N

N

RT-MaG: an open-source SIMULINK Toolbox for
Real-Time Robotic Applications
Augustin Manecy, Nicolas Marchand, Stéphane Viollet

» To cite this version:

Augustin Manecy, Nicolas Marchand, Stéphane Viollet. RT-MaG: an open-source SIMULINK Toolbox
for Real-Time Robotic Applications. ROBIO 2014 - IEEE International Conference on Robotics and
Biomimetics, Dec 2014, Bali, Indonesia. hal-00943294

HAL Id: hal-00943294
https://hal.science/hal-00943294
Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00943294
https://hal.archives-ouvertes.fr

RT-MaG: an open-source SIMULINK Toolbox
for Linux-Based Real-Time Robotic Applications

Augustin Manecy!?, Nicolas Marchand? and Stéphane Viollet!

Abstract— The new open-source Matlab/Simulink toolbox
called RT-MaG presented here generates reliable standalone
robotic applications running on real-time embedded Linux
targets such as tiny Computers On Module (e.g., Gumstix
boards). This toolbox gives direct access from Simulink to
the main communication drivers classically used in robotics:
network interfaces (via UDP), asynchronous and synchronous
serial port interfaces (RS232, SPI), Pulse-width-modulation
(PWM), general purpose input-output (GPIO) and analog-to-
digital converters (ADCs). A Simulink model is automatically
converted into a standalone multi-task program, which guaran-
tees a repeatable execution time within each sampling time. The
toolbox includes efficient debug modes which detect problems
such as unsuitable configurations and hardware failure. The
main features of the toolbox and its structure are described
here. We also discuss the real-time performances and I/Os
delays and show that a control loop can be implemented at
frequencies of up to 1kHz. The tests performed show that RT-
MaG can be used to efficiently implement all the control laws
involved in stabilizing a quadrotor.

ACRONYMS

RT-MaG: Real-Time Marseille and Grenoble toolbox.
COM: Computer-On-Module.
RT: Real-Time.

I/Os: Inputs and Outputs.
RMS: Rate Monotonic Scheduler
PIL: Processor-In-the-Loop.

I. INTRODUCTION

Research in the field of robotics is constantly expanding
and the robotic market is booming. An increasingly large
number of robots are becoming available these days on
the market. However, most of these commercial robotic
platforms cannot be easily adapted or customized because
of the lack of open hardware and software. Researchers are
therefore often obliged to develop their own robots, their own
hardware and software as well as designing real-time appli-
cations, which have to be both light and powerful in terms of
the computational resources used. Some open projects such
as Arduino ([1]) require fewer language programming skills
than previously thanks to the existence of built-in libraries.
However, some minimum programming skills and hardware
know-how are still necessary. Several Simulink toolboxes

LAugustin Manecy and Stéphane Viollet are with Aix-
Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille
cedex 09, France, augustin.manecy@univ-amu. fr,

stephane.viollet@univ—amu.fr

2Augustin Manecy and Nicolas Marchand are with GIPSA-lab
laboratory , Control Systems Dept., SySCo team, CNRS-Univ. of
Grenoble, ENSE3 BP 46, 38402 St Martin d’Heres Cedex, France,
nicolas.marchand@gipsa-lab.fr

using Simulink Coder, such as the Real-Time Interface
(RTI) toolbox developed by dSPACE [2], have resulted in
highly reliable real-time (RT) applications. But the dSPACE
processor boards are too bulky to be suitable for embedded
robotic applications such as those required to develop micro-
aerial vehicles. The company Microchip® recently developed
a toolbox ([3]) which can be used to directly program
various dsPic chips via the Simulink environment. This tool
was previously used at our laboratory to program the dspic
embedded in a twin-engine aerial ([4]). Arduino was also
integrated into Simulink ([5]) so that applications could
be directly generated from a block diagram, and used for
example for electromyographic (EMG) processing purposes
and to actuate advanced hand prostheses ([6]). These tools
dramatically reduce the knowledge required about the hard-
ware, but these programming tools were intended only for
micro-controllers with very limited computational resources
(8 or 16 bits, fixed-point architecture, etc.). During last
years, a lot of robotic projects chose to use Computer-On-
Module (COM) which are powerful controllers able to run
embedded Operating System as Linux to manage the real-
time tasks. For example [7] addressed road following with a
quadrotor using an IGEP COM as main controller, [8] used a
Gumstix Overo COM for their palmed sized quadrotor, and
[9] used also a Gumstix COM to validate attitude tracking
algorithms of quadrotors. In addition Linux is witnessed of
a lot of collaborative projects, such as ROS ([10]), which
have greatly simplified the development of systems capable
of performing complex tasks in a wide range of robotic
platforms. However, ROS is mainly a middle-ware program
designed to simplify the interconnections involved in various
robotic applications and platforms (nodes) and does not
provide solutions for real-time tasks.

