Sharp low frequency resolvent estimates on asymptotically conical manifolds - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2015

Sharp low frequency resolvent estimates on asymptotically conical manifolds

Résumé

On a class of asymptotically conical manifolds, we prove two types of low frequency estimates for the resolvent of the Laplace-Beltrami operator. The first result is a uniform $ L^2 \rightarrow L^2 $ bound for $ \scal{r}^{-1} (- \Delta_G - z)^{-1} \scal{r}^{-1} $ when $ \mbox{Re}(z) $ is small, with the optimal weight $ \scal{r}^{-1} $. The second one is about powers of the resolvent. For any integer $N$, we prove uniform $ L^2 \rightarrow L^2 $ bounds for $ \scal{\epsilon r}^{-N} (-\epsilon^{-2} \Delta_G - Z)^{-N} \scal{\epsilon r}^{-N} $ when $ \mbox{Re}(Z) $ belongs to a compact subset of $ (0,+\infty) $ and $ 0 < \epsilon \ll 1 $. These results are obtained by proving similar estimates on a pure cone with a long range perturbation of the metric at infinity.
Fichier principal
Vignette du fichier
conical-resolvent.pdf (385.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00943287 , version 1 (07-02-2014)

Identifiants

  • HAL Id : hal-00943287 , version 1

Citer

Jean-Marc Bouclet, Julien Royer. Sharp low frequency resolvent estimates on asymptotically conical manifolds. Communications in Mathematical Physics, 2015, 335 (2). ⟨hal-00943287⟩
226 Consultations
159 Téléchargements

Partager

More