
HAL Id: hal-00943279
https://hal.science/hal-00943279v1

Submitted on 7 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determination of subject-specific muscle fatigue rates
under static fatiguing operations

Liang Ma, Wei Zhang, Bo Hu, Damien Chablat, Fouad Bennis, François
Guillaume

To cite this version:
Liang Ma, Wei Zhang, Bo Hu, Damien Chablat, Fouad Bennis, et al.. Determination of subject-specific
muscle fatigue rates under static fatiguing operations. Ergonomics, 2013, 56 (12), pp.1889-1900. �hal-
00943279�

https://hal.science/hal-00943279v1
https://hal.archives-ouvertes.fr


Determination of subject-specific muscle fatigue rates under

static fatiguing operations

Liang MAa,∗, Wei ZHANGa, Bo HUa, Damien CHABLATb, Fouad BENNISb,c,

François GUILLAUMEd

aDepartment of Industrial Engineering, Tsinghua University, 100084, Beijing, P.R.China
b Institut de Recherche en Communications et en Cybernétique de Nantes, UMR 6597
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Abstract

Cumulative local muscle fatigue may lead to potential musculoskeletal disorder

(MSD) risks , and subject-specific muscle fatigability needs to be considered to

reduce potential MSD risks. This study was conducted to determine local muscle

fatigue rate at shoulder joint level based on an exponential function derived from

a muscle fatigue model. Forty male subjects participated in a fatiguing operation

under a static posture with a range of relative force levels (14% - 33%). Remaining

maximum muscle strengths were measured after different fatiguing sessions. The

time course of strength decline was fitted to the exponential function. Subject-

specific fatigue rates of shoulder joint moment strength were determined. Good

correspondence (R2 > 0.8) was found in the regression of the majority (35 out of

40 subjects). Substantial inter-individual variability in fatigue rate was found and

discussed.
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Practitioner summary

Different workers have different muscle fatigue attributes. Determination of

joint-level subject-specific muscle fatigue rates can facilitate physical task assign-

ment, work/rest scheduling, MSD prevention, and worker training and selection.

R2Q1

1. Introduction

Human intervention is often involved in occupational activities, especially in

material handling, assembly, and maintenance tasks (Melhorn et al., 2001a,b; Kumar,

2001). In those activities, the operator needs sufficient muscle strength to meet

force requirement for operating equipment or sustaining external loads. Insufficient

strength can lead to overexertion of the musculoskeletal system and to consequent

injuries (Armstrong et al., 1993; Chaffin et al., 1999).
R1Q1

A decrease in muscle strength is often experienced in a physical operation un-

der a sub-maximal force, either in a continuous way or in an intermittent way

(Wood et al., 1997; Yassierli and Nussbaum, 2009). This decrease in maximum

force output results from different sources, such as muscle fatigue, musculoskele-

tal disorders, lack of motivation, etc. Among those sources, muscle fatigue is one

of the most prevalent reasons and is defined as “any exercise-induced reduction in

the capacity to generate force or power output” (Vøllestad, 1997). Muscle fatigue

exposes operator to more risks of overexertion, and cumulative muscle fatigue may

result in musculoskeletal disorders (MSDs) (Armstrong et al., 1993; Chaffin et al.,

1999).
R1Q2

Fatigue progression is closely dependent on task assignment and subject-specific

fatigue attributes. Different task parameters (load, duration of exertion, posture and
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motion, etc.) lead to different fatigue progressions in physical operations (Chaffin,

2009; Yassierli and Nussbaum, 2009; Enoka, 2012). Individual physical attributes

(e.g., strength, fatigue rates, recovery rates, etc.) can influence the fatigue pro-

gression as well. It is believed that fatigue attributes differentiate from each other

among operators (Yassierli et al., 2007; Yassierli and Nussbaum, 2009; Avin et al.,

2010; Avin and Law, 2011). Determination of subject-specific fatigue attributes is

of interest and of importance for physical work design (Chaffin, 2009).