The aim of this paper is to present a new open-source
toolbox, which can be used to directly design Linux-based
real-time applications for Computer-On-Module (COM) us-
ing Matlab/Simulink software. RT-MaG (Real-Time Mar-
seille and Grenoble toolbox) looks like a classical Simulink
toolbox, in which several masked blocks give direct ac-
cess to the hardware resources of a Computer On Module
(COM). Via Matlab Simulink, RT-MaG provides a high-level
of abstraction user interface making it possible to design
robotic applications and giving access to classical robotic
communication interfaces, even when fairly little is known
about the hardware. Since the development time is thus
drastically reduced, users can focus on the algorithms and
the control systems (autopilots). This toolbox is therefore
particularly attractive for academic and applied research pur-

poses because it can be used to directly implement simulated
controllers on embedded targets.

This paper therefore focuses on the description of a new
open-source toolbox called RT-MaG ([11]). First, the moti-
vations and reasons for developing this toolbox are presented
in section II, and some of the main applications for which
RT-MaG is suitable are suggested. In section III, the main
features of the toolbox and how it can be used are described.
The section IV outlines the structural options available and
describes how the real-time application is mapped along
with the underlying Linux and hardware. Lastly, section V
presents the performances obtained with RT-MaG when it
was used to stabilize a quadrotor and confirm the reliability
of the generated applications under a heavy CPU load.

II. MOTIVATIONS
A. Objectives and motivations

Many powerful Linux-based processor boards are being
marketed these days which are ideal for embedded applica-
tions because of their low mass and small size. Although
Linux was not initially designed as a real-time operating
system, there now exist some distributions with useful real-
time possibilities. As Linux is an highly configurable open-
source operating system, it is an ideal candidate for robotic
projects. However, developing an efficient and reliable real-
time application in an embedded Linux system is still a
tricky task requiring a thorough knowledge of the real-time
mechanisms and methods of mapping the application to the
hardware.

The aim of the RT-MaG toolbox is therefore to provide
an efficient tool with which to automate the various steps
involved in the development. The RT-MaG device blocks for
Simulink provide a friendly user interface with a high level of
abstraction in order to facilitate customizing and configuring
the access to the various I/Os. The toolbox also provides
efficient debugging modes and feedback information about
the real-time performances, giving users several possible
metrics for optimizing their applications. This tool will also
make it possible to perform real-time monitoring via a
ground station and tune the parameters of the algorithms
in real time. In short, the main advantage of the RT-MaG
toolbox is that it drastically decreases the development time
and the code reuse (versatility).

B. Which Applications

The RT-MaG toolbox is suitable for robotic applications
involving the use of a Linux-based Computer-On-Module
(COM) such as the Gumstix board, the Beaglebone, the
Raspberrypi, the IGEP module, etc. This toolbox gives a
high level of integration of the classical I/Os used in robotics
in the Matlab/Simulink environment (a data flow graphical
programming language tool which can be used to model,
simulate and analyze multi-domain dynamic systems): it is
therefore an ideal tool for the fast prototyping of new control
algorithms. As the toolbox relies on an embedded real-time
Linux operating system, it is possible to achieve a maximum

sampling frequency of 1kHz for the main loop involved in
the program.

ITII. PRESENTATION OF THE TOOLBOX

A. Features

The RT-MaG toolbox automatically generates a standalone
real-time application for the embedded COM, based on a
Simulink model. The aim of the toolbox is to provide via
Simulink a high-abstraction tool with which users can focus
on the algorithms and control design and easily monitor
and tune the robotic application. RT-MaG toolbox is an
open-source software distributed under the GPLv3 license,
which is publicly available on the following website ([11]):
http://www.gipsa-lab.fr/projet/RT-MaG/.

1) Embedded and ground station nodes: The RT-MaG
toolbox was also designed to provide real-time monitoring
of the embedded application via a ground station. Figure 1
gives a classic scheme for the communications between the
embedded application and the ground station. The toolbox is
composed of two main parts:

o areal-time embedded application running a Simulink
model in real time on a Computer-On-Module (COM),

« a real-time host application running another Simulink
model in real time on a host computer (or a ground
station). On the one hand, the host computer sends
high level setpoints and parameters to the embedded
application. On the second hand, the host computer
monitors all the signals of interest to the user.

2) The Simulink blockset: This toolbox provides a new
Simulink blockset giving direct access to the peripherals
of the COM and configuring the 1I/Os with a high level
of abstraction. The peripherals classically used in robotics
are readily available and can be configured by specifying a
large number of parameters such as the number and type of
data to be transmitted or received, the sampling time, the
device to be mapped (e.g., /dev/ttyOx in the case of
a serial port). Depending on the device, various protocols
can be configured. For example, each RS232 stream can be
preceded by a header byte allowing to detect the beginning
of a stream in case data loss. As another example, the clock
polarity and the clock phase of a SPI device can be adjusted.
Information about each block, its associated parameters and
how to use it are available on the website [11]. Figure 2
gives an example of a classic COM simulink model using
all the blocks provided by the toolbox.

