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ABSTRACT
The recent improvements in turbomachinery design requires

the analysis of exceptional operating regime of bladed disks cor-
responding to geometrical nonlinear effects induced by thelarge
displacements/deformations. In addition, the random nature of
the mistuning has also to be modeled. First, a mean nonlinear
reduced-order model of the tuned bladed disk is explicitly con-
structed in the context of the finite element method. The investi-
gation is then devoted to the modeling of the mistuning through
the nonparametric probabilistic approach extended to the non-
linear geometric context. The stochastic nonlinear equations are
solved in the time domain using the Monte Carlo numerical sim-
ulation coupled with advanced arc-length methods adapted to
high nonlinear response levels. Finally, the methodology is ap-
plied through a numerical example of a bladed disk and a non-
linear analysis is performed in both time and frequency domain.

NOMENCLATURE
g(t) Time domain of the load
ĝ(ω) Frequency domain of the load
j0,k0 Blade number
n number of degrees of freedom
nt Number of time steps
r Load rate

s∆ω Centered frequency ofBs

tini Initial instant of integration
v(t) Time domain observation (mean NL-ROM)
w(ω) Frequency domain observation (mean NL-ROM)
N Order of the cyclic symmetry
P Dimension of the NL-ROM
T Total duration time
V(t) Time domain observation (stochastic NL-ROM)
V∞ Time domain observation (stochastic NL-ROM)
W(ω) Frequency domain observation (stochastic NL-ROM)
Y(ω) Magnification factor (stochastic NL-ROM)
δν Frequency resolution
δ Dispersion parameter
ν Frequency(Hz)
ωmin Lower bound ofBs

ω Pulsation(rad.s−1)
∆ω Width ofBs

Ω Angular speed (rotational motion)B Frequency band of analysisBs Frequency band of excitationR Real vector spacea Spatial discretization of the load
f External load vector
fNL(u) Nonlinear restoring force
q vector of the generalized coordinates (mean NL-ROM)
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u Displacement vector (mean computational model)
ũ Observation vector (mean NL-ROM)
[A] Finite element matrices (Roman capital letters)
[Φ] Modal matrix

INTRODUCTION
There are many aspects to be taken into consideration when

dealing with turbomachinery bladed disks. The predictive com-
putational models are more and more sophisticated, including
the modeling of complex phenomena occurring in such struc-
tures. It is well known, that the manufacturing tolerances,the
dispersion of materials, which arouses in bladed disks structures
create uncertainties on the geometry, on the boundary conditions
and on the material properties, which breaks the natural cyclic
symmetry of such structures. The main consequence results in
strong vibrations combined to spatial localization in the dynamic
forced response of the blades [1]. The random character of such
phenomenon referred to as mistuning requires the use of adapted
probabilistic model of uncertainties in the computationalmod-
els [2–5]. Another essential aspect to be taken into accountcon-
cerns the modeling of the different nonlinearity sources such as
nonlinear contact interfaces [6–8] or geometrically nonlinear ef-
fects [9–12]. At the same time, the progression of the compu-
tational capabilities, which includes the possibility of using par-
allel computations, has been a motivation to develop computa-
tional strategies adapted to large finite element model of indus-
trial bladed disks. Various researches concerning reduced-order
modeling techniques adapted to the mistuned linear analysis of
bladed disks [2, 13] have been used for robust design optimiza-
tion purpose [14–16]. Adapted reduced-order techniques have
also been proposed in [17, 18] for the nonlinear dynamical anal-
ysis of turbomachines.

In the present case, we are interested in the geometrically
nonlinear analysis of mistuned bladed disks. The recent improve-
ments in turbomachinery design requires the analysis of excep-
tional operating regime of bladed disks for which large displace-
ments/deformations can occur. The case of severe loading isin-
vestigated in the context of elasto-dynamics. Such situation is
equivalent to nearly unstable cases induced by aerodynamiccou-
pling yielding flutter and thus very low damping levels. In such
case, the linearized elasto-dynamic theory can not be used any-
more because the geometrically nonlinear effects induced by the
large deformations and the large displacements are very strong
and need to be taken into account in the modeling.

