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A CENTRAL LIMIT THEOREM FOR THE EULER

CHARACTERISTIC OF A GAUSSIAN EXCURSION SET

ANNE ESTRADE AND JOSÉ RAFAEL LEÓN

We study the Euler characteristic of an excursion set of a stationary isotropic
Gaussian random field X : Ω × Rd → R. Let consider a fix level u ∈ R and also
the excursion set above u, {t ∈ Rd : X(t) ≥ u}. We take the restriction to a
compact domain considering for any bounded rectangle T ⊂ Rd, A(T, u) = {t ∈
T : X(t) ≥ u}. The aim of this paper is to establish a central limit theorem for the
Euler characteristic of A(T, u) as T grows to Rd, as conjectured by R. Adler more
than ten years ago [3].

The required assumption on X is having trajectories in C3(Rd). It is stronger
than Geman’s assumption traditionally used in dimension one. Nevertheless, our
result extends to higher dimension what is known in dimension one. In that case
the Euler characteristic of A(T, u) equals the number of up-crossings of X at level
u.

Introduction

The Euler characteristic, also called Euler-Poincaré index, is one of the additive
functionals that can be defined on the collection of all compact sets of Rd. It
contains information that describes (a part of) the topology of a compact set in
Rd. In dimension one, the Euler characteristic is the number of disjoint intervals
constituting the compact set. Intuitively, in dimension two, the Euler characteristic
equals the number of connected components minus the number of “holes” in the
compact set. In dimension three, it equals the number of connected components
minus the number of “handles” plus the number of “interior hollows”.

We are interested in the Euler characteristic of an excursion set A(T, u) = {t ∈
T : X(t) ≥ u} for a real valued smooth stationary isotropic Gaussian field X =
{X(t) : t ∈ Rd}, a bounded closed rectangle T ⊂ Rd and a level u. We denote it as
χ(X,T, u) for a while. One should consider χ(X,T, u) as an extension in dimension
greater than one of the very precious tool in dimension d = 1 that is UX(T, u) the
number of up-crossings at the level u of X on the interval T . In 2000, Adler [3]
conjectured that χ(X,T, u) satisfies a central limit theorem (CLT) as T grows to
Rd. We prove it in the present paper. In dimension one, a CLT result for UX(T, u)
can be found in [10] Chapter 10.

Actually, twenty years ago, Worsley [31] discovered that the expectation of
χ(X,T, u) can be explicitly computed as a function of u depending on the co-
variance structure of X. When one wants to establish a CLT, the first step consists
in estimating the asymptotic variance. Unfortunately the tricky method that yields
the expectation formula cannot operate to compute the variance. In [29], formulae
for the higher moments of the Differential Topology characteristic of A(T, u), which
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is not so far from χ(X,T, u), are obtained for fixed T under convenient assump-
tions. Our method allows us to obtain an L2 approximation of χ(X,T, u). In order
to prove that the asymptotic variance is finite, we use an Hermite decomposition.
The second step towards a CLT is to get the asymptotic normality. At this stage,
the expansion of χ(X,T, u) into stochastic integrals with respect to Hermite poly-
nomials is used again as well as a continuous parameter version of the celebrated
Breuer-Major theorem (see [8] for instance). Precisely, we follow Nourdin et al. [22]
but with some modifications motivated by the fact that our process has parameter
in Rd instead of Z as in the cited article.

In the present paper, two types of tools are mixed. One is concerned with
level functionals and its Hermite expansion. This point of view allows us to use
the revisited Stein method presented for instance in [25, 24, 22]. A CLT result
for χ(X,T, u) appears then as a consequence of the asymptotic normality of each
stochastic integral with respect to Hermite polynomials. The second tool deals
with the geometrical aspect of the work. Actually we have to consider the random
vectorial fieldX = (X,∇X,∇2X) and it is convenient to see it as a random function
from Rd to RD with D = 1+ d+ d(d+1)/2. It implies tedious differential calculus
in high dimension.

Beyond our work, the study of the excursion sets of a stationary field is a very
popular theme. Many authors were and still are interested in this domain as proved
by the successful books of Adler & Taylor [5] and Azas &Wshebor [10], or the recent
papers [9, 27]. On the one hand, the description of the excursion sets appears very
powerful to characterize the field X. For instance since the first Adler’s book [2] one
knows that the expectation of χ(X,T, u) is a good approximation for the probability
of the maximum of X on T to be greater than u. Also the line integral with respect
of the level curve at any level u provides information on the anisotropy property of
X (see the works of Cabaa [12] and Iribarren [16]). On the other hand, at least in
the Gaussian case, accurate methods such as the theory of crossings can be used to
get explicit values for level functionals (see the seminal work of Slud [26] and also
the paper of Kratz and Len [17]).

Our study for establishing a CLT for level functionals has many precursors in the
literature. These functionals are usually used to build statistical estimators or to
construct statistical tests. The first one that we can cite is Adler’s work [1] that uses
the Euler characteristic of an excursion set to build a spectral moment estimator
for two dimensional Gaussian fields. Moreover, this estimator was proved to satisfy
asymptotical normality. Afterwards, the two cited works [12] and [16] established
a CLT for studying the asymptotic behavior of estimators based on the level sets,
actually the line integral with respect to a level curve. Following this direction,
we have in mind statistical outcomes of our result. They could serve various fields
of application such as brain exploration or representation of the universe following
[30] or the nice introduction of the forthcoming book [6], as well as worn surfaces
or more generally rough surfaces as proposed in [7, 28]. Our result could be used to
get the asymptotic distribution of the statistic under the null hypothesis in a test of
normality. Furthermore, it should also give a functional CLT for u 7→ χ(X,T, u) as
in [21, 28] where similar questions are studied. We also have in mind extensions to
non-Gaussian fields or to Gaussian non stationary fields, starting from the recent
results concerning the volume ([21, 11]) or the expected Euler characteristic ([13, 7])
of excursion sets in these cases.
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Hypothesis on X.
All over the paper we deal with a centered stationary isotropic Gaussian field

X = {X(t) : t ∈ Rd} such that Var(X(0)) = 1. We also assume that almost
every realization of X is of class C3 on Rd. This last hypothesis should certainly
be weakened, but we use it in this form to make the computations as fluent as
possible.
We write Xi and Xij the derivatives of X of first and second order: ∂X

∂ti
(t) =

Xi(t) and ∂2X
∂ti∂tj

(t) = Xij(t) as well as ∇X(t) = (Xi(t))1≤i≤d and ∇2X(t) =

(Xij(t))1≤i,j≤d . Denoting by r the covariance function of X,

r(t) = Cov(X(0), X(t)) ,

the assumption on X implies that r ∈ C6(Rd) and for any multidimensional index
m = (i1, . . . , ik) with 1 ≤ k ≤ 6 and 1 ≤ ij ≤ d, we write

∂mr

∂tm
(t) =

∂kr

∂ti1 . . . ∂tik
(t) = r

(k)
i1···ik(t) .

It is well know that for any fixed t, X(t) and ∇X(t) are independent, as well
as ∇X(t) and ∇2X(t). Moreover, since X is isotropic, for any fixed t and any
1 ≤ i 6= j ≤ d, Xi(t) and Xj(t) are independent and there exists a real number

λ ≥ 0 such that for any i, r
(2)
ii (0) = −λ. In order to avoid working with a degenerate

field X, we assume that λ > 0.

Outline of the article.
Since we are interested in the asymptotic as the rectangle T tends to Rd, we

start our study without taking into account what happens on the boundary of T .
Hence, in Section 1 instead of considering χ(X,T, u), the Euler characteristic of
the excursion above u, we consider ϕ(X,T, u), a modified quantity inspired by [5]
Lemma 11.7.1, which we call modified Euler characteristic of the excursion above
u. Roughly speaking, by applying Morse’s theorem, both notions coincides on the
interior of T . The precise definition of ϕ(X,T, u) is given in Section 1.2 whereas
the definition of χ(X,T, u) stands in Section 2.3.

Section 1 is devoted to the study of the L2 properties of ϕ(X,T, u). In Section 1.1,
we first establish a lemma that gives an upper bound for the conditional expectation
of [det(∇X(0))]2 given that ∇X(t) = ∇X(0) = x for t in a neighborhood of 0. As
a by product, we obtain some results on the second moment of N∇X(T, v) = {t ∈
T ; ∇X(t) = v} which are of interest for their own (see Proposition 1.2). In Section
1.2 we state that the usual approximation of the number of roots of a vector field
by the area formula (named as “Metatheorem” in [5], Th.11.2.3) not only holds
almost surely, but also in L2(Ω). Taking the limit of the Hermite expansion of this
approximation yields the expansion of ϕ(X,T, u) in Section 1.3.

