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ABSTRACT sAw Centered frequency s
The recent improvements in turbomachinery design requires tini  Initial instant of integration

the analysis of exceptional operating regime of bladedsdtsk- v(t) Time domain observation (mean NL-ROM)
responding to geometrical nonlinear effects induced byafge w(w) Frequency domain observation (mean NL-ROM)
displacements/deformations. In addition, the random reatd N Order of the cyclic symmetry

the mistuning has also to be modeled. First, a mean nonlinear P Dimension of the NL-ROM
reduced-order model of the tuned bladed disk is explicitly-c T Total duration time
structed in the context of the finite element method. Thesiikve  v/(t) Time domain observation (stochastic NL-ROM)

gation is then devoted to the modeling of the mistuning #ilou v/, Time domain observation (stochastic NL-ROM)
the nonparametric probabilistic approach extended to tha-n W(w) Frequency domain observation (stochastic NL-ROM)

linear geometric context. The stochastic nonlinear equratiare Y(w) Magnification factor (stochastic NL-ROM)
solved in the time domain using the Monte Carlo numericat sim 5, Frequency resolution

ulation coupled with advanced arc-length methods adapted t
high nonlinear response levels. Finally, the methodol@gsp-
plied through a numerical example of a bladed disk and a non-
linear analysis is performed in both time and frequency diama

0 Dispersion parameter

v FrequencyHz)

Wmin Lower bound ofBg

w Pulsation(rad.s™%)

Aw Width of Bg

Q Angular speed (rotational motion)

NOMENCLATURE B Frequency band of analysis

g(t) Time domain of the load Bs Frequency band of excitation

d(w) Frequency domain of the load R Real vector space

jo,ko Blade number a Spatial discretization of the load

n number of degrees of freedom f External load vector

ne  Number of time steps fNL(u)  Nonlinear restoring force

r Load rate g Vvector of the generalized coordinates (mean NL-ROM)
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u Displacement vector (mean computational model)
(i Observation vector (mean NL-ROM)

[A] Finite element matrices (Roman capital letters)
[@®] Modal matrix

INTRODUCTION

orthogonal decomposition method or by an eigenvalue aisalys

A mixed formulation combining these two approaches has been
proposed in [19]. Strategies based on the selective chdice o
the most appropriate basis are reviewed in [20]. The parame-
ters of the NL-ROM of the tuned structure can then be either
deduced using the STEP procedure (which is based on the smart
non-intrusive use of standard commercial finite elementspd

There are many aspects to be taken into consideration when[20-22] or from explicit construction as shown in [23] in the

dealing with turbomachinery bladed disks. The predictivme
putational models are more and more sophisticated, inofudi
the modeling of complex phenomena occurring in such struc-
tures. It is well known, that the manufacturing tolerandés,
dispersion of materials, which arouses in bladed disks&tras
create uncertainties on the geometry, on the boundary tonsli
and on the material properties, which breaks the naturdiccyc
symmetry of such structures. The main consequence reaults i
strong vibrations combined to spatial localization in tlya@mic
forced response of the blades [1]. The random characterchf su
phenomenon referred to as mistuning requires the use ofedlap
probabilistic model of uncertainties in the computatiommeid-

els [2-5]. Another essential aspect to be taken into acomumt
cerns the modeling of the different nonlinearity sourceshsas
nonlinear contact interfaces [6—8] or geometrically noadir ef-
fects [9-12]. At the same time, the progression of the compu-
tational capabilities, which includes the possibility ging par-
allel computations, has been a motivation to develop coaput
tional strategies adapted to large finite element modeldiisn
trial bladed disks. Various researches concerning redooger
modeling techniques adapted to the mistuned linear aisabyfsi
bladed disks [2, 13] have been used for robust design omimiz
tion purpose [14-16]. Adapted reduced-order techniques ha
also been proposed in [17, 18] for the nonlinear dynamical-an
ysis of turbomachines.

context of three-dimensional solid finite elements. Oned\th-
ROM of the tuned bladed disk is established, uncertaints c
be implemented through the nonparametric framework [2}4, 25
which has been extended in the nonlinear geometric case [22]
Such probabilistic approach is able to simultaneously wapt
both system-parameter uncertainties and model unceesint
relies on the dedicated construction of a probability madel
lated to the tuned NL-ROM operators, using the maximum en-
tropy principle (MaxEnt).