Muscle fatigue progression has been studied mainly from two different ap-

proaches. One approach is maximum endurance time (MET) approach. MET can

assess the ability to resist fatigue by measuring the maximal duration while ex-

erting a force at a specific level until failure. A large amount of effort has been

contributed to developing MET models for different muscle groups under different

static working conditions (Rohmert, 1960, 1973; Rohmert et al., 1986; Bishu et al.,

1995; Kanemura et al., 1999; Mathiassen and Ahsberg, 1999; Garg et al., 2002;

Law and Avin, 2010). Although the MET models can predict the maximum en-

durance time under a given relative force level, the decrease in the muscular strength

cannot be predicted directly by MET models. Moreover, due to the nature of the

formation in those MET models from group data, it is difficult to determine subject-

specific fatigue attributes.

Another approach to characterise muscle fatigue progression is to develop mus-

cle fatigue models, and hence to predict the strength decline directly. Some work

(Giat et al., 1993; Ding et al., 2000) contributed to complex physiological muscle

fatigue models. Those models are able to describe the muscle fatigue progression

precisely for a single muscle. However, they are too complex for industrial ap-

plication due to the difficulty of identifying a great number of parameters in the

model.

Some researchers established some fatigue models by conducting fatiguing
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tasks (Deeb et al., 1992; Søgaard et al., 2006; Roman-Liu et al., 2004, 2005; Iridiastadi and Nussbaum,

2006). Among those models, exponential declines in muscular strength are found(Deeb et al.,

1992; Roman-Liu et al., 2004; Yassierli et al., 2007). However, the fitting param-
R2Q9

eters in those exponential functions could not implicate more information about

fatigue attributes of each subject.

Some other researchers (Liu et al., 2002; Ma et al., 2009; Xia and Frey Law,

2008) have tried other models to describe muscle fatigue progression. Xia and Frey Law
R1Q3

(2008) proposed a three-compartment muscle fatigue model based on muscle mo-

tor units model in Liu et al. (2002), and they have run simulation to demonstrate

fatigue progression under a variety of loading conditions. In this model, fatigue and

recovery attributes of different types of muscle fibers were assigned with different

values in the simulation. However, the lack of validation limits the application of

this model.

Ma et al. (2009) proposed a muscle fatigue model to describe muscle fatigue

progression from a macro perspective. In this model, task parameters and muscle

fatigue rate are combined together to understand the fatigue caused by tasks and

fatigue attributes. Ma et al. (2011) developed an approach to determine fatigue re-

sistances of different muscle groups using this fatigue model. Twenty-four MET

models (El ahrache et al., 2006) for different muscle groups can be effectively fitted

and explained by this approach. We suggest that this muscle fatigue model is ca-
R2Q10

pable of assessing fatigue progression of a muscle group in static cases. Moreover,

we found that the muscle fatigue progression of each subject under static cases

can be predicted in the form of an exponential function derived from the fatigue

model, and one important factor (fatigue rate) in this model emerges to represent

subject-specific muscle fatigue attribute.

Regarding the subject-specific fatigability, some other measures were used to
R1Q0

assess muscle fatigability, such as endurance time, EMG power spectrum (Median
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frequency (MF) and Median Power Frequency (MPF)), Mean Arterial Pressure

(MAP) and so on (Clark et al., 2003; Hunter et al., 2004, 2005; Yoon et al., 2007;

Frey Law and Avin, 2010; Côté, 2012). However, as pointed out by Vøllestad

(1997), the greatest limitation is that those measures are indirect to measure muscle

fatigue. Therefore, we chose to use the fatigue rate in Ma et al. (2011) to represent

inter-individual difference in fatigue progression to beyond those limitations.

We conducted this study to verify whether the fatigue progression under a static
R1Q4

operation can be well fitted by a specific exponential function derived from the
R2Q11

muscle fatigue model and to check whether the fitting parameter (fatigue rate)

could represent subject-specific fatigue attributes among different subjects. This

paper is organised as follows: Section 2 describes the theoretical approach to de-

termine subject-specific fatigue rate based on a muscle fatigue model. Section 3

presents materials, methods, and experiment procedure in this study. Section 4 and

Section 5 show results and provide discussion.
R2Q12,

R1Q17
2. Subject-specific fatigue rate determination

The purpose of this study was to determine subject-specific muscle group fa-

tigue attributes by analysing muscle fatigue progression based on a theoretical mus-

cle fatigue model.