Section 2 deals with the main result, namely Theorem 2.6 that gives a CLT for
χ(X,T, u) as T ր Rd. We first solve this question for ϕ(X,T, u) in Section 2.2,
after establishing in Section 2.1 that the asymptotic variance of |T |−1/2ϕ(X,T, u) is
finite. The asymptotic normality of ϕ(X,T, u) is obtained through a Breuer-Major
type argument. We prove it in our setting, in other words for a Gaussian process
indexed by a d-dimensional continuous parameter. This last result (Proposition
2.4) is interesting for its own and should be used separately in further works. In
Section 2.3 we use the theory of Morse to transfer the CLT from ϕ(X,T, u) to
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χ(X,T, u). Actually, it allows us to prove that the difference between these two
quantities involves the l-dimensional faces of T with l < d, and hence is negligible
with respect to |T |1/2.

Two technical proofs have been postponed in Section 3. The proof of Lemma 1.1
includes differential calculus and sharp estimates. The proof of Lemma 2.2 deals
with specific Gaussian calculus. It shows how tricky must be the computations as
soon as one wants to obtain explicit formula in this domain.

Since the field X and the level u will be fixed almost everywhere in the rest of
the paper, we drop the dependence in our notations and, from now on, we write
ϕ(T ) instead of ϕ(X,T, u), as well as χ(T ) instead of χ(X,T, u).

1. L2 properties of ϕ(T )

Let T = Π1≤i≤d[ai, bi] be a bounded rectangle in Rd and let consider the excur-
sion set A(T, u) = {t ∈ T ; X(t) ≥ u}.

1.1. Variance of the number of crossings of ∇X.
In this section we introduce the number of crossings of the vectorial random field
∇X at level v in T . This random variable will be used as an auxiliary tool to obtain
an approximation in L2(Ω) of the Euler characteristic of A(T, u). For any v ∈ Rd,
we denote as N∇X(T, v) the aforementioned random variable

N∇X(T, v) = #{t ∈ T : ∇X(t) = v}.
The two following Rice’s formulas are shown in [10] or [5].

E[N∇X(T, v)] = |T |E[| det∇X(0)|] p0(v),(1)

E[N∇X(T, v)(N∇X(T, v)− 1)] =

∫

T

∫

T

E[| det∇2X(t) det∇2X(s)|

/ ∇X(t) = ∇X(s) = v] pt,s(v, v) dtds,

where pt(.) and pt,s(., .) are the probability density functions of∇X(t) and (∇X(t),∇X(s))
respectively. Using the stationarity of X, we get

E[N∇X(T, v)(N∇X(T, v)− 1)] =

∫

T0

|T ∩ (T − s)|E[| det∇2X(0) det∇2X(s)|

/ ∇X(0) = ∇X(s) = v] p0,s(v, v)ds

where T0 denotes the rectangle around 0 obtained from T = Π1≤j≤d[aj , bj ] by
prescribing T0 = Π1≤j≤d[aj − bj , bj − aj ]. In the following lemma we give an upper
bound for the above integrand. Its proof can be found in Section 3.

Lemma 1.1. Let X be a stationary isotropic Gaussian field with trajectories of

class C3. For all v, s ∈ Rd, let

F (v, s) = E[| det∇2X(0) det∇2X(s)| /∇X(0) = ∇X(s) = v] p0,s(v, v).

Then, for any compact set K ⊂ Rd, ∃CK and δK such that ∀v ∈ K , ∀s ∈ Rd,

• |F (v, s)| ≤ CK

• ||s|| ≤ δK ⇒ |F (v, s)| ≤ CK ||s||.
In this form the second factorial moment of N∇X(T, v) results finite.
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The lemma allows us to obtain two useful results. Let us define the following
approximation sequence

N∇X
ε (T, v) =

∫

T

| det(∇2X(t))| δε(∇X(t)− v)dt ,(2)

where δε = (2ε)−d1 [−ε,ε]d . It is well known (see [5] Th.11.2.3 for instance) that

N∇X
ε (T, 0) →

ε→0
N∇X(T, 0) almost surely.

Proposition 1.2. Under the hypothesis of Lemma 1.1 we have

(1) v 7→ E[(N∇X(v))2] is a continuous function on Rd

(2) N∇X
ε (T, 0) →

ε→0
N∇X(T, 0) in L2(Ω).

Proof. The first assertion holds true if we show the continuity of the second fac-
torial moment of N∇X(T, .) since, according to (1), v 7→ E(N∇X(T, v)) clearly
appears as a continuous function. From Lemma 1.1 we know that for ε > 0 there
exists a δ > 0 such that

∫
|s|<δ

F (v, s)ds < ε uniformly in v. Then,

|E[N∇X(T, v)(N∇X(T, v)− 1)]− E[N∇X(T, v′)(N∇X(T, v′)− 1)]|

≤
∫

|s|<δ

F (v, s)ds+

∫

|s|<δ

F (v′, s)ds+ |
∫

|s|>δ

(F (v, s)− F (v′, s))ds|

≤ 2ε+ |
∫

|s|>δ

(F (v, s)− F (v′, s))ds|.

The continuity follows from the continuity of v 7→ F (v, s) for any fixed s, by taking
the lim sup as v′ → v in the left hand side of the inequality.

To prove the second assertion we use the area formula ([10] Prop. 6.1 for instance)

N∇X
ε (T, 0) =

∫

T

| det(∇2X(t))| δε(∇X(t))dt =

∫

Rd

N∇X(T, u) δε(u)du.

Thus

E[(N∇X(T, 0))2] ≤ lim sup
ε→0

E[(

∫

T

| det(∇2X(t))| δε(∇X(t))dt)2]

= lim sup
ε→0

E[(

∫

Rd

N∇X(T, v)δε(v)dv)
2]

≤ lim sup
ε→0

∫

Rd

E[(N∇X(T, v))2]δε(v)dv = E[(N∇X(T, 0))2].

In the first line we have used Fatou’s Lemma and the a.s. convergence of N∇X
ε (T, 0)

to N∇X(T, 0), in the second one the area formula and finally in the third one Jessen
inequality and the continuity proved before. This implies that

E[(N∇X
ε (T, 0))2] → E[(N∇X(T, 0))2],

and this fact combined with the a.s. convergence gives the point (2). ✷

Remark. In dimension d = 1, the fact that the number of up-crossings of X
at level u, namely UX(T, u), can be approximated in L2(Ω) has already been es-
tablished (see for instance Th.10.10 in [10]). The usual condition for this result to
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hold is
∫
|t|≤1

Θ(t)/|t| dt < +∞ where Θ(t) = r′′(t) + λ, known as the Geman’s as-

sumption. It is weaker than assumption (H) and results to be a necessary condition
for UX(T, u) to belong to L2(Ω) (see [18]).

1.2. L2 approximation of ϕ(T ) via the area formula.
It is time to give a precise definition of ϕ(T ), the modified Euler characteristic of
the excursion set A(T, u). We introduce

ϕ(T ) =

d∑

k=0

(−1)kµk(T )

with

µk(T ) = #{t ∈ T : X(t) ≥ u, ∇X(t) = 0, index(∇2X(t)) = d− k}.

Here the “index” stands for the number of negative eigenvalues.

Proposition 1.3. For X a stationary isotropic Gaussian field with trajectories of

class C3, we have ϕ(T ) ∈ L2(Ω) and the following convergence holds almost surely

and in L2(Ω)

(3) ϕ(T ) = lim
ε→0+

(−1)d
∫

T

det(∇2X(t))1[u,∞)(X(t)) δε(∇X(t))dt .

Proof. The almost sure convergence in (3) is contained in Theorem 11.2.3 of [5],
so we only prove the convergence in L2(Ω).
Let us denote by ϕ(ε, T ) the right hand side of (3). We have the following trivial
bound

ϕ(ε, T ) ≤ N∇X
ε (T, 0).

But in Proposition 1.2 we have shown the convergence of E[(N∇X
ε (T, 0))2] towards

E[(N∇X(T, 0))2], then the dominated convergence theorem allows us to conclude
that

E[ϕ2(ε, T )] → E[ϕ2(T )] ≤ E[(N∇X(T, 0))2] < +∞.