The paper is organized as follows. Section 1 gives a com-
plete description of the computational methodology andt®f i
numerical aspects allowing the nonlinear dynamic analgsis
mistuned bladed-diks to be performed. The mean NL-ROM cor-
responding to the tuned structure is explicitly constrdétdlow-
ing the approach presented in [23]. Once the mistuning is-mod
eled through the nonparametric probabilistic approach ntin-
merical strategy concerning the resolution of the set ofinear
coupled differential equations is discussed. Section 2®tkd
to a numerical example, for which the geometrically nordine
effects are analyzed and quantified in both tuned and midtune
cases.

METHODOLOGY
This Section is devoted to the construction of a methodology

In the present case, we are interested in the geometrically for the nonlinear mistuning analysis occurring in rotatoigded

nonlinear analysis of mistuned bladed disks. The recemaug
ments in turbomachinery design requires the analysis ofgexc
tional operating regime of bladed disks for which large isp-
ments/deformations can occur. The case of severe loading is
vestigated in the context of elasto-dynamics. Such sianas
equivalent to nearly unstable cases induced by aerodyreamaic
pling yielding flutter and thus very low damping levels. Ircbu
case, the linearized elasto-dynamic theory can not be used a
more because the geometrically nonlinear effects indugehed
large deformations and the large displacements are veggstr
and need to be taken into account in the modeling.

The methodology is developed in the context of large fi-
nite element computational model of bladed disks, reqgitire
construction of adapted nonlinear reduced-order comiputat
models (NL-ROM). The developments of such NL-ROM re-
quires the selection of an appropriate deterministic bfasithe
representation of the nonlinear dynamic response. Morergen
ally, this projection basis can be obtained by using the @rop

disks structures. In the present research, the bladed dislex
consideration are assumed (1) to be made up of a linearcelasti
material and (2) to undergo large displacements and larfye-de
mations inducing geometrical nonlinearities.

Nonlinear dynamics of a tuned bladed disk

The tuned bladed disk structure has\wnorder cyclic sym-
metry. Thus, the geometrical domain, the material cortitéu
equations and the boundary conditions related to the gémgra

. . 21T . . .
sector are invariant under thﬁ rotation around its axis of sym-

metry. Moreover, the bladed disk undergoes a rotational mo-
tion around the axis of symmetry with constant angular speed
Q. By choosing a total Lagrangian formulation, the dynamical
equations are expressed in the rotating frame of an equitibr
configuration considered as a prestressed static configioirat

The mean (or nominal) computational model of the tuned
bladed disk, which is constructed by the Finite Element Mdth

2



(FEM) is written as [26]:

M]+([C(Q)] + [DN)a+[KHQ)u+ N u) =,

[KHQ)] = [Ke] + [Kg] + [Ke(Q)] . (1)

in which theR"-vectorf is the external load representing for in-
stance the unsteady pressures applied to the blades, amd whe
the R"-vectoru corresponds to the finite element discretization
of the unknown displacement field. In Eq. (1), the matridés$,

[D], [Kg] and[Ke| are the mass, damping, geometrical stiffness
and elastic stiffness real matrices with positive defireéssprop-
erty. The rotational effects are taken into account throtingh
gyroscopic coupling matri¥C(Q)] and the centrifugal stiffness
matrix [Kc(Q)], which have respectively antisymmetry property
and negative definiteness property. It should be noted that a
these matrices are ald&block circulant matrices [27] since the
structure has aN-order cyclic symmetry. The geometrical non-
linearities effects are taken into account through Bievector
fNL(u) which includes the exact and complete quadratic and cu-
bic terms given by the three-dimensional nonlinear geametr
elasticity. Furthermore, the centrifugal effects are assl to

be sufficiently small so that the linear stiffness mafi®(Q)]

is positive definite, yielding only stable dynamical syssaimbe
considered.