Ma et al. (2009) proposed a muscle fatigue model in the form of a differential

equation (Eq. 1). The muscle fatigue model describes the change of the maximum
R1Q6,

R2Q13

R2Q14

remaining strength over time. Related parameters and their descriptions are given

in Table 1. In this model, the fatigue rate (k) is a parameter to indicate the relative

speed of strength decline within a muscle.

dFrem(t)

dt
= −k

Frem(t)

MVC
Fload(t) (1)
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[Table 1 about here.]

In a static muscular operation, Fload(t) keeps constant, and the reduction of the
R1Q7

muscular strength can be further predicted by Eq. 2. This equation describes the

muscle fatigue progression in the form of an exponential function. Three parame-
R2Q13

ters (Fmax, Fload, and k) act upon the fatigue progression under a static operation.

In general, Fload is determined by the task design, and it can be measured or calcu-

lated via force analysis, and Fmax and Frem can be measured to unfold the muscle

fatigue progression. The fatigue rate k is task independent and it is influenced by

several factors (e.g., muscle fiber type composition, age, and gender) (Ma et al.,

2011).
R1Q12

Frem(t)

Fmax

= e−k fMVC t (2)

R1Q8

According to the definition of muscle fatigue, muscle fatigue progression can

also be described by measuring the maximum remaining muscle strengths over

time during a fatiguing operation. If the same muscle progression can be depicted

using both ways, it will suggest the parameter k could be determined using the

muscle fatigue model. Therefore, it is essential to verify whether the fatigue pro-

gression of each subject under a static fatiguing operation follows an exponential

function in the form of Eq. 2 with a high coefficient of determination R2.
R1Q9,

R1Q10,

R1Q11,R2Q6

Suppose that we have already a set of real measurements for a given static

operation, where Fti indicates the maximum remaining strength Frem at time instant

ti. At the beginning of a physical task, the subject is supposed having no muscle

fatigue. Therefore, the Ft=0 can be treated as the maximum voluntary contraction

Fmax. Equation 2 can be further transformed into Eq. 3.
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ln

(

Fti

MVC

)

fMVC

= −k ti (3)

Since fload and MVC are measured and/or known, fatigue rate k can be fur-

ther determined by linear regression. A high goodness of fit between maximum

remaining strengths and the exponential function would suggest the usefulness of

the fatigue rate. The goodness of fit is assessed by the R2 value in a linear regres-

sion without an intercept.

3. Materials and Methods

3.1. Subjects

Since the focus of this study is on manufacturing and assembly and the ma-

jority of the operators are male workers, 40 right-handed male industrial workers

participated in the experiment after signing a written informed consent. The age,

stature, body mass, upper limb anthropometry data, and body mass index (BMI)

were recorded or measured upon arrival at the laboratory (see Table 2). Participa-

tion was limited to individuals with no previous history of upper limb problems.

Ethical approval for this study was obtained from the human research ethical advi-

sory committee of Tsinghua University.

[Table 2 about here.]

3.2. Task design

In this study, we used a typical overhead drilling operation under laboratory

conditions to measure muscle fatigue progression at shoulder joint level (see Fig.

1). This task was simplified from a real drilling operation from the program of the

European Aeronautic Defence and Space (EADS). This operation was selected as a
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typical task because there are a few ergonomics problems (Melhorn et al., 2001a).
R2Q15

A heavy external load demands great physical strength to hold a machine and main-

tain the operation for a certain period, and local muscle fatigue occurs rapidly in

upper limb and lower back. MSD risks can be increased by force overexertion and

long-lasting vibration while drilling.