RT-MaG toolbox provides also different debugging tools.
For example, before generating a Simulink model, RT-MaG
checks the configuration you chose for each device and
eventually reports errors (e.g, two blocks use the same
resource but with two incompatible configurations, etc.) You
can also activate some timing debugging options to determine
the exact execution time taken to perform the different parts
of the program. i.e, the time spent to read and write each
I/0 and the execution time corresponding to each task (a
task gathers all the Simulink blocks having the same sample
time). Finally, a verbose mode is available and details the

e N

Q

Fig. 1.

E' . Gumstix COM i.‘l.inuzl'(Ground Station ‘E
L Embedded Linux 3.5.0 e Console Application 5
| &G : — f‘-.)) ((M root@gumstix:~$:
| o wiFt| Task IWIFI E
E P monitoring i
: ’ SSH SSH :
: - High level i ‘
: Serial Real-Time Application:) Quarc Real-Time ;
Vv PP r9) SefPolits, Gy Windows Target |
: SPI Embedded WIFI e WIFI|[. [setPomsrnny|
: : = :
LV COM Model Estimates, Of ||
; \/W SIMULINK ® upp |control inputs...| UDP e - VMonitoring i
ADC RT-MaG =5 g s 5
; Lo Application Seriall 050" Y2lUeS Serial $ n] :
i \/V\\, \/\/\\,<Control ipputs \/\/\\, d =z i

a) A classic communication scheme including the RT-MaG toolbox. The embedded Simulink model working in real-time on the Computer-On-

Module uses directly the various I/Os. The embedded application can be linked to a ground station via a wifi connection in order to tune the embedded
controllers or exchange data in real-time. A Processor-In-the-Loop mode is available if the COM is linked via a RS232 connection to a ground station
simulating the behavior of a robot. Users can start or stop the real-time application wirelessly (via a console) and receive contiuously useful information
about the embedded application (the CPU load, task execution time, the occurrence of overruns, etc.

eventual I/O errors thanks to explicit error messages (Re-
source temporally unavailable, destination unreachable, etc.)
Theses information can be directly printed to the console or
logged to a file to not disturb the real time execution.

In addition, RT-MaG provides a general configuration
block which can be used to specify the behaviour of your
real time application. You can choose the scheduler to use,
the priority of the main task and the timing mode, i.e. the
mechanism used to cadence your application (I/O interrupts,
or an internal clock). All these parameters can be configured
via a masked Simulink configuration block (figure 2). More
information about each block and how to use it can be found
at [11].

In short, the RT-MAG toolbox make it possible to:

o Automatically generate a multi-rate application from a
Simulink model to a real-time embedded Linux envi-
ronment,

« Render new developments really easy, fast and bug free,

e Develop the embedded application directly in 32-bit
floating points (most COMs work with FPU),

o Obtain access directly to the I/Os via a high level of
abstraction GUI (Graphical User Interface), configure
the protocol required to use and control the access
method (blocking read/send or not),

o Validate the solution developed step by step via an
intermediate Processor-In-the-Loop (PIL) mode,

o Monitor, log and plot the data sent by the COM in real
time via a Serial or a Wifi connection,

o Design applications which are fully compatible with
all Simulink blocks (embedded matlab functions, s-
functions, matlab data-structure, etc.),

o Send high level setpoints in real time to the controllers
embedded on the COM,

o Tune in the flight controller’s gains and parameters via
the Simulink host computer,

Model's Inputs

P

single 50}

The Simulink Program Model's Outputs

(N ///

outto_uop 2P KO TEsend(100: foats2)

o2 1 ToLog(4 floa2)

Ot L0G

\from_UDP.

SERVO Hode PWI
nputin orih

e ofus))
WIS Refres rate = 333 3033 |

| Pwni_to et Frequancy = 33312

Qo ra_ PVt

Emission

4
1 v -
P e R - Configuration Panel
/, $ A\ N\ (Time scheduler, Debug
VeRBOSE Time Scheduler options,etc.)

Fig. 2. Overview of the RT-MaG blockset. This example is composed
of one wifi connexion (reception and emission), two serial ports (reception
and emission), one SPI bus (reception and emission), one output to a log
file, and two PWM outputs. The Simulink program is encapsulated in a
sub-system block and all the configuration options are set via a specific
block.

o Start and stop the application at any time (via WIFI),

o Continuously monitor the CPU load, signal any over-
runs and specify the execution time of each task,

o Have access to several “debug modes™: the detailed
execution time corresponding to each task, the I/O
access time, and clearly perceptible warnings about I/O
errors,

o Test programs in both Processor-In-the-Loop (PIL) and
RunTime modes.