In the present case, the presence of the geometric nonlin-
earity naturally yields the nonlinear equations to be sbinghe
time domain, the frequency content of the nonlinear respbes
ing a posteriorianalyzed by Fourier transform. Concerning the
external load, a usual harmonic excitation would be inappro
ate because the nonlinear equations should be solved far eac
harmonic excitation considered. The external load is then d
fined in the time domain corresponding to a uniform sweep of
a chosen frequency band of excitation. [Bt= —BsU Bs be
the frequency band of excitation with central frequestw and
bandwidthAw defined byBs = [(s—1/2)Aw, (s+1/2)Aw]. The
external load is written as

f(t) = fog(t) o, )

in which fg is a coefficient characterizing the global load inten-
sity, and wherex is anR"—vector corresponding to the spatial

discretization of the load. In Eq. (2), the functigft) is cho-
Aw . tAw
?smcn(—)

sen agy(t) cogsAwt), wherex — sincg(x)

is the special function defined nc;(x) = sin(mx)/(mx). It
should be noted that all the frequencies of the frequencyd ban
of excitation are simultaneously excited so that only oneline
ear time-domain analysis is carried out. With such time-diom
excitation, a forced-response problem is considered amdino
time evolution problem with initial conditions. The consiéd

forced-response problem is thus approximated by an e@uital
time-evolution problem with zero initial conditions ovefinite
time interval, which includes almost all of the signal eneod
the excitation.

The use of the cyclic symmetry property by decomposing
the nonlinear response according to its harmonic compengnt
not considered in the present case because all the harnmmmnic ¢
ponents are coupled through the geometric nonlinearitydaed
not allow the problem on a single rotor sector to be solvedrevio
over, the full computation of the nonlinear solution of EL).¢an
not be reasonably performed when dealing with realistic el&d
of bladed disks corresponding to a large number of DOF. More
specifically, large dimensional computational models negto
develop reduced-order model strategies adapted to thimeteo
ric nonlinear context (see [19, 21, 23] and [20] for a congplet
overview). Let be a given vector basis represented byrheP)
real matrix|®]. The nonlinear responseis expanded as

u=[®q , 3)

in which q is the RP-vector of the generalized coordinates. Re-
placing Eq. (3) in Eq. (1) yields a nonlinear reduced sePof
coupled differential equations for which all linear, quatitr and
cubic terms have to be known. In the present research, the con
struction of the operators of such mean NL-ROM is explicitly
carried out in the context of the three-dimensional finieegnt
method. The finite elements are isoparametric solid finige el
ments with 8 nodes using a numerical integration with 8 Gauss
integration points. The elementary internal forces prgig@on

the chosen vector basis are numerically constructed fdr Bac
nite element before performing its assembly and computing a
linear and nonlinear reduced operators. The detailed pgroee
which also uses the symmetry properties of the linear antimon
ear reduced-operators combined with distributed comjmunsit
can be found in [23]. It should be noted that each type of re-
duced operator is separately modeled, keeping open thibposs
ity of implementing uncertainties issued from indepenqhdys-

ical sources.

Nonlinear dynamics of a mistuned bladed disk

The random nature of the mistuning is then considered by
implementing the nonparametric probabilistic approachictv
presents the ability to include both system-parameterntaice
ties and model uncertainties (see [25] for a complete regiew
the subject). It consists in replacing the operators of tleam
NL-ROM by random operators, whose probability distribatio
is derived from the maximum entropy principle. In the prdésen
case, the mass, damping, geometrical stiffness and thesit@po
of the centrifugal stiffness are positive definite operaitohose
probability model is constructed from the usual nonparaimet
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probabilistic approach [24]. The linear elastic, quadratid cu-
bic stiffness reduced operators are reshaped in a posiéfinite
operator as shown in [22], which allows the nonparametiobpr
abilistic theory to be extended to the geometric nonlinesec
The stochastic model of the gyroscopic coupling is congtdic
with a similar method as proposed in [28] for the aero-etasti
coupling. The dispersion of each random operator is then cha
acterized by one scalar parameter. Consequently, the mmgtu
level of the bladed disk is entirely controlled by tR&-vector

6 = (5M,5D,5C75K975Kcad<)'

Numerical computations

The solution of the stochastic NL-ROM is calculated using
the Monte Carlo numerical simulation. For each realizatimn
set of P nonlinear coupled differential equations is considered
and solved with the Newmark method, for which the averag-
ing acceleration scheme, known to be unconditionally stabl
used. With this solver, a set of nonlinear equations whoke so
tion is denoted by th&"-vectorg has to be solved at each sam-
pling time. Such computation is mainly addressed by the fixed
point method because the iterative scheme does not redre t
evaluation of the tangential stiffness matrix. Neverteglevhen
the algorithm does not converge, it is replaced by the Clikfie
arc-length method [29]. Such algorithm introduces an aalutid
scalar unknowm that multiplies the right-hand side of the non-
linear equation. It is solved step by step, each incremeitegl
being characterized by a given arc-length. For a given step,
iterative scheme requiring one evaluation of the tangksiifé
ness matrix allows a solutig@, p) to be computed. An adaptive
arc-length, depending on the number of iterations necggear
obtain the convergence of the preceding increment is alpteim
mented. Furthermore, since parametdras to be controlled to
be equal to 1, the state of the algorithm corresponding tpithe
ceding increment has to be stored. Even if the procedurmes ti
consuming, its main advantage concerns its capability ptura
ing high non-linear mechanical behaviors.