We obtain as a bonus that ϕ(T ) ∈ L2(Ω). Furthermore, the above convergence of
the L2(Ω) norms and the almost sure convergence of ϕ(ε, T ) imply

E[(ϕ(ε, T )− ϕ(T ))2] → 0. ✷

Remark: The first study in dimension d > 1 on the finiteness of the two order
moment of the Euler characteristic was the article of Adler and Hasofer [4]. More
recently the fact that ϕ(T ) belongs to L2(Ω) has been implicitly established in [29]
under convenient assumptions. In the eighties of the past century some articles
were devoted to establish the finiteness of the second moment for the number of
roots of a stationary Gaussian random field (see [14], [20]). Our proof is somewhat
inspired by Elizarov’s work [14].
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1.3. Hermite type expansion of ϕ(T ).
In what follows, we use the Hermite polynomials (Hn)n∈N defined by Hn(x) =

(−1)n ex
2/2 ∂n

∂xn (e
−x2/2). They provide an orthonormal basis of L2(R, φ(x)dx) where

φ denotes the standard Gaussian density on R. We also denote by φm the standard
Gaussian density on Rm.

In order to get an expansion of ϕ(T ) as stochastic integrals with respect to Hermite
polynomials, as a first step, we establish the expansion of the right hand side of
(3).
In the following we identify any symmetric matrix of size d×d with the d(d+1)/2-
dimensional vector containing the coefficients on and above the diagonal and write
d̃et the associated determinant map. Let us also define

D = d+ d(d+ 1)/2 + 1 .

Hence, if we consider the map Gε defined on RD by

Gε : R
d × Rd(d+1)/2 × R → R

(x,y, z) 7→ δε(x) d̃et(y) 1[u,∞)(z) ,

one can remark that Gε(z) can be factorized as

(4) Gε(z) = δε(z)f(z̄) where z = (z, z̄) ∈ Rd × Rd(d+1)/2+1 .

On the other hand, let us denote by ΣX the covariance matrix of the D-dimensional
Gaussian vector field

X(t) = (∇X(t),∇2X(t), X(t)) .

We choose Λ a D × D matrix such that Λ tΛ = ΣX, so that we can write for
any fixed t ∈ Rd, X(t) = ΛY (t) with Y (t) a D-dimensional standard Gaussian
vector. Given that the field X is stationary, it holds that ∇X(t) is independent
from (∇2X(t), X(t)) for each fixed t. Hence, the matrix ΣX is diagonal by blocs

of respective dimensions d and d(d + 1)/2 + 1 and Λ factorizes into

(
Λ1 0
0 Λ2

)
.

Furthermore, since X is isotropic, Λ1 =
√
λ Id where λ = −r(2)ii (0) for any i =

1, . . . , d. We define

G̃ε(y) = Gε(Λy) = δε(Λ1y)f(Λ2ȳ) = δε ◦ Λ1(y) f ◦ Λ2(ȳ).

Since the map G̃ε clearly belongs to L2(RD, φD(y)dy) the following expansion con-
verges in this space

G̃ε(y) =
∞∑

q=0

∑

n∈ND; |n|=q

c(G̃ε,n)H̃n(y)

where n = (n1, n2, . . . , nD), |n| = n1 + n2 + · · ·+ nD and H̃n(y) = Π
1≤j≤D

Hnj (yj).

The n-th Hermite coefficient of G̃ε is given by

c(G̃ε,n) =
1

n!

∫

RD

G̃ε(y)H̃n(y)φD(y) dy
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with n! = n1!n2! . . . nD!. The factorization (4) induces a factorization of the Her-
mite coefficient into

c(G̃ε,n) = c(δε ◦ Λ1, n) c(f ◦ Λ2, n̄)

with self understanding notations concerning n = (n, n̄) and the Hermite coefficients
of the maps δε ◦ Λ1 and f ◦ Λ2.

Writing ϕ(ε, T ) as ϕ(ε, T ) =
∫
T
G̃ε(Y (t))dt yields the following expansion

(5) ϕ(ε, T ) = (−1)d
∞∑

q=0

∑

n=(n,n̄)

|n|=q

c(δε ◦ Λ1, n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt.

We will take the limit as ε goes to 0 in (5) to obtain the expansion of ϕ(T ). We
first compute the limit of the coefficient c(δε ◦ Λ1, n):

c(δε ◦ Λ1, n) =
1

n!

∫

Rd

δε(λy)H̃n(y)φd(y) dy

−→
ε→0

1

n!
(2πλ)−d/2 H̃n(0) := d(n) .(6)

Let us point out that this coefficient is zero if at least one of the indices nj is odd.
In what follows, we introduce

(7) a(n) = d(n) c(f ◦ Λ2, n̄) for n = (n, n̄) ∈ Nd × ND−d .

Proposition 1.4. Let X be a stationary isotropic Gaussian field with C3 trajecto-

ries. The following expansion holds in L2(Ω)

ϕ(T ) = (−1)d
∞∑

q=0

∑

n∈ND ; |n|=q

a(n)

∫

T

H̃n(Y (t)) dt.

Note that, according to Mehler’s Formula (see [10] Lemma 10.7), if |n| 6= |m| then
Cov(H̃n(Y (s)), H̃m(Y (t))) = 0 . The above expansion results orthogonal in L2(Ω).

Proof. Let us take the formal limit of the rhs of (5) and define the random
variable

η(T ) = (−1)d
∞∑

q=0

∑

n∈ND; |n|=q

a(n)

∫

T

H̃n(Y (t)) dt.

The first step consists in proving that η(T ) belongs to L2(Ω). Let Q be a posi-
tive integer and let us denote by ηQ(T ) the projection of η(T ) obtained with the
finite expansion for q ≤ Q. The second moment can be bounded by using the
orthogonality relations between the Hermite polynomials. Hence,

E[ηQ(T )
2] =

Q∑

q=0

E[ (
∑

|n|=q

a(n)

∫

T

H̃n(Y (t)) dt)2 ]

≤
Q∑

q=0

lim
ε→0

E[ (
∑

n=(n,n̄)

|n|=q

c(δε ◦ Λ1, n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt)2]

≤ lim
ε→0

E[ϕ(ε, T )2] = E[ϕ(T )2] < ∞,
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where we have used Fatou’s Lemma in the second line, and (5) and Proposition 1.4
in the last one. Thus E[η(T )2] <∞.
It is now easy to conclude that ϕ(T ) = η(T ) in L2(Ω). ✷

2. Central limit theorem for χ(T )

In this section we will prove our main result which consists in a central limit
theorem for the Euler characteristic χ(T ) of the excursion set A(T, u) when T grows
to Rd. We will first concentrate on ϕ(T ) and will be interested in the asymptotics

of ζ(T ) = ϕ(T )−Eϕ(T )
|T |1/2 . To make it precise, we assume that the compact rectangle

T has the following shape T = [−N,N ]d with N a positive integer, and we let N
go to infinity. We will prove that the random variable

ζ([−N,N ]d)) =
ϕ([−N,N ]d)− Eϕ([−N,N ]d)

(2N)d/2

converges in distribution to a centered Gaussian variable.

We need to introduce the following assumption.

Assumption (H): Denoting ψ(t) = max{
∣∣∣∂mr
∂tm (t)

∣∣∣ ; m ∈ {1, . . . , d}k, 0 ≤ k ≤ 4},

ψ ∈ L1(Rd) and ψ(t) → 0 when ||t|| → +∞

Note that (H) implies that r ∈ Lq(Rd) for all q ≥ 1 and hence that X admits a
spectral density fX which is continuous.

2.1. Asymptotic variance of ϕ(T ).
We start with a crucial result which states that the asymptotic variance of ζ([−N,N ]d))
does not degenerate as N goes to infinity. As expected, the asymptotic variance
depends on the level u.

Proposition 2.1. Let X be a stationary isotropic Gaussian field indexed by Rd

with C3 trajectories satisfying Assumption (H). For any level u,

Var (ζ([−N,N ]d)) →
N→+∞

V (u) with V (u) < +∞.

Moreover, V (u) ≥ fX(0)λdHd(u)
2 φ(u)2.

Proof.
Starting from the Hermite type expansion of ϕ([−N,N ]d) in L2(Ω) as it is given in
Proposition 1.4, and using the orthogonality, we obtain

Var (ζ([−N,N ]d)) =

∞∑

q=1

∑

n,m∈ND

|n|=|m|=q

a(n)a(m)RN (n,m)(8)

with

RN (n,m) = (2N)−d

∫

[−N,N ]d

∫

[−N,N ]d
Cov(H̃n(Y (s)), H̃m(Y (t))) dsdt

=

∫

[−2N,2N ]d
Cov(H̃n(Y (0)), H̃m(Y (v))) Π

1≤k≤d
(1− |vk|

2N
) dv.
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A slight generalization of Mehler’s formula (see Lemma 10.7 in [10]) allows us to
write for any n,m ∈ ND such that |n| = |m|,

Cov(H̃n(Y (0)), H̃m(Y (v))) =
∑

dij≥0
∑

i dij=nj ;
∑

j dij=mi

n!m! Π
1≤i,j≤D

(ΓY
ij(v))

dij

(dij)!
,

where

ΓY
ij(v) = Cov(Yi(0), Yj(v)) for i, j = 1, . . . , D.

Since ΓY (v) = Λ−1ΓX(v)t(Λ−1) with ΓX the covariance function of (∇X,∇2X,X),
we have for any v ∈ Rd,

sup
1≤i,j≤D

|ΓY
ij(v)| ≤ K ψ(v),

where ψ has been introduced in Assumption (H) and K is some positive constant.
Hence, for |n| = |m| = q,

Cov(H̃n(Y (0)), H̃m(Y (v))) ≤ K ′ ψq(v),

with some positive constant K ′. By Assumption (H), ψ ∈ Lq(Rd), so we can apply
the dominated convergence theorem and get

(9) RN (n,m) −→
N→∞

R(n,m) =

∫

Rd

Cov(H̃n(Y (0)), H̃m(Y (v))) dv.

According to (8), we have Var (ζ([−N,N ]d)) =
∑∞

q=1 V
N
q with

(10) V N
q −→

N→∞
Vq :=

∑

n,m∈ND

|n|=|m|=q

a(n)a(m)R(n,m).

Note that for any q, V N
q ≥ 0 and so Vq ≥ 0. We will establish that

(11) sup
N

∞∑

q=Q+1

V N
q −→

Q→∞
0.

Using Fatou’s Lemma, it will prove that the series V =
∑∞

q=1 Vq is convergent and

that Var (ζ([−N,N ]d)) tends to V . And the first step of Proposition 2.1 will be
achieved.
Let us remark that (11) is equivalent to

Var
(
πQ(ζ([−N,N ]d))

)
−→
Q→∞

0 uniformely w.r.t N,

where πQ is the projection onto the terms of order > Q.
Let s ∈ Rd and set θs the shift operator associated with the field X, i.e. θsX· =

Xs+· . Introducing the set of indices

IN = [−N,N)d ∩ Zd

we can write

ζ([−N,N ]d) = ζ([−N,N)d) = (2N)−d/2
∑

s∈IN

θs ◦ ζ([0, 1)d).
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Then, denoting by VN,Q the variance Var
(
πQ(ζ([−N,N ]d))

)
and using the station-

arity of X, we obtain

VN,Q = (2N)−d
∑

s∈I2N

αs(N)E
(
πQ(ζ([0, 1)

d))πQ(θs ◦ (ζ([0, 1)d)))
)
,

where αs(N) denotes the cardinal of {t ∈ IN : t− s ∈ IN} which is certainly less
than (2N)d.

Let chose a such that ψ(s) ≤ ρ < 1/K for ||s||∞ ≥ a. We split VN,Q into
V 1
N,Q + V 2

N,Q where in V 1
N,Q the sum runs for the indices s ∈ {s ∈ I2N : ||s||∞ <

a+ 1} and in V 2
N,Q for {s ∈ I2N : ||s||∞ ≥ a+ 1}.

At first, it holds for 2N > a+ 1,

|V 1
N,Q| ≤ (2N)−d (2a+ 2)d (2N)d E

(
πQ(ζ([0, 1)

d))2
)

which goes to 0 as Q goes to ∞ uniformly with respect to N .
Next, for any s ∈ I2N such that ||s||∞ ≥ a+ 1, we write

E
(
πQ(ζ([0, 1)

d))πQ(θs ◦ (ζ([0, 1)d)))
)

=

∞∑

q=Q+1

∫

[0,1)d

∫

[0,1)d
E[Fq(Y (t))Fq(Y (s+ u))]dtdu,(12)

where

E[Fq(Y (t))Fq(Y (s+u))] = E[
∑

n∈ND;|n|=q

a(n)H̃n(Y (t))
∑

n∈ND; |n|=q

a(n)H̃n(Y (s+u)].

Arcones inequality ([8] Lemma 1), implies that

|E[Fq(Y (t))Fq(Y (s+ u))]| ≤ Kq ψq(s− (u− t))
∑

n∈ND; |n|=q

a(n)2n!.

Let us remark that the series
∑

n∈ND a(n)2n! diverges so that we have to handle
carefully in what follows. Recall that equation (7) writes as a(n) = d(n) c(f ◦Λ2, n)

with d(n) given by (6). In Imkeller et al. [15] it is shown that supx |Hl(x)√
l!
ϕ(x)| ≤ C

for a universal constant C. This yields d2(n)n! ≤ Cd and hence
∑

n∈ND; |n|=q

a(n)2n! ≤ Cd qd
∑

|n|≤q

c(f ◦ Λ2, n)
2n! ≤ Cd qd ||f ◦ Λ2||2.

Therefore the absolute value of (12) can be bounded by

Cd ||f ◦ Λ2||2
∞∑

q=Q+1

qdKq

∫

[0,1)d

∫

[0,1)d
ψq(s− (u− t)) dudt.

Hence

|V 2
N,Q| ≤

∑

s∈I2N ; ||s||∞≥a+1

∣∣E
(
πQ(ζ([0, 1)

d))πQ(θs ◦ (ζ([0, 1)d)))
)∣∣

≤ Cd ||f ◦ Λ2||2
∞∑

q=Q+1

qdKq ρq−1

×
∑

s∈I2N ; ||s||∞≥a+1

∫

[0,1)d

∫

[0,1)d
ψ(s− (u− t)) dudt,
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where we have used that for any ||s||∞ ≥ a+1 and u, t ∈ [0, 1)d, ψ(s− (u− t)) ≤ ρ.
On the one hand, since ρ < 1/K,

∑∞
q=Q+1 q

dKqρq−1 is the tail of a convergent
series. On the other hand,

∑

s∈I2N ; ||s||∞≥a+1

∫

[0,1)d

∫

[0,1)d
ψ(s− (u− t)) dudt

≤
∑

s∈I2N

∫

[0,2)d
ψ(s+ u) du ≤ 2

∫

Rd

ψ(u) du < +∞.

Hence supN |V 2
N,Q| goes to 0 asQ goes to infinity and we have proved that Varζ([−N,N ]d)

tends to

(13) V =

∞∑

q=1

∑

n,m∈ND

|n|=|m|=q

a(n)a(m)R(n,m) < +∞.

The first assertion of Proposition 2.1 being established, it remains to prove that
V ≥ fX(0)λdHd(u)

2 φ(u)2.
Actually, in the sum (13), each q-term is non-negative so that V is greater than
the q = 1 term. The next lemma, which is proved in the Appendix allows us to
conclude for the lower bound of V . ✷

Lemma 2.2. Let us denote by V1 the term corresponding to q = 1 in the sum (13).
Then

V1 = V1(u) = fX(0)λdHd(u)
2 φ(u)2

2.2. Central Limit Theorem for ϕ(T ).

Theorem 2.3. Let X be a stationary isotropic Gaussian field indexed by Rd with

C3 trajectories and satisfying Assumption (H). As N ր +∞,

ζ([−N,N ]d) =
ϕ([−N,N ]d)− Eϕ([−N,N ]d)

(2N)d/2

converges in distribution to a centered Gaussian variable with finite variance V
given by (13).

Proof. By the proof of Proposition 2.1 (see (11)), we already know that

sup
N

Var
(
πQ(ζ([−N,N ]d))

)
−→
Q→∞

0 .

So πQ(ζ([−N,N ]d)) → 0 in L2(Ω) when N → ∞ and Q→ ∞ in this order. Hence
in order to establish the CLT for ζ([−N,N ]d), it is enough to show the asymptotic
normality, for a fixed Q as N goes to infinity, of the sequence

πQ(ζ([−N,N ]d)) = ζ([−N,N ]d)− πQ(ζ([−N,N ]d))

=
1

(2N)d/2

∫

[−N,N ]d

Q∑

q=1

Gq(Y (t)) dt,(14)

where we have defined Gq(x) =
∑

n∈ND; |n|=q a(n)H̃n(x). Note that Proposition 2.1

states that the asymptotic variance of πQ(ζ([−N,N ]d)) is finite. Then, the result
follows from the classical Breuer-Major Theorem. A reference for this theorem
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can be found for instance in the paper of Arcones [8]. However, in this result the
parameter set is the set of integers whereas in our setting the parameter set is
Rd. Therefore, for completeness, we give a statement and a proof of this famous
theorem, both adapted to our setting, namely Proposition 2.4 below. ✷

Proposition 2.4. Let X be a stationary isotropic Gaussian field indexed by Rd

with C3 trajectories that satisfies Assumption (H). For any fixed positive integer

Q, as N ր +∞, πQ(ζ([−N,N ]d)) converges in distribution to a centered Gaussian

variable with finite variance σ2
Q =

∑Q
q=1 Vq, where the Vq’s are introduced in (10).

Proof.
Our proof follows very closely the proof of the CLT in Nourdin et al. [22], consid-
ering Rd as parameter set instead of Z.
To set up our framework we must consider the machinery of the isonormal Hilbert
space associated with the zero mean stationary Gaussian vector field Y : Ω×Rd →
RD, we denote it by H. We consider F (λ) := (fYjl (λ))1≤j,l≤D the definite pos-

itive self-adjoint matrix of the spectral density functions of Y and let B(λ) =
(bjl(λ))1≤j,l≤D be a square root of F (λ). For t ∈ Rd and j = 1, . . . , D, let us
introduce the function

ϕt,j : (λ, l) 7→ ei<t,λ>bjl(λ)el ,

where (el)1≤l≤D is the canonical basis of RD.
The Itô formula for multiple Wiener integrals (see [23] page 13 or [19] page 37)
allows us to write the next formula. For any k = 1, . . . , D and any integer l ≥ 0,

Hl(Yk(s)) = Il(ϕs,k ⊗ . . .⊗ ϕs,k) = Il(ϕ
⊗l
s,k),

where the tensorial product has l terms. We use it to compute Gq(Y (s)) as follows

Gq(Y (s)) =
∑

n∈ND; |n|=q

a(n)
∑

m∈An

Iq(ϕs,m1 ⊗ ϕs,m2 . . .⊗ ϕs,mq )

=
∑

m∈{1,2,...,D}q

bm
∑

m∈An

Iq(ϕs,m1 ⊗ ϕs,m2 . . .⊗ ϕs,mq ),

where for n = (n1, . . . , nD) ∈ ND such that |n| = q, we define

An = {m ∈ {1, . . . , D}q :

q∑

j=1

1{i}(mj) = ni , ∀i},

and remark that {1, 2, . . . , D}q = ∪n∈ND;|n|=qAn. It allows the following notation

bm = a(n) for m ∈ An and so m 7→ bm is symmetric on {1, 2, . . . , D}q.
Fubini’s theorem for multiple Wiener integrals applied to formula (14) yields

πQ(ζ([−N,N ]d)) =

Q∑

q=1

Iq(g
N
q ),

where

gNq =
1

(2N)d/2

∫

[−N,N ]d

∑

m∈{1,2,...,D}q

bm ϕs,m1
⊗ ϕs,m2

. . .⊗ ϕs,mq
ds .
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This expression corresponds with equation (4.43) in [22]. Hence, according to (4.47)
of [22], if h is a two times differentiable and bounded map with bounded deriva-
tives and if ZQ is a centered Gaussian random variable with variance equal to

σ2 =
∑Q

q=1 Vq, then

|E[h(ZQ)]− E[h(πQ(ζ([−N,N ]d)))] |

≤ ||h′′||∞
2

Q∑

p,q=1

||δpqVp −
1

q
< DIp(g

N
p ),DIq(g

N
q ) >H ||L2(Ω),(15)

where D denotes the Malliavin derivative (see [22] for its definition). We are now
in position of proving the CLT for πQ(ζ([−N,N ]d)): it is sufficient to prove that
the right hand side of (15) tends to 0.

First we consider the terms corresponding to p = q.

E

(
1

q
< DIq(g

N
q ),DIq(g

N
q ) >H

)

= q!||gNq ||2H⊗q

=
q!

(2N)d

∫

[−N,N ]d

∫

[−N,N ]d

∑

m,l∈{1,2,...,D}q

bmbl

q∏

j=1

ΓY
mj lj (s1 − s2)ds1ds2

=
1

(2N)d

∫

[−N,N ]d

∫

[−N,N ]d

∑

n,n′∈ND

|n|=|n′|=q

a(n)a(n′) Cov(H̃n(Y (s1)), H̃n′(Y (s2)))ds1ds2.

The last line is equal to V N
q and we already proved that V N

q → Vq. So

E

(
1

q
< DIq(g

N
q ),DIq(g

N
q ) >H

)
→ Vq ,

in other words 1
q < DIq(g

N
q ),DIq(g

N
q ) >H converges to Vq in L1(Ω). We have to

prove that the convergence holds in L2(Ω) in order to get

(16)

Q∑

q=1

||Vq −
1

q
< DIq(g

N
q ),DIq(g

N
q ) >H ||L2(Ω) → 0.

It will be done if we show that its variance tends to 0. Actually this last point is
included in the next step (p = q case).

Next step consists in showing that for q ≥ p

||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||2L2(Ω) → 0.(17)
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Formula (3.36) of [22] implies

||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||2L2(Ω)

≤ p!

(
q − 1

p− 1

)2

(q − p)!E[Ip(g
N
p )]2||gNq ⊗q−p g

N
q ||H⊗2p

+
p2

2

p−1∑

l=1

(l − 1!2
(
p− 1

l − 1

)2(
q − 1

l − 1

)2

(p+ q − 2l)!

(||gNp ⊗p−l g
N
p ||H⊗2l + ||gNq ⊗q−l g

N
q ||H⊗2l),

where for e < p,

gNp ⊗e g
N
p =

1

(2N)d

∫

[−N,N ]d×[−N,N ]d

∑

m,l∈{1,...,D}p

bmbl

e∏

j=1

ΓY
mj lj ((s1 − s2)

×us1,me+1 ⊗ . . .⊗ us1,mp ⊗ us2,le+1 ⊗ . . .⊗ us2,lpds1ds2

In this form defining I(N) = [−N,N ]d × [−N,N ]d × [−N,N ]d × [−N,N ]d we get

||gNp ⊗e g
N
p ||2H⊗2(p−e) ≤

(
Dp

∑

m∈{1,...,D}p

|bm|2
)2 Z(N),

with

Z(N) =
1

(2N)2d

∫

I(N)

ψe(s1−s2)ψe(s3−s4)ψp−e(s1−s3)ψp−e(s2−s4)ds1ds2ds3ds4 .

Moreover we have ψe(s3 − s4)ψ
p−e(s1 − s3) ≤ ψp(s3 − s4) + ψp(s1 − s3). Thus we

can write Z(N) ≤ Z1(N) + Z2(N) where

Z1(N) ≤ 1

(2N)2d

∫

I(N)

ψe(s1 − s2)ψ
p(s3 − s1)ψ

p−e(s2 − s4)ds1ds2ds3ds4.

Let us look at the integral
∫

[−N,N ]d
ψp(s3 − s1)ds3 ≤

∫

Rd

ψp(v)dv <∞,

and for the remaining terms

1

(2N)2d

∫

[−N,N ]d[×−N,N ]d×[−N,N ]d
ψe(s1 − s2)ψ

p−e(s2 − s4)ds1ds2ds4

≤ 1

(2N)2d

∫

[−N,N ]d[×[−N,N ]d
ψe∗ψp−e(s1−s4)ds1ds4 ≤ 1

(2N)d

∫

Rd

ψe∗ψp−e(s)ds→ 0.

The term Z2(N) can be treated similarly obtaining

||gNp ⊗e g
N
p ||2H⊗2(p−e) → 0.

Hence (17) holds in force. Together with (16), it implies that (15) tends to zero. ✷

The same proof can be used to get the next result which deals with a collection
of various levels. Let us emphasize that the coefficients a(n) appearing in (13) do
depend on the level u (see (7)). We denote them as a(n, u) in the next theorem.
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Theorem 2.5. Let X be a stationary isotropic Gaussian field indexed by Rd with

C3 trajectories that satisfies Assumption (H). For any level u, we denote

ζ([−N,N ]d, u) =
ϕ([−N,N ]d, u)− Eϕ([−N,N ]d, u)

(2N)d/2
.

Let u1, . . . , uK be K fixed levels in R. As N ր +∞, the random vector
(
ζ([−N,N ]d, u1), . . . , ζ([−N,N ]d, uK)

)

converges in distribution to a centered Gaussian vector with covariance matrix

(C(ui, uj))1≤i,j≤K given by

(18) C(u, v) =
∞∑

q=1

∑

n,m∈ND

|n|=|m|=q

a(n, u)a(m, v)R(n,m) .

