3§, , on H(Q), defined by

AP, =A%, , on Q} 2.3)
P, .=0 on 0Q
so that
P8 =8, Pux 2.4
with
Ag, ,=0 onQ } @.5)
@, x=8 . ondQ

Vol. 9, n® 2-1992.
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Expanding 3, , on 0Q for Ad large, we conclude from the maximum
principle that

1 1
®, (V)= Ch 2,/2H(XJ’) O<W> (2.6)

where d=d(x, 0Q) and H denotes the regular part of Green’s function.
We note that for all x and for allA

ST A (cN 6}», x) = (cN 81, x)p on RN’
with 2.7
en=(N (N —2)N =24

Define for n>0 the subset F, of Hg (Q) by
1
={aP8Lx/|oc—cN|<n,kd(x, 0Q) > —}
n

It is proved in [BC] that if ueHg (Q) is such that distH‘l) @ @, F)<n, and
n is small enough, the problem

Minimize |u—aP3, , [y, Wwith respect to a, A, o
has a unique solution in the open set defined by

|a—en|<4m, xd(x,asz)>L
4n

Then we can look for critical points of J studying those of the functional

K: M->R }

(2.8)
(oA, x,0)—>J (P, ,+v)

where
={(a,7\.,x,v)eRXR’i xQxHi(Q)/veE, |,
' 1
|a—cN1<n0,Kd(x,6Q)>—,|v|H(1)<vo} 2.9)

Mo

with ng and v, some strictly positive constants, and

El,x={vEH(1)(Q)]<v’P61,x>Hé

< 6P81x> < 6P8”> =0} 2.10)

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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Finally, (o, A, x,v)€M is a critical point for K if and only if there exists
(A,B,C)eR x R x RN such that the following equations are satisfied:

K _
E.1
fa -1
0K o0*P 2
BJV—?—*V +cj v Py, (E.2)
an Q O\ Q o\ Ox (E)
0K 2 2
Bf V—a—% Vv+C. 6 P6’”V (E.3)
ox o OAox Q x?
K
a——APSx x+BaP6x”‘+C.aP8*’x (E.4)
Ov oA Ox

The proof of the theorem requires some computations. Only the main
steps will be given here, the details being exposed in [B], [R1], [R4].

2.2. Analysis of (E)

This analysis will provide us with the first result of Theorem 1. We
consider the last equation (E.4) of (E). Expanding K in a neighbourhood
of v=0, we obtain

J(uPSX,x+v)=J(O{'P6Lx)+Fu,k,x(v)+Qa,x,x(v)+Ra,l,x(v)
with F linear in », Q quadratic, and R collecting the higher order terms,
ie.

Fa,l,x(v)z _f (aP6x,x+8}()pv

akx(v) JIV J(aPSl x+87)p ! 2
and
R, . (@=0(o[g"* """, LW =0(o ")
R;'x x(v)=0(|vl‘;§;““ )

(where for simplicity we denote by 67 the function |6~ 6).

In [B], [R1] it is proved that the quadratic form Q,, . is positive
definite, with a modulus of coercivity independent of a, A, x, &, if we
assume that 1, and € are small enough. So we may write

Forx@={for, 0?0 >Hé5 Jar x€E5 «
1
Qa,l,x(‘u)=5<Au,l,xv7‘0>ﬂé? A, €L (B

where A, , . is coercive, with modulus of coercivity independent of a, A,
x, € From this, starting from the point (f,2)=(0,0) and applying the

Vol. 9, n° 2-1992.
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implicit function theorem, we infer: there exists a smooth map which to
each (o, A, x, €) such that

|oe—en|<Mo» kd(x,@Q)>—1—, e<g,
Mo

(N, and &, small enough) associates an element v€E, , |v|yy<Vo, such
that (E.4) is satisfied for certain real numbers A, B, C. Furthermore

|21us =0 (o5, < |ud) (2.12)

Now, let us remark that

VUEER,JQ <fm,k,x5v>H6= _j [(QPSX,x+8f)p_ap67I:,x]v
Q

since

J‘S{’xv=; J V3, Vo=0
Q N(N-2) Jo

Then, a computation using (2.2), (2.4), (2.6), the Holder inequality and
the Sobolev embedding theorem yields (as in [B], [R1])

1 €
0<(M)N"2 BFGEETE +8p>
if N<6

(Loghd)*?®  e(Logid)*? ,
( oy + \2 +¢
if N=6

1
¢ ( Gy~ 8p>

i N>6

oo n, < g = 2.13)

From (2.12), the same estimate holds for | v|;.

Now we are left with the remaining equations, namely the system formed
by (E.1), (E.2), (E.3). Setting

p=cy—o=(N(N=2)N-2/4_q (2.14)

using (2.2), (2.4), (2.6) and the estimate that we obtained for |v|y;, we
get from (2.1), (2.8) the expansions:

oK oA, x,0)=—4NT, p+V, (o, A, x) (2.15)
ool !

