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Abstract—The context of our research works is the real-time
embedded systems domain. It is often difficult to test systems in
order to ensure an appropriate running. A simulator presents
the advantage that the detailed evolution of each component can
be followed. These simulators require a very long development
time. HARMLESS has been developed to automate this step. It is a
hardware description language (HADL), readable by a compiler
which allows the generation of a functional simulator (ISS) and
a temporal simulator (CAS). CAS are costful in execution time.
Several techniques exist in the literature to improve the speed of
temporal simulators. In this paper we explore a new approach:
the compiled simulation, which is used for functional simulators.

I. INTRODUCTION

Our works are in the field of real-time embedded systems.
Since this kind of systems becomes more and more employed
and complex, the guarantee of a correct running is an important
property. We need to validate the security (the system disallows
dangerous behaviours) of the system. Three different methods
exist to give these results: the model-checking in the first step
of the development, the simulation and series of tests in the
last step. These different methods give complementary results.
For example, the simulation allows to examine the evolution
of each component in an operating system, whereas it is a
difficult thing with series of tests in embedded systems. In
this paper, our approach focuses on simulation techniques.

Several kinds of simulators are in the literature, according
to the field studied, objectives followed or the abstraction
level required. For hardware simulation, the implementation
is complex, costful in time, and errors are difficult to avoid.
That is the reason why people would rather use simulator
generators. The construction of a simulator generator is based
on a Hardware Architecture Description Language (HADL).

We can make out functional simulators i.e. Instruction Set
Simulator (ISS), and temporal simulators i.e. Cycle Accurate
Simulator (CAS). The simulation of real-time systems needs
temporal informations, so we consider especially CAS. This
kind of simulators has the disadvantage to be costful in execu-
tion time. In this paper, we propose to explore a technique to
improve the speed of CAS: ComCAS, a compiled simulation
for CAS. Our works are in the context of simulation based
on the HARMLESS language, which implements an ISS and a
CAS with interpreted methods [1].

The paper is organized in seven parts: this introduction,
related works, the interpreted model, the compiled model,

valuation of the model size, performances and finally prospects
for future works.

II. RELATED WORKS

Several kinds of simulators based on HADL are in the
literature. For a simulation about the functional aspect, an
Instruction Set Simulator (ISS) is required (nML [2], ISDL
[3], HARMLESS [4] for example). It gives the instructions
behaviour, without considering the details of the microarchitec-
ture. If temporal informations are expected, a Cycle Accurate
Simulator (CAS) is required (LISA [5], MADL [6], HARM-
LESS [7] for example). In this case, the microarchitecture must
be modeled.

Compiled simulation, opposed to interpreted simulation,
is a general programming technique in order to speed the
execution of a simulator. It consists in moving certain tasks
from the execution to the compilation. In an interpreted sim-
ulator, these tasks are done during the execution and, in a
compiled simulator, they are done during the compilation. In
consequence, compiled simulation has shorter execution time
than interpreted simulation, but longer compilation time. Since
compilation is done less times than execution (classicaly, one
compilation for several executions), it could be a global gain
of time.

An ISS can be implemented like an interpreted simulator
or a compiled simulator [8]. In that case, the task moved from
the execution to the compilation is the analysis of the program
to simulate. In spite of having a faster simulator, this leads to
have a less flexible one: the compiled simulator is attached to
a particular program, and if a user wishes to simulate a new
one, he needs to compile again.

For ISS, compiled simulation uses Binary Translation (BT)
([9] or [10]). It consists of translating the binary program in
order to be executed on the simulator operating system.

In the context of real-time systems, CAS is more appropri-
ate, because it allows temporal considerations. Nevertheless,
the implementation is more complex and it is a costful ap-
proach, considering the execution time. Few methods exist to
lighten this execution time.

In the literature, we mainly find interpreted methods
(HARMLESS for example [7]). The technique of BT cannot
easily be adapted to CAS, but solutions exist [11], coupling
interpreted parts and translated parts. We also finds statistic
approaches, called Cycle Approximate Simulator, based on



the sampling of instructions [12]. However it is not exactly
equivalent with a CAS, because of margin of errors.