The magnitude of the external load and the duration of the operation are two

key factors to simulate the real situation. The relative load needs to be adequate

so that subjects can experience fatigue and can endure the operation for a certain

period. In this case, according to the strength model in Chaffin et al. (1999) and the

MET models in El ahrache et al. (2006), a subject must apply a drilling force of 25

N and hold a drilling machine with a mass of 2.5 kg. The drilling force is only

applied along the drilling direction towards the subject. The estimated moment

generated by the external load (including the weight of the arm) is about 33% of

the shoulder joint flexion strength of a 50th percentile male and the endurance time

under this load is estimated around 4 minutes.

[Figure 1 about here.]

3.3. Measures

In this study, we used shoulder joint moment strength to describe fatigue pro-

gression and measured the maximum force output in the drilling direction to esti-

mate shoulder joint moment strength (see Fig. 2).
R1Q5

We assumed that the measured force was determined by joint moment strength

of the right upper limb. Shoulder joint and elbow joint have similar strength profiles

according to the joint moment strength models (Chaffin et al., 1999), and shoulder

joint has higher fatigability in MET models than elbow joint (Frey Law and Avin,

2010). Furthermore, it was obvious that shoulder joint was charged with a much
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larger moment load than elbow joint in this drilling case. Therefore, the bottleneck

for the output strength was shoulder joint.

The moment load in shoulder joint can be approximately estimated by Eq. 4

(see Fig. 2).The mass and the centre of gravity of each body segment were esti-

mated from the anthropometry database (Chaffin et al., 1999).

Γload =

(

s − e

2

)

×Gu +

(

w + e

2
− s

)

×G f

+

(

d + w

2
− s

)

×Gm + (d − s) × Fd

(4)

where s, e, w, and d represent the coordinates of the positioning sensors attached to

the shoulder (S), elbow (E), wrist (W), and drilling contact point (D), respectively.

In our experiment, since the subject’s arm is strictly limited within the sagittal

plane, we just measured the force and calculated the torque within this plane.
R1Q16

[Figure 2 about here.]

Since we use joint moment strength, the fatigue model in Eq. 1 can be changed

to Eq. 5 by replacing all of the force terms with joint moment terms.

dΓrem(t)

dt
= −k

Γload(t)

Γmax

Γrem(t) (5)

Under this simplified case, Γload can be determined by force analysis, and fMVC

can be calculated from data analysis by normalizing the Γload over Γmax. Γti is

a joint maximum remaining strength, and it can be estimated by measuring the

maximum remaining force Fti in the drilling direction.

3.4. Material

In the experiment, we want to measure the muscular strength in the drilling di-

rection and to estimate the joint moment strength around the shoulder joint. There-

fore, force measurement and motion capture devices were used (see Figure 1).
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We used a dynamometer to measure the drilling force in the drilling direction

(see Figure 1). The dynamometer measures the pressing force perpendicular to the

load cell surface with a measurement range upto 300 N and a precision of 1 N.
R1Q13

We use the magnetic motion capture device FASTRAK R© (POLHEMUS Inc.)

to capture the upper limb posture in the experiment. As shown in Figure 1, we

attached four positioning sensors to the key joints of upper limb and the drilling

machine. We captured the Cartesian coordinates of the shoulder, the elbow, the

wrist, and the contact point between the drilling machine and the work piece. The

tracking device runs at 30 Hz per sensor and has a static position accuracy of 1 mm.

We used the recorded coordinates of each tracker to reconstruct the posture of the

worker in post-experiment analysis.

We provided the drilling force with a wooden beam with a mass of 10 kg.

We used wooden material to avoid magnetic distortions caused by ferrous material

and to ensure motion capture accuracy. We suspended the wooden beam with

an inclination angle between the beam and the horizontal line of 14.5◦. During

operation, the subject had to push the beam against the force measurement device

and hold it for a certain period. According to the force analysis of the pendulum,

a tangential force of 25 N was charged to the upper limb. Before each trial, we

calibrated this external load to ensure that there was exactly a force of 25 N applied

in the drilling direction. We provided the weight of the drilling machine with a

drilling tool made from concrete with a mass of 2.5 kg.

3.5. Experiment Procedure

Each subject had to complete ten sessions: one MVC session and nine fatiguing

sessions.

