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ASYMPTOTIC BEHAVIOR OF THE QUADRATIC VARIATION OF THE

SUM OF TWO HERMITE PROCESSES OF CONSECUTIVE ORDERS

M. CLAUSEL, F. ROUEFF, M. S. TAQQU, AND C. TUDOR

Abstract. Hermite processes are self–similar processes with stationary increments which
appear as limits of normalized sums of random variables with long range dependence. The
Hermite process of order 1 is fractional Brownian motion and the Hermite process of order
2 is the Rosenblatt process. We consider here the sum of two Hermite processes of order
q ≥ 1 and q+1 and of different Hurst parameters. We then study its quadratic variations at
different scales. This is akin to a wavelet decomposition. We study both the cases where the
Hermite processes are dependent and where they are independent. In the dependent case,
we show that the quadratic variation, suitably normalized, converges either to a normal or
to a Rosenblatt distribution, whatever the order of the original Hermite processes.

1. Introduction

The (centered) quadratic variation of a process {Zt, t ≥ 0} is usually defined as

VN (Z) =

N−1∑

i=0

[
(Zti+1 − Zti)

2 − E(Zti+1 − Zti)
2
]
. (1)

where 0 = t0 < t1 < · · · < tN . The quadratic variation plays an important role in the
analysis of a stochastic process, for various reasons. For example, for Brownian motion and
martingales, the limit of the sequence (1) is an important element in the Itô stochastic calculus.
Another field where the asymptotic behavior of (1) is important is estimation theory: for self-
similar processes the quadratic variations are used to construct consistent estimators for the
self-similarity parameter. The limit in distribution of the sequence VN yields the asymptotic
behavior of the associated estimators (see e.g. [11], [10],[12], [7], [19], [20], [21]). Quadratic
variations (and their generalizations) are also crucial in mathematical finance (see e.g. [2]),
stochastic analysis of processes related with fractional Brownian motion (see e.g. [8], [14])
or numerical schemes for stochastic differential equations (see e.g. [13]). Variations of sums
of independent Brownian motion and fractional Brownian motion are considered in [9]. The
asymptotic behavior of the quadratic variation of a single Hermite process has been studied
in [4].

Our purpose is to study the asymptotic behavior of the quadratic variation of a sum of two
dependent Hermite processes of consecutive orders. One could consider other combinations.
We focus on this one because it already displays interesting features. It shows that the
quadratic variation, suitably normalized, converges either to a normal or to a Rosenblatt
distribution, whatever the order of the original Hermite processes. This would not be the
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case if only one Hermite process of order at least equal to two were considered, since then
the limit would always be a Rosenblatt distribution. This would also not be the case if
one considered the sum of two independent Hermite processes. We show indeed that in the
independent case, the quadratic variation asymptotically behaves as that of a single Hermite
process.

We will thus take the process Z in (1) to be

Z = Zq,H1 + Zq+1,H2 ,

where Zq,H denotes a Hermite process of order q ≥ 1 and with self-similarity indexH ∈
(
1
2 , 1
)
.

Hermite processes are self-similar processes with stationary increments and exhibit long-range
dependence. The Hermite process of order q ≥ 1 can be written as a multiple integral of order
q with respect to the Wiener process and thus belongs to the Wiener chaos of order q.

We will consider an interspacing

ti − ti−1 = γN

which may depend on N . The interspacing γN may be fixed (as in a time series setting),
grow with N (large scale asymptotics) or decrease with N (small scale asymptotics). The
case γN = 1/N is referred to as in-fill asymptotics. From now on, the expression of VN (Z)
reads

VN (Z) =

N−1∑

i=0

[
(ZγN (i+1) − ZγN i)

2 − E(ZγN (i+1) − ZγN i)
2
]
. (2)

Such an interspacing was also considered in [19] when studying the impact of the sampling
rate on the estimation of the parameters of fractional Brownian motion. Since we consider
here the sum of two self-similar processes, one with self-similarity index H1, the other with
self-similarity index H2, we expect to find several regimes depending on the growth or decay
of γN with respect to N . It seems indeed reasonable to expect that, if H1 > H2 the first
process will dominate at large scales and be negligible at small scales, and the opposite if
H1 < H2. Our analysis will in fact exhibit an intermediate regime between these two. When
H1 = H2, it is not clear whether one term should or should not dominate the other one.

The quadratic variation of the sum Z = X +Y can obviously be decomposed into the sum
of the quadratic variations of X and Y and the so-called quadratic covariation of X and Y
which is defined by

VN (X,Y ) :=

N−1∑

i=0

(Xti+1 −Xti)(Yti+1 − Yti)

with 0 = t0 < t1 < · · · < tN . The quadratic covariation shall play a central role in our
analysis. The case where X = ZH1,q and Y = ZH2,q+1 are Hermite processes of consecutive
orders, exhibits an interesting situation. If the two processes are independent (that is, they
are expressed as multiple integrals with respect to independent Wiener processes), then the
quadratic covariation of the sum is always dominated by one of the two quadratic variations
VN (X) or VN (Y ). On the other hand, surprisingly, we highlight in this paper that when
the two processes are dependent (they can be written as multiple integrals with respect to
the same Wiener process), then it is their quadratic covariation which may determine the
asymptotic behavior of VN (X + Y ). We also find that there is a range of values for the
interspacing γN where the limit is Rosenblatt in the independent case and Gaussian in the
dependent case. The range includes the choice γN = 1 for a large set of (H1,H2), as illustrated
by the domain ν1 < 0 in Figure 1.
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A primary motivation for our work involves the analysis of wavelet estimators. Of particular
interest is the case H2 = 2H1 − 1 which is related to an open problem in [6]. See Example 3
for details.

The paper is organized as follows. Section 2 contains some preliminaries on Hermite pro-
cesses and their properties. The main results are stated in Section 3. The asymptotic behavior
of VN (Z) is given and illustrated in Section 4. The proofs of the main theorem and propo-
sitions are given in Section 5 while Section 6 contains some technical lemmas. Basic facts
about multiple Itô integrals are gathered in Appendix A.

2. Preliminaries

Recall that a process {Xt, t ≥ 0} is self–similar with index H if for any a > 0, {Xat, t ≥ 0}

has the same finite-dimensional distributions as {aHXt, t ≥ 0}. Hermite processes {ZH,q
t , t ≥

0}, where H ∈ (1/2, 1), q = 1, 2, · · · are self–similar processes with stationary increments.
They appear as limits of normalized sums of random variables with long–range dependence.
The parameter H is the self–similar parameter and the parameter q denotes the order of the
process. The most common Hermite processes are the fractional Brownian motion BH = ZH,1

(Hermite process of order 1) and the Rosenblatt process RH = ZH,2 (Hermite process of
order 2). Fractional Brownian motion (fBm) is Gaussian but all the other Hermite processes
are non–Gaussian. On the other hand, because of self–similarity and stationarity of the
increments, they all have zero mean and the same covariance

E

[
ZH,q
t1 ZH,q

t2

]
=

1

2

[
|t1|

2H + |t2|
2H − |t1 − t2|

2H
]
,

hence E
[
(ZH,q

1 )2
]
= 1. Consequently, the covariance of their increments decays slowly to zero

as the lag tends to infinity, namely

E

[
(ZH,q

t+1 − ZH,q
t )(ZH,q

s+t+1 − ZH,q
s+t)

]
∼ H(2H − 1)s2H−2 as s → ∞ .