In the state of our knowledge, the technique of compiled
simulation has not yet been employed to speed CAS, because
of restrictions it implies: it is difficult to determine statically
the evolution of the microarchitecture, especially because of
indirect branches or self-modifying code. It is, however, the
main contribution of the paper.

III. INTERPRETED SIMULATION MODEL

The contribution of the compiled simulation must be as-
sessed in comparison with the interpreted approach associated.
In this section, we present the interpreted model of the HARM-
LESS-based simulator [1], who is the base of our ComCAS
model.

CAS are mainly implemented thanks to interpreted meth-
ods, it is based on the interpretation of the code during the
execution. The construction of a CAS includes the construction
of an ISS, in order to get functional aspects of the system.
The modelisation of an ISS requires the modelisation of the
instruction set and of the memory. We globally obtain the
development chain presented in figure 1.

The development of a CAS requires precedent elements
and the modelisation of the microarchitecture which has a
great influence on the temporal evolution of the system,
and especially the pipeline architecture who determines the
management of data hazards, structure hazards and control
hazards. In figure 2, we get the development chain of a CAS.
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Fig. 1. The development of an ISS requires the modelisation of the instruction
set and the memory
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Fig. 2. The development of a CAS requires the modelisation of the instruction
set, the memory and the microarchitecture

In [1], the authors use the model of finite automata, because
the system can be considered as a discrete transition one
(an evolution at each cycle). That is the definition on which
our contribution is based. A state represents the system in a
particular cycle. To determine it, we need informations on the
microarchitecture. This is given by:

• which instruction is in each stage of the pipeline

• and the state of internal resources.

Internal resources are elements of the microarchitecture,
whose availability allows or not the evolution of an instruction
in the pipeline. Stages of the pipeline are considered as internal
resources.

A transition represents a discrete event who brings the
system from a state to another. It is determined by the state
of external resources and the instruction who may enter in the
pipeline.

External resources are elements who are not in the mi-
croarchitecture, but whose avaibility has an influence on the
evolution of an instruction in the pipeline. It is the case of
memory for example. As they are external of our modelisation,
their avaibility is determined during the execution by the
intervention of external resources.

In order to lighten the model, the authors use instruction
classes (instructions with same behaviours) and not directly
instructions.

The content of states is abstracted, and informations re-
quired for the simulation are gathered on transitions. That is
why transitions are labeled with notifications (answering if a
particular event happens or not).

We can now formalize the model as it follows.

Let AI an automaton defined by {S, s0, ER, IC,N, T},
where:

• S is the set of states,

• s0 is the initial state (empty pipeline) in S,

• ER is the first alphabet of actions (external resources),

• IC is the second alphabet of actions (instructions
class),

• N is the alphabet of labels (notifications),

• T is the transition function in S×ER× IC×N ×S.
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Fig. 3. Automaton in interpreted simulation: 0:b(1) means that the external
resource is free (0), that the instruction b may enter in the pipeline and that
the notification happens (1)

In the example of figure 3, the notation [b_a_] represents
the state of the pipeline: it means that instruction b is in the
first stage and instruction a is in the third stage. There are no
others instructions.

We have only one notification who represents the entry of
an instruction in the second stage of the pipeline. There are one



external resource. The instruction b needs to take the external
resource to enter in the pipeline.

We note 01:a(10) a transition (in T) where 01 ∈ ER
means that the first external resource is taken (1) and the
second is free (0), a ∈ IC means that an instruction of class a
enters in the pipeline, 10 ∈ N means that the first notification
does not happen (0) and the second does (1).

The run of the automaton is done throught the intermediary
of external resources and the instruction class. It means that
the simulator computes the new state of external resources and
the new instruction class in order to fire a transition and to find
the new state in the automaton. Firing the transition, we get
the state of notifications. They give informations to the user
about the performing of the simulation. They are helpful to
compute the new state of external resources too.

IV. COMCAS MODEL

In this section, we adapt the interpreted model to be a
compiled one: the ComCAS model.

The compiled simulation is opposed to the interpreted
simulation according to the repartition of tasks between compi-
lation and execution. We recall that, in our case, the task is the
analysis of the program. An interpreted simulator analyzes the
program during the execution. A compiled simulator analyzes
the program during the compilation.