In the MVC session, maximum voluntary contraction (MVC) was determined

as the greatest exerted force in the drilling direction over three trials. In each trial,
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we verbally encouraged subjects to maintain the maximum force peak for three to

five seconds. The measured MVC was also denoted as F0 to represent the subject’s

initial maximum strength at the beginning of the operation. Between each trial,

subjects were asked to take at least a 5-minute rest until self-reported full recovery

(Chaffin et al., 1999).

There were nine fatiguing sessions with different time intervals (15, 30, 45, 60,

75, 90, 120, 150, and 180 seconds). The sequence to complete those nine sessions

was randomly assigned for each subject. In each fatiguing session, subject was

asked to hold the constant external load for the time interval ti (e.g., 30 sec). After

that, the remaining muscle strength Fti (e.g., F30) was measured by asking the

subject to exert the maximal voluntary strength with a force peak from three to five

seconds. After the measurement, subjects took a rest for at least five minutes or

even longer until self-reported total recovery.

After the recovery, the subject was asked randomly to conduct a MVC trial.
R2Q2

Full recovery would be recognized if the measured maximum strength in this trial

was more than 95% of the MVC. Otherwise, the subject would be asked to take

longer break until full recovery. Once subject reported that he could not sustain the
R1Q15

operation within the session, experiment would be stopped immediately to avoid

injuries to subject.

Within each session, subject was seated upright, and right shoulder was fixed

to a shoulder support against the wall to restrict the movement of shoulder and

to decrease the engagement of lower back. Left upper limb was free, and right

upper limb was limited in the sagittal plane by position constraints. The position

constraints provided posture references to subject to maintain the initial posture as

well as possible, but provided no support to upper limb. The seated height and

location was adjusted according to subjects height and upper limb length to reduce

variability among the different subjects.
R1Q14
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3.6. Data Analysis

The objective of this analysis was twofold.
R2Q16

1. to test if the fatigue progression of each subject in shoulder joint maximum

strength can be well fitted by the exponential function derived from the muscle

fatigue model or not;
R2Q3

2. to analyse the relationship between muscle fatigue rate and joint moment

strength.

For the first objective, we fitted muscle fatigue progression of each subject

with the exponential function (Eq. 3). The coefficient of determination of each

fitting was recorded for each subject and analysed. For the second objective, we

selected two groups of subjects to assess the relationship of joint moment strength

and joint fatigue rate, since muscles engaged in the action mainly determine max-

imum joint strength and we assumed that determinant muscle-related factors for

muscle strength could probably act effects on muscle fatigue rate as well. One

group (Group A) is the subjects with 10 highest joint moment strengths; another

group is the subjects with 10 lowest joint moment strengths. Besides joint strength,

some other measures (e.g., BMI, age) may also influence fatigue rate. Correlations

between fatigue rate and other measures were also statistically analysed. We used

SPSS to do all the statistical analysis and fitting.
R1Q12,

R1Q17,

R1Q19
4. Results

4.1. Fatigue progression

Joint moments of each subject were normalized over the estimated maximum

moment strength. Then the normalized values were fitted using Eq. 3 to calculate

the fitting coefficient R2 and to determine the fatigue rate. The statistical results of
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R2 of the regression and the fatigue rate k were listed in Table 3, and the histograms

of R2 and k were shown in Fig. 4 and Fig. 5.

35 out of 40 subjects had a high coefficient of determination R2 over 0.8 in

joint moment regression. Four out of the other five subjects had a fair coefficient

R2 over 0.63, and only one of the five subjects had a very poor R2 (0.23).
R2Q4

[Table 3 about here.]

[Figure 3 about here.]

5. Discussion

5.1. Muscle fatigue progression

In this study, we found that the fatigue progression at shoulder joint among

most of the subjects (35/40) can be well fitted (R2 > 0.8) by the muscle fatigue

model. Five out of 40 subjects were found with low R2 coefficients.
R2Q6

There are some reasons leading to those relatively poor fittings. First, the mo-

tivation and the attitude of the subject during the experiment could influence the

result. Second, even though the posture of the arm was strictly constrained in the
R2Q17

sagittal plane, subjects could still have a certain degree of mobility. The willing-

ness to maintain the posture may influence the muscle recruitment strategy, mus-

cle coordination, and the posture during the experiment. Third, weak muscular

strength could probably lead to poor fitting performance indirectly. The subject
R2Q20

with a R2 = 0.23 had the second lowest MVC among the 40 subjects. Lower

muscle strength means relatively higher physical workload during the experiment

and higher demand to maintain the posture, and hence the static operation would be

more possibly aversely influenced due to the unwillingness to maintain the posture.