B. Requirements

1) Development machine: The RT-MaG toolbox requires
to work properly several software on the host computer and
specific Matlab toolboxes as follows:

 Visual Studio: to compile real-time applications for the
host computer,

« Matlab Embedded Coder: to generate the C-Code of the
embedded application and the host application,

e QuaRC (Quanser [12]) or Real-Time Windows Target
(MathWorks): to execute the host application in real
time.

The embedded Linux used for the COM requires:

o the Patch PREEMPT-RT to enable the kernel to execute

real-time applications,

e the gcc and g++ compilers to compile the C-Code

generated by the toolbox,

« some libraries and tools to compile the applications (see

our website [11] for more information).

2) Supported Computer-On-Module: The toolbox was
designed to work with many different COMs. This means
that each COM which features a Linux kernel with the
PREEMPT-RT patch and is equipped with a gcc compiler
can be used with the toolbox. Some peripherals which
are natively supported by Linux are available for use as
network interfaces and serial interfaces (serial port, SPI,
12C). Additional peripherals can also be used if the specific
Linux drivers required are available.

For example, the small (58mm x 17mm x 4.2mm), light
(12.3g with the Pinto-TH breakout board) Gumstix Overo
and Verdex XL6P COM boards are fully supported by the
RT-MaG toolbox. Their custom Linux Images are available
with the toolbox (see the RT-MaG website [11]). The fol-
lowing peripherals (device block drivers) are either already
available or will soon be available:

e up to 3 simultaneous serial port connection (maximum

baud rate of 3,686,400 bits/s),

e UDP connections (wifi connections and/or wired con-

nections),

e up to 4 PWM Output signals (with a maximum clock

frequency of 4MHz), ONLY for Gumstix Overo,

« file logging (to save data in a file),

o SPI bus (master only with a maximum clock frequency

of 24MHz),

e up to 3 I2C bus (master only),

¢ GPIO (work in progress),

o ADC input (work in progress).

In this paper, we present the results obtained with a
Gumstix target, but any Linux computer-on-module (COM)
with a PREEMPT-RT patch and a gcc compiler can be used
with the RT-MaG toolbox.

IV. TECHNICAL CONSIDERATIONS

In this part, we described how the toolbox can be used
to convert a Simulink model into a real-time standalone
application. The various steps in generating the C-Code are
described, we explain how the real-time tasks are mapped

to the underlying Linux, we describe the mechanisms used
to synchronize the various tasks and how the application is
interfaced to the hardware devices.

A. Generation work-flow

([_HOST COMPUTER °
N HOST Model COM Model
SIMULINK ® SIMULINK ®
" RT-MaG
Quarc: | |Gy gt
o
£ Embedded C-Code
o § Coder™ Generation
£¢C
= 0
'_l_ = RT-MaG & Encapsulatiol
S od Coder o/ (for Real-Time execution
z 2
=
c
3 — FTP server
N a :)
&\ Wifi L R
f = . . . \
Real-Time Application
compilation
COM Embedded gee
o B COM Model
£ = SIMULINK * Linux Kernel
RT-MaG "\ RT-MaG
Application = I/0s [mage
-
Fig. 3. The work-flow of the RT-MaG toolbox. The Simulink model was

designed using classical Simulink blocks to design the algorithms and the
RT-MaG block library to access the various 1/0s. The C-Code corresponding
to the Simulink model is then generated using Mathworks” Embedded Coder.
The RT-MaG toolbox encapsulates the C-Code of the Embedded Coder in
a C container so that a RMS can be applied to the various tasks and the
functions generated can be mapped to the various I/Os. The final C-Code
is then downloaded onto the COM and compiled automatically. Lastly, the
RT-MaG embedded Simulink model is executed in real time on the COM:
it can be monitored via a Simulink model running on the Host computer
sending parameters in real time to the embedded COM model.

Figure 3 shows the various in order steps performed by the
toolbox to obtain a real-time application from the Simulink
model.

1) The Simulink model for the COM can be designed
classically, except that the I/Os blocks have to be
obtained from the new RT-MaG library. The building
sequence can then be run.

2) Mathworks’ Embedded Coder generates the C-files
(.c and .h) describing a set of functions correspond-
ing to the computation described by the block diagram.

3) The RT-MaG coder generates amain . c file in order to
create the standalone application. The main. c file sets
up the different tasks and describes all the behavior of
the application. i.e., it defines the priority of the tasks,
calls them up at the specified sampling time, gives
access to the underlying hardware (I/Os), manages
the communication with the remote ground station
and enables the debugging modes (file logging, time

logging, etc.)