Observe that the sum over s ≥ 1 of these covariances diverges, which is an indication of
“long–range” dependence.

The Hermite processes {ZH,q
t , t ≥ 0} can be represented by Wiener–Itô integrals (see Ap-

pendix A for more details about stochastic integrals), namely

ZH,q
t = c(H, q) Iq(L

H,q
t ) := c(H, q)

∫ ′

Rq

LH,q
t (y1, · · · , yq)dBy1 · · · dByq , (3)

where c(H, q) is a positive normalizing constant, B represents standard Brownian motion and
where the kernel is defined by

LH,q
t (y1, · · · , yq) =

∫ t

0
(u− y1)

−( 1
2
+ 1−H

q
)

+ · · · (u− yq)
−( 1

2
+ 1−H

q
)

+ du . (4)

The prime on the integral (3) indicates that one does not integrate over the “diagonals”,

where at least two entries of the vector (y1, . . . , yq) are equal. Observe that the kernel LH,q
t

is symmetric and has a finite L2(Rq) norm ‖LH,q
t ‖2 < ∞ because H ∈ (1/2, 1). The Hermite

process {ZH,q
t , t ≥ 0} is then well–defined. It has mean zero and variance

E

[
(ZH,q

t )2
]
= c2(H, q) q!‖LH,q

t ‖22 .
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In order to standardize the Hermite process, the positive normalizing constant c(H, q) is
defined by

c(H, q) =
(
q!‖LH,q

1 ‖22

)−1/2
, (5)

so that E
[
(ZH,q

t )2
]
= t2H for all t ≥ 0.

The fractional Brownian motion is obtained by setting q = 1 and denoted by

BH
t = ZH,1

t := c(H, 1)

∫

R

(∫ t

0
(u− y)

H−3/2
+ du

)
dBy1 ,

while the Rosenblatt process is obtained by setting q = 2 and denoted by

RH
t = ZH,2

t := c(H, 2)

∫ ′

R2

(∫ t

0
(u− y1)

H−1
+ (u− y2)

H−1
+ du

)
dBy1dBy2 .

The (marginal) distribution BH
1 of the standard fractional Brownian motion BH

t = ZH,1
t

when t = 1 is N (0, 1) and the distribution RH
1 of the standard Rosenblatt process RH

t when
t = 1 is called the Rosenblatt distribution, see [16] and [22] for more information about that
distribution. The normal distribution and the Rosenblatt distribution will appear in the limit.

The asymptotic behavior of VN (X) where X is an Hermite process, namely X = ZH,q was
studied in [4]. The limit is either the normal distribution or the Rosenblatt distribution. The
normal distribution appears in the limit when X is the fractional Brownian motion ZH,1 with
H ∈ (1/2, 3/4). The Rosenblatt distribution appears in the limit when X is the fractional
Brownian motion with H ∈ (3/4, 1) or when ZH,q is a Hermite process with q ≥ 2 and
H ∈ (1/2, 1). See Theorem 1 below, for a precise statement.

We shall focus on the simplest mixed model based on Hermite processes, that is,

Zt = ZH1,H2
t = ZH1,q

t + ZH2,q+1
t , (6)

where q ≥ 1 and H1,H2 ∈ (1/2, 1). Processes of the type (6) appear naturally in the
framework of long range dependent Gaussian subordinated processes (see [6] and Example 3
below). Observe that :

• ZH,q and ZH,q+1 are defined in (3) using the same underlying Brownian motion B
but different kernels Lt are involved.

• It follows from the previous point that ZH,q and ZH,q+1 are uncorrelated but depen-
dent, see [1].

• ZH1,H2 is not self–similar anymore if H1 6= H2 but still has stationary increments.
• In the quadratic variations (2) cross–terms

(
ZH1,q
γN (i+1) − ZH1,q

γN i

)(
ZH2,q+1
γN (i+1) − ZH2,q+1

γN i

)
,

will appear. We will show that their (renormalized) partial sum is asymptotically
normal.

The notation
(d)
−→ refers to the convergence in distribution and aN ≪ bN means that aN =

o(bN ) as N → ∞ and aN ∼ bN means aN/bN → 1 as N → ∞. The notation XN = oP (1)
means that XN → 0 in probability.
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3. Main results

3.1. Main assumptions. Throughout the paper, we consider H1,H2 ∈ (1/2, 1) and an
integer q ≥ 1,

VN := VN (Z) =

N−1∑

i=0

[
(Zti+1 − Zti)

2 − E(Zti+1 − Zti)
2
]
, (7)

where ti = γN i and Z is the sum of the two Hermite processes ZH1,q and ZH2,q+1 as defined
in (6). The sum VN will be split into three terms as follows

VN = V
(1)
N + V

(2)
N + 2V

(3)
N , (8)

where

V
(1)
N =

N−1∑

i=0

[(
ZH1,q
ti+1

− ZH1,q
ti

)2
− E

(
ZH1,q
ti+1

− ZH1,q
ti

)2]
, (9)

V
(2)
N =

N−1∑

i=0

[(
ZH2,q+1
ti+1

− ZH2,q+1
ti

)2
− E

(
ZH2,q+1
ti+1

− ZH2,q+1
ti

)2]
, (10)

and

V
(3)
N =

N−1∑

i=0

(
ZH1,q
ti+1

− ZH1,q
ti

)(
ZH2,q+1
ti+1

− ZH2,q+1
ti

)
. (11)

The mean of the cross–term (11) vanishes because the terms in the product are Wiener–Itô
integrals of different orders and hence are uncorrelated (see formula (53)). We further denote
the corresponding standard deviations by

σN :=
(
E
[
V 2
N

])1/2
and σ

(i)
N :=

(
E

[
(V

(i)
N )2

])1/2
for i = 1, 2, 3. (12)

3.2. Asymptotic behavior of V
(1)
N , V

(2)
N and V

(3)
N . To investigate the asymptotic behavior

of VN and σN , we shall consider the terms V
(1)
N , V

(2)
N and V

(3)
N separately, without any

assumption on the scale sequence (γN ).

First we recall well–known results about the asymptotic behavior of the sequences V
(1)
N and

V
(2)
N .

Theorem 1. Denote

h1 = max

(
1

2
, 1−

2(1−H1)

q

)
=

{
1
2 if q = 1 and H1 ≤ 3/4

1− 2(1−H1)
q if q ≥ 2 or H1 ≥ 3/4

, (13)

and
δ = 1{H1=3/4}∩{q=1} , (14)

that is, δ = 1 if H1 = 3/4 and q = 1, and δ = 0 if H1 6= 3/4 or q ≥ 2. Then as N → ∞,

σ
(1)
N ∼ a(q,H1) γ

2H1
N Nh1 (logN)δ/2 . (15)

Moreover, we have the following asymptotic limits as N → ∞.

(1) (a) If q = 1 and H1 ∈ (1/2, 3/4], then

V
(1)
N

σ
(1)
N

(d)
−→ N (0, 1) , (16)
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(b) If q = 1 and H1 ∈ (3/4, 1) or if q ≥ 2 and H1 ∈ (1/2, 1), then

V
(1)
N

σ
(1)
N

(d)
−→ R

1−2(1−H1)/q
1 (17)

(2) If q ≥ 1 (that is, q + 1 ≥ 2) and H2 ∈ (1/2, 1), then

V
(2)
N

σ
(2)
N

(d)
−→ R

1−2(1−H2)/(q+1)
1 with σ

(2)
N ∼ a(q + 1,H2) N

[1−2(1−H2)/(q+1)]γ2H2
N . (18)

Here a(q,H1) and a(q + 1,H2) are positive constants.