R2Q7,

R2Q19
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Fatigue may occur at any step along the pathway that is involved in muscle

contraction (Berne et al., 2004). Both the metabolic factors within the muscle and

the impairment of activation could contribute to the decline in muscle power out-

put (Chaffin et al., 1999; Allen et al., 2008). In a physical operation, muscle fa-

tigue progression could be influenced by physical task, motivation, and individual

fatigue attributes. However, under static operation and effective verbal encour-
R1Q21

agement, the influences from motivation could be rather limited. Therefore, mus-

cle fatigue progression was probably mainly caused by relative loads and subject-

specific fatigue attributes in this study.

The fatigue model (Eq. 2) is formed from a macro perspective and can be ex-

plained based on motor units principle from a micro perspective (Ma et al., 2009).The

product of relative load and fatigue rate determines the decline of muscle strength.

According to muscle physiology, fatigue rate can be recognized as a parameter to
R1Q23

represent the overall fatigue resistant performance of a muscle group at joint level

under a specific task (Ma et al., 2011).

We selected this model to determine fatigue attribute for the following rea-

sons: (1) in comparison to Deeb’s model(Deeb et al., 1992), this model enables

us to decouple relative load and subject-specific attribute; (2) muscle fatigue rate

can be influenced by muscle composition, neuromuscular activation patterns, and

coordination among single muscles, therefore the fatigue rate in this model could

cover more effects of influencing factors than the fatigue rates of different types of

muscle fibers in Xia and Frey Law (2008); (3)this model is less complex than the
R1Q22

three-compartment model in Xia and Frey Law (2008) , and it could be practical

for industry application.
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5.2. Subject-specific fatigue rate

We found that there are substantial differences among different subjects in fa-

tigue rates at shoulder joint level. It suggests that the fatigue rate k can be used to

characterise different fatigue attributes among subjects at shoulder joint level under

this specific fatiguing condition.

The underlying mechanisms for those differences in fatigue rate are very com-

plex. Physiologically, differences in fatigue rates are mainly caused by four fac-

tors: (1) muscle strength (muscle mass) and associated vascular occlusion, (2) sub-

strate utilisation, (3) muscle composition, and (4) neuromuscular activation pat-

terns (Hicks et al., 2001; Ma et al., 2011). At the same time, demographic parame-

ters (age, gender) and their interactions can lead to changes in muscle composition

as well (Mademli and Arampatzis, 2008; Yassierli and Nussbaum, 2009). In ad-

dition, personal working experience or physical exercises and living style (e.g.,

smoking) can also change the muscle strength and endurance via the adaptive re-

sponse of muscle cells to regular external loads (Berne et al., 2004; Wüst et al.,

2008). All those factors generate effects together on subject-specific fatigue at-

tributes.
R1Q23

We found also that fatigue rates are positively correlated to maximum joint

moment strength in this study, even though the relative loads for the subjects with

higher strength were lower. Between-subject differences in the ratio of type I mus-
R2Q17,

R2Q21
cle fibers (slow twitch, more fatigue resistant) to type II muscle fibers (fast twitch,

less fatigue resistant) might explain the differences in fatigue rates. Muscle strength

depends strongly on muscle fiber size and muscle fiber composition (Fitts et al.,

1991). Subjects in Group A and Group B did not have significant differences in

BMI and age, which implicates that the strength differences were probably not

mainly caused by muscle mass or muscle fiber size or age-related factors. It could

be concluded that the strength differences were caused by different compositions
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of muscle fiber types. Subjects with higher strengths could probably have a higher

proportion of type II muscle fibers and lower proportion of type I muscle fibers.