The methodology is developed in the context of large fi-
nite element computational model of bladed disks, requiring the
construction of adapted nonlinear reduced-order computational
models (NL-ROM). The developments of such NL-ROM re-
quires the selection of an appropriate deterministic basisfor the
representation of the nonlinear dynamic response. More gener-
ally, this projection basis can be obtained by using the proper-

orthogonal decomposition method or by an eigenvalue analysis.
A mixed formulation combining these two approaches has been
proposed in [19]. Strategies based on the selective choice of
the most appropriate basis are reviewed in [20]. The parame-
ters of the NL-ROM of the tuned structure can then be either
deduced using the STEP procedure (which is based on the smart
non-intrusive use of standard commercial finite element codes)
[20–22] or from explicit construction as shown in [23] in the
context of three-dimensional solid finite elements. Once the NL-
ROM of the tuned bladed disk is established, uncertainties can
be implemented through the nonparametric framework [24, 25],
which has been extended in the nonlinear geometric case [22].
Such probabilistic approach is able to simultaneously capture
both system-parameter uncertainties and model uncertainties. It
relies on the dedicated construction of a probability modelre-
lated to the tuned NL-ROM operators, using the maximum en-
tropy principle (MaxEnt).

The paper is organized as follows. Section 1 gives a com-
plete description of the computational methodology and of its
numerical aspects allowing the nonlinear dynamic analysisof
mistuned bladed-diks to be performed. The mean NL-ROM cor-
responding to the tuned structure is explicitly constructed follow-
ing the approach presented in [23]. Once the mistuning is mod-
eled through the nonparametric probabilistic approach, the nu-
merical strategy concerning the resolution of the set of nonlinear
coupled differential equations is discussed. Section 2 is devoted
to a numerical example, for which the geometrically nonlinear
effects are analyzed and quantified in both tuned and mistuned
cases.

METHODOLOGY
This Section is devoted to the construction of a methodology

for the nonlinear mistuning analysis occurring in rotatingbladed
disks structures. In the present research, the bladed disksunder
consideration are assumed (1) to be made up of a linear elastic
material and (2) to undergo large displacements and large defor-
mations inducing geometrical nonlinearities.

Nonlinear dynamics of a tuned bladed disk
The tuned bladed disk structure has anN−order cyclic sym-

metry. Thus, the geometrical domain, the material constitutive
equations and the boundary conditions related to the generating

sector are invariant under the
2π
N

rotation around its axis of sym-

metry. Moreover, the bladed disk undergoes a rotational mo-
tion around the axis of symmetry with constant angular speed
Ω. By choosing a total Lagrangian formulation, the dynamical
equations are expressed in the rotating frame of an equilibrium
configuration considered as a prestressed static configuration.

The mean (or nominal) computational model of the tuned
bladed disk, which is constructed by the Finite Element Method
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(FEM) is written as [26]:

[M ] ü+([C(Ω)]+ [D ])u̇+[K1(Ω)]u+ fNL(u) = f ,

[K1(Ω)] = [Ke]+ [Kg]+ [Kc(Ω)] , (1)

in which theRn-vectorf is the external load representing for in-
stance the unsteady pressures applied to the blades, and where
theRn-vectoru corresponds to the finite element discretization
of the unknown displacement field. In Eq. (1), the matrices[M ],
[D ], [Kg] and [Ke] are the mass, damping, geometrical stiffness
and elastic stiffness real matrices with positive definiteness prop-
erty. The rotational effects are taken into account throughthe
gyroscopic coupling matrix[C(Ω)] and the centrifugal stiffness
matrix [Kc(Ω)], which have respectively antisymmetry property
and negative definiteness property. It should be noted that all
these matrices are alsoN-block circulant matrices [27] since the
structure has anN-order cyclic symmetry. The geometrical non-
linearities effects are taken into account through theRn-vector
fNL(u) which includes the exact and complete quadratic and cu-
bic terms given by the three-dimensional nonlinear geometric
elasticity. Furthermore, the centrifugal effects are assumed to
be sufficiently small so that the linear stiffness matrix[K1(Ω)]
is positive definite, yielding only stable dynamical systems to be
considered.