To achieve these goals, the toolbox uses a set of C-
templates we developed, which are customized at each
generation in order to fit the current configuration.

4) The COM downloads an archive of the full project
from the host computer and build it using gcc. The
choice of building the final application in the embed-
ded device is discussed in section IV-B.

B. Toolbox design and structural choices

1) The I/O blocks: In this part, we explain how the
various devices available are managed and mapped with the
underlying Linux and hardware.

With the RT-MaG I/O blocks, the access to the underlying
hardware of the COM can be easily done via Simulink, and
the parameters of the device can be easily specified. You can
choose the number and the type of data to be read or written,
and the refresh sampling time. You can also decide whether
the read/write operations are blocking operations (you can
even coose a blocking timout). An I/O can also be used to
cadence the main task by associating a Linux signal with it
(SIGIO), which can be catch asynchronously (see subsection
IV-C).

As classically done on the Linux systems, the RT-MaG
I/O blocks give access to the 1/Os from the user space via
the filesystem nodes (/dev/x). The real interactions with
the hardware are managed by the kernel drivers and mod-
ules from the kernel space. The latest Linux systems often
include classical devices such as Serial port /dev/ttyOx,
12C /dev/i2c—-x and SPI /dev/spidevl.x. Moreover,
additional I/Os can be added, such as a PWM managed
by a custom kernel module. In the case of the Gumstix
Overo COM, we used a custom kernel module designed for
OMAP3 based Linux systems to generate PWM using the
corresponding /dev/pwmx device.

The RT-MaG toolbox also includes a C-library for each
device, which makes it possible to perform specific read
and write operations via the filesystem nodes. The main.c
generated by the toolbox just calls these libraries to access
to the I/Os. These libraries provide means of properly
initializing and ending the devices, and formatting the data so
that it can be transmitted from the application to the device
interface (in the corresponding filesystem node /dev/x).
Each library device provided by RT-MaG toolbox features
at least one initializing function, a terminating function and
other functions for reading and writing the device with
various kinds of data and operations (blocking, non blocking,
etc.).

2) Versatility: The RT-MaG toolbox was designed to
simplify the addition of other devices. The toolbox is fully
open-source, and we have worked hard to provide complete
instructions for its use for both simple users and developers.
The versatility of the RT-MaG toolbox was achieved thanks
to the following two principles:

« The toolbox provides developer tools (a set of Matlab

functions) with which the main.c file can be auto-
matically generated. As described by figure 4, these

functions are used to automatically construct the main
file by inserting lines into a skeleton (i.e., a template
with spaces to be filled) to call up the various libraries.
The whole procedure was designed to simplify the
inclusion of new devices in the toolbox, and a procedure
describing how to add a new device can be found on
the website [11]. In other words, the toolbox provides
tools for developers which simplify the updating and
the customizing of the toolbox.

o The toolbox generates archives with all the sources (C-
files and make files) required to build the application,
based on the use of standard Linux libraries. The
toolbox provides also a set of script to automatically
download, build and run a Simulink model on the COM.
Since the application is compiled on the embedded
target, the same archive can be used with several targets
without having to change anything in the Simulink
model. This point is discussed in the following part.

1/0s
Libraries

main.c

[*** Initialize 1/0s ****/

[**** Initialize Model ****/

fo

Il Creation of thread
/I Redirection of SIGIO to Task_Rate0()

uibrary_t2c.c

while(!Stop){ NG .
DisplayTask(); //1 Hz (CPU load) ?.2;.'92?2(330-
} |t read_12C();
write_[2C();

[*** terminate Model ****/ _—
["** Close /0s **| <— [
}

Task_Rate0() { -~

I Wake up subtasks

/**** Read I/Os ****/

[**** Step Model ****/
[*** Write 1/0s ****/
I/l Overrun Rate0 check

Embedded Coder

/ Files
Ch ey

/

}

Task_RateN() { f'
e TR ()
[**** Step Model ****/

[**** Write 1/0Os ****/
I/l Overrun RateN check

l i ModelName.c|
‘ Model_init();
‘Model_term(); :
Model_step0(); | !

} Model_stepN();

Fig. 4. The skeleton of the main.c file used is filled automatically by the
toolbox to access to the different I/O as described by the RT-MaG Simulink
blocks. The access to the different devices is managed through open-source
C-libraries developed during the project.

3) Building tree: The idea of compiling the final applica-
tion on the embedded device reflects our philosophy about
the portability of the project and its user-friendliness. Com-
piling the source code on the COM ensures that the standard
Linux libraries are those of the current Linux distribution
which are fully compatible with the hardware. Although
this requires having a gcc compiler in the embedded Linux,
which greatly improves the portability of the solution. There
is therefore no need to install a cross-compiler on the
development machine, and a generated model can be used
in a wide range of different COMs. Model can be compiled
really fast, even on a embedded target (few seconds in the

case of the complete quadrotor autopilot described in section
V).