That leads to higher joint moment strength and faster fatigability in the muscle.

We did not find significant correlation between fatigue rate and age and be-

tween fatigue rate and BMI. Regarding the age effect, we did not control our sub-

jects strictly to two age groups. The subjects in this experiment were in their young

age or middle age, which might not enough to reveal the aging effect. Regarding

the BMI, most of the subjects were in normal weight and overweight group. Only

a few subjects belong to Class I obesity or underweight category.

5.3. Posture change

Although posture references were provided to avoid mismatches in different

test trials, it was still very difficult for subjects to maintain the purely static posture

during the operation. Small changes occurred in the experiment, but those changes

did not generate excessive variation in joint strength. In our case, the variation of

the maximum joint moment strength is no more than 3% relative to the maximum

strength under the initial posture according to the joint moment strength model

(Chaffin et al., 1999). The change of the joint strength due to posture change might

lead change of the relative strength. We checked the sensitivity of the change, and

the changed maximum joint strength would lead to no more than4% change of the

relative strength (4% fMVC), which was acceptable in this case.
R1Q20

Several reasons may cause posture change in the experiment. Fatigue might

be one of those reasons. Changes in the posture can be explained by a global

posture control strategy, which includes decreasing the joint loads in the operation

by moving the upper limb closer to the body; a similar finding has been reported by

Fuller et al. (2008). However, that change would influence joint strength(Roman-Liu and Tokarski,

2005; Anderson et al., 2007). Besides fatigue, there were still other error sources
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leading to the change of the posture. First, the actual posture was determined by

the anthropometry of different subjects. Different arm lengths could cause poten-

tial differences in elbow flexion and shoulder flexion. Second, the posture was

calculated from the position sensors attached to the key joints. Each subject might

have different sensor configurations, which might lead to calculation errors. Third,

there might be differences among the postures that each subject took in different

fatiguing sessions.
R2Q5,

R1Q24,

R1Q25,

R1Q20

5.4. Limitations

R1Q26,

R2Q22,

R2Q23

There are several limitations in this study. First, the focus of the present study is

on the fatigue effect in static industrial operations in a continuous working process.

Recovery effect is not taken into consideration in this study. Second, this study

was conducted under a simplified overhead drilling operation, and the conclusion

drawn from this study has a strong task dependency. A simplified overhead drilling

operation decreases the reliability of applying the findings into industry. Some

other MSD causes, such as vibration (Kattel et al., 1999) were neglected from this

study. Third, the force analysis in this study is available only for a static case.

In a real operation, the motion involved in the operation could result in a different

dynamic workload. Moreover, only fatigue with the relative force falling from 14%

to 33% (Mean=24.3%, SD=4.4%) of the specific job operation was tested, so the

result that was obtained is available only for similar physical operations. Last but

not least, the fatigue progression was measured under static isometric contraction,

and the results could not be extended for dynamic or intermittent fatiguing tasks.

6. Conclusions and perspectives

This paper provides an experimental approach to determine subject-specific

fatigue rate at shoulder joint level. Fatigue progression in a simplified static drilling
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operation was measured and analysed using an exponential muscle fatigue model.

The muscle fatigue progression in joint moment strength could be well fitted by

the fatigue model (R2 > 0.8). This result suggests that the muscle fatigue model

could be used to describe fatigue progression for industrial operations within the

range of 14% -33% of the relative submaximal level under static cases. Different

fatigue rates among subjects could be used to characterise the individual fatigue

attributes under the same workload. Determination of subject-specific fatigue rates

could be useful for physical task assignment, worker training, worker selection and

work design.