In the present case, the presence of the geometric nonlin-
earity naturally yields the nonlinear equations to be solved in the
time domain, the frequency content of the nonlinear response be-
ing a posteriorianalyzed by Fourier transform. Concerning the
external load, a usual harmonic excitation would be inappropri-
ate because the nonlinear equations should be solved for each
harmonic excitation considered. The external load is then de-
fined in the time domain corresponding to a uniform sweep of
a chosen frequency band of excitation. LetB̃s = −Bs∪Bs be
the frequency band of excitation with central frequencys∆ω and
bandwidth∆ω defined byBs = [(s−1/2)∆ω ,(s+1/2)∆ω ]. The
external load is written as

f(t) = f0 g(t)a , (2)

in which f0 is a coefficient characterizing the global load inten-
sity, and wherea is anRn−vector corresponding to the spatial
discretization of the load. In Eq. (2), the functiong(t) is cho-

sen asg(t) =
∆ω
π

sincπ(
t∆ω
2π

)cos(s∆ω t), wherex 7→ sincπ(x)

is the special function defined bysincπ(x) = sin(π x)/(π x). It
should be noted that all the frequencies of the frequency band
of excitation are simultaneously excited so that only one nonlin-
ear time-domain analysis is carried out. With such time-domain
excitation, a forced-response problem is considered and not a
time evolution problem with initial conditions. The considered

forced-response problem is thus approximated by an equivalent
time-evolution problem with zero initial conditions over afinite
time interval, which includes almost all of the signal energy of
the excitation.

The use of the cyclic symmetry property by decomposing
the nonlinear response according to its harmonic components is
not considered in the present case because all the harmonic com-
ponents are coupled through the geometric nonlinearity anddoes
not allow the problem on a single rotor sector to be solved. More-
over, the full computation of the nonlinear solution of Eq. (1) can
not be reasonably performed when dealing with realistic models
of bladed disks corresponding to a large number of DOF. More
specifically, large dimensional computational models require to
develop reduced-order model strategies adapted to this geomet-
ric nonlinear context (see [19, 21, 23] and [20] for a complete
overview). Let be a given vector basis represented by the(n×P)
real matrix[Φ]. The nonlinear responseu is expanded as

u = [Φ]q , (3)

in which q is theRP-vector of the generalized coordinates. Re-
placing Eq. (3) in Eq. (1) yields a nonlinear reduced set ofP
coupled differential equations for which all linear, quadratic and
cubic terms have to be known. In the present research, the con-
struction of the operators of such mean NL-ROM is explicitly
carried out in the context of the three-dimensional finite element
method. The finite elements are isoparametric solid finite ele-
ments with 8 nodes using a numerical integration with 8 Gauss
integration points. The elementary internal forces projected on
the chosen vector basis are numerically constructed for each fi-
nite element before performing its assembly and computing all
linear and nonlinear reduced operators. The detailed procedure,
which also uses the symmetry properties of the linear and nonlin-
ear reduced-operators combined with distributed computations,
can be found in [23]. It should be noted that each type of re-
duced operator is separately modeled, keeping open the possibil-
ity of implementing uncertainties issued from independentphys-
ical sources.

Nonlinear dynamics of a mistuned bladed disk
The random nature of the mistuning is then considered by

implementing the nonparametric probabilistic approach, which
presents the ability to include both system-parameter uncertain-
ties and model uncertainties (see [25] for a complete reviewon
the subject). It consists in replacing the operators of the mean
NL-ROM by random operators, whose probability distribution
is derived from the maximum entropy principle. In the present
case, the mass, damping, geometrical stiffness and the opposite
of the centrifugal stiffness are positive definite operators whose
probability model is constructed from the usual nonparametric
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probabilistic approach [24]. The linear elastic, quadratic and cu-
bic stiffness reduced operators are reshaped in a positive-definite
operator as shown in [22], which allows the nonparametric prob-
abilistic theory to be extended to the geometric nonlinear case.
The stochastic model of the gyroscopic coupling is constructed
with a similar method as proposed in [28] for the aero-elastic
coupling. The dispersion of each random operator is then char-
acterized by one scalar parameter. Consequently, the mistuning
level of the bladed disk is entirely controlled by theR6-vectord = (δM,δD,δC,δKg,δKc,δK).