NUMERICAL EXAMPLE
Description of the mean computational model
The structure under consideration is a bladed disk consti-

tuted of a disk and 24 blades. The disk is made of a homoge-

neous and isotropic material with constant thickne®98m, in-
ner radius 35m, outer radius (m, mass density 7860y.m 3,
Poisson ratio @5 and Young modulus 2 10"N.m2 . Fixed
conditions are applied along the internal boundary defined b

FIGURE 1. FINITE ELEMENT MESH.

TABLE 1. DATA FOR THE FE MODEL

FE
12
288

DOF
138
2592

Nodes
46
864

Sector

Bladed disk

is carried out in the rotating frame of the structure, thedrig
body motion due to the rotation of the structure correspoods
fixed boundary condition at the inner radius of the structuxe
damping model is added for the bladed disk, correspondiag to
hysteretic model with a mean loss factox 207, which corre-
sponds to a modal damping aroun@@L1 for the low frequency
band of interest defined By = [0, 3900 Hz

The full finite element model, shown in Fig.1, is built with
288 8-nodes solid finite elements and is thus constituted of 2592
degrees of freedom (see Table 1 for the detailed data refated
the mesh of the structure).

Nonlinear analysis of the tuned bladed disk

Tuned linear eigenfrequencies The natural eigenfre-
guencies of the linear tuned bladed disk are calculatedtfirst
using the cyclic symmetry property of the structure [30, Fig-
ure 2 displays these eigenfrequencies as a function ofdsror
ferential wave number.

Description of the external load Concerning the
modeling of the external load according to Eq.(2), the fre-

the inner radius. Each blade is made of the same homogeneougjuency band of excitation is chosen with regard to Fig.2 such

and isotropic material as the disk one with lengt@7n, width
0.0085m, linear decreasing thickness from005m to 0.001m.
The structure is in rotation around its revolution axis wétbon-
stant angular spedd = 30000 pm. Since the dynamic analysis

that Bs = [3000,3207 Hz, which corresponds ts = 15 and
Aw = 1300rad.s 1. The spatial distribution of the load is only
concerned with point excitations located at the end of eéadheb
along the transverse direction. Vectorcharacterizing the spa-
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Eigenfrequencies (Hz)

N
=}
=}

- o -
\
i

0 2 4 6 8 10 12
circumferential wave number

FIGURE 2. NATURAL FREQUENCIES WITH RESPECT TO CIR-
CUMFERENTIAL WAVE NUMBER

tial distribution from blade to blade has then 24 non zeraa-co
ponents, which are uniformly distributed from blade to lelad
In that case when the tuned linear case is considered, there a
contributions on all the circumferential wave number. The e
ternal load is thus considered as a functionf@f Concerning
the numerical sampling, the initial instant of integrattgnand
the total time duratiof are chosen according to [32] such that
tini = —0.029s (corresponding to a zero value of functigft))
andT = 0.36s. GivenB combined with the Shannon theorem
yields the numben; of time steps to bex = 2800. The fre-
quency resolution is thediv = 2.78Hz Letd(w) be the Fourier
transform of functiorg(t). Figure 3 shows the graphs-— g(t)

andv — §(2mnv), in whichv =

2

Convergence analysis of the mean NL-ROM Con-
cerning the choice of the vector basis for the constructich®
mean NL-ROM, a strategy would consist in using the proper or-
thogonal decomposition method (POD). This would requiee th
knowledge of the full reference solution, which is pradtica
not possible to get, when considering realistic bladed diski-
els involving large number of degrees of freedom (DOF). i th
present case, the nonlinear equations are solved in thpatbs
spanned by the usual linear basis constituted ofRhmodal
shapes related to the first increasing natural eigenfregiegrac-
cording to [23]. Zero initial conditions are used. The olagéibn
is given by theRN-vector(iP corresponding to the out-plane dof