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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where V,_ is a smooth function which satisfies the estimate

€
(Kd)N_Z + }\‘(N—Z)/z

+<8 aogx ifN=4; x—lfN>4>+82”:l

V, (6, A, x)=0 l:p2

In the same way we obtain

_ N —2)?
K anxn=— N2
oA 2

N-1

y [aaf(x) _ 020 ()
)\lN/Z )\,N_ 1

:I—I—Vk(cx,?»,x) 2.16)

with V, a smooth function which satisfies

_ 1 eLog) Ip|
V(o xax)_Ol:deN—x + )\‘(N+4)/2 + AN-1gN-2

Iple | € e?Logh g2
+W+XN/2+T+ 23 if N= 47\,lfN>4

L 7\‘ 2/3 .
+<xN——lng*2 if N<6; “—;falf—)lfl\r:a

€ .
ANF4/2 J(N-2)/2 if N> 6>:|

A last computation provides us with the expansion
%(a, A, x, )
ox

2 ’
=N(N—-2)on_; l:%;f;—f):) —&a X{.ZIS?/Z:'-I-VX(OC, Ax) (2.17)

where V, is a smooth function verifying

XNdN+1

1 . 1 .
Vx(a,x,x)=0[<w if N=4;, — 1fN>4>

Ip] el p] 5 e _elogh & .
+)\'N—2dN—l+)\‘(N—2)/2 thet P+ ?\.2d2+ 23 g3 +_):1fN—4’
eLogh &>Logh =
7\.7/2d3 )\‘2 )\’3/2l

€ er .
+ N =
ANF2)/Z goup (4, N/2) | 3 (N-2)/2 if N2 6)]

Vol. 9, n® 2-1992.
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We used the notations

TC(N+ 1)/2 2T|:N/2
F1=f Bl ——————— and On_;=mes(SN ") =
N LT ONTIT(N)2) [ (N/2)

Suppose now that x,=0€eQ, 7(0)>0, and that 0 is a non-degenerate
J&)

critical point of the function x — .
o ()"

Then we can write
20(X)F (0)—F(x) @' (x)=Mx+o( x| (2.18)

where M is an invertible matrix.
We will assume in the sequel that x is restricted to a neighbourhood @
of 0, such that

Vxe®, F(x)>0 and dist (0, 0Q)=d,>0
As suggested by (2. 16), we perform the change of variable
1 g f(x)
CE oc(p(x)(1+§) (2.19)
assuming a priori that | &|<1/2. We note that we then have
_ (N=2)?0oy_; 0ef(x)
- S Vi)

Z—I;(oc, A, x,0)

and
_ 2
a_K(a’}“,x’_;):_ N(N 2)GN—-I Sf(x)
Ox 2 02 (x)

Mx+0(E*|E)+V, (o, X, x)

together with the estimates

K
—=0[|p|+¢?

oa.
JK 2N-2)/(N-2 2 N/(N—

)
oK
— =0 (&|+]p[+]|x)

ox
+ (3 if N=4; e2NVN=2 | Loge|if N>4)
and
|7}y =O[e? if N<6;6?| Loge |*? if N=6; e? it N>6]  (2.21)

These estimates will allow us to estimate the numbers A, B, C which were
determined by (E.4). Indeed, if we take the scalar product in Hg (Q) of
oPs, . 0P, .

)

, we obtain a
oA Ox

equation (E.4) respectively with P§, ,,

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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quasi-diagonal system of linear equations in A, B, C—the co
being estimated by a direct computation using (2.2), (2.4), (2.6):

(P&, P61gx>56=N(N—2)1“1+0(7V—;_—2>
Cron s Dmo()
Crone e D moli)

1
xN—l

1
xN—Z

apzsl .

Pal x’

Ps, apax .

<6P8“ apsn> N(N+2)T, 1
__.___‘_,—’_ =—___.+O —
n > a Su 22 N

1

P8, . OP3,
o oe N1

Oh 0x;

=D u0l)

> =N(N+2)3A%5; +0(
H}

<

oP3, . OP3, . 1

;\‘NZ

<

0x; 0x;
2 2
r= o (Ses) r=[ e ()
&N oA RN Ox;

and the right-hand side being given by

0K
(%o, %
ov ’ H) o
CLSE
oo’ o W o A
K oL LK
v’ ox uy o Ox
The solution of this system yields
A=0 K 1 aK BK]
o 6?\. }»N ox
1 6K
B=0 —
[XN‘3 da 67» XN Bx]
c=of L[, 1 x|
AW oa| AN-t|an Xz ox