Proof. Point (1a) goes back to [3] and Point (1b) with q = 1 and H1 ∈ (3/4, 1) goes back to
[17]. Point (1b) with q ≥ 2 and H1 ∈ (1/2, 1) can be deduced from [4] (see Theorem 1.1 and
its proof).

For the expression of the constant a(q,H1) in (15) with q = 1, that is for a(1,H1), see
Propositions 5.1, 5.2 and 5.3 in [20] with H ∈ (1/2, 3/4), H ∈ (3/4, 1) and H = 3/4 respec-
tively. For the expression of a(q,H1) with q ≥ 2 and H1 ∈ (1/2, 1), see Proposition 3.1 in [4].
The expression of the constant a(q + 1,H2) follows from that of a(q,H1).

The exponent of γN in (15) and (18) results from the fact that ZH1,q and ZH2,q+1 are
self-similar with index H1 and H2, respectively. �

In view of the decomposition (8) and of Theorem 1, we need to investigate the asymptotic

behavior of the cross–term V
(3)
N in order to get the asymptotic behavior of VN .

Theorem 2. We have the following convergence and asymptotic equivalence as N → ∞.

V
(3)
N

σ
(3)
N

(d)
−→ N (0, 1) with σ

(3)
N ∼ b(q,H1,H2) N

1−(1−H2)/(q+1)γH1+H2
N ,

where b(q,H1,H2) is a positive constant.

Remark 1. Theorem 2 cannot be directly extended to the general case where the process
Z is the sum of two Hermite processes of order q1, q2 with q2 − q1 > 1. This is because the

proof is based on the fact that V
(3)
N admits a Gaussian leading term. This may not happen

if q2 − q1 > 1 (see the proof of Proposition 2 and Remark 5 for more details). In contrast,
Theorems 3 and 5 below can be easily extended.

Proof. The proof of Theorem 2 is found in Section 5. �

3.3. Quadratic covariation in the independent case. Theorem 2 will imply that the

term V
(3)
N , which corresponds to the quadratic covariation of ZH1,q and ZH2,q+1, may dominate

in the asymptotic behavior of the sequence VN . On the other hand, if the two Hermite
processes are independent, the quadratic covariation is always dominated by the quadratic
variation of one of these processes. This is a consequence of the following theorem.

Theorem 3. Assume that for every t ≥ 0, ZH1,q
t and ZH2,q+1

t are given by (3) and define

Ṽ
(3)
N =

N−1∑

i=0

(
ZH1,q
ti+1

− ZH1,q
ti

)(
Z̃H2,q+1
ti+1

− Z̃H2,q+1
ti

)
,
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where the process Z̃H2,q+1 is an independent copy of ZH2,q+1. Then, as N → ∞,

E

[(
Ṽ

(3)
N

)2]
= o

(
σ
(1)
N × σ

(2)
N

)
,

where σ
(1)
N and σ

(2)
N are defined by (12).

Proof. We have, from the independence of the two Hermite processes,

E

[(
Ṽ

(3)
N

)2]
=

N−1∑

i,j=0

γi,j(Z
H1,q)γi,j(Z̃

H2,q+1) ,

where

γi,j(X) := E
[
(Xti+1 −Xti)(Xtj+1 −Xtj )

]
.

Since the covariance structure of the Hermite process ZH,q is the same for all q ≥ 1, we obtain

E

[(
Ṽ

(3)
N

)2]
=

N−1∑

i,j=0

γi,j(Z
H1,1)γi,j(Z

H2,1)

≤




N−1∑

i,j=0

(
γi,j(Z

H1,1)
)2



1
2



N−1∑

i,j=0

(
γi,j(Z

H2,1)
)2



1
2

,

where the last line follows from the Cauchy–Schwarz inequality. Recall that for two jointly
centered Gaussian random variables X and Y , we have

(Cov(X,Y ))2 =
1

2
Cov(X2, Y 2).

Hence
N−1∑

i,j=0

(
γi,j(Z

H1,1)
)2

=

N−1∑

i,j=0

(
Cov

(
ZH1,1
ti+1

− ZH1,1
ti

, ZH1,1
tj+1

− ZH1,1
tj

))2

=
1

2

N−1∑

i,j=0

Cov

((
ZH1,1
ti+1

− ZH1,1
ti

)2
,
(
ZH1,1
tj+1

− ZH1,1
tj

)2)

=
1

2
Var

[
N−1∑

i=0

((
ZH1,1
ti+1

− ZH1,1
ti

)2
− E

[(
ZH1,1
ti+1

− ZH1,1
ti

)2])
]

=
1

2
E

[(
VN

(
Z1,H1

))2]

by using the notation (1). Consequently,

E

[(
Ṽ

(3)
N

)2]
≤

1

2

{
E

[(
VN

(
ZH1,1

))2]
E

[(
VN

(
ZH2,1

))2]} 1
2
.

By Theorem 1, we know that, as N → ∞, the rate of convergence of the variance of the
quadratic variations of the Hermite process ZH,q (strictly) increases with respect to q (when
H is fixed). Therefore, since q ≥ 1 and q + 1 > 1, we get, as N → ∞,

E

[(
Ṽ

(3)
N

)2]
= o

({
E

[(
VN

(
ZH1,q

))2]
E

[(
VN

(
ZH2,q+1

))2]} 1
2

)
,
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which concludes the proof. �

4. Asymptotic behavior of the quadratic variation of the sum

4.1. Dependent case. It is now clear that the asymptotic behavior of VN will depend on

the relative behavior of the three sumands V
(1)
N , V

(2)
N and V

(3)
N . More precisely we have the

following result.

Theorem 4. Let us define

ν1 :=
1−H2

1 + q
− 1 + max

(
1

2
, 1−

2(1−H1)

q

)
<

1−H2

1 + q
=: ν2 . (19)

Denoting δ as in (14), we have the following asymptotic equivalence as N → ∞ :

(1) If γH2−H1
N ≪ Nν1 (logN)δ/2 then

VN = V
(1)
N (1 + oP (1)) .

(2) If Nν1 (logN)δ/2 ≪ γH2−H1
N ≪ Nν2, then

VN = 2V
(3)
N (1 + oP (1)) .

(3) If γH2−H1
N ≫ Nν2 then

VN = V
(2)
N (1 + oP (1)) .

Proof. Let us compare the terms V
(1)
N , V

(2)
N and V

(3)
N in each case considered in Theorem 4.