Numerical computations
The solution of the stochastic NL-ROM is calculated using

the Monte Carlo numerical simulation. For each realization, a
set of P nonlinear coupled differential equations is considered
and solved with the Newmark method, for which the averag-
ing acceleration scheme, known to be unconditionally stable is
used. With this solver, a set of nonlinear equations whose solu-
tion is denoted by theRP-vectorq has to be solved at each sam-
pling time. Such computation is mainly addressed by the fixed
point method because the iterative scheme does not require the
evaluation of the tangential stiffness matrix. Nevertheless, when
the algorithm does not converge, it is replaced by the Crisfield
arc-length method [29]. Such algorithm introduces an additional
scalar unknown� that multiplies the right-hand side of the non-
linear equation. It is solved step by step, each incrementalstep
being characterized by a given arc-length. For a given step,an
iterative scheme requiring one evaluation of the tangential stiff-
ness matrix allows a solution(q,�) to be computed. An adaptive
arc-length, depending on the number of iterations necessary to
obtain the convergence of the preceding increment is also imple-
mented. Furthermore, since parameter� has to be controlled to
be equal to 1, the state of the algorithm corresponding to thepre-
ceding increment has to be stored. Even if the procedure is time
consuming, its main advantage concerns its capability of captur-
ing high non-linear mechanical behaviors.

NUMERICAL EXAMPLE
Description of the mean computational model

The structure under consideration is a bladed disk consti-
tuted of a disk and 24 blades. The disk is made of a homoge-
neous and isotropic material with constant thickness 0.005m, in-
ner radius 0.035m, outer radius 0.1m, mass density 7860Kg.m−3,
Poisson ratio 0.25 and Young modulus 2× 1011N.m−2 . Fixed
conditions are applied along the internal boundary defined by
the inner radius. Each blade is made of the same homogeneous
and isotropic material as the disk one with length 0.07m, width
0.0085m, linear decreasing thickness from 0.005m to 0.001m.
The structure is in rotation around its revolution axis witha con-
stant angular speedΩ = 30000rpm. Since the dynamic analysis

FIGURE 1. FINITE ELEMENT MESH.

TABLE 1 . DATA FOR THE FE MODEL

FE Nodes DOF

Sector 12 46 138

Bladed disk 288 864 2592

is carried out in the rotating frame of the structure, the rigid-
body motion due to the rotation of the structure correspondsto a
fixed boundary condition at the inner radius of the structure. A
damping model is added for the bladed disk, corresponding toa
hysteretic model with a mean loss factor 2×10−7, which corre-
sponds to a modal damping around 0.001 for the low frequency
band of interest defined byB = [0, 3900]Hz.

The full finite element model, shown in Fig.1, is built with
288 8−nodes solid finite elements and is thus constituted of 2592
degrees of freedom (see Table 1 for the detailed data relatedto
the mesh of the structure).

Nonlinear analysis of the tuned bladed disk
Tuned linear eigenfrequencies The natural eigenfre-

quencies of the linear tuned bladed disk are calculated firstby
using the cyclic symmetry property of the structure [30,31]. Fig-
ure 2 displays these eigenfrequencies as a function of its circum-
ferential wave number.

Description of the external load Concerning the
modeling of the external load according to Eq.(2), the fre-
quency band of excitation is chosen with regard to Fig.2 such
that Bs = [3000, 3207]Hz, which corresponds tos = 15 and
∆ω = 1300rad.s−1. The spatial distribution of the load is only
concerned with point excitations located at the end of each blade
along the transverse direction. Vectora characterizing the spa-
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FIGURE 2. NATURAL FREQUENCIES WITH RESPECT TO CIR-
CUMFERENTIAL WAVE NUMBER

tial distribution from blade to blade has then 24 non zeros com-
ponents, which are uniformly distributed from blade to blade.
In that case when the tuned linear case is considered, there are
contributions on all the circumferential wave number. The ex-
ternal load is thus considered as a function off0. Concerning
the numerical sampling, the initial instant of integrationtini and
the total time durationT are chosen according to [32] such that
tini = −0.029s (corresponding to a zero value of functiong(t))
andT = 0.36s. GivenB combined with the Shannon theorem
yields the numbernt of time steps to bent = 2800. The fre-
quency resolution is thenδ ν = 2.78Hz. Let ĝ(ω) be the Fourier
transform of functiong(t). Figure 3 shows the graphst 7→ g(t)

andν 7→ ĝ(2πν), in whichν =
ω
2π

.