Vol. 9, n° 2-1992.
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which allows us to estimate the expressions
2p _ 2p _ B _
Bj V(’}——P;Sx’—JSV'u+CJ‘Va SA’XVU=O[<—|——2—|+|C|)I7J|H5]
a or? o OAOx A

0*P3, — J ?Ps, . — _
B| vi%%xyo4C| VE—22Vo=0[(B|+2r*|C)|v
J;; O\ Ox ° o ox? v [(| | | l) I \Hb]

using (2.20) and (2.21). We therefore conclude that the system of equa-
tions (E. 1), (E.2), (E.3) is equivalent to
p=V1 (85 ps (i, X)
§= V2 (87 pa &a X) (EI)
X= V3 (85 P, ga x)

where V,, V,, V, are some continuous functions satisfying the estimates

Vi=0(p*+2?)
V,=0(|p|+E&*+e2NN-2)

v3=o(1p|+|m+{ e if N=4 )+0(IXD

g™~ Loge|if N>4
The Brouwer fixed point theorem shows that for ¢ sufficiently small (E’)
has a solution (p,, &,, x,), which further satisfies:
p.=O0(e%)
E.=0 (e¥N~2) (2.23)
xa = O (82/(N_ 2))

One easily checks that

u£=a£P6kg,x£+Es+s]‘ (2.24)
: 1 e f(x) - _- .
with o, = cn— Pes PYaEET = (p(x)(l +&,), and v,=7v, , ;.. & solution
to (Q,) by construction, is such that

|V > - SN2 8, |u [Pt - SV2§, whene—0

Moreover, if =0, u,>0 on Q. Indeed, multiplying the equation
—Au,=|u [P~ ' u,+ef by u; =max (0, —u,) and integrating onQ, we get

J |Vu; |2=J (”s_)pﬂ—ﬁj fus_éj ()™
o o Q Q

On the other hand, the Sobolev inequality yields

s IR A
Q Q

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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so that we have either | (4, )?*'=SY2, or u7 =0. Remember that

_ Q
u; <|v.|, and |v,|,+; =0 as & — 0. Therefore, for & sufficiently small,
u; =0, and the strong maximum principle shows that u,>0 onQ. This
concludes the proof of the first part of Theorem 1.

2.3. Category of the domain and multiplicity of the solutions

We are going to show the multiplicity of the solutions to (Q,) in relation
to the category of the domain Q, looking for solutions in the same form

as before.
More precisely, for 6 a positive constant to be chosen later on, we

define for £>0, d>0 the open set:
‘ﬂd,s={(p’)\'ax)ERXRi XQ/'D[<982

1 ef(x) 3ef(x)
o A‘N'Z’/ZeLcw(x)’2ch><x)B @2

and the function
f(pa}\’ax)=K(a:}"ax,17)=J(G'P61,x+17) (226)

on ., ,, with a=cy—p, whose critical points provide us with solutions
of (Q,). The first order derivatives of " are given by

é‘f ?E

6p oo
%za_K+<5_K,a_”> 2.27)
oL oA dv OA/ u

I SN
ox  ox v 0x / wup
The first order derivatives of K having already been estimated, we are left

JK ¢
with the evaluation of the products < Kz > < 8L >
ov P

To this end, we write % in the form

a—v—eransx x+ba 8. x +caP6M
oA oL

. (2.28)

Vol. 9, n° 2-1992.



214 0. REY

with (ab,c)eRxR xRN and weE, .. Thus we have

<aK 8v> <aK >
> lx 6

+h % 6P6“> <6K 6P8“>

v’ H}

6K b 3K ¢ K
- =+ 2

(2.29)
6cx o Bk o 6x

Furthermore, if we take the scalar product in H}(Q) of (2.28) with

P . .
Py, x,% , We get a quasi-diagonal linear system
oL Ox

in a, b, ¢, whose coefficients are given by (2.22) and the right-hand side

by
_oP$
Cooron )~ (a5 =0
H
o 6P8“,> <_62P6“> _of 12l
A2 H} A2
o aPSH> <_f>21>8l > _
X =0
e ul (ol
=0<L2> and
H} A

The solution of this system then yields

_ |77|H6
a_0<)\'N—1dN—2)

respectively P9, |,

2P,
oz

0*P3, .
O\ Ox

since 2 X

=0(1).
H}

b=0(|17|H6) (2.30)
- mﬂb
C_0< 22 )
. 1
Using the fact that g (x)~ —— a5 4 (x,09Q) - 0 [R2], one sees

(2d(x, Q)N "2

1 _
that on .#, . we have PR =0(ed"™"), so that from (2.15), (2.16),

Annales de IInstitut Henri Poincaré - Analyse non linéaire
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(2.17) we get