By Theorem 1 and Theorem 2, we have, for some positive constants c1, c2 and c3,

E

[∣∣∣V (1)
N

∣∣∣
2
]1/2

∼ c1 γ
2H1
N Nh1 (logN)δ/2 ,

E

[∣∣∣V (2)
N

∣∣∣
2
]1/2

∼ c2 N
1−2(1−H2)/(q+1)γ2H2

N ,

E

[∣∣∣V (3)
N

∣∣∣
2
]1/2

∼ c3 N
1−(1−H2)/(q+1)γH1+H2

N ,

and these rates always correspond to the rate of convergence in distribution.
The different cases are obtained by using the definitions of ν1 < ν2 in (19) and by computing

the following ratios of the above rates for V
(1)
N versus V

(3)
N :

γ2H1
N Nh1 (logN)δ/2

N1−(1−H2)/(q+1)γH1+H2
N

=
Nν1 (logN)δ/2

γH2−H1
N

, (20)

and V
(2)
N versus V

(3)
N :

N1−2(1−H2)/(q+1)γ2H2
N

N1−(1−H2)/(q+1)γH1+H2
N

=
γH2−H1
N

Nν2
. (21)

Observing that ν1 < ν2 and thus Nν1(logN)δ/2 ≪ Nν2 , we get in the three cases :
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(1) If

γH2−H1
N ≪ Nν1 (logN)δ/2,

then V
(1)
N dominates V

(3)
N by (20). But since it implies γH2−H1

N ≪ Nν2 , we have by (21)

that V
(3)
N dominates V

(2)
N . Hence V

(1)
N dominates in this case.

(2) If

Nν1 (logN)δ/2 ≪ γH2−H1
N ≪ Nν2 ,

then V
(3)
N dominates both V

(1)
N and V

(2)
N by (20) and (21), respectively.

(3) If

γH2−H1
N ≫ Nν2 ,

then V
(2)
N dominates V

(3)
N by (21). But since it implies γH2−H1

N ≫ Nν1 (logN)δ/2, we

have by (20) that V
(3)
N dominates V

(1)
N . Hence V

(2)
N dominates in this case.

This concludes the proof of Theorem 4. �

Remark 2. Note that ν2 > 0 but ν1 can be positive, zero, or negative. In fact,

ν1 =

{
1−H2
1+q − 1

2 if q = 1 and H1 < 3/4
1−H2
1+q − 2(1−H1)

q otherwise.

It follows that

ν1 ≤ 0 ⇐⇒ H2 ≥ 1−
2(q + 1)(1 −H1)

q
,

with equality on the left-hand side if and only if there is equality on the right-hand side. The
equality case corresponds to having (H1,H2) on the segment with end points (1 − q/(4(q +
1)), 1/2) and (1, 1), see Figure 1. TheH1 coordinate of the bottom end point is 1−q/(4(q+1)).
For q = 1 it equals 1− 1/8 = 0.875 and, as q → ∞, it decreases towards 3/4.

Let us illustrate Theorem 4 with some examples.

Example 1. In the particular case where H1 = H2, by Remark 2, we always have ν1 < 0.
It follows that we are in Case (2) of Theorem 4 whatever the values of q = 1, 2, . . . and the

interspacing scale γN . Thus, the dominant part of VN is the summand 2V
(3)
N . By Theorem 2,

we conclude that the limit of the normalized quadratic variation of the sum of two Hermite
processes with the same self-similarity index and successive orders is asymptotically Gaussian.

Example 2. When γN = 1, the asymptotic behavior of the quadratic variation depends on
the sign of ν1. If ν1 < 0, we are in Case (2) of Theorem 4, the dominant part of VN is the

summand 2V
(3)
N and the limit is asymptotically Gaussian by Theorem 2. If ν1 > 0, we are in

Case (1) of Theorem 4, the dominant part of VN is the summand V
(1)
N and by Theorem 1,

the limit is Rosenblatt. Indeed, ν1 > 0 excludes q = 1 and H1 ≤ 3/4, see Figure 1.

Example 3. The case H2 = 2H1 − 1 and q = 1 is of special interest because it is related to
an open problem in [6]. Let us recall the context. Suppose you have unit variance Gaussian
stationary data Yi, i ≥ 1 with spectral density f(λ) which blows up like |λ|−2d at the origin,
with 1/4 < d < 1/2. Then the partial sums behave asymptotically like fractional Brownian
motion with index H1, where

2H1 = (2d− 1) + 2 = 2d+ 1 . (22)
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H1

H
2

1/2 3/4 1

1
/2

3
/4

1

ν1 <0

ν1 >0

Boundary ν1=0

q=1

q=2

q=3

q=4

q=16

Figure 1. Domains of points (H1,H2) where the signs of ν1 is negative or
positive. The lines show the boundary between these sets. The right-hand line
corresponds to q = 1 and the left-hand line to q = 16. The processes here are
dependent.

On the other hand, referring to [5], the partial sums of Y 2
i − 1, i ≥ 1 behave like a Rosenblatt

process with index H2, where

2H2 = 2(2d − 1) + 2 = 4d . (23)

It follows that, conveniently normalized, for n large,
∑[nt]

k=1(Yk + Y 2
k − 1) can be seen as a

process Zt as defined by (6) with H2 = 2H1 − 1.

Applying Theorem 4 with H2 = 2H1 − 1 and q = 1, we obtain the following result.

Corollary 1. If H2 = 2H1 − 1 and q = 1, we have the following asymptotic equivalence as
N → ∞ :

(1) If γN ≫ N then

VN = V
(1)
N (1 + oP (1)) .

(2) If N−1 ≪ γN ≪ N , then

VN = 2V
(3)
N (1 + oP (1)) .
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(3) If γN ≪ N−1 then

VN = V
(2)
N (1 + oP (1)) .

Proof. Observe that if H2 = 2H1 − 1 and q = 1, one has H2 −H1 = H1 − 1 < 0. In addition,
the expression of the two exponents ν1, ν2 in (19) can be simplified as follows :

ν1 = max

(
1

2
−H1,H1 − 1

)
= −min

(
H1 −

1

2
, 1−H1

)
and ν2 = 1−H1.

Then ν1/(H2 − H1) = min
(
1, H1−1/2

1−H1

)
and ν2/(H2 − H1) = −1. Moreover observe that

H2 = 2H1 − 1 > 1/2 implies H1 > 3/4 which in turns implies min
(
1, H1−1/2

1−H1

)
= 1 and δ = 0.

Thus ν1/(H2−H1) = 1 and ν2/(H2−H1) = −1. Corollary 1 then follows from Theorem 4. �

4.2. Independent case. Theorem 4 should be contrasted with the following result involving
independent processes.

Theorem 5. Assume that the process Z̃H2,q+1 is an independent copy of ZH2,q+1. Let

ṼN = VN (ZH1,q + Z̃H2,q+1)

and
Ṽ

(2)
N = VN (Z̃H2,q+1).

Define δ as in (14) and ν1, ν2 as in (19). We have the following asymptotic equivalence as
N → ∞ :

(1) If γ
2(H2−H1)
N ≪ Nν1+ν2 (logN)δ/2 then

ṼN = V
(1)
N (1 + oP (1)) .

(2) If γ
2(H2−H1)
N ≫ Nν1+ν2 (logN)δ/2 then

ṼN = Ṽ
(2)
N (1 + oP (1)) .

Proof. By Theorem 3, we only need to compare V
(1)
N = VN (ZH1,q) and Ṽ

(2)
N = VN (Z̃H2,q+1)

d
=

VN (ZH2,q+1) = V
(2)
N . Using Theorem 1 as in the proof of Theorem 4, the ratio between (20)

and (21), gives that, as N → ∞,

σ
(1)
N

σ
(2)
N

∼ c
Nν1+ν2 (logN)δ/2

γ
2(H2−H1)
N

,

where c is a positive constant. This concludes the proof of Theorem 5. �

Remark 3. Note that ν1 + ν2 can be positive, zero, or negative. In fact,

ν1 + ν2 =

{
2(1−H2)

1+q − 1
2 if q = 1 and H1 < 3/4

2(1−H2)
1+q − 2(1−H1)

q otherwise.