500

5 0 005 01 015 02 025 03 035
2
15f
1,
% 500 1000 1500 2000 2500 3000 3500 4000
FIGURE 3. REPRESENTATION OF THE EXTERNAL LOAD IN

THE TIME AND FREQUENCY DOMAIN: GRAPH OR — g(t) (UP-
PER GRAPH) and — §(2rv) (LOWER GRAPH).

small values. Such extreme situations are realistic wheteflu
occurs and yields nearly unstable situations. CehyP) be the
function defined by

comep) = [ aP0)Pat

tini

(4)

Figure 4 displays the grapgh— ConyP)/Cony150) in a log-
arithmic scale. It can be seen tHat= 90 yields a reasonable
convergence. From now on, the calculations will be carrigd o
for P = 100.

Nonlinear time domain analysis From now on, the
converged solution corresponding to the observation dsfoen
the mean NL-ROM is denoted hy(t). For clarity, when con-
fusion is possible, superscriptd’ andNONUN will be added for
distinguishing the linear case from the geometric nonlirees.
Let be the load rate such that= 100% when intensity load is
folla|| = 3.512N.

The intensity loads considered are then described
by rfolla|| with r €]0,1]. Being interested in the
blade vyielding the highest vibration amplitude, let
jo = argmax (maxdloN-N(t)) calculated for a load
rater = 100%. The observation(t) corresponding to the se-
lected blade out-plane displacement is defined(y = Gj,(t).

located at the end of each blade. An incremental convergenceFigures 5 and 6 display the graphss V'N(t) (upper graph)

analysis is carried out for a maximum loadfgf|a|| = 3.512N,
corresponding to an high rate of geometrical nonlineaftych
high loading can be interpreted as equivalent to a situdtion
which the damping of the bladed disk structure would reaci ve

andt — VWONLIN(t) (lower graph) for load rates = 20% and
r = 100% corresponding to significant levels and very high
levels of geometric nonlinear effects. On these two figutés,
seen that the geometric nonlinearities induce a bladesiiff
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Convergence criterion

107 ; ; il

0 50 100
number of LIN eigenmodes

150

FIGURE 4. CONVERGENCE ANALYSIS OF THE NL-ROM OF
THE TUNED BLADED DISK: GRAPH OF FUNCTIONP — ConyP)
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FIGURE 5. TIME DOMAIN OBSERVATION t > v(t) RELATED
TO THE LINEAR (UPPER GRAPH) AND NONLINEAR (LOWER
GRAPH) CASES FOR = 20%

characterized by a reduction of the vibration amplitudethef
blades with respect to the linear case. This stiffening $® al
combined with a strong irregularity of the blade responsamsh
over time, which shows an enrichment of the frequency cdnten
which has to be quantified.

Nonlinear frequency domain analysis Let kg =
~NONLIN . = NONLIN .
arg may (max, g J; (w)) for which { (w) is the

Fourier transform oéf*ON"!N(t) calculated for = 100%.
In the frequency domain, the observatisfw) correspond-

x 10"

N

=
T
I

|
=
T

displacement (m)
<

0.15 0.2
time (s)

025 03 035

|
N

0.05 01

|
(@

.05 0

x10"

IN

N

|
N
T

displacement (m)
o

0.15 0.2
time (s)

025 03

|
o
o
a
o

0.35

FIGURE 6. TIME DOMAIN OBSERVATION t — v(t) RELATED
TO THE LINEAR (UPPER GRAPH) AND NONLINEAR (LOWER
GRAPH) CASES FOR = 100%

2+ : 4

displacement (m)
=

1500 2000 2500 3000 3500 4000
frequency (Hz)

o Ll

0 500 1000 1500 2000 2500 3000 3500 4000
frequency (Hz)

1000

displacement (m)
=

FIGURE 7. FREQUENCY DOMAIN OBSERVATIONv — w(2mv)
RELATED TO THE LINEAR (UPPER GRAPH) AND NONLINEAR
(LOWER GRAPH) CASES FOR = 20%

ing to the selected blade out-plane displacement is defiged b
w(w) = ﬁko(oo). Figures 7 and 8 display the graphs—
w-N (27tv) (upper graph) and — wWNONHN(27v) (lower graph)

for load ratesr = 20% andr = 100%. As expected, it can
be seen that the frequency content of the blade responsissu
from the linear NL-ROM coincides witlBs. The coupling is-
sued from the strong nonlinear geometric effects is charietd
through secondary response peaks, whose frequency centent
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N
T

displacement (m)
N

1500 2000 2500 3000 3500 4000
frequency (Hz)