Since fatigue rate is important and it could be influenced by a number of fac-

tors, further study would be necessary to find the effects of these influencing fac-

tors (Côté, 2012). Gender difference, age difference, and joint difference in fatigue

rates could be investigated. Static continuous and dynamic intermittent tasks could

be investigated under different relative load levels. More strict posture control is

necessary to eliminate effects of posture change.
R2Q8
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Figure 1: Seated static posture in the experiment and materials used in the experiment. Fdrill: drilling

force; Gmachine: the weight of the drilling machine; Gupper: the weight of the upper arm; Glower: the

weight of the lower arm
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Table 1: Parameters in the dynamic fatigue model

Item Unit Description

MVC or Fmax N Maximum voluntary muscle strength under nonfatigued

state

Frem(t) N Maximum voluntary remaining muscle strength at time t

Fload(t) N External load that the muscle needs to bear

k min−1 Fatigue rate

%MVC Percentage of the voluntary maximum contraction

fMVC %MVC/100, fMVC =
Fload

MVC
.
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Table 2: Subject physical characteristics

Characteristic Mean Standard Deviation (SD) Maximum Minimum

Age (year) 41.2 11.4 58 19

Height (cm) 171.2 5.1 183.0 160.0

Mass (kg) 70.2 10.4 95.0 50.0

Upper limb (cm) 23.6 3.0 31.0 16.0

Lower limb (cm) 25.6 1.8 29.0 22.0

BMI 23.9 3.35 31.1 18.7
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Table 3: Statistical analysis of fatigue rate k

Item Mean SD Minimum Maximum

Joint moment strength (Nm) 45.1 7.4 67.4 32.1

k 1.02 0.49 0.37 2.29

R2 0.87 0.14 0.23 0.99

R2Q18
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Figure 4: Histogram of coefficient of determination R2
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R1Q186.1. Relationship between fatigue rate and joint maximum strength

A pair-wise correlation matrix was determined between joint moment fatigue

rate, joint moment strength, age and BMI. The results were shown in Table 4. It was

found that joint moment strength is strongly correlated with fatigue rate (p < 0.05),

while no strong correlations were found in the pair of fatigue rate and BMI and the

pair of fatigue rate and age.

Table 4: Correlation matrix for study variables.( ∗p < 0.05)

Fatigue rate BMI Joint moment strength Age

Fatigue rate 1 -0.09 0.616∗ 0.033

BMI 1 0.09 0.40∗

Joint moment strength 1 0.072

Age 1
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R1Q19No significant differences were found between two groups in age (Group A:

42.9 (SD=7.4); Group B: 39.1 (SD=15.4), p = 0.49) and BMI (Group A: 24.9

(SD=2.4); Group B: 25.2 (SD=4.2) p = 0.78). Significant differences (p =

0.00) were found in joint maximum strength between Group A (mean=60.8 Nm

(SD=4.7Nm)) and Group B (Mean=37.7 Nm (SD=3.3 Nm)) .
R1Q20

With use of t-test, Table 5 showed the difference of fatigue rates between dif-

ferent groups. The subjects with higher strength have significantly higher fatigue

rate even though the relative load is smaller than the subjects with lower strength.
R2Q21

Table 5: Effect of muscle strength on fatigue rate

Group Mean SD t p-Value

k

A 1.47 0.53 4.628 0.0001

B 0.64 0.20

R2Q18

6.2. Posture change during the drilling operation

We calculated the posture of upper limb during the drilling operation from the

motion data. Because the arm was constrained in the sagittal plane, only the flexion

angles of shoulder joint and elbow joint were calculated to represent arm posture

to eliminate influence from different limb lengths. The statistical results of elbow
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flexion and shoulder flexion angles across participants were calculated and shown

in Table 6. The posture change during the working process is shown in Figure 3.

The changes in the posture followed the following tendency: the greater the fatigue

was, the closer the upper limb was to the trunk. In this way, the moment produced

by the mass of the upper limb around shoulder joint could be reduced.

Table 6: Posture change during the experiment (deg)

Time (sec) 0 15 30 45 60 75 90 120 150 180

Elbow

Mean 50.1 53.1 55.1 55.1 57.5 59.9 59.9 64.2 66.7 75.5

SD 16.1 15.4 15.0 15.7 16.4 19.0 19.2 19.9 21.3 21.9

Shoulder

Mean 46.4 44.5 43.6 44.2 42.8 42.1 41.9 39.7 37.5 30.5

SD 16.2 15.0 14.6 15.2 14.7 16.6 17.0 16.6 17.9 17.3
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