It follows that

ν1 + ν2 ≤ 0 ⇐⇒ H2 ≥ 1−
(q + 1)(1 −H1)

q
,

with equality on the left-hand side if and only if there is equality on the right-hand side. The
equality case corresponds to having (H1,H2) on the segment with end points (1 − q/(2(q +
1)), 1/2) and (1, 1), see Figure 2. TheH1 coordinate of the bottom end point is 1−q/(2(q+1)).
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For q = 1 it equals 3/4 and, as q → ∞, it decreases towards 1/2. In contrast with the
dependent case described in Remark 2, the bottom of the boundary lines are pushed to the
left, with half the slopes, compare Figures 1 and 2.

H1

H
2

1/2 3/4 1

1
/2

3
/4

1

ν1+ν2 <0

ν1+ν2 >0

Boundary ν1+ν2=0

q=1

q=2

q=3

q=4

q=16

Figure 2. Domains of points (H1,H2) where the signs of ν1 + ν2 is negative
or positive. The lines show the boundary between these sets. The right-hand
line corresponds to q = 1 and the left-hand line to q = 16. The processes here
are independent.

We now illustrate Theorem 5 where the sum of two independent processes is considered.

Example 4. If H1 = H2, by Remark 3, we always have ν1+ ν2 < 0. Thus the dominant part

of ṼN is always Ṽ
(2)
N . By Theorem 1, we conclude that the limit of the normalized quadratic

variation of the sum of two independent Hermite processes with the same self-similarity index
and successive orders is asymptotically Rosenblatt.

Example 5. When γN = 1, the asymptotic behavior of the quadratic variation depends on
the sign of ν1+ ν2. If ν1+ ν2 < 0, we are in Case 2 of Theorem 5, the dominant part of VN is

Ṽ
(2)
N and the limit is asymptotically Rosenblatt by Theorem 1. If ν1+ν2 > 0, we are in Case 1

of Theorem 5, the dominant part of VN is V
(1)
N and by Theorem 1, the limit is Rosenblatt.

Indeed, ν1 + ν2 > 0 excludes the case q = 1 and H1 ≤ 3/4, see Figure 2.
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Remark 4. In Examples 1 and 4, we considered the setting H1 = H2 in the dependent and
independent cases. We see that the corresponding limits always differ, it is Gaussian in the
dependent case and it is Rosenblatt in the independent case.

The contrast between Examples 2 and 5, which both correspond to the setting γN = 1 is
a bit more involved. If ν1 > 0, then ν1 + ν2 > 0 and we have the same asymptotic behavior
in both cases and the asymptotic limit is Rosenblatt. On the other hand, if ν1 < 0, then, in
the dependent case we have a Gaussian limit and in the independent case we again have a
Rosenblatt limit.

5. Proof of Theorem 2

The proof of Theorem 2 is based on its decomposition in Wiener chaos of the cross term

V
(3)
N . We first need some notation : For any q and (H1,H2) ∈ (1/2, 1)2, set

H∗
1 (q) =

1−H1

q
+

1−H2

q + 1
. (24)

The function β̃a,b will appear as part of the kernel involved in the Wiener chaos expansion of

V
(3)
N . It is defined on R

2 \ {(u, v), u = v} for any a, b > −1 such that a+ b < −1 as :

β̃a,b(u, v) =

{
β(a+ 1,−1− a− b) if u < v,
β(b+ 1,−1− a− b) if v < u ,

(25)

where β denotes the beta function

β(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0 .

Proposition 1. The sum V
(3)
N admits the following expansion into Wiener chaos :

V
(3)
N =

q∑

k=0

V
(3,k)
N , (26)

where for every k = 0, · · · , q,

V
(3,k)
N = M(k, q,H1,H2)I2q+1−2k

(
N−1∑

i=0

f
(k)
N,i

)
, (27)

with

f
(k)
N,i(y1, · · · , y2q+1−2k) =

∫ ti+1

ti

∫ ti+1

ti

[
q−k∏

i=1

(u− yi)
−( 1

2
+

1−H1
q

)

+

]

2q+1−2k∏

i=q−k+1

(v − yi)
−( 1

2
+

1−H2
q+1

)

+




×

[
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(u, v)

]k
|u− v|−kH∗

1 (q)dudv ,

where β̃a,b has been defined in (25) and, defining c(H, q) as in (5),

M(k, q,H1,H2) = c(H1, q)c(H2, q + 1)k!

(
q

k

)(
q + 1

k

)
.



14 M. CLAUSEL, F. ROUEFF, M. S. TAQQU, AND C. TUDOR

Proof. Using the integral expression (3) of the two Hermite processes Z(q,H1) and Z(q+1,H2)

and by definition (11) of the sum V
(3)
N , we get that

V̄
(3)
N :=

V
(3)
N

c(H1, q)c(H2, q + 1)
=

N−1∑

i=0

Iq

(
LH1,q
ti+1

− LH1,q
ti

)
Iq+1

(
LH2,q+1
ti+1

− LH2,q+1
ti

)
,

where the two kernels LH1,q
t , LH2,q+1

t are defined in (4). We now use the product formula (55)
and deduce that

V̄
(3)
N =

N−1∑

i=0

[
q∑

k=0

k!

(
q

k

)(
q + 1

k

)
I2q+1−2k

(
(LH1,q

ti+1
− LH1,q

ti
)⊗k (L

H2,q+1
ti+1

− LH2,q+1
ti

)
)]

=

q∑

k=0

k!

(
q

k

)(
q + 1

k

)
I2q+1−2k

(
N−1∑

i=0

(LH1,q
ti+1

− LH1,q
ti

)⊗k (L
H2,q+1
ti+1

− LH2,q+1
ti

)

)
. (28)

To get an explicit expression for each term
(
LH1,q
ti+1

− LH1,q
ti

)
⊗k

(
LH2,q+1
ti+1

− LH2,q+1
ti

)
,

we use the definition of the ⊗k product given in the appendix :
[(

LH1,q
ti+1

− LH1,q
ti

)
⊗k

(
LH2,q+1
ti+1

− LH2,q+1
ti

)]
(y1, · · · , y2q+1−2k)

=

∫

Rk

(
LH1,q
ti+1

− LH1,q
ti

)
(y1, · · · , yq−k, x1, · · · , xk)

×
(
LH2,q+1
ti+1

− LH2,q+1
ti

)
(yq−k+1, · · · , y2q+1−2k, x1, · · · , xk)dx1 · · · dxk .