Because of this moving, the compiled simulation has a
faster execution than the interpreted simulation. However, the
compiled simulation has an heavier compilation time than the
interpreted simulation. This is not necessarily a problem: usu-
ally, the compilation is done only one time and the execution
several times.

A compiled simulation is compiled for a special architec-
ture and for a special program. Consequently, the simulator is
less flexible, attached to a particular program. If the need is to
simulate several programs, the interpreted simulation will be
more efficient. But if the need is to simulate only one program
with different scenarios, the compiled simulation will be more
efficient.

In the figure 2 and 4 we can see the difference between
the development chain of the interpreted simulation and the
compiled simulation (respectively). We notice especially that
for the interpreted simulation the program is at the end of
the development chain, at the beginning for the compiled
simulation.

To perform the interpreted model to a compiled model,
we need to add informations on the program reading in the
system, i.e. the PC and the memory of called function. Then,
the determination of our system is given by:

• which instruction is in each stage of the pipeline,

• the state of internal resources,

• the position in the program reading (the Program
Counter)

• and the memory of called functions (a stack of Pro-
gram Counter in order to return in previous functions).
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Fig. 4. The development of a compiled CAS requires to move the program
analysis in the compilation

With this model, instructions become labels on the au-
tomaton and no more actions. Indeed, we only determine the
evolution of the system with external resources and instructions
become an information we get of this run. We put on transi-
tions the instruction to execute, as an event. However, it cannot
be reduced to a simple notification (a boolean information), so
we add the Program Counter (PC) on the transition label.

We can formalize our ComCAS model as it follows.

Let AC an automaton defined by {S, s0, ER, I,N, T},
where:

• S is the set of states,

• s0 is the initial state (empty pipeline, initial PC, empty
stack) in S,

• ER is the alphabet of actions (external resources),

• I is an alphabet of labels (instructions),

• N is an other alphabet of labels (notifications),

• T is the transition function in S ×ER× I ×N × S.
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Fig. 5. Automaton in compiled simulation: 10:pc1(0) means that the first
external resource is free and the second taken (10), that the instruction with
PC pc1 enters in the pipeline and that the notification does not happen (0)

In the example of figure 5, we have only one notification
who represents the entry of an instruction in the second stage of
the pipeline. There are two external resources. The instruction
b, with PC pc2, needs to take the second external resource to
enter in the pipeline.

We note 10:pc1(0) a transition (in T) where 10 ∈ ER
means that the first external resource is free (0) and the second
taken (1), pc1 ∈ I means that the instruction with PC pc1



enters in the pipeline, 0 ∈ N means that the first notification
does not happen (0).

The management of branches uses a specific external re-
source. If this resource is taken, we consider the branch taken.
If it is not, we consider the branch is not taken. During the
simulation, we can detect jump in PC and define dynamically
the value of this resource. In order to represent the latency of
the branching, according to the branching policy, an other spe-
cific external resource could be employed and simulate control
hazards. If the microarchitecture uses branching predictor, the
simulator would emulate this branching predictor and define
dynamically the value of the correponding external resource.
While the resource is defined to be taken, the following
instruction could not enter in the pipeline.

An example is given in figure 6. The first external resource
represents the branch to pc3. If it is taken, then the model goes
to pc3, else it goes to the next PC pc1. The second resource
represents the branching latency. As long as it is taken, no
instruction cannot enter in the pipeline.
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Fig. 6. The second external resource specifies if the branch b is taken or
not. The first external resource specifies if the instruction e can enter or not
in the pipeline.

The compiled simulation needs to compute statically the
control flow of the program in order to model it during the
compilation. In the case of indirect branches or code self-
modifying, this computation is impossible unless we execute
the different scenarios of the program. That is the main
restriction of our model. Without the possibility to determine
statically the target of indirect branches, the solution is to
plan the different possibilities. Unfortunately, it leads to a
considerable increase of the size of the automaton.

Indirect branches are unavoidable if we want to model
functions calls, because of RETURN instructions. For this
specific problem, a PC stack is added in states. The stack
in states allows to memorise original PC when is executed
a CALL instruction. When a RETURN instruction is executed,
thanks to this stack, it is possible to determine the target PC
of the branch, during the compilation.