(N W J"wk

L i
0 500 1000 1500 2000 2500 3000 3500 4000

frequency (Hz)

0 500 1000

displacement (m)

FIGURE 8. FREQUENCY DOMAIN OBSERVATIONv — w(271v)
RELATED TO THE LINEAR (UPPER GRAPH) AND NONLINEAR
(LOWER GRAPH) CASES FOR = 100%

larges with increasing load rate. It should be noted thatthkso
exist higher frequencies excited through this nonlingawitich
are not observed in the chosen band of analsids observed
on the graphs, the amplitude levels from linear and highinenl
ear cases are drastically different.

ratio b

OO 20 40 60 80 100

Load rate

1 | | | |
0 20 40 60 80 100

Load rate

FIGURE 9. SENSITIVITY ANALYSIS WITH RESPECT TO THE
LOAD RATE;

A sensitivity analysis is then conducted in order to quantif
these geometric nonlinear effects. Ibat. andbg, . be the am-
plitude ratio and frequency ratio defined by

Maxecs WNONLIN )
max,ep W-N (w)

_ argmaxeg WWONHN ()

~argmayeg WHN (w)

Bueo =

()

bw!m

Figure 9 displays the graphs— bw(r) (upper graph) and

I — by (r) (lower graph). Such graphs is able to show if the an-
alyzed response belongs or not to the nonlinear domain ¢f-ana
sis. When the values of observatidig. andb, . are different
from 1, the domain of analysis is nonlinear. It can be seeh tha
geometric nonlinear effects occurs fram= 2%. A quick de-
crease in amplitude is combined to a moderate shift of th@mai
response peak whearincreases.

Nonlinear analysis of the mistuned bladed disk

Mistuning implementation The mean NL-ROM used
above is re-used for considering the mistuned bladed dible T
stochastic NL-ROM is defined from the mean NL-ROM by re-
placing the operators of the mean NL-ROM by random oper-
ators according to the nonparametric probabilistic thd@aBy.
Since the NL-ROM is constructed by modal analysis without
substructuring techniques, the uncertainties are noideres to
be independent from one blade to another one, which restrict
the analysis to the class of integrated bladed disks, manufa
tured from a unique solid piece of material. In order to sifgpl
the analysis, the extension being straightforward, ondylitiear
elastic part is considered to be uncertain. In that caserethe
duced positive-definite operatfsp]" [K¢] [®], which can be writ-
ten such thaf®]" [K¢] [®] = [L]T [L] is replaced by the random
operator[L]" [G(&)][L], in which [G()] is a random operator
whose probability distribution is entirely described irb[2The
dispersion parametéris then a scalar parameter. According to
the nonparametric probabilistic theory, it allows the utaiaty
level of the stochastic NL-ROM to be controlled. In the prase
case, numerical simulations are carried out for disperkoel
0 = 0.02 (small mistuning) and = 0.1 (moderate mistuning)
and withr = 100%.

Nonlinear time domain analysis The nonlinear mis-
tuning analysis is first considered in the time domain. Fadix
t, observation(t) is replaced by the random variablét). The
numerical simulations are carried out witl = 1024 Monte
Carlo realizations, which is sufficient to get the convergeaf
E{V2(t)}, in which[ is the mathematical expectation. 1\t be
the random variable defined by

Ve = max V(i) . (6)

tE[tini ;tini+T]
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FIGURE 10. PROBABILITY DISTRIBUTION FUNCTION OF V.,
FORS = 0.02 (SOLID LINE) AND & = 0.1 (DASHED LINE)

FigurelO displays the graph of the probability distribatio
functionv — pynonun(V), which is computed using the kernel
density estimation [33]. It has to be compared with the value
v = 3.665x 10 *mrelated to the nonlinear analysis of the tuned
bladed disk (see Fig.6). Whenincreases from 02 to Q1, the
coefficient of variation of the observation is doubled fror@Zy
to 0.059, yielding a broader range taken by the Monte Carlo real-
izations. Moreover, a significant loss of symmetry of thebjaro
bility distribution function, quantified by a variation dfé skew-
ness from-0.07 to Q86 can be seen. Itis characterized by a shift
of the support to higher values, yielding a few realizatiohthe
observation to be increased of 40% with respect to the neatin
tuned case.