In short, any device including a Linux distribution with
Real-Time abilities (PREEMPT-RT patched) can be used
to run an RT-MaG model if it includes an embedded gcc
compiler. The distribution obviously needs suitable drivers or
kernel modules for dealing with the I/Os used in the model.
But the classical I/O are often supported by default (RS232,
UDP, SPI, 120).

C. Real-Time Application design

In this part, we describe the mechanisms used to apply
RMS (Rate-Monotonic-Scheduling) and meet the Real-Time
requirements.

Figure 5 gives a scheme showing how the application
is organized. To achieve optimal performances, we decided
to decompose the application into constituent tasks. A task
corresponds here to one of the sampling times in the
Simulink model, i.e., there is as many tasks as sampling
times. Each task is executed by a specific thread, which
reads the inputs corresponding to this sampling time, steps
the model (i.e., makes the computation corresponding to one
step in this sampling time), writes the outputs and checks
that no overruns have occurred. The priority of the various
tasks is automatically managed based on the threads’ priority,
which decreases with the sampling time. All the threads are
synchronized by the main thread, which simply corresponds
to the model’s basic sampling time. This main thread is
activated at regular intervals thanks to an interval timer
(based on CLOCKMONOTONIC), which delivers SIGALRM .
The performances (time lags, etc.) of the interval timers and
the asynchronous I/Os are discussed in section V. The main
thread sends a real-time signal to all the sub-tasks which
have to be run (with the corresponding priority, i.e.: the
signal SIGRTMIN+n is send to the sub-task n). The scheduler
policy can be tune by the user and can be that of the real-time
SCHED_FIFO or SCHED_RR scheduler, which ensures with the
PREEMPT-RT patch that the thread with the highest priority
is run as soon as it occurs.

V. EXAMPLES AND PERFORMANCES

Here we present the real-time performances of two appli-
cations designed with RT-MaG toolbox, using two different
timing modes (timer interrupt and I/Os interrupt).

A. Quadrotor autopilot

The first application implements a quadrotor autopilot
which was running on a Gumstix Overo AIRSTORM (see
figure 6). This powerful COM features a 1GHz 32bits ARM-
Cortex-A8 with 512MB of NAND memory. The Gumstix
runs a custom-made 3.5.0 Linux patched with PREEMPT-
RT, and executes RT-MAG models (the custom-made Linux
image is available on the website [11]). The autopilot makes
the robots track 3-D trajectories in a Flying Arena which
locates the robot accurately in 3D. The Gumstix controller
(the high-level controller) receives inertial measurements
from an 8-bit Arduino low-level controller via an RS232

[USER SPACE)

 MAIN THREAD

MAX_PRIO
Application Scheduler:
(" THREAD N+1) Signal handler
MAX_PRIO-(N+1) [POSIX Timer]ore@xsynchronous I/O]
Display Task \ /

SIGALRM / SIGIO

Task_Rate0()
Period: Ts[0]

1: READ Input(s)

2: Wake Up subtask
3: Model_Step0()

Period: 1 sec

1: Compute CPU load
2: Display CPU load

3 Sleep 1 second

SIGRTMAX
4: WRITE Output(s)
7—4 Ry
SIGRTMIN+1 SIGRTMIN+2‘/ SIGRTMIN+N

THREAD 1 THREAD 2 THREAD N
MAX_PRIO-1 MAX_PRIO-2 MAX_PRIO-N

Task_Rate1() Task_Rate2() Task_Rate1()

Period: Ts[1] Period: Ts[2] Period: Ts[1]

1: READ Input(s) 1: READ Input(s) 1: READ Input(s)

2: Model_Step1() 2: Model_Step2() 2: Model_Step1()
3: WRITE Output(s) 3: WRITE Output(s) 3: WRITE Output(s)

70 files N

> :| /dev/spidev1.x /dev/i2c-x /dev/ttyOx e TN
4

KERNEL SPACI%
HARDWARE]

Fig. 5. Description of the mapping of the toolbox with the underlying
hardware and the real-time Linux. The application is subdivided into tasks
corresponding to specific sampling times, which are executed by specific
threads. The base rate and the RMS (Rate Monotonic Scheduling) are
applied by timer interrupts implemented with POSIX interval timer or I/O
interrupts. The various tasks are then synchronized by the main thread,
which runs the fastest task and activates the other tasks using real-time
POSIX signals. The real-time management of the I/Os depends on the
standard Linux driver and some specific kernel modules managing specific
1/Os, such as PWM.