The processus is the following. When a CALL instruction
enters in the pipeline, we push the original PC in the stack
and we branch to the target PC. When a RETURN instruction
enters in the pipeline, we pop a PC from the stack and we
branch on it. An example is given in figure 7.

The main advantage of the compiled simulation is to make
possible the move of analysis functions in the compilation step.
For example, the interpreted method manages data hazards
during the execution, thanks to the intervention of an external

pipeline
PCcall
[]

pipeline
PCk

[PCcall]

pipeline
PCreturn
[pccall]

pipeline
PCcall+1

[]

Fig. 7. A CALL function push the original PC in the stack, and a RETURN
function pop the PC from the stack

resource. It is a task costful in time. In our model, we compute
statically the data dependency, verifying if instructions in the
critic section of the pipeline do not write in registers we want
to read. This technique solves data hazards directly during the
compilation.

V. VALUATION OF THE NUMBER OF STATES

In order to give an idea of the complexity of ComCAS
model, we propose to valuate the number of states.

A state is composed of the pipeline state, the PC read and
the stack of called functions. In a first step, we will consider
there are no stack in states, and we will add their consideration
in the last step. The global method consists in counting pipeline
states for a PC given. We find three different situations in the
control flow: linear configuration, beginning of the program
and branching configuration.

In a linear configuration, for a PC given, one past exists.
Consequently, the state of the pipeline is only determined by
stalls. The problem is reduced to a combinatory one: if s is the
number of stages, we count Ck

s (k among s) pipeline states
with k instructions inside (k ∈ [0; s]). Thus, the total number
of pipeline states is

∑s
k=0 C

k
s .

If the PC read is at the beginning of the program, pcn with
n < s, it is impossible to put more than n instructions in the
pipeline. So, in this case, the previous value is truncated to∑n

k=0 C
k
s . To simplify calculus, we use fs : n →

∑n
k=0 C

k
s .

And we know that fs(s) = 2s.

At this step of our computation, we can valuate the number
of states in a perfect linear program (with no branch). Let
i the number of instructions. The s first instructions are in
the second case (beginning of the program), and i − s others
instructions are in the first case (endless linear configuration).
It gives:

∑s−1
k=0 fs(k) + (i − s).2s. This value is a maximum

and it is reached if every pipeline states are explored. It is the
case if an external resource manages the entry of instructions
in the first stage, allowing all stalls arrangements.

To count pipeline states is more complex if we include
branches in the control flow. Let us consider the case in figure
8, with k < s. In this situation, if we put j instructions in the
pipeline with j ≤ k, the branching is not visible in the pipeline.
Thus, we remain in the same previous situation: Cj

s pipeline
states. But, if we put j instructions in the pipeline with j > k,
then for each stalls arrangement two pipeline states exist, with
the two different origins. So we count 2.Cj

s pipeline states. The
total number of pipeline states is

∑k
j=0 C

j
s +

∑s
j=k+1 2.C

j
s .

It is equivalent with 2s+1 − fs(k).

For one branching situation, we have k varying in [0; s−1].
Let b the number of branch targets. So the total number of
states becomes

∑s−1
k=0 fs(k) + (i − s − s.b).2s + b.(s.2s+1 −∑s−1

k=0 fs(k)). It is equivalent with:
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Fig. 8. A branch configuration in the control flow. If k < s then in PC pcn
the pipeline can remember two origins.

(1− b).

s−1∑
k=0

fs(k) + (i− (1− b).s).2s

The expression is valid if branch configuration is the same
we give in figure 8. It means two conditions:

• branch targets are separated by more than s instruc-
tions,

• no branch less than s instructions after a branch target.

In fact, we can confirm that the first condition does not degrade
our valuation. The second condition is more important and
avoid too small loops.

The analysis of our valuation reveals that the number of
states is linear with the number of instructions, and exponential
with the number of stages. We can compare the expression with
the number of states in interpreted simulation: (ic+1)s, which
is more exponential considering s.

In our valuation, we have not yet considered the use of PC
stack in states. We can see in figure 9 the effect on the control
flow of the add of PC stacks.
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Fig. 9. Stack consideration consists in an inline in the control flow. These
two automata are equivalent.