Using the specific form (4) of the kernel LH,q
t and the Fubini Theorem, the last formula reads

[(
LH1,q
ti+1

− LH1,q
ti

)
⊗k

(
LH2,q+1
ti+1

− LH2,q+1
ti

)]
(y1, · · · , y2q+1−2k)

=

∫ ti+1

ti

∫ ti+1

ti

[
q−k∏

i=1

(u− yi)
−( 1

2
+

1−H1
q

)

+

]

2q+1−2k∏

i=q−k+1

(v − yi)
−( 1

2
+

1−H2
q+1

)

+




×

[
k∏

i=1

∫

R

(u− xi)
−( 1

2
+

1−H1
q

)

+ (v − xi)
−( 1

2
+

1−H2
q+1

)

+ dxi

]
dudv

=

∫ ti+1

ti

∫ ti+1

ti

[
q−k∏

i=1

(u− yi)
−( 1

2
+

1−H1
q

)

+

]

2q+1−2k∏

i=q−k+1

(v − yi)
−( 1

2
+

1−H2
q+1

)

+




×

[∫ u∧v

−∞
(u− x)

−( 1
2
+

1−H1
q

)
(v − x)

−( 1
2
+

1−H2
q+1

)
dx

]k
dudv .

But for any real numbers a, b > −1 such that a+ b < −1, Lemma 1 implies that
∫ u∧v

−∞
(u− x)a(v − x)bdx = β̃a,b(u, v)|u − v|a+b+1 , (29)
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where the function β̃a,b has been defined in (25). Hence
[(

LH1,q
ti+1

− LH1,q
ti

)
⊗k

(
LH2,q+1
ti+1

− LH2,q+1
ti

)]
(y1, · · · , y2q+1−2k)

=

∫ ti+1

ti

∫ ti+1

ti

[
q−k∏

i=1

(u− yi)
−
(

1
2
+

1−H1
q

)

+

]

2q+1−2k∏

i=q−k+1

(v − yi)
−
(

1
2
+

1−H2
q+1

)

+




×

[
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(u, v)

]k
|u− v|−kH∗

1 (q)dudv ,

where we defined H∗
1 in (24). Combining this equality and relation (28) then leads to the

decomposition (26) of the sum V
(3)
N . This completes the proof of Proposition 1. �

We now bound the L2–norm of V
(3,k)
N for any k = 0, · · · , q and deduce that the terms V

(3,k)
N

are for all k < q negligible with respect to V
(3,q)
N . Proposition 2 below then directly implies

Theorem 2. We set

ε(α) =

{
1 if α = 1,
0 otherwise.

(30)

Proposition 2. For any k = 0, · · · , q − 1,

‖V
(3,k)
N ‖2 ≤ C N [2−min(α,1)](log(N))ε(α)γ2H1+2H2

N , (31)

where ε is defined in (30),

α = 2(q − k)(1−H1)/q + 2(q + 1− k)(1 −H2)/(q + 1) (32)

and as N → ∞,

N
−2+

2(1−H2)
q+1 γ

−2(H1+H2)
N ‖V

(3,q)
N ‖2 → b2(H1,H2, q) , (33)

for some b(H1,H2, q) > 0. The leading term is the one with k = q. Moreover, V
(3,q)
N is a

Gaussian random variable, and thus

N
(1−H2)

q+1
−1γ

−(H1+H2)
N V

(3,q)
N

(d)
−→ b(H1,H2, q) N (0, 1) .

Remark 5. The proof of (33) is based on the fact that, because Z is the sum of two Hermite

processes of consecutive orders, then V
(3,q)
N has a centered Gaussian term in its decomposition

(28) and this term turns out to be the leading term. We can then deduce its asymptotic
behavior from that of its variance. Since the variance of a simple Wiener–Itô integral is related
to the L2–norm of the integrand, we obtain (33). Note that this proof does not extend to the
case where Z is the sum of two Hermite processes of order q1, q2 with q2 − q1 > 1. In that

case, there is no Gaussian term in the sum V
(3)
N and hence no Gaussian leading term. Thus,

Proposition 2 cannot be extended in a simple way to more general cases.

Proof. We use the notation of Proposition 1. If n ≥ 2, we have by (54), that E[In(f)
2] ≤

n!‖f‖22 whereas in the case n = 1, f is trivially symmetric and this inequality becomes an
equality. We first consider the case k = 0, · · · , q − 1. By the integral definition (27) of the

terms V
(3,k)
N , we get that

E

[∣∣∣V (3,k)
N

∣∣∣
2
]
≤ M2

1 (k, q,H1,H2)

∫

R2q+1−2k




N−1∑

i,j=0

f
(k)
N,i(y)f

(k)
N,j(y)


 dy1 · · · dy2q+1−2k ,
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with

M2
1 (k, q,H1,H2) = (2q + 1− 2k)!M2(k, q,H1,H2).

Using the explicit expression of f
(k)
N,ℓ given for any ℓ = 0, · · · , N − 1 in Proposition 1, we

deduce that :

E

[∣∣∣V (3,k)
N

∣∣∣
2
]
≤ M2

1 (k, q,H1,H2)

∫

R2q+1−2k




N−1∑

i,j=0

g
(q,k)
N,i,j(y)


 dy1 · · · dy2q+1−2k , (34)

with

g
(q,k)
N,i,j(y1, · · · , y2q+1−2k)

=

∫ ti+1

u=ti

∫ ti+1

v=ti

∫ tj+1

u′=tj

∫ tj+1

v′=tj

q−k∏

ℓ=1

[
(u− yℓ)+(u

′ − yℓ)+
]−

(

1
2
+

1−H1
q

)

×

2q−2k+1∏

ℓ=q−k+1

[
(v − yℓ)+(v

′ − yℓ)+
]−

(

1
2
+

1−H2
q+1

)

×

[
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(u, v)β̃

−( 1
2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(u′, v′)|u− v|−H∗

1 (q)|u′ − v′|−H∗

1 (q)

]k
dudvdu′dv′ .

On the other hand, equality (42) of Lemma 1 implies that for any ℓ = 1, · · · , q − k
∫

yℓ∈R
(u− yℓ)

−( 1
2
+

1−H1
q

)

+ (u′ − yℓ)
−( 1

2
+

1−H1
q

)

+ dyℓ = β(a1 + 1,−2a1 − 1)|u− u′|−
(2−2H1)

q ,

with a1 = −(1/2 + (1−H1)/q) and that for any ℓ = q − k + 1, · · · , 2q − 2k + 1
∫

yℓ∈R
(v − yℓ)

−( 1
2
+

1−H2
q+1

)

+ (v′ − yℓ)
−( 1

2
+

1−H2
q+1

)

+ dyℓ = β(a2 + 1,−2a2 − 1)|v − v′|−
(2−2H2)

q+1 ,

with a2 = −(1/2 + (1−H2)/(q + 1)). Hence, combining the Fubini theorem, inequality (34)
and these two last equalities implies that for some M2(k, q,H1,H2) > 0

E

[(
V

(3,k)
N

)2]
≤ M2

2 (k, q,H1,H2)
N−1∑

i,j=0

∫ ti+1

u=ti

∫ ti+1

v=ti

∫ tj+1

u′=tj

∫ tj+1

v′=tj

h(u, u′, v, v′)dudvdu′dv′ ,

with

h(u, u′, v, v′) =

[
|u− u′|−

2−2H1
q

]q−k [
|v − v′|−

2−2H2
q+1

]q−k+1

×

[
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(u, v)β̃

−( 1
2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(u′, v′)|u− v|−H∗

1 (q)|u′ − v′|−H∗

1 (q)

]k
,

and

M2
2 (k, q,H1,H2) = M1(k, q,H1,H2)

2β(a1 + 1,−2a1 − 1)q−kβ(a2 + 1,−2a2 − 1)q−k+1 .

Recall that ti = iγN and use the change of variables

U = γ−1
N (u− iγN ), V = γ−1

N (v − iγN ), U ′ = γ−1
N (u′ − jγN ), V ′ = γ−1

N (v′ − jγN ) .
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We have

E

[(
V

(3,k)
N

)2]
≤ cγ

−2kH∗

1 (q)
N γ

−
(q−k)(2−2H1)

q

N γ
−

(q−k+1)(2−2H2)
q+1

N γ4N

×
N−1∑

i,j=0

∫

[0,1]4
Hi,j(U,U

′, V, V ′)dUdV dU ′dV ′ ,

with

Hi,j(U,U
′, V, V ′) =

[
|U − U ′ + i− j|−

2(1−H1)
q

]q−k [
|V − V ′ + i− j|−

2(1−H2)
q+1

]q−k+1

(35)

×

(
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(U, V )β̃

−( 1
2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(U ′, V ′)

)k

(36)

×|U − V |−kH∗

1 (q) · |U ′ − V ′|−kH∗

1 (q) ,

since β̃a,b(u, v) only depends on the sign of u− v. Now we simplify the expression involving
powers of γN . Since

−2kH∗
1 (q)−

(q − k)(2 − 2H1)

q
−

(q − k + 1)(2 − 2H2)

q + 1
+ 4

= −2k
1−H1

q
− 2k

1−H2

q + 1
−

(q − k)(2 − 2H1)

q
−

(q − k + 1)(2 − 2H2)

q + 1
+ 4

=

(
−
2q

q
−

2(q + 1)

q + 1
+ 4

)
+H1

(
2k

q
+

2(q − k)

q

)
+H2

(
2k

q + 1
+

2(q − k + 1)

q + 1

)

= 2H1 + 2H2 , (37)

we deduce that

E

[(
V

(3,k)
N

)2]
≤ cγ2H1+2H2

N

N−1∑

i,j=0

∫

[0,1]4
Hi,j(U,U

′, V, V ′)dUdV dU ′dV ′ . (38)

To obtain (31), we check that we can apply Lemma 2 below with

α1 =
2(q − k)(1 −H1)

q
, α2 =

2(q − k + 1)(1−H2)

q + 1
,

and

F (U, V ) =

[
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(U, V )|U − V |−H∗

1 (q)

]k
.

Since kH∗
1 (q) ≤ k(2q + 1)/(2q(q + 1)) < 1, Condition (45) holds.

It remains to check Condition (46). Note that β̃H∗

1 (q),H
∗

2 (q)
is bounded and then, for some

C > 0,

|F (U, V )| ≤ C |U − V |−kH∗

1 (q) .

We deduce the finiteness of the integrals
∫

[0,1]4
|U − U ′ + ℓ|−α1 |V − V ′ + ℓ|−α2F (U, V )F (U ′, V ′)dUdU ′dV dV ′ ,

as follows :
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(1) if ℓ = 0, we observe that α1, α2, kH
∗
1 (q) ∈ (0, 1) and by (37),

α1 + α2 + 2kH∗
1 (q) = 2(1 −H1) + 2(1 −H2) < 3

We then apply Part (1) of Lemma 3.
(2) if ℓ = 1 or ℓ = −1, we observe that α1, α2, kH

∗
1 (q) ∈ (0, 1) and apply Part (2) of

Lemma 3.
(3) if |ℓ| ≥ 2, we observe that on [0, 1]2,

|U − U ′ + ℓ|−α1 |V − V ′ + ℓ|−α2 ≤ ||ℓ| − 1|−α1−α2

(∫

[0,1]
|U − V |−kH∗

1 (q)dUdV

)2

< ∞ ,

since kH∗
1 (q) < 1.

This completes the proof of inequality (31) in the case k ∈ {0, · · · , q − 1}.
Now we consider the case where k = q. The approach is exactly the same except that In-

equality (38) becomes an equality because in (27) I2q+1−2k = I1 becomes a Gaussian integral.
One then has

E

[(
V

(3,q)
N

)2]
= cγ2H1+2H2

N

N−1∑

i,j=0

∫

[0,1]4
Hi,j(U,U

′, V, V ′)dUdV dU ′dV ′ , (39)

with (see 35),

Hi,j(U,U
′, V, V ′) =

[
|V − V ′ + i− j|−

2(1−H2)
q+1

] [
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(U, V )|U − V |−H∗

1 (q)

]q

×

[
β̃
−( 1

2
+

1−H1
q

),−( 1
2
+

1−H2
q+1

)
(U ′, V ′)|U ′ − V ′|−H∗

1 (q)

]q
.

To conclude, we now apply Part (2) of Lemma 2 with

α1 = 0, α2 =
2(1−H2)

q + 1
,

and

F (u, v) =
[
β̃H∗

1 (q),H
∗

2 (q)
(U, V )|U − V |−H∗

1 (q)
]q

,

Since α1 + α2 < 1, the equality (33) follows. Observe that α in (32) decreases with k.
Therefore the leading term of the sum (26) is obtained for k = q, that is, the summand in
the first Wiener chaos. Finally, observe that since this term is Gaussian, convergence of the
variance implies convergence in distribution. This completes the proof of Proposition 2 and
hence of Theorem 2. �

6. Technical lemmas

Lemma 1. Consider the special function β defined for any x, y > 0 as

β(x, y) =

∫ 1

0
tx−1(1− t)y−1dt .

Define on R
2 \ {(u, v), u = v}, for any a, b > −1 such that a+ b < −1 the function β̃a,b as :

β̃a,b(u, v) =

{
β(a+ 1,−1 − a− b) if u < v,
β(b+ 1,−1 − a− b) if v < u .

(40)
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Then ∫ u∧v

−∞
(u− s)a(v − s)bds = β̃a,b(u, v)|u − v|a+b+1 . (41)

In particular, ∫ u∧v

−∞
(u− s)a(v − s)bds ≤ C(a, b)|u− v|a+b+1 , (42)

with

C(a, b) = sup
(u,v)∈R2

[
β̃a,b(u, v)

]
< ∞ . (43)

Proof. We use the equivalent definition of function β

β(x, y) =

∫ ∞

0

tx−1

(1 + t)x+y
dt . (44)

Consider first the case where u < v. In the integral
∫ u
−∞(u − s)a(v − s)bds, we set s′ =

(u− s)/(v − u). We get
∫ u

−∞
(u− s)a(v − s)bds =

∫ ∞

0

[
(v − u)a(s′)a

] [
(v − u)b(1 + s′)b

]
(v − u)ds′

= (v − u)a+b+1

∫ ∞

0
(s′)a(1 + s′)bds′ .

Hence, in view of (44), we deduce that
∫ u∧v

−∞
(u− s)a(v − s)bds = (v − u)a+b+1β(x, y)

with x− 1 = a and x+ y = −b. This implies (41) in the case u < v. The other case v < u is
obtained by symmetry.