Convergence analysis of the mean NL-ROM Con-
cerning the choice of the vector basis for the construction of the
mean NL-ROM, a strategy would consist in using the proper or-
thogonal decomposition method (POD). This would require the
knowledge of the full reference solution, which is practically
not possible to get, when considering realistic bladed diskmod-
els involving large number of degrees of freedom (DOF). In the
present case, the nonlinear equations are solved in the subspace
spanned by the usual linear basis constituted of theP modal
shapes related to the first increasing natural eigenfrequencies, ac-
cording to [23]. Zero initial conditions are used. The observation
is given by theRN-vectorũP corresponding to the out-plane dof
located at the end of each blade. An incremental convergence
analysis is carried out for a maximum load off0||a|| = 3.512N,
corresponding to an high rate of geometrical nonlinearity.Such
high loading can be interpreted as equivalent to a situationfor
which the damping of the bladed disk structure would reach very

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−500

0

500

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

FIGURE 3. REPRESENTATION OF THE EXTERNAL LOAD IN
THE TIME AND FREQUENCY DOMAIN: GRAPH OFt 7→ g(t) (UP-
PER GRAPH) andν 7→ ĝ(2πν) (LOWER GRAPH).

small values. Such extreme situations are realistic when flutter
occurs and yields nearly unstable situations. LetConv(P) be the
function defined by

Conv(P) =
∫ tini+T

tini

||ũP(t)||2 dt . (4)

Figure 4 displays the graphP 7→ Conv(P)/Conv(150) in a log-
arithmic scale. It can be seen thatP = 90 yields a reasonable
convergence. From now on, the calculations will be carried out
for P = 100.

Nonlinear time domain analysis From now on, the
converged solution corresponding to the observation issued from
the mean NL-ROM is denoted bỹu(t). For clarity, when con-
fusion is possible, superscriptsLIN andNONLIN will be added for
distinguishing the linear case from the geometric nonlinear one.
Let be the load rate such thatr = 100% when intensity load is
f0||a|| = 3.512N.

The intensity loads considered are then described
by r f0||a|| with r ∈]0, 1]. Being interested in the
blade yielding the highest vibration amplitude, let
j0 = arg maxj

(
maxt ũNONLIN

j (t)
)

calculated for a load
rate r = 100%. The observationv(t) corresponding to the se-
lected blade out-plane displacement is defined byv(t) = ũ j0(t).
Figures 5 and 6 display the graphst 7→ vLIN(t) (upper graph)
andt 7→ vNONLIN(t) (lower graph) for load ratesr = 20% and
r = 100% corresponding to significant levels and very high
levels of geometric nonlinear effects. On these two figures,it is
seen that the geometric nonlinearities induce a blade stiffening
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FIGURE 5. TIME DOMAIN OBSERVATION t 7→ v(t) RELATED
TO THE LINEAR (UPPER GRAPH) AND NONLINEAR (LOWER
GRAPH) CASES FORr = 20%

characterized by a reduction of the vibration amplitudes ofthe
blades with respect to the linear case. This stiffening is also
combined with a strong irregularity of the blade response shape
over time, which shows an enrichment of the frequency content,
which has to be quantified.

Nonlinear frequency domain analysis Let k0 =

arg maxj
(

maxω∈B ̂̃uNONLIN
j (ω)

)
for which ̂̃u j

NONLIN
(ω) is the

Fourier transform of ˜uNONLIN
j (t) calculated forr = 100%.