Gumstix COM

Fig. 6. The 307-gram X4-MaG quadrotor, developed at the Marseille and
Grenoble laboratories. The robot weighs only about 307g, and its full span
is about 30cm. The maximum complete flight duration is about 10 to 12
minutes without any extra load, and the maximum payload is about 70g. The
main controller used here is the Linux-based Gumstix Overo AIRSTORM
Computer-On-Module, which runs only RT-MaG programs.

link (at 115200 Baud). The 3-D positions of the robot are
sent to the Gumstix via a WIFI interface at a frequency of
100Hz, and the Gumstix sends these data and the control

commands back to the ground station. The robot runs the
Simulink model described in the figure 7 in real time. All
the computations are performed onboard, i.e., the position
control loop operates at 100Hz and the attitude control loop
operates at 400Hz.

In this case, the Gumstix application is cadenced by I/O
interrupts, i.e., the Gumstix performs one step whenever it
receives a RS232 stream from the low-level controller. This
simple mechanism makes it possible to simply synchronize
the two operating controllers (the low-level 8-bit Arduino
micro-controller and the high-level Gumstix COM).

The table I gives the real-time performances of the au-
topilot with the two sampling times tested during a 5-minute
quadrotor flight. As it can be seen, the synchronization
between the two control boards using the RS232 interrupts
is well performed and the timing is quiet accurate. The
CPU load appears to be relatively high (80%) because the
blocking reception was activated on the RS232 port. Since
the baudrate is only 115200, the reception takes around
1500us. The same application without the synchronization
option and the RS232 blocking reception (i.e., cadenced by
timer interrupts) uses only 22% of CPU.

Task 0 Task 1

Ideal Sampling Time [us] 2500 10000

Mean Period [us] 2497.8 10024.3
Overruns / Nb ticks 2 /119999 0 /30000
Min execution time [us] 1038.0 366.0 [us]
Max execution time [us] 2655.0 [us] 1159.0 [us]
Mean execution time [us] 1787.1 [us] 417.3 [us]

Mean CPU load 80 %
TABLE I

REAL-TIME ACCURACY OF A 2-RATE APPLICATION IMPLEMENTING THE
X4-MAG AUTOPILOT.

B. Performances with a heavy CPU load

Here we just tested the toolbox for a more complex
application featuring four different sampling times and a lot
of I/Os with a light CPU load (figure 8) and an heavy CPU
load (table II). The CPU load was obtained by using long
”for” loops in each task. This application implement various
I/Os of the RT-MaG toolbox: the wifi exchange with the
ground station more than 100 float at 1kHz, the serial port 1
and 3 were used to exchange 5 float at 500Hz, 2 PWM were
generated and updated at 333Hz, a SPI bus of the Gumstix
was jumped on itself to send and receive 5 16-bit integers at
a frequency of 200Hz and a I12C bus was used to exchange
5 8-bit integers with an Arduino (NanoWii) at 200Hz.

Figure 8 shows the evolution of sampling times measured
in each task versus the time. It can be seen that the real-
time requirements were accurately met because the mean
sampling time differed by only 0.01% from the target sam-
pling time. Any overruns occurred during the test and the
standard deviation for sampling time are the same than the
ones obtained with the benchmark program “Cyclictest”.

Table II shows the timing of each task for the same
application but with a 90% CPU load. There were very few

Real-Time scheduler

1

=
.]
oy 2l \ 9@ [
AR \ .
. o
From ground station e ! ground station
) ()\

] in_tom_u0e Qut_to_UoP |——H| Tosend(67: foat32)

n
\ in_from_UDP. /

N

outo_RS2%2

GUMISTIX

To NanoWii
(B —>—]
Position controller s

oy —) > oG
s e —>—» |

e ey p
=

E CTL_monitor
[o mm——

&

br < e]

Attitude controller

Fig. 7. The Simulink model for the Gumstix auto-pilot performing attitude
estimation, attitude stabilization and position tracking. The I/Os of the
Gumstix are directly addressed via the RT-MaG toolbox. Here, the auto-
pilot receives high level setpoints, the Vicon measurements and several
parameters sent by the ground station via wifi at 100Hz and IMU data
from the NanoWii at 400Hz. The Gumstix sends the motor commands to
the Nanowii and provides the ground station with the estimated data, the
control input signals, etc.

overruns, even with a heavy CPU load (less than 0.03% for
task 3 and 0.01% for task 1), which shows that the priority of
the tasks was taken into account. The I/Os were appropriately
updated and are reliable for robotic control applications.

Task 0 Task 1 Task 2 Task 3
Ideal Sampling 1000 2000 3000 5000
Time [ps]
Mean Period [us] 999.9 2000.4 2999.7 5013.8
Overruns/Nb ticks 0/300000 | 13/149977 | 0/99999 | 14/59832
Mean execution 479 74.5 489.8 3303.2
time [us]
Max execution 458 3631 702 5462
time [us]
Min execution time 10 30 427 2014
[ps]
Mean CPU load 90 %

TABLE 11

DETAILS OF TASK TIMING OF A 4-RATE APPLICATION INCLUDING WIFI,
RS232, 12C, SPI AND PWM.