JK
—=0(g?
oy CE)
6__K =0 (s@N-2N-2) AN?—2/(N=2) 4 (2 N+2)((N=2) (6 N=6)/(N~2)
oL (2.31)

+ 8(2 N+6)/(N-2) d(2 N-2)/(N-— 2))

aK 8(2 N+2)/(N-2)
— =0+
an 42 N=2)/N-2)

From (2.29), (2.30), (2.31) we conclude finally that

<6K 8v> — 0|7} 6(8(2(N 1)/(N=2) JON (N= 1)/(N-2)

4N+ 1))/(N 2) 6 N=1))/(N=2) 4 (2 (N+3))/(N=2) (2 (N—1))/(N— 2))] Q. 32)

In a similar way we find

=

=0 |j’ ;|H6 <8(2 (N=3))/(N=2) J(N=4) (N—1))/(N—2)

(2 (N=1))/(N=2) 7(2 (N=1))/(N—2) g2 N+ 1))/(N~2)
e 4 o ENN-D (2.33)

with (2.12) and (2. 13) giving us the estimate
|v]pg=0[e*d" "' +e? if N<6;

e2(1+|Loge[**d®) if N=6; e? if N>6] (2.34)
We are now able to estimate the derivatives of # on the boundary of

M, .. One sees easily using (2. 15) and (2.27) that for 4 sufficiently small,
and then ¢ sufficiently small, we have for all (p,k x)ely,

A

6_( 0c? ?»x)<0<—(682 A, X) (2.35)

for a good choice of 0, independent of d and e. Likewise, combining
(2.16), (2.27) with (2.32), (2.34) one gets under the same conditions

.a_{(p,_af(_x)_’x><0<a_1:<p’is;7(_x)_’x) (236)
oA 2en0 (%) A 200 (%)

Set Q;={xeQ|d(x,0Q)>d} and denote by n(x) the outward normal
vector at xe0Q, to the boundary of Q, One has the equivalence

N_
Q' (x)~ 2NTdi_ln(x) as d > 0 [R2], and 7 (x).n<0 for small enough d
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by the strong maximum principle (here f is assumed to be positive).
Combining then (2.17), (2.27) with (2.33), (2.34) we get, again with the
same conditions ond and €

Z—f(p,k,x).n(x)>0, V xe0Q, 2.37

At this point, we can deduce from the Ljusternik-Schnirelman theory that
A has at least as many critical points in .#, , as the category of .4, .

Now cat #,; ,=catQ, and catQ,;=catQ for d sufficiently small, Q being
smooth.

One proves as before that the corresponding solutions of (Q,) are strictly
positive. By construction, each of them concentrates at a point of Q as
€—>0, and (E) shows that these points are critical for the function

J(x)
9 ()

. This concludes the proof of the second part of Theorem 1.

Remark. — Combining the estimates that we obtain here with those in
[R1], we can prove considering the problem

—Au=|ulP lut+eutef onQ

u=0 on o0Q

the following results (assuming f'is sufficiently regular):

If N=4, 5, and if x,€Q, f(x0)>0, is a non-degenerate critical point of

the function x — J@) .
¢ ()2
If N=6, and if x,eQ, Fxo)>—1/2,is a non-degenerate critical point

F(x)+1/2
o (x)M*

If N> 6, and if x,€Q is a non-degenerate critical point of the function ¢

then there exists a family () of solutions to (R,) concentrating at x, as
e—0.

of the function x —

If =0, these solutions are strictly positive.

Finally, let us remark that for N=35, the same result holds if x, is a
non-degenerate critical point of 7, with f(x,)=0.
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APPENDIX

Proof of Proposition 1

H. Brézis and L. Nirenberg consider in [BN2] the problem
—Au=p(u+o@)’ onQ:
u=0 onQ
u=0 on 0Q

where p is a fixed real number, @ e H (Q), =0, and @ #0.

They prove the existence of p* <+ oo such that for all pe[0, u*] there
exists a smallest regular solution u(n) to the problem, whereas there is no
solution for pu>p*. This branch of solutions is obtained applying the
implicit function theorem starting from the point u(0)=0. Furthermore,
for pel0,p*[, the first eigenvalue of the linearized problem at u(u) is
positive, so that using the saddle lemma it is possible to prove the existence
of a second solution —also regular.

Now if we take fe H™* (Q), /=0, and if we define ¢ by

—Ap=f onQ
o=0 ondQ

we have: 0 e H} (Q2), ¢ >0, and ¢ #0— hence the existence of two solutions
to the problem
—Av=pv’+f on Q

v>0 onQ

v=0 on 0Q
where we set v=u+¢@, or, writing w=p'?~ V3 the existence of two
solutions to the problem

—Aw=wP+ p‘ll(zz—l)f onQ
w>0 onQ
w=0 on 0Q

for pel0, u*[. This is the announced result.
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