In the frequency domain, the observationw(ω) correspond-
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FIGURE 6. TIME DOMAIN OBSERVATION t 7→ v(t) RELATED
TO THE LINEAR (UPPER GRAPH) AND NONLINEAR (LOWER
GRAPH) CASES FORr = 100%
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FIGURE 7. FREQUENCY DOMAIN OBSERVATIONν 7→ w(2πν)
RELATED TO THE LINEAR (UPPER GRAPH) AND NONLINEAR
(LOWER GRAPH) CASES FORr = 20%

ing to the selected blade out-plane displacement is defined by
w(ω) = ̂̃uk0(ω). Figures 7 and 8 display the graphsν 7→
wLIN(2πν) (upper graph) andν 7→wNONLIN(2πν) (lower graph)
for load ratesr = 20% andr = 100%. As expected, it can
be seen that the frequency content of the blade response issued
from the linear NL-ROM coincides withBs. The coupling is-
sued from the strong nonlinear geometric effects is characterized
through secondary response peaks, whose frequency contenten-
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larges with increasing load rate. It should be noted that there also
exist higher frequencies excited through this nonlinearity which
are not observed in the chosen band of analysisB. As observed
on the graphs, the amplitude levels from linear and high nonlin-
ear cases are drastically different.
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FIGURE 9. SENSITIVITY ANALYSIS WITH RESPECT TO THE
LOAD RATE;

A sensitivity analysis is then conducted in order to quantify
these geometric nonlinear effects. Letbw,∞ andbω,∞ be the am-
plitude ratio and frequency ratio defined by

bw,∞ =
maxω∈BwNONLIN(ω)

maxω∈B wLIN(ω)

bω,∞ =
argmaxω∈BwNONLIN(ω)

argmaxω∈B wLIN(ω)
(5)

Figure 9 displays the graphsr 7→ bw,∞(r) (upper graph) and
r 7→ bω,∞(r) (lower graph). Such graphs is able to show if the an-
alyzed response belongs or not to the nonlinear domain of analy-
sis. When the values of observationsbw,∞ andbω,∞ are different
from 1, the domain of analysis is nonlinear. It can be seen that
geometric nonlinear effects occurs fromr = 2%. A quick de-
crease in amplitude is combined to a moderate shift of the main
response peak whenr increases.

Nonlinear analysis of the mistuned bladed disk
Mistuning implementation The mean NL-ROM used

above is re-used for considering the mistuned bladed disk. The
stochastic NL-ROM is defined from the mean NL-ROM by re-
placing the operators of the mean NL-ROM by random oper-
ators according to the nonparametric probabilistic theory[25].
Since the NL-ROM is constructed by modal analysis without
substructuring techniques, the uncertainties are not considered to
be independent from one blade to another one, which restricts
the analysis to the class of integrated bladed disks, manufac-
tured from a unique solid piece of material. In order to simplify
the analysis, the extension being straightforward, only the linear
elastic part is considered to be uncertain. In that case, there-
duced positive-definite operator[Φ]T [Ke] [Φ], which can be writ-
ten such that[Φ]T [Ke] [Φ] = [L]T [L] is replaced by the random
operator[L]T [G(δ )] [L], in which [G(δ )] is a random operator
whose probability distribution is entirely described in [25]. The
dispersion parameterδ is then a scalar parameter. According to
the nonparametric probabilistic theory, it allows the uncertainty
level of the stochastic NL-ROM to be controlled. In the present
case, numerical simulations are carried out for dispersionlevel
δ = 0.02 (small mistuning) andδ = 0.1 (moderate mistuning)
and withr = 100%.

Nonlinear time domain analysis The nonlinear mis-
tuning analysis is first considered in the time domain. For fixed
t, observationv(t) is replaced by the random variableV(t). The
numerical simulations are carried out withns = 1024 Monte
Carlo realizations, which is sufficient to get the convergence ofE{V2(t)}, in whichE is the mathematical expectation. LetV∞ be
the random variable defined by

V∞ = max
t∈[tini ;tini+T]

V(t) . (6)
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FORδ = 0.02 (SOLID LINE) AND δ = 0.1 (DASHED LINE)

Figure10 displays the graph of the probability distribution
function v 7→ pVNONLIN

∞
(v), which is computed using the kernel

density estimation [33]. It has to be compared with the value
v = 3.665×10−4m related to the nonlinear analysis of the tuned
bladed disk (see Fig.6). Whenδ increases from 0.02 to 0.1, the
coefficient of variation of the observation is doubled from 0.027
to 0.059, yielding a broader range taken by the Monte Carlo real-
izations. Moreover, a significant loss of symmetry of the proba-
bility distribution function, quantified by a variation of the skew-
ness from−0.07 to 0.86 can be seen. It is characterized by a shift
of the support to higher values, yielding a few realizationsof the
observation to be increased of 40% with respect to the nonlinear
tuned case.