C. Discussion

The RT-MaG toolbox was found here to be an efficient
and reliable means of generating real-time applications with
a high level of abstraction. It drastically reduces the develop-

6000 a)

o
1=}
S
S

Ty = 4999.999 [u15]

IS
S
S
S
T
I

T5 = 3000.002 18]

N
=3
S
S

T, = 1999.999 [us]

Measured Sampling Time [ps]
@
o
o
S

1000

I I I I
0 50 100 150 200 250 300

— Time [s]
o o7, = 181.215 [us]]
g* &1, = 120.775 [us]]
<
2 o7, = 146.497 [us] 4
=}
= | i
£ /}}\
2 i
=
Z 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [ps]
Fig. 8. a) The measured sampling time of the different tasks over the

time. The sampling time is well respected by the embedded Linux and
the maximum delay measured is about 400 [ps]. The mean sampling time
is really accurate as it differs only of 0.1% with respect to the targeted
sampling time. b) The distribution of measured sampling time. The standard
deviation is relatively small allowing to reach good timing performances up
to 1kHz.

ment time and therefore leaves developers much more time
for developing the algorithms. However, with the Simulink
embedded coder automatically generating the C-Code, it is
difficult to optimize and control the code generated. But the
RT-MaG toolbox was designed to provide a fast prototyping
tool rather than an optimization algorithm tool. And the
toolbox includes many debugging and monitoring tools,
which can be used to accurately quantify the time taken
to perform each task. Theses tools provide developers with
useful metric options for developing optimized algorithms.

VI. CONCLUSIONS

The new open-source Simulink toolbox presented here
can be used to automatically generate real-time applications
for embedded targets. This tool can also be used to test
control algorithms in both simulated and real hardware. We
established that the RT-MaG toolbox makes it possible to

directly run a Simulink model on a robot, and thus provides
roboticists with a whole range of new experimental possibil-
ities. The real-time performances of both the application and
the I/0Os were tested and found to be highly reliable.

This RT-MaG toolbox was successfully used to completely
stabilize a quadrotor and to control its position.

ACKNOWLEDGMENT

The authors would like to thank M. Boyron and J. Diperi
for their great work on the quadrotor, as well as B. Boisseau,
F. Expert, F. Colonnier, J.Dumon and J. Minet for fruitful
discussions about the toolbox. This work was supported by
CNRS, Aix-Marseille University, the Provence-Alpes-Cote
d’Azur region and the French National Research Agency
(ANR) with the EVA, IRIS and Equipex/Robotex projects
(EVA and IRIS projects under ANR grants ANR608-CORD-
007-04 and ANR-12-INSE- 0009, respectively).

REFERENCES

[1] “Arduino.” [Online]. Available: http://www.arduino.cc/

[2] “Real-Time Interface® (RTD).” [Online]. Available:

http://www.dspace.com/en/inc/home/products/sw/impsw/realtimeinterf.cfm

[3] “MPLAB 16-Bit Device Blocks for Simulink,” Jan. 2014. [Online].
Available: www.microchip.com/SimulinkBlocks

[4] L. Kerhuel, S. Viollet, and N. Franceschini, “Steering by Gazing:
An Efficient Biomimetic Control Strategy for Visually Guided Micro
Aerial Vehicles,” Robotics, IEEE Transactions on, vol. 26, no. 2, pp.
307 -319, april 2010.

[5] “Arduino Target (AT) for Simulink.” [Online]. Available:
http://www.mathworks.fr/hardware-support/arduino-simulink.html

[6] A. Attenberger and K. Buchenrieder, “An Arduino-Simulink-Control
System for Modern Hand Protheses,” in Artificial Intelligence and
Soft Computing, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2014, vol. 8468, pp. 433-444.

[7]1 L. Carrillo, G. Flores, G. Sanahuja, and R. Lozano, “Quad-rotor
switching control: An application for the task of path following,” in
American Control Conference (ACC), 2012, June 2012, pp. 4637—
4642.

[8] C. Lehnert and P. Corke, “p AV - Design and Implementation of an
Open Source Micro Quadrotor,” A. C. on Robotics and Automation,
Eds., Dec 2013.

[9]1 T. Lee, “Robust adaptive geometric tracking controls on SO (3) with
an application to the attitude dynamics of a quadrotor UAV,” arXiv
preprint arXiv:1108.6031, 2011.

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009.

[11] “RT-MaG Project,” Jan. 2014. [Online]. Available: http://www.gipsa-
lab.fr/projet/RT-MaG/

[12] “QUARC® Real-Time Control Software.”
http://www.quanser.com/Products/quarc

[Online]. Available:

