
HAL Id: hal-00943142
https://hal.science/hal-00943142

Submitted on 20 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traces of non regular vector fields on Lipschitz domains
Sylvie Monniaux

To cite this version:
Sylvie Monniaux. Traces of non regular vector fields on Lipschitz domains. Operator semigroups meet
complex analysis, harmonic analysis and mathematical physics, Jun 2013, Herrnhut, Germany. 250,
Birkhaüser, pp.343-351, 2015, Operator Theory Advances and Applications. �hal-00943142�

https://hal.science/hal-00943142
https://hal.archives-ouvertes.fr


Traces of non regular vector fields on Lipschitz domains

Sylvie Monniaux
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Abstract

In this note, for Lipschitz domains Ω ⊂ Rn, I propose to show the boundedness of the
trace operator for functions from H1(Ω) to L2(∂Ω) as well as for square integrable vector fields
in L2 with square integrable divergence and curl satisfying a half boundary condition. Such
results already exist in the literature. The originality of this work lies on the control of the
constants involved. The proofs are based on integration by parts formulas applied to the right
expressions.

1 Introduction

It is well known that for a bounded Lipschitz domain Ω ⊂ Rn, the trace operator Tr : C (Ω) →
C (∂Ω) extends to a bounded operator from H1(Ω) to L2(∂Ω) and the following estimate holds:

‖Tr u‖L2(∂Ω) ≤ C
(

‖u‖L2(Ω) + ‖∇u‖L2(Ω,Rn)

)

for all u ∈ H1(Ω), (1.1)

where C = C(Ω) > 0 is a constant depending on the domain Ω. This result can be proved via a
simple integration by parts. If the domain is the upper graph of a Lipschitz function, i.e.,

Ω =

{

x = (xh, xn) ∈ Rn−1 ×R; xn > ω(xh)
}

(1.2)

where ω : Rn−1 → R is a globally Lipschitz function, the method presented here allows to give an
explicit constant C in (1.1). We pass from domains of type (1.2) to bounded Lipschitz domains via
a partition of unity.

The same question arises for vector fields instead of scalar functions. In dimension 3, Costabel
[1] gave the following estimate for square integrable vector fields u in a bounded Lipschitz domain
with square integrable rotational and divergence and either ν× u or ν× u square integrable on the
boundary (ν denotes the outer unit normal of Ω):

‖Tr u‖L2(∂Ω) ≤ C
(

‖u‖L2(Ω) + ‖curl u‖L2(Ω,Rn) + ‖div u‖L2(Ω) +min
{

‖ν · u‖L2(∂Ω), ‖ν × u‖L2(∂Ω,Rn)

})

. (1.3)

This result was generalized to differential forms on Lipschitz domains of compact manifolds (and
Lp for certain p , 2) by D. Mitrea, M. Mitrea and M. Taylor in [4, Theorem 11.2]. As for scalar
functions on bounded Lipschitz domains (or special Lipschitz domains as (1.2)), we can prove
a similar estimate for vector fields (see Theorem 4.2 and Theorem 4.3 below) using essentially
integration by parts.
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2 Tools and notations

2.1 About the domains

LetΩ ⊂ Rn be a domain of the form (1.2). The exterior unit normal ν ofΩ at a point x = (xh, ω(xh)) ∈
Γ on the boundary of Ω:

Γ :=
{

x = (xh, xn) ∈ Rn−1 ×R; xn = ω(xh)
}

(2.1)

is given by

ν(xh, ω(xh)) =
1

√

1 + |∇hω(xh)|2
(∇hω(xh),−1) (2.2)

(∇h denotes the “horizontal gradient” on Rn−1 acting on the “horizontal variable” xh). We denote
by θ ∈ [0, π2 ) the angle

θ = arccos
(

inf
xh∈Rn−1

1
√

1 + |∇hω(xh)|2
)

, (2.3)

so that in particular for e = (0Rn−1 , 1) the “vertical” direction, we have

−e · ν(xh, ω(xh)) =
1

√

1 + |∇hω(xh)|2
≥ cosθ, for all xh ∈ Rn−1. (2.4)

2.2 Vector fields

We assume here that Ω ⊂ Rn is either a special Lipschitz domain or a bounded Lipschitz domain.
Let u : Ω → Rn be a Rn-valued distribution. We denote by curl u ∈ Mn(R) the antisymmetric
part of the Jacobian matrix of first order partial derivatives considered in the sense of distributions
∇u = (∂ℓuα)1≤ℓ,α≤n:

(

curl u
)

ℓ,α
=

1√
2

(∂ℓuα − ∂αuℓ) =
1√
2

(

∇u − (∇u)⊤
)

ℓ,α
, 1 ≤ ℓ, α ≤ n. (2.5)

On Mn(R), we choose the following scalar product:

〈v,w〉 :=

n
∑

ℓ,α=1

vℓ,αwℓ,α, v = (vℓ,α)1≤ℓ,α≤n,w = (wℓ,α)1≤ℓ,α≤n ∈Mn(R). (2.6)

We will use the notation | · | for the norm associated to the previous scalar product:

|w| = 〈w,w〉 1
2 , w ∈Mn(R). (2.7)

Remark 2.1. In dimension 3, if we denote by rot u the usual rotational of a smooth vector field u,
i.e.,

R
3 ∋ rot u = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1),

it is immediate that |rot u|, the euclidian norm inR3 (also denoted by | · |) of rot u, is equal to |curl u|.

To proceed, we define the wedge product of two vectors as follows:

e ∧ ε := 1√
2

(

eℓεα − eαεℓ
)

1≤ℓ,α≤n
∈Mn(R), e, ε ∈ Rn. (2.8)
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It is immediate that e ∧ e = 0, e ∧ ε = −ε ∧ e and we obtain the higher dimensional version of a
well-known formula in R3:

|e|2|ε|2 = (e · ε)2
+ |e ∧ ε|2, e, ε ∈ Rn (2.9)

as a consequence of the decomposition

ε = (e · ε) e −
√

2 (e ∧ ε) e, e, ε ∈ Rn. (2.10)

One can also verify that for three vectors e, ε, ν ∈ Rn, the two following identities hold:

〈e ∧ ε, ν ∧ ε〉 = (e · ν)|ν ∧ ε|2 + (ν · ε)〈e ∧ ν, ν ∧ ε〉, (2.11)

(e · ε)(ν · ε) = (e · ν)(ν · ε)2 − (ν · ε)〈e ∧ ν, ν ∧ ε〉. (2.12)

If u : Ω→ Rn and ϕ : Ω→ R are both smooth, the following holds:

curl (ϕu) = ϕ curl u + ∇ϕ ∧ u. (2.13)

The (formal) transpose of the curl operator given by (2.5) acts on matrix-valued distributions
w = (wℓ,α)1≤ℓ,α≤n according to

(

curl⊤w
)

ℓ
=

1
√

2

n
∑

α=1

∂α(wℓ,α − wα,ℓ), 1 ≤ ℓ ≤ n. (2.14)

As usual, the divergence of a vector field u : Ω → Rn of distributions is denoted by div u and is
the trace of the matrix ∇u:

div u =

n
∑

ℓ=1

∂ℓuℓ. (2.15)

Let now u : Ω → Rn be a vector field of distributions and let e ∈ Rn be a fixed vector. Then the
following formula holds

curl⊤(e × u) = (div u) e − (e · ∇) u ∈ Rn, (2.16)

where the notation e · ∇ stands for
∑n
ℓ=1 eℓ∂ℓ. Next, for ϕ : Ω→ R, u : Ω→ Rn and w : Ω→Mn(R)

smooth with compact supports inΩ, the following integration by parts formulas are easy to verify:
∫

Ω

ϕ (div u) dx = −
∫

Ω

∇ϕ · u dx +

∫

∂Ω
ϕ (ν · u) dσ, (2.17)

∫

Ω

〈w, curl u〉dx =

∫

Ω

curl⊤w · u dx +

∫

∂Ω
〈w, ν ∧ u〉dσ, (2.18)

where ∂Ω is the boundary of the Lipschitz domain Ω and ν(x) denotes the exterior unit normal of
Ω at a point x ∈ ∂Ω. The equation (2.17) corresponds to the well-known divergence theorem. The
equation (2.18) generalizes in higher dimensions the more popular corresponding integration by
parts in dimension 3 (see, e.g., [1, formula (2)]):

∫

Ω

w · rot u dx =

∫

Ω

rot w · u dx +

∫

∂Ω
w · (ν × u) dσ, u,w : Ω→ R3 smooth,

where ν×u = (ν2u3−ν3u2, ν3u1−ν1u3, ν1u2, ν2u1) denotes the usual 3D vector product. Combining
the previous results, we are now in position to present our last formula which will be used in

Section 4: for e ∈ Rn a fixed vector and u : Ω→ Rn a smooth vector field,

2

∫

Ω

〈e ∧ u, curl u〉dx − 2

∫

Ω

(e · u) div u dx =

∫

∂Ω
〈e ∧ u, ν ∧ u〉dσ −

∫

∂Ω
(e · u)(ν · u) dσ. (2.19)

3



3 The scalar case

3.1 Special Lipschitz domains

We assume here that Ω is of the form (1.2). The following result is classical (see, e.g., [5, Theo-
rem 1.2]). We will propose an elementary proof of it.

Theorem 3.1. Let ϕ : Ω→ R belonging to the Sobolev space H1(Ω). Then TrΓ ϕ ∈ L2(Γ) and

‖TrΓ ϕ‖2L2(Γ)
≤ 2

cosθ
‖ϕ‖L2(Ω)‖∇ϕ‖L2(Ω,Rn), (3.1)

where θ has been defined in (2.3). In other words, the trace operator originally defined on smooth functions

TrΓ : Cc(Ω) → Cc(Γ) extends to a bounded operator from H1(Ω) to L2(Γ) with a norm controlled by the
Lipschitz character of Ω.

Proof. Assume first that ϕ : Ω → R is smooth, and apply the divergence theorem with u = ϕ2 e
where e = (0Rn , 1). Since div (ϕ2 e) = 2ϕ (e · ∇ϕ), we obtain

∫

Ω

div (ϕ2 e) dx =

∫

Ω

2ϕ (e · ∇ϕ) dx =

∫

Γ

ν · (ϕ2 e) dσ.

Therefore using the definition of θ and Cauchy-Schwarz inequality, we get

cosθ

∫

Γ

ϕ2 dσ ≤ −2

∫

Ω

ϕ (e · ∇ϕ) dx ≤ 2 ‖ϕ‖L2(Ω)‖∇ϕ‖L2(Ω,Rn), (3.2)

since |e| = 1, which gives the estimate (3.1) for smooth functions ϕ. Since Cc(Ω) is dense in H1(Ω)
(see, e.g., [5, §1.1.1]), we conclude easily that (3.1) holds for every ϕ ∈ H1(Ω). �

3.2 Bounded Lipschitz domains

Let now Ω be a bounded Lipschitz domain. Then there exist N ∈N, a partition of unity (ηk)1≤k≤N

of C∞c (Rn)-functions and domains (Ωk)1≤k≤N such that

Ω ∩
(

N
⋃

k=1

Ωk

)

= Ω, suppηk ⊂ Ωk (1 ≤ k ≤ N), 0 ≤ ηk ≤ 1 (1 ≤ k ≤ N)

and

N
∑

k=1

ηk(x)2
= 1 for all x ∈ Ω. (3.3)

Matters can be arranged such that, for 1 ≤ k ≤ N, there is a direction ek and an angle θk ∈ [0, π2 )
such that −ek · ν(x) ≥ cosθk for all x ∈ ∂Ω ∩Ωk (see, e.g., [5, §1.1.3]). We denote by γ the minimum
of all cosθk, 1 ≤ k ≤ N: γ depends only on the boundary of Ω. We are now in position to state the
following result, analogue to Theorem 3.1 in the case of bounded Lipschitz domains.

Theorem 3.2. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then there exists a constant C = C(Ω) > 0
such that for all ϕ ∈ H1(Ω), Tr∂Ωϕ ∈ L2(∂Ω) and the following estimate holds:

‖Tr∂Ωϕ‖2L2(∂Ω)
≤ 1

γ
‖ϕ‖L2(Ω)

(

2 ‖∇ϕ‖L2(Ω,Rn) + C(Ω) ‖ϕ‖L2(Ω)

)

. (3.4)
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Remark 3.3. Compared to Theorem 3.1, the estimate (3.4) contains the extra term ‖ϕ‖2
L2(Ω)

. An

estimate of the form (3.1) can not hold in bounded Lipschitz domains as the example of constant
functions shows.

Proof. Let ηk, Ωk, 1 ≤ k ≤ N, as in (3.3), and let γ := min
{

cosθk, 1 ≤ k ≤ N
}

. Using (3.2) for the
functions ηkϕ, 1 ≤ k ≤ N, we obtain

γ

∫

∂Ω
ϕ2 dσ = γ

N
∑

k=1

∫

∂Ω
η2

kϕ
2 dσ ≤ 2

∣

∣

∣

∣

N
∑

k=1

∫

Ω

ηkϕ
(

ek · ∇(ηkϕ)
)

dx
∣

∣

∣

∣

≤ 2
∣

∣

∣

∣

∫

Ω

ϕ∇ϕ ·
(

N
∑

k=1

η2
kek

)

dx
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

ϕ2
N
∑

k=1

(

ek · ∇(η2
k)
)

dx
∣

∣

∣

∣

≤ 2 ‖ϕ‖L2(Ω)‖∇ϕ‖L2(Ω,Rn) +

(

N
∑

k=1

‖∇(η2
k)‖L∞(Ω,Rn)