The finiteness of the constant C(a, b) results from the fact that by definition of β̃,

sup
(u,v)∈R2

β̃(u, v) = max(β(a+ 1,−1− a− b), β(b + 1,−1− a− b)) ,

which is finite (since β(x, y) is finite for each x, y > −1). �

Lemma 2. Let α1, α2 ∈ [0, 1), F a function defined from [0, 1]2 to R
∗
+ such that

γ =

∫

[0,1]2
F (U, V )dUdV < ∞ . (45)

and for any ℓ ∈ Z

∆(ℓ) =

∫

[0,1]4

[∣∣U − U ′ + ℓ
∣∣−α1

∣∣V − V ′ + ℓ
∣∣−α2

]
F (U, V )F (U ′, V ′)dUdV dU ′dV ′ < ∞ . (46)

Then

(1) if α1 + α2 ≥ 1, there exists some C > 0 such that

N−1∑

i,j=0

∆(i− j) ≤ CN log(N)ε(α1+α2) , (47)

where ε has been defined in (30).
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(2) if α1 + α2 < 1, we have

lim
N→∞


Nα1+α2

N2




N−1∑

i,j=0

∆(i− j)




 =

2γ2

(1− α1 − α2)(2− α1 − α2)
. (48)

Proof. We first observe that ∆(ℓ) = ∆(−ℓ) for all ℓ ∈ Z and thus

N−1∑

i,j=0

∆(i− j) = N

[
∆(0) + 2

N−1∑

ℓ=1

(1− ℓ/N) ∆(ℓ)

]
. (49)

Note that for all ℓ ≥ 2 and U,U ′, V, V ′ ∈ [0, 1]4, we have

ℓ− 1 ≤ |U − U ′ + ℓ| ≤ ℓ+ 1 .

Hence, for all ℓ ≥ 2,

γ2 (ℓ+ 1)−α1−α2 ≤ ∆(ℓ) ≤ γ2 (ℓ− 1)−α1−α2 . (50)

We now consider two cases.

Case (1) : Suppose α1 + α2 ≥ 1. We get from (49) and (50) that

N−1∑

i,j=0

∆(i− j) ≤ N

[
∆(0) + 2∆(1) + 2γ2

N−1∑

ℓ=2

(ℓ− 1)−α1−α2

]
= O

(
N log(N)ε(α1+α2)

)
.

The bound (47) follows.

Case (2) : We now assume that α1 + α2 < 1. In this case, using that, as N → ∞,

N−1∑

ℓ=2

(ℓ+ 1)−α1−α2 =

∫ N

1
u−α1−α2du+O(1) ,

N−1∑

ℓ=2

ℓ(ℓ+ 1)−α1−α2 =

∫ N

1
(u− 1)u−α1−α2du+O(1) ,

we get

N−1∑

ℓ=2

(1− ℓ/N) (ℓ+ 1)−α1−α2 =

∫ N

1
u−α1−α2du−

1

N

∫ N

1
(u− 1)u−α1−α2du+O(1)

=
N1−α1−α2

1− α1 − α2
−

N1−α1−α2

2− α1 − α2
+O(1)

∼
N1−α1−α2

(1− α1 − α2)(2 − α1 − α2)
.

Similarly, using instead that, as N → ∞,

N−1∑

ℓ=2

(ℓ− 1)−α1−α2 =

∫ N

1
u−α1−α2du+O(1) ,

N−1∑

ℓ=2

ℓ(ℓ− 1)−α1−α2 =

∫ N

1
(u+ 1)u−α1−α2du+O(1) ,
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we get the same asymptotic equivalence, namely,

N−1∑

ℓ=2

(1− ℓ/N) (ℓ− 1)−α1−α2 ∼
N1−α1−α2

(1− α1 − α2)(2 − α1 − α2)
.

Hence, with (49) and (50), we get (48). �

Lemma 3. Let α1, α2, α3, α4 ∈ (0, 1).

(1) Assume that

α1 + α2 + α3 + α4 < 3 .

Then
∫

[0,1]4
|u1 − u2|

−α1 |u2 − u3|
−α2 |u3 − u4|

−α3 |u4 − u1|
−αidu1du2du3du4 , (51)

is finite.
(2) Let ε ∈ {−1, 1}, then,
∫

[0,1]4
|u1 − u2 + ε|−α1 |u2 − u3 + ε|−α2 |u3 − u4|

−α3 |u4 − u1|
−αidu1du2du3du4 , (52)

is finite.

Proof. We shall apply the power counting theorem in [18], in particular Corollary 1 of this
paper. Since the exponents are −αi > −1, i = 1, · · · , 4, we need only to consider non–empty
padded subsets of the set

T = {u1 − u2, u2 − u3, u3 − u4, u4 − u1} .

A set W ⊂ T is said to be “padded” if for every element M in W , M is also a linear
combination of elements in W \ {M}. That is, M can be obtained as linear combination of
other elements in W . Since T above is the only non–empty padded set and since

d0(T ) = rank(T ) +
∑

T

(−αi) = 3−
4∑

i=1

αi > 0 ,

we conclude that the integral (51) converges. This completes the proof of Part (1) of Lemma 3.
The proof of Part (2) of Lemma 3 is even simpler since there is no padded subsets of T

and thus the integral (52) always converges. �

Appendix A. Multiple Wiener-Itô Integrals

Let B = (Bt)t∈R be a classical Wiener process on a probability space (Ω,F ,P). If f ∈
L2(Rn) with n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect
to B. The basic reference is the monograph [15]. Let f ∈ Sn be an elementary symmetric
function with n variables that can be written as f =

∑
i1,...,in

ci1,...,in1Ai1
×...×Ain

, where the

coefficients satisfy ci1,...,in = 0 if two indexes ik and il are equal and the sets Ai ∈ B(R) are
pairwise disjoint. For such a step function f we define

In(f) =
∑

i1,...,in

ci1,...,inB(Ai1) . . . B(Ain)
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where we put B(A) =
∫
R
1A(s)dBs. It can be seen that the application In constructed above

from Sn to L2(Ω) is an isometry on Sn in the sense

E [In(f)Im(g)] = n!〈f, g〉L2(Tn) if m = n (53)

and
E [In(f)Im(g)] = 0 if m 6= n.

Since the set Sn is dense in L2(Rn) for every n ≥ 1 the mapping In can be extended to an
isometry from L2(Rn) to L2(Ω) and the above properties hold true for this extension.

One has In(f) = In

(
f̃
)
, where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xn) =
1

n!

∑

σ

f(xσ(1), . . . , xσ(n)),

σ running over all permutations of {1, · · · , n}. Thus

E
[
In(f)

2
]
= E

[
In(f̃)

2
]
= n!‖f̃‖22 ≤ n!‖f‖22 . (54)

We will need the general formula for calculating products of Wiener chaos integrals of any
orders m,n for any symmetric integrands f ∈ L2(Rm) and g ∈ L2(Rn), which is

Im(f)In(g) =

m∧n∑

k=0

k!

(
m

k

)(
n

k

)
Im+n−2k(f ⊗k g), (55)

where the contraction f ⊗k g is defined by

(f ⊗k g)(s1, . . . , sm−k, t1, . . . , tn−k)

=

∫

Rk

f(s1, . . . , sm−k, u1, . . . , uk)g(t1, . . . , tn−k, u1, . . . , uk)du1 . . . duk . (56)

Note that the contraction (f ⊗k g) is an element of L2(Rm+n−2k) but it is not necessarily
symmetric. We will denote its symmetrization by (f⊗̃kg).
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Related Fields, 75(2):179–193, 1987.

[12] Gabriel Lang and François Roueff. Semi-parametric estimation of the Hölder exponent of a stationary
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