It can be regarded as inlining: functions are duplicated. If
we consider this new control flow, our reasoning is the same.
Let us call i′ the number of couple of instruction and PC stack,
and b′ the new number of branch targets. Thus, the number of
states becomes:

(1− b′).

s−1∑
k=0

fs(k) + (i′ − (1− b′).s).2s

The influence of this inlining is very dependent on the code.
For example, we observe that programs using floating numbers
increase significantly the size of the automaton, and make the
building of the model difficult.

VI. TESTS AND PERFORMANCES

In this section, we present experimental results about
performances of ComCAS model in comparison with the
interpreted simulation.

The architecture simulated in these tests is a PowerPC
(MPC 5516, a RISC architecture from Freescale). We simulate
benchmarks of Mälardalen [13]. Simulations are made with an
Intel Core i7 vpro computer. We execute 50 000 times each
program.

We give in figure 10 an illustration of the influence of the
inlining and the number of states. This allows to confirm that if
a function is called one time during the execution, PC stack has
no influence on the size of the model. We note that the number
of states is smaller than the valuation we give, because the
model does not explore every pipeline states. With particular
external resources (making every pipeline states possible) we
get the same result than our valuation. To allow a comparison,
with the same configuration the interpreted model gets 1 024
states. Smaller is the code, smaller is our model.

Program i b i’ b’ States
adpcm 2 243 79 3 308 79 75 588
bs 84 4 84 4 2 061
compress 867 40 1 027 43 24 586
cover 145 7 145 7 3 434
crc 322 11 584 19 13 022
duff 88 3 88 3 2 101
expint 185 8 185 8 4 544
fdct 692 3 692 3 14 638
fibcall 58 3 58 3 1 447
fir 144 5 144 5 3 398
insertsort 131 3 131 3 2 961
janne complex 76 6 76 6 1 974
jfdctint 551 4 551 4 11 605
lcdnum 74 4 74 4 1 768
matmult 203 7 274 8 6 844
ndes 1 009 31 1 377 47 32 976
ns 116 8 116 8 2 907
nsichneu 12 511 626 12 511 626 275 322
prime 147 8 268 9 6 706

Fig. 10. Influence of the inlining: i is the number of instructions, b the
number of branch targets, i’ the number of instructions with the inlining and
b’ the number of branch targets with the inlining

The figure 11 represents performances of ComCAS model
in comparison with the interpreted method for the execution
time. The compilation in the compiled approach is more com-
plex than the interpreted approach. It contains: construction



of the ISS, analysis of the program (thanks to the ISS),
construction of the model and final compilation.

As we said before, benefits in execution time is paid with
heavier compilation step. This drawback can be easily coun-
terbalanced if several execution are done for a compilation.
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Fig. 11. Comparison of execution time in s. Gray is for interpreted simulation
and black is for compiled simulation.

The main impact of our model comes from the possibil-
ity of managing during the compilation analysis tasks and
especially the data dependency control. In the interpreted
simulation, during the execution, the functionality tasked with
data dependency management, costs correctly 30% of the total
time, explaining the benefit we get.

VII. PROSPECTS

In this paper, we have discussed of the different techniques
to implement high speed Cycle Accurate Simulator. We study
the difference between interpreted simulation and compiled
simulation in the implementation of Instruction Set Simulator.
We develop a model to adapt this compiled approach to Cycle
Accurate Simulator: ComCAS. We study the theoritical size
of our model. Finally, we compare performances of our model
with the interpreted method associated.

It appears to bring efficiency because it allows the remove
of analysis tasks in the execution step. However, the technique
is limited by the use of indirect branches, else the size of
the automaton could increase considerably. Nevertheless, we
make possible to take in consideration CALL and RETURN
instructions, in order to simulate classical programs.

In the future, we propose to work on a Just In Time
Simulator, which could bring a solution to the problem of
indirect branches.

Then, we propose to improve the efficiency of the ComCAS
model thanks to the move in the compilation step of the fetch
cache management and thanks to a reduction of states, using
”macro-instructions”. In a compiled simulation it is possible
to consider gathering of instructions to reduce the automaton
and the execution time.
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