Nonlinear frequency domain analysis A Fourier
transform is then conducted in order to perform the nonlinea
analysis in the frequency domain. For fixed letY(w) be the
random dynamic magnification factor defined by

W(w)
MaXuep W(W)

Y(w) = (7)

in which W(w) is the random variable similar to observation
w(w) in the nonlinear tuned case. It should be notedYtai) is
a normalized random quantity and that the amplitude levels b
tween the geometric nonlinear case and the linear case an¢ ab
an order smaller.

Figures 11 and 12 display the graphs of the confidence re-
gion of v — YN (27v) calculated with a 95% probability level
forr = 100%,0 = 0.01 andd = 0.2. Figures 13 and 14 display

I
N D N
T T T T

Amplification factor
=

0.8F
0.61
0.41
0.21
00 560 10‘00 1560 2600 25‘00 3000 3500 4000
Frequency (Hz)
FIGURE 11. CONFIDENCE REGION OF THE DYNAMIC MAG-

NIFICATION FACTOR v — YYN(27rv) FOR THE LINEAR CASE
WITH & = 0.02.

161 7

1.41 h

1.2 : h

0.8r 7

0.6 h

0.4r 7

0.2r 7

0 5(30 1600 15‘00 20‘00 2560 3000 35‘00 4000
FIGURE 12. CONFIDENCE REGION OF THE DYNAMIC MAG-
NIFICATION FACTOR v — YYN(27rv) FOR THE LINEAR CASE
WITH & = 0.1.

the similar graphs for random observatiom-» YNONUN(277y),
Comparing the linear case with the nonlinear case showstteat
effects of uncertainties increase with the geometric mesrity.

For fixed d, it can be seen on these figures that the confidence
region related to the peak located arouBglis very sensitive

to uncertainties, when considering the geometric nontinase,
yielding a broad confidence region and some realizationls wit
40% (or 30%) amplification effect with = 0.02 (oré = 0.1).

A small softening effect is also observed with #% decreas-

ing shift of the frequency resonance. The uncertaintieabse
propagated on the secondary peaks excited through the ¢feome
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FIGURE 13. CONFIDENCE REGION OF THE DYNAMIC MAG-
NIFICATION FACTOR v — YNONLIN(2/y) FOR THE GEOMETRIC
NONLINEAR CASE WITH S = 0.02

ric nonlinearities. Although the amplitudes of these peaies
marginal compared to the main vibration peak, the sentyitioi
uncertainties is larger.

1.6f

1.4r

1.2r

0.81

0.6

0.41

" _JLL NL
0

0 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Amplification factor
[

FIGURE 14. CONFIDENCE REGION OF THE DYNAMIC MAG-
NIFICATION FACTOR v — YNONLUIN(27y) FOR THE GEOMETRIC
NONLINEAR CASE WITHS = 0.1

CONCLUSION

The paper has presented an analysis of the geometrical non- [4] Mignolet, M.-P., and Soize, C., 2008.

linear effects of uncertain mistuned bladed disk, corradpa

to the particular case for which aerodynamic coupling \gélat-

ter, that is to say nearly unstable situations with very l@amg-

ing, which is represented by an high loading level. Firsdy,
nonlinear dynamic analysis of the tuned bladed disk is psego
through the construction of a NL-ROM. The effects of the geo-
metric nonlinearities, corresponding to a quick stiffepof the
structure when reaching a critical level of loading, arerdgifi@d

in both time domain and frequency domain. The dynamical re-
sponse of the blades is also investigated outside the fnegue
domain of excitation. The linear response has its energy con
centrated in the frequency domain of excitation whereaadtime
linear response is spread over a larger frequency domaien,Th
the nonlinear analysis of the mistuned structure is propdase
the context of integrally bladed disks, assuming the uagert
ties from one blade to another one to be dependent. Compared
to the linear mistuned case, the nonlinear mistuned regqmes
dictions yield low vibration amplitudes. Nevertheless,d@iven
mistuning rate, the nonlinear mistuned response predilis-
play broader confidence regions and are much more sensgitive t
uncertainties. Such decrease of robustness with respect-to
certainties propagates quickly in the whole frequency baind
analysis. This yields a complex vibratory situation, ggiise

to frequency ranges for which secondary resonances apjithar w
large confidence regions.
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