)

‖ϕ‖2
L2(Ω)

which proves the estimate (3.4) with C(Ω) =

N
∑

k=1

‖∇(η2
k)‖L∞(Ω,Rn). �

4 The case of vector fields

We begin this section by a remark allowing to make sense of values on the boundary of certain
quantities involving vectors fields with minimal smoothness. See also [1, equations (2) and (3)].

Remark 4.1. 1. For u ∈ L2(Ω;Rn) such that div u ∈ L2(Ω), one can define ν · u as a distribution

on ∂Ω as follows: for any φ ∈ H
1
2 (∂Ω), we denote by Φ an extension of φ toΩ in H1(Ω) (see,

e.g., [3, Theorem 3, Chap. VII, §2, p. 197]) and we define, according to (2.17),

H−
1
2 (∂Ω)
〈ν · u, φ〉

H
1
2 (∂Ω)

=

∫

Ω

Φdiv u dx +

∫

Ω

u · ∇Φdx; (4.1)

this definition is independent of the choice of the extensionΦ ofφ. See, e.g., [6, Theorem 1.2].

2. Following the same lines, for u ∈ L2(Ω;Rn) such that curl u ∈ L2(Ω; Mn(R)), one can define

ν∧ u as a distribution in H−
1
2 (∂Ω; Mn(R)) as follows: for any ψ ∈ H

1
2 (∂Ω; Mn(R)), we denote

byΨ an extension of ψ toΩ in H1(Ω; Mn(R)) and we define, according to (2.18)

H−
1
2 (∂Ω,Mn(R))

〈ν ∧ u, ψ〉
H

1
2 (∂Ω;Mn(R))

=

∫

Ω

〈Ψ, curl u〉dx −
∫

Ω

curl⊤Ψ · u dx; (4.2)

this definition is independent of the choice of the extensionΨ ofψ. See, e.g., [2, Theorem 2.5]
for the case n = 3 and [4, Chap. 11] for the more general setting of differential forms.

4.1 Special Lipschitz domains

Theorem 4.2. Let Ω be a special Lipschitz domain of the form (1.2) and let θ be defined by (2.3). Let
u ∈ L2(Ω,Rn) such that div u ∈ L2(Ω) and curl u ∈ L2(Ω,Mn(R)). If ν·u ∈ L2(Γ) or ν∧u ∈ L2(Γ,Mn(R)),
then TrΓu ∈ L2(Γ,Rn) and

max
{

‖ν · u‖2
L2(Γ)

, ‖ν ∧ u‖2
L2(Γ,Mn(R))

}

≤ 2
cosθ

(

2
cosθ + 1

)

min
{

‖ν · u‖2
L2(Γ)

, ‖ν ∧ u‖2
L2(Γ,Mn(R))

}

+
4

cosθ ‖u‖L2(Ω,Rn)

(

‖curl u‖L2(Ω,Mn(R)) + ‖div u‖L2(Ω)

)

,
(4.3)

5



and
‖TrΓu‖2L2(Γ,Rn)

≤
(

4
cos2 θ

+
2

cosθ + 1
)

min
{

‖ν · u‖2
L2(Γ)

, ‖ν ∧ u‖2
L2(Γ,Mn(R))

}

+
4

cosθ ‖u‖L2(Ω,Rn)

(

‖curl u‖L2(Ω,Mn(R)) + ‖div u‖L2(Ω)

)

.
(4.4)

Proof. Assume first that u : Ω→ Rn is smooth, and apply (2.19) together with (2.11) and (2.12):
∫

Γ

(e · ν)|ν ∧ u|2 dσ + 2

∫

Γ

(ν · u)〈e ∧ ν, ν ∧ u〉dσ −
∫

Γ

(e · ν)(ν · u)2 dσ

= 2

∫

Ω

〈e ∧ u, curl u〉dx − 2

∫

Ω

(e · u) div u dx. (4.5)

Denote now by M the maximum between ‖ν · u‖L2(Γ) and ‖ν ∧ u‖L2(Γ,Mn(R)) and by m the minimum
between the same quantities, so that in particular

Mm = ‖ν · u‖L2(Γ)‖ν ∧ u‖L2(Γ,Mn(R)). (4.6)