Nonlinear frequency domain analysis A Fourier
transform is then conducted in order to perform the nonlinear
analysis in the frequency domain. For fixedω , let Y(ω) be the
random dynamic magnification factor defined by

Y(ω) =
W(ω)

maxω∈Bw(ω)
, (7)

in which W(ω) is the random variable similar to observation
w(ω) in the nonlinear tuned case. It should be noted thatY(ω) is
a normalized random quantity and that the amplitude levels be-
tween the geometric nonlinear case and the linear case are about
an order smaller.

Figures 11 and 12 display the graphs of the confidence re-
gion of ν 7→YLIN(2πν) calculated with a 95% probability level
for r = 100%,δ = 0.01 andδ = 0.2. Figures 13 and 14 display
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FIGURE 11. CONFIDENCE REGION OF THE DYNAMIC MAG-
NIFICATION FACTOR ν 7→ YLIN(2πν) FOR THE LINEAR CASE
WITH δ = 0.02.
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FIGURE 12. CONFIDENCE REGION OF THE DYNAMIC MAG-
NIFICATION FACTOR ν 7→ YLIN(2πν) FOR THE LINEAR CASE
WITH δ = 0.1.

the similar graphs for random observationν 7→ YNONLIN(2πν).
Comparing the linear case with the nonlinear case shows thatthe
effects of uncertainties increase with the geometric nonlinearity.
For fixedδ , it can be seen on these figures that the confidence
region related to the peak located aroundBs is very sensitive
to uncertainties, when considering the geometric nonlinear case,
yielding a broad confidence region and some realizations with
40% (or 30%) amplification effect withδ = 0.02 (orδ = 0.1).
A small softening effect is also observed with a 0.5% decreas-
ing shift of the frequency resonance. The uncertainties arealso
propagated on the secondary peaks excited through the geomet-
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FIGURE 13. CONFIDENCE REGION OF THE DYNAMIC MAG-
NIFICATION FACTORν 7→YNONLIN(2πν) FOR THE GEOMETRIC
NONLINEAR CASE WITHδ = 0.02

ric nonlinearities. Although the amplitudes of these peaksare
marginal compared to the main vibration peak, the sensitivity to
uncertainties is larger.
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FIGURE 14. CONFIDENCE REGION OF THE DYNAMIC MAG-
NIFICATION FACTORν 7→YNONLIN(2πν) FOR THE GEOMETRIC
NONLINEAR CASE WITHδ = 0.1

CONCLUSION
The paper has presented an analysis of the geometrical non-

linear effects of uncertain mistuned bladed disk, corresponding

to the particular case for which aerodynamic coupling yields flut-
ter, that is to say nearly unstable situations with very low damp-
ing, which is represented by an high loading level. Firstly,a
nonlinear dynamic analysis of the tuned bladed disk is proposed
through the construction of a NL-ROM. The effects of the geo-
metric nonlinearities, corresponding to a quick stiffening of the
structure when reaching a critical level of loading, are quantified
in both time domain and frequency domain. The dynamical re-
sponse of the blades is also investigated outside the frequency
domain of excitation. The linear response has its energy con-
centrated in the frequency domain of excitation whereas thenon-
linear response is spread over a larger frequency domain. Then,
the nonlinear analysis of the mistuned structure is proposed in
the context of integrally bladed disks, assuming the uncertain-
ties from one blade to another one to be dependent. Compared
to the linear mistuned case, the nonlinear mistuned response pre-
dictions yield low vibration amplitudes. Nevertheless, for a given
mistuning rate, the nonlinear mistuned response predictions dis-
play broader confidence regions and are much more sensitive to
uncertainties. Such decrease of robustness with respect toun-
certainties propagates quickly in the whole frequency bandof
analysis. This yields a complex vibratory situation, giving rise
to frequency ranges for which secondary resonances appear with
large confidence regions.
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