2.3. Morse’s theory and Central Limit Theorem for χ(T ).
We follow the presentation of Adler & Taylor’s book [5] Section 9.4, inspired by
Morse’s theorem, to give a precise definition of χ(T ), the Euler characteristic of the
excursion set A(T, u).

We still work with T = [−N,N ]d and for ℓ = 0, 1, . . . , d, we denote by ∂ℓT the
collection of all the ℓ-dimensional faces of T . In particular, ∂dT only contains the

interior
◦
T =]−N,N [d of T and ∂0T = {(εjN)1≤j≤d; εj = ±1} is the set of all the

vertices of T . Each ℓ-dimensional face J of T is associated with a cardinal ℓ subset
σ(J) of {1, . . . , d} and a sequence (εj)j∈{1,...,d}\σ(J) in {−1,+1}d−ℓ such that

J = {v ∈ T : −N < vj < N for j ∈ σ(J), vj = εjN for j /∈ σ(J)}.(19)

The Euler characteristic of A(T, u) can be computed as

χ(T ) =
∑

0≤ℓ≤d

∑

J∈∂ℓT

ϕ(J)(20)

where for any ℓ-dimensional face J of T

ϕ(J) =

ℓ∑

k=0

(−1)kµk(J) with(21)

µk(J) = #{v ∈ J : X(v) ≥ u, X(v) = 0 for j ∈ σ(J),

εjXj(v) > 0 for j /∈ σ(J), index((Xij(v))i,j∈σ(J)) = ℓ− k}.

Let us remark that (20) can be written χ(T ) =
∑

0≤ℓ<d

∑
J∈∂ℓT

ϕ(J) + ϕ(
◦
T ).

Moreover, Bulinskaya Lemma (Lemma 11.2.10 of [5]) entails that with probability

one there is no point t in the boundary set ∂T satisfying ∇X(t) = 0, then µk(
◦
T ) =

µk(T ). Hence, comparing the definition of ϕ(T ), that is given in Section 1.2, and

(21), we obtain ϕ(
◦
T ) = ϕ(T ). Therefore, from now on we will work with this last

formula

χ(T ) =
∑

0≤ℓ<d

∑

J∈∂ℓT

ϕ(J) + ϕ(T ).(22)
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Recall that we want to establish that χ(T ) satisfies a central limit theorem. More
precisely we will prove that

χ(T )− Eχ(T )

|T |1/2
converges in distribution to a centered Gaussian random variable as T grows to Rd.
Recall also that Proposition 2.3 already provides a CLT for ϕ(T ). So, according to
(22), we only have to prove that for any ℓ = 0, 1, . . . , d− 1 and any face J in ∂ℓT ,
the variance of |T |−1/2ϕ(J) tends to 0 as T grows to Rd.

For ℓ = 0, the previous statement is obvious since ϕ({v}) is either 0 or 1 for
any vertex v of T .

Let us now be concerned with ℓ ∈ {1, . . . , d−1}. We deal with a fixed face J ∈ ∂ℓT .
We use (19) to introduce the following notations:

• With any v ∈ Rℓ, we associate v(J) = (v
(J)
1 , . . . , v

(J)
d ) ∈ Rd defined by

v
(J)
j = vj if j ∈ σ(J) ; v

(J)
j = εjN if j /∈ σ(J) .

• A random field X(J) is defined on Rℓ by

X(J)(v) = X(v(J)) for any v ∈ Rℓ .

It clearly inherits the properties of X so that X(J) is Gaussian, stationary,
isotropic, centered and its trajectories are a.s. of class C3.

With these notations, µk(J) can be written as

µk(J) = #{v ∈ [−N,N ]ℓ : X(J)(v) ≥ u, ∇X(J)(v) = 0,

εjXj(v
(J)) > 0 for j /∈ σ(J), index(∇2X(J)(v)) = ℓ− k}.

Following the same arguments as in Section 2, one can get an analogous proposition
of Proposition 1.3

ϕ(J)
L2(Ω)
= lim

ε→0
(−1)ℓ

∫

[−N,N ]ℓ
det(∇2X(J)(v))1[u,∞)(X

(J)(v))δε(∇X(J)(v))

×Πj /∈σ(J)1(0,∞)(εjXj(v
(J))) dv .

Trivially we have

|(−1)ℓ
∫

[−N,N ]ℓ
det(∇2X(J)(v))1[u,∞)(X

(J)(v))δε(∇X(J)(v))

×Πj /∈σ(J)1(0,∞)(εjXj(v
(J))) dv| ≤ N∇XJ

ε (J, 0),

where N∇XJ

ε (J, 0) is an approximation of the number of zeros of ∇X(J), similar
to the one defined in (2). One can get as well an analogous proposition of Propo-
sition 1.4 and at last, a similar proposition as Proposition 2.1 can be formulated:
Var((2N)−ℓ/2(ϕ(J)− Eϕ(J))) →

N→+∞
V (J) < +∞. Hence

Var((2N)−d/2 ϕ(J)) →
N→+∞

0 .

Finally, we are able to state our main result.
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Theorem 2.6. Let X be a stationary isotropic Gaussian field indexed by Rd with

C3 trajectories that satisfies Assumption (H). As N ր +∞,

χ([−N,N ]d)− Eχ([−N,N ]d)

(2N)d/2

converges in distribution to a centered Gaussian variable with finite variance V
given by (13).

3. Appendix

3.1. Proof of Lemma 1.1.
We start with writing Taylor formulae around 0 for the covariance function r which
is supposed to be of class C6 as soon as X is supposed to have trajectories of class
C3. The isotropy of X allows us to write r(t) = R(||t||) with R : R+ → R of class
C6. We know that R(0) = 1, R′(0) = R(3)(0) = 0, R”(0) = −λ and we introduce
R(4)(0) = µ. So

r(t) = 1− λ

2
||t||2 + µ

4!
||t||4 + ◦(||t||5) as ||t|| → 0 .

Taking the second derivatives in the above formula yields the Hessian matrix of r,

namely ∇2r(t) = (r
(2)
ij (t))1≤i,j≤d with

∇2r(t) = −λId +Θ(t) with Θ(t) =
µ

3!
(||t||2Id + (2titj)1≤i,j≤d) + ◦(||t||3) .

With one more derivative, we get

r
(3)
ijm(t) =





µti if i = j = m
0 if all the indices i, j,m are different

µ
3 tp if two indices are equal and the third one is equal to p



+◦(||t||2) .

At last,

r
(4)
iiii(0) = µ ; r

(4)
iijj(0) =

µ

3
for i 6= j

and all the other derivatives of order 4 at 0 equal zero.

Let us come back to the proof of Lemma 1.1 and start with getting an upper
bound for p0,t(v, v) for t in a neighborhood of 0. The vector (∇X(0),∇X(t)) is a
2d centered Gaussian vector. Let us denote by Γ∇X(t) its covariance matrix. Since
X is stationary and isotropic, we can write

Γ∇X(t) =

(
λ Id −∇2r(t)

−∇2r(t) λ Id

)
.

Computing the product of Γ∇X(t) with the matrix

(
Id 0

λ−1∇2r(t) Id

)
, we get

det(Γ∇X(t)) = det(λ2Id − (∇2r(t))2) = det(2λId −Θ(t)) det(Θ(t))

∼ (2λ)d ||t||2d as ||t|| → 0.

Therefore, for a certain constant C,

∀v ∈ Rd , p0,t(v, v) ≤ C ||t||−1 .
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We turn now to the search of an upper bound for

g(v, t) := E
(
| det(∇2X(0)) det(∇2X(t))| /∇X(0) = ∇X(t) = v

)
,

for t in a neighborhood of 0. Using Cauchy-Schwarz inequality and the stationarity
of X, we obtain

g(v, t)2 ≤ E
(
[det(∇2X(0))]2 /∇X(0) = ∇X(t) = v

)

× E
(
[det(∇2X(t))]2 /∇X(0) = ∇X(t) = v

)

:= h(v, t)h(v,−t) = h(v, t)2 .

Since X is isotropic, without loss of generality we can choose to work with t in a
neighborhood of 0 along a specific direction. So from now on, we consider t = τe1
where e1 is the first canonical vector of Rd and τ ∈ R, |τ | ∼ 0. Then

(23) Θ(τe1) =
µ

3!
τ2 J + ◦(|τ |3) with J the diagonal matrix diag(3, 1, . . . , 1) .

Let K = d(d + 1)/2. In order to compute h(v, τe1), we consider ∇2X(0) as a K-
dimensional Gaussian vector and we write the following K-dimensional regression
system

(24) ∇2X(0) = A(τ)∇X(0) +B(τ)∇X(τe1) + Z(τ)

where A(τ) and B(τ) are two matrices of size K × d and Z(τ) is a K-dimensional
centered Gaussian vector which is independant from ∇X(0) and ∇X(τe1). In that
form, we have

h(v, τe1) = E

(
[d̃et((A(τ) +B(τ)) v + Z(τ))]2

)
.

We now compute the regression coefficients. We write the covariances between the
coordinates of ∇2X(0) and ∇X(0) in (24) and we use that ∇2X(0) and ∇X(0) are
independant. Together with the relation (23), it allows us to write
for 1 ≤ k ≤ K and 1 ≤ j ≤ d,

0 = λA(τ)kj − B(τ)kj(−λ+
µJj
3!

τ2 + ◦(|τ |3)) .

In the same way, computing the covariances between the coordinates of ∇2X(0)
and ∇X(τe1) yields

r
(3)
kj (τe1) = A(τ)kj(−λ+

µJj
3!

τ2 + ◦(|τ |3)) − λB(τ)kj .

Combining these last two equations gives

A(τ)kj =
3αkj

Jj
τ−1 (1 + ◦(|τ |))

B(τ)kj = −3αkj

Jj
τ−1 (1 + ◦(|τ |))

A(τ)kj +B(τ)kj =
µαkj

2
τ (1 + ◦(|τ |))(25)

where αkj is defined by prescribing r
(3)
kj (τe1) = µ τ αkj + ◦(|τ |2) .

Starting from (24), we compute now the variance of each coordinate of the Gaussian
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vector Z(τ). For 1 ≤ k ≤ K,

Var(Z(τ)k) = Var(∇2X(0)k) + λ
∑

1≤i≤d

(A(τ)ki)
2 + λ

∑

1≤i≤d

(B(τ)ki)
2

+ 2
∑

1≤i≤d

B(τ)kir
(3)
ki (τe1)− 2

∑

1≤i≤d

A(τ)kiB(τ)ki(−λ+
µJi
3!

τ2 + ◦(|τ |3))

= r
(4)
kk (0)− 3µ

∑

1≤i≤d

(αki)
2

Ji
+ ◦(|τ |) .

We return to the evaluation of h(v, τe1) and write it as E([det(M(τ)]2) where
M(τ) is the symmetric d × d matrix corresponding to the K-dimensional vector
(A(τ) +B(τ)) v+Z(τ). Identifying the indices k ∈ {1, . . . ,K} with the pairs (i, j)
with 1 ≤ i ≤ j ≤ d, then

Var(Z(τ)(1,1)) = µ− 3µ
1

3
+ ◦(|τ |) = ◦(|τ |),

and for any 2 ≤ j ≤ d,

Var(Z(τ)(1,j)) =
µ

3
− 3µ

(1/3)2

1
+ ◦(|τ |) = ◦(|τ |) .

Together with (25), this shows that the first line of M(τ) consists in d Gaussian
variables, denoted by (M(τ)1j)1≤j≤d with

|E(M(τ)1j)| ≤ C||v|| |τ | and Var(M(τ)1j) = ◦(|τ |) .
We write det(M(τ)) =

∑
σ∈Sd

sgn(σ)
∏

1≤i≤dM(τ)iσ(i) where Sd stands for the set

of all permutations of {1, . . . , d} and sgn for the signature. Using Cauchy-Schwarz
inequality as well as the upper bounds for the first two moments of M(τ)1j allow
us to get

h(v, τe1) = E([det(M(τ))]2) = ◦(|τ |),
uniformly with respect to v contained in any fixed compact of Rd. Finally,

F (v, τe1) = g(v, τe1) p0,τe1(v, v) ≤ C
h(v, τe1)

|τ | ,

and this concludes the proof of Lemma 1.1. ✷

3.2. Proof of Lemma 2.2.
We recall (13) that yields the following expression for V1

(26) V1 =
∑

n,m∈ND

|n|=|m|=1

a(n)a(m)R(n,m).

Although the notation does not mention it explicitely, the coefficients a(n) depend
on the level u. Actually, for n = (n, n) ∈ ND = Nd × Nd(d+1)/2+1,

a(n) = a(n, u) = d(n)c(f ◦ Λ2, n) with f = d̃et⊗ 1[u,+∞)

as given by (7) and (4).
Along the proof, K denotes the integer d(d+1)/2, so that D− d = K+1. As well,
we choose Λ, and so Λ2, to be lower triangular. Then, we can write the matrix Λ2

as

(27) Λ2 =

(
L 0
tl α

)
,
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with L a K×K lower triangular matrix, l a vector in RK and α > 0. Furthermore,
the fact that Cov(X(t), Xii(t)) = −λ 6= 0 implies that the vector l does not vanish
and the fact that Var(X(t)) = 1 implies that ||l||2 + α2 = 1.
Hence, for (y, z) ∈ RD−d = RK × R, we have

(28) f ◦ Λ2(y, z) = d̃et(Ly) 1[u,+∞)(〈l, y〉+ αz) .

The computation of d̃et(Ly) is solved in the next lemma. It states that the expan-

sion of the map y ∈ RK 7→ d̃et(Ly) in the basis of Hermite polynomials on RK , as
well as in the canonical basis of polynomials on RK , only involves polynomials of
degree d.

Lemma 3.1. Let L be the matrix introduced in (27). There exists a family of real

numbers (βm)m∈NK ; |m|=d such that

∀y ∈ RK , d̃et(Ly) =
∑

m∈NK ; |m|=d

βΛ,mH̃m(y) =
∑

m∈NK ; |m|=d

βΛ,my
(m)

where y(m) =
∏

1≤k≤K(yk)
mk .

Proof. The map F : y ∈ RK 7→ F (y) = d̃et(Ly) is a polynomial function of degree
d. We expand it first in the basis of Hermite polynomials on RK as follows

F (y) =

d∑

q=0

∑

m∈NK ; |m|=q

βmH̃m(y) ,

where the coefficients are given by

βm =
1

m!

∫

RK

F (y)H̃m(y)φK(y)dy =
1

m!
F ∗ φ(m)

K (0) =
1

m!
F (m) ∗ φK(0) .

Note that in the previous line, for m = (m1, . . . ,mK) with |m| = q and for any

function G defined on RK , G(m) denotes the derivative ∂qG
∂ym1 ···∂ymK

.

In order to compute F (m), we write F (y) as F (y) = det(A(y)) where for any
y ∈ RK , A(y) is a symmetric d× d matrix. The map y ∈ RK 7→ A(y) is linear, so

that for any 1 ≤ i, j ≤ d we have A(y)i,j =
∑K

k=1 a
k
ij yk . Hence

F (y) =
∑

σ∈Sd

sgn(σ)

d∏

i=1

(
d∑

k=1

aki,σ(i)yk

)

and then for k = 1, . . . ,K

∂F

∂yk
(y) =

d∑

i=1

∑

σ∈Sd

sgn(σ)A(y)1,σ(1) · · ·A(y)i−1,σ(i−1)a
k
i,σ(i)A(y)i+1,σ(i+1) · · ·A(y)d,σ(d)

=
∑

1≤i≤d

det(Â(y)
ik
)

where Â(y)
ik

denotes the d × d matrix obtained from A(y) replacing the i-th line
with the line (aki1, . . . , a

k
id).

More generally, for any m ∈ NK with |m| < d, F (m)(y) writes as a sum of deter-
minants of d × d matrices obtained from A(y) replacing |m| lines by lines equal
to (aki1, . . . , a

k
id) with some i ∈ {1, . . . , d} and some k ∈ {1, . . . ,K}. Let us denote
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Â(y)
(m)

for any such matrix.
Coming back to the computation of the coefficients βm we get

βm = sum of terms as
1

m!

∫

RK

det(Â(y)
(m)

)φK(y)dy ,

and we will prove that they vanish for all indices m such that |m| < d.