Taking into account that |e · ν| ≤ 1 and |e∧ ν| ≤ 1, the equation (4.5) together with the estimate (2.4)
for cosθ and Cauchy-Schwarz inequality yield

M2 cosθ ≤ m2
+ 2mM + 2‖u‖L2(Ω,Rn)

(

‖curl u‖L2(Ω,Mn(R)) + ‖div u‖L2(Ω)

)

. (4.7)

The obvious inequality 2mM ≤ cosθ
2 M2 +

2
cosθ m2 then implies

cosθ
2 M2 ≤

(

1 + 2
cosθ

)

m2 + 2‖u‖L2(Ω,Rn)

(

‖curl u‖L2(Ω,Mn(R)) + ‖div u‖L2(Ω)

)

, (4.8)

which gives (4.3) from which (4.4) follows immediately thanks to (2.10) and (2.9) for smooth vector
fields. As in the proof of Theorem 3.1, we conclude by density of smooth vector fields in the space

{

u ∈ L2(Ω,Rn),div u ∈ L2(Ω), curl u ∈ L2(Ω,Mn(R)) and ν · u ∈ L2(Γ)
}

(4.9)

or in the space
{

u ∈ L2(Ω,Rn),div u ∈ L2(Ω), curl u ∈ L2(Ω,Mn(R)) and ν ∧ u ∈ L2(Γ,Mn(R))
}

(4.10)

endowed with their natural norms. �

4.2 Bounded Lipschitz domains

In the case of bounded Lipschitz domains, Theorem 4.2 becomes

Theorem 4.3. LetΩ ⊂ Rn be a bounded Lipschitz domain and let γ be defined as in § 3.2. Then there exists
a constant C = C(Ω) > 0 with the following significance: let u ∈ L2(Ω,Rn) such that div u ∈ L2(Ω) and
curl u ∈ L2(Ω,Mn(R)). If ν · u ∈ L2(∂Ω) or ν ∧ u ∈ L2(∂Ω,Mn(R)), then Tr∂Ωu ∈ L2(∂Ω,Rn) and

max
{

‖ν · u‖2
L2(∂Ω)

, ‖ν ∧ u‖2
L2(∂Ω,Mn(R))

}

≤ 2
γ

(

2
γ + 1

)

min
{

‖ν · u‖2
L2(∂Ω)

, ‖ν ∧ u‖2
L2(∂Ω,Mn(R))

}

+
2
γ ‖u‖L2(Ω,Rn)

(

2‖curl u‖L2(Ω,Mn(R)) + 2‖div u‖L2(Ω) + C(Ω)‖u‖L2(Ω,Rn)

)

,

(4.11)
and

‖Tr∂Ωu‖2
L2(∂Ω,Rn)

≤
(

4
γ2 +

2
γ + 1

)

min
{

‖ν · u‖2
L2(∂Ω)

, ‖ν ∧ u‖2
L2(∂Ω,Mn(R))

}

+
2
γ ‖u‖L2(Ω,Rn)

(

2‖curl u‖L2(Ω,Mn(R)) + 2‖div u‖L2(Ω) + C(Ω)‖u‖L2(Ω,Rn)

)

.
(4.12)
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Proof. As in the proof of Theorem 3.2, let ηk, Ωk, 1 ≤ k ≤ N and γ = min
{

cosθk, 1 ≤ k ≤ N
}

. Using
the formula (2.13) and the fact that div (ϕu) = ϕdiv u + ∇ϕ · u for (smooth) scalar functions ϕ, we
apply (4.5) for the N vector fields ηku, 1 ≤ k ≤ N, and we obtain, summing over k,

γM ≤ m2
+ 2Mm + 2‖u‖L2(Ω;Rn)

(

‖curl u‖L2(Ω,Mn(R)) + ‖div u‖L2(Ω)

)

+

(

N
∑

k=1

‖∇(η2
k)‖∞
)

‖u‖2
L2(Ω;Rn)

, (4.13)

where, as in the proof of Theorem 4.2,

M := max
{

‖ν · u‖L2(∂Ω), ‖ν ∧ u‖L2(∂Ω,Mn(R))

}

and m := min
{

‖ν · u‖L2(∂Ω), ‖ν ∧ u‖L2(∂Ω,Mn(R))

}

.

This gives (4.11) with C(Ω) =

N
∑

k=1

‖∇(η2
k)‖∞. As before, (4.12) follows immediately thanks to (2.10)

and (2.9) for smooth vector fields. We conclude by density of smooth vector fields in the spaces
(4.9) and (4.10). �
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