Each of the above integrals is equal to E

(
det(Â(Z)

(m)
)

)
with Z a N(0, IK) Gauss-

ian vector such that the d× d matrix ∇2X(0) is equal to ∇2X(0) = A(Z). Hence
each integral reduces to the computation of

∑

σ∈Sd

sgn(σ)E
(
Xi1,σ(i1)Xi2,σ(i2) . . . Xid−|m|,σ(id−|m|)

)
ak1

j1,σ(j1)
. . . a

k|m|

j|m|,σ(j|m|)

where {i1, i2, . . . , id−|m|} ∪ {j1, i2, . . . , j|m|} = {1, . . . , d}. By using Wick’s formula
which is recalled in Lemma 11.6.1 of [5], we get that if d − |m| is odd the above
term is zero. Thus let assume that d − |m| = 2l. We can paired the indices
i1, i2, . . . , id−|m| and denoting them as {k1, k2}, . . . , {kl, kl+1}, we get

E
(
Xi1,σ(i1)Xi2,σ(i2) . . . Xid−|m|,σ(id−|m|)

)

= E(Xk1,σ(k1)Xk2,σ(k2)) . . .E(Xkl,σ(kl)Xkl+1,σ(kl+1)) .

With any fixed permutation σ, we associate a new permutation σ′ as follows:

σ′(jk) = σ(jk) for 1 ≤ k ≤ |m|
σ′(k1) = σ(k2), σ

′(k2) = σ(k1), σ
′(km) = σ(km) for the others k.

Then, sgn(σ′) = −sgn(σ) because σ′ is the composition of σ with a transposition.
Moreover

E(Xk1,σ(k1)Xk2,σ(k2)) = r
(4)
k1,σ(k1),k2,σ(k2)

(0) = E(Xk1,σ′(k1)Xk2,σ′(k2)).

This implies the cancelation of all pairs of two associated permutations and hence
∑

σ∈Sd

sgn(σ)E
(
Xi1,σ(i1)Xi2,σ(i2) . . . Xid−|m|,σ(id−|m|)

)
ak1

j1,σ(j1)
. . . a

k|m|

j|m|,σ(j|m|)
= 0.

We have proved that all the coefficients βm with |m| < d equal 0 and so the first
expansion of the lemma is established.

In order to get the second expansion, we remark that for any x ∈ R and any
positive integer k, limα→+∞ α−kHk(αx) = xk. Then, using our first expansion, we
get for any y ∈ RK ,

∑

m∈NK ; |m|=d

βm y(m) = lim
α→+∞

α−d d̃et(αLy) = d̃et(Ly).

Lemma 3.1 is established. ✷

Let us come back to equation (26). Note that |n| = 1 implies that we can write
n = ei for one index i = 1, . . . , D where (ei)1≤i≤D stands for the canonical basis of
RD.
Then for n = ei, due to the explicit form of d(n) given in (6), we have

a(ei) =

{
0 if 1 ≤ i ≤ d

λ−d(2π)−d/2 c(f ◦ Λ2, ei) if d+ 1 ≤ i ≤ D
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Hence,

V1 = λ−2d(2π)−d
∑

d+1≤i,j≤D

c(f ◦ Λ2, ei) c(f ◦ Λ2, ej)R(ei, ej),

where we deduce from (9) that R(ei, ej) =
∫
Rd Cov(Yi(0), Yj(v)) dv.

Remark 3.2. Denoting by ΓX the covariance function of the D-dimensional Gauss-

ian field X = (∇X,∇2X,X), for any 1 ≤ i, j ≤ D,
∫

Rd

ΓX

i,j(v) dv = (2π)d fX(0) δD,D(i, j),

where δ stands for the Kronecker symbol.

Indeed, ΓX

D,D(v) = E(X(0)X(v)) = r(v) = f̂X(v) and then, since fX is supposed
to be continuous,

∫

Rd

ΓX

D,D(v) dv =
̂̂
fX(0) = (2π)d fX(0) .

For (i, j) 6= (D,D), recall that ΓX

i,j equals a derivative of order between one and
four of the function r. Since r and all its derivative tends to 0 at infinity due to
assumption (H), we get

∫
Rd Γ

X

i,j(v) dv = 0 for (i, j) 6= (D,D).

With (27), Remark 3.2 implies that for any d+ 1 ≤ i, j ≤ D,

R(ei, ej) =

∫

Rd

Cov(Yi(0), Yj(v)) dv = (2π)d fX(0)α−2 δD,D(i, j)

and therefore

V1 = fX(0)λ−d α−2 c(f ◦ Λ2, eD)2 .

Using (28) we get

c(f ◦ Λ2, eD) =

∫

RK×R

d̃et(Ly) 1[u,+∞)(〈l, y〉+ αz) z φK(y)φ(z) dy dz

=

∫

RK

d̃et(Ly)φ(
1

α
(u− 〈l, y〉))φK(y) dy ,

where we have used zφ(z) = −φ′(z) , ∀z ∈ R.

Hence, using Lemma 3.1, we have c(f ◦ Λ2, eD) =
∑

|m|=d βm Im where we in-

troduce the next integral

Im :=

∫

RK

H̃m(y)φ(
1

α
(u− 〈l, y〉))φK(y) dy

= (−1)d
∫

RK

φ(
1

α
(u− 〈l, y〉))φ(m)

K (y) dy

= (−1)dϕ0 ∗ φ(m)
K (ul∗) = (−1)d (ϕ0 ∗ φK)

(m)
(ul∗) .

In the previous lines, ϕ0 denotes the map y ∈ RK 7→ ϕ0(y) = φ( 1
α 〈l, y〉) and l∗ is

any vector in RK such that 〈l, l∗〉 = 1. The following lemma will help us for the
computation of Im.
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Lemma 3.3. Let α and l be such that α2 + ||l||2 = 1. Then, for any integer k ≥ 0,
denoting by ϕk the map y ∈ RK 7→ ϕk(y) = φ(k)( 1

α 〈l, y〉), we have

∀z ∈ RK , ϕk ∗ φK(z) = αk+1 φ(k)(〈l, z〉) .

Proof. For k = 0, we remark that the map z 7→ 1
α

∫
RK φ(

1
α (z − 〈l, y〉))φK(y) dy

is the probability density function of a random variable Z = αN + 〈l, G〉 where N
is a standard Gaussian random variable and G is a standard Gaussian vector of
dimension K independent of X. But Z is clearly Gaussian, centered, with variance
α2 + ||l||2 = 1 and so ϕ0 ∗ φK(.) = αφ(〈l, .〉).
For k > 0, let us first note that for any m ∈ NK , taking the m derivative of ϕ0

yields

ϕ
(m)
0 (y) = α−|m| l(m) φ(|m|)(

1

α
〈l, y〉) = α−|m| l(m) ϕ|m|(y),

and hence ϕ|m|(y) = α|m| (l(m))−1 ϕ
(m)
0 (y) . Then, choosing m ∈ NK such that

|m| = k and l(m) 6= 0 (which is possible since l is not the zero vector) and using
the case k = 0, we obtain

ϕk ∗ φK = α|m| (l(m))−1 (αφ(〈l, .〉))(m) = αk+1 φ(k)(〈l, .〉) . ✷

Using previous lemma, we get for any y ∈ RK ,

(ϕ0 ∗ φK)
(m)

(y) = α l(m) φ(d)(〈l, y〉) = (−1)d α l(m)Hd(〈l, y〉)φ(〈l, y〉) .

Coming back to the computation of Im, since 〈l, ul∗〉 = u, we get Im = α l(m)Hd(u)φ(u) .
Then, the desired Hermite coefficient writes as

c(f ◦ Λ2, eD) = α (
∑

|m|=d

βm l(m))Hd(u)φ(u) = α d̃et(Ll)Hd(u)φ(u),

where we have used Lemma 3.1 to compute the sum inside the parenthesis. It
remains to compute d̃et(Ll) = det(A(l)).

Let us first compute the product L l. We write the coordinates of the K + 1-
dimensional Gaussian vector (∇2X,X) in the following order

(∇2X,X) = ((Xij)1≤i<j≤d , (Xii)1≤i≤d , X)

so that the lower triangular matrix L can be written as L =

(
L(1) 0
L(3) L(2)

)
and the

vector l =

(
l(1)

l(2)

)
, where the top part has length K − d whereas the bottom part

has length d. With these notations, (Xij)1≤i<j≤d = L(1) (Yk)d+1≤k≤K−d. Since

Cov(X,Xij) = 0 for all i < j, we deduce that l(1) vanishes and since Cov(X,Xii) =

rii(0) = −λ for any i = 1, . . . , d, we deduce that all the coordinates of L(2) l(2)

are equal to λ. It implies that the symmetric d× d matrix A(l) induced by the K

dimensional vector L l is diagonal and equal to −λ Id. Hence, d̃et(Ll) = det(A(l)) =
(−λ)d. So V1 = fX(0)λdHd(u)

2 φ(u)2 and Lemma 2.2 is proved. ✷
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