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A CENTRAL LIMIT THEOREM FOR THE EULER

CHARACTERISTIC OF A GAUSSIAN EXCURSION SET

ANNE ESTRADE AND JOSÉ RAFAEL LEÓN

We study the Euler characteristic of an excursion set of a stationary Gaussian
random field.

Let X : Ω×R
d → R be a stationary isotropic Gaussian field having trajectories

in C2(Rd). Let us fix a level u ∈ R and consider the excursion set above u,
{t ∈ R

d : X(t) ≥ u}. We take the restriction to a compact domain considering
for any bounded rectangle T ⊂ R

d, A(T, u) = {t ∈ T : X(t) ≥ u} . The aim
of this paper is to establish a central limit theorem for the Euler characteristic of
A(T, u) as T grows to R

d, as conjectured by R. Adler more than ten years ago [3].
The required assumption on X is stronger than Geman’s one in dimension one but
weaker than having C3 trajectories. Our result extends to higher dimension what
is known in dimension one, since in that case, the Euler characteristic of A(T, u)
equals the number of up-crossings of X at level u.

Introduction

The Euler characteristic, also called Euler-Poincaré index, is one of the additive
functionals that can be defined on the collection of all compact sets of Rd. Intu-
itively, in dimension one, the Euler characteristic is the number of disjoint intervals
constituting the compact set. In dimension two, the Euler characteristic equals
the number of connected components minus the number of “holes” in the compact
set. In dimension three, the Euler characteristic equals the number of connected
components minus the number of “handles” plus the number of “interior hollows”.
We will use a precise definition later on but what is important is that the Euler
characteristic contains information that describes (a part of) the morphology of a
compact set in R

d.
We are interested in the Euler characteristic of an excursion set A(T, u) = {t ∈

T : X(t) ≥ u} for a real valued smooth stationary isotropic Gaussian field X =
{X(t) : t ∈ R

d}, a compact set T ⊂ R
d and a level u. We denote it as χ(X,T, u)

for a while. One should consider χ(X,T, u) as an extension in dimension greater
than one of the very precious tool in dimension d = 1 that is UX(T, u) the number
of up-crossings at the level u of X on the interval T . In 2000, Adler [3] conjectured
that χ(X,T, u) satisfies a central limit theorem (CLT) as T grows to R

d. We prove
it in the present paper. In dimension one, a CLT result for UX(T, u) can be found
in [10] Chapter 10.

Actually, twenty years ago, Worsley [28] discovered that, when T is a rectangle
in R

d, the expectation of χ(X,T, u) can be explicitely computed as a function of
u depending on the covariance structure of X. When one wants to establish a
CLT, the first step consists in estimating the asymptotic variance. Unfortunately
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2 ANNE ESTRADE AND JOSÉ RAFAEL LEÓN

the tricky method that yields the expectation formula cannot operate to compute
the variance. In [26], formulae for the higher moments of the differential topology
characteristic of A(T, u), which is not so far from χ(X,T, u), are obtained for fixed
T under convenient assumptions. Our method allows us to obtain an L2 approxi-
mation of χ(X,T, u). In order to prove that the asymptotic variance is finite, we
use the Wiener-Itô chaos decomposition. The second step towards a CLT is to
get the asymptotic normality. At this stage, the expansion of χ(X,T, u) into the
Wiener-Itô chaos is used again as well as a continuous parameter version of the cel-
ebrated Breuer-Major theorem (see [9] for instance). Precisely, we follow Nourdin
et al. [20] but with some modifications motivated by the fact that our process has
parameter in R

d instead of Z as in the cited article.
In the present paper, two types of tools are mixed. One is concerned with

level functionals and its Hermite expansion. This point of view allows us to use
the revisited Stein method presented for instance in [23, 22, 20]. A CLT result
for χ(X,T, u) appears then as a consequence of the asymptotic normality of each
term in the Wiener-Itô decomposition. The second tool deals with the geometrical
aspect of the work. Actually we have to consider the random vectorial field X =
(X,∇X,∇2X) and it is convenient to see it as a random function from R

d to
R

D with D = 1 + d + d(d + 1)/2. It implies tedious differential calculus in high
dimension. We must admit that we are very debtfull to Robert Adler and Mario
Wshebor, many of their Gaussian and geometrical ideas inspired the present work.

Beyond our work, the study of the excursion sets of a stationary field is a very
popular theme. Many authors were and still are interested in this domain as proved
by the successful recent books of Adler & Taylor [6] and Azäıs & Wshebor [10].
On the one hand, the description of these excursion sets appears very powerful to
characterize the field X. For instance, since the first Adler’s book [2] one knows
that the expectation of χ(X,T, u) is a good approximation for the probability of
the maximum of X on T to be greater than u. Also the line integral with respect
of the level curve at any level u provides information on the anisotropy property of
X (see the works of Cabaña [12] and Iribarren [15]). On the other hand, at least in
the Gaussian case, acurate methods such as the theory of crossings can be used to
get explicit values for level functionals (see the seminal work of Slud [24] and also
the paper of Kratz and León [16]).

Our study for establishing a CLT for level functionals has many precursors in the
literature. These functionals are usually used to build statistical estimators or to
construct statistical tests. The first one that we can cite is Adler’s work [1] that uses
the Euler characteristic of an excursion set to build a spectral moment estimator
for two dimensional Gaussian fields. Moreover, this estimator was proved to satisfy
asymptotical normality. Afterwards, the two cited works [12] and [15] established
a CLT for studying the asymptotic behavior of estimators based on the level sets,
actually the line integral with respect to a level curve. Following this direction,
we have in mind statistical outcomes of our result. They could serve various fields
of application such as brain exploration or representation of the universe following
[27] or the nice introduction of the forthcoming book [7], as well as worn surfaces
or more generally rough surfaces as proposed in [8, 25]. Our result could be used
to get the asymptotic distribution of the statistic under the null hypothesis in a
test of normality. Furthermore, by linearity, it should also give a CLT result for
a family of χ(X,T, u)’s corresponding to different levels as in [4, 25] where similar
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questions are studied. We also have in mind extensions to non Gaussian fields or
to Gaussian non stationary fields, starting from the recent results concerning the
volume ([19, 11]) or the expected Euler characteristic ([13, 8]) of excursion sets in
these cases.

The first section of the present paper is devoted to a formula, namely Morse’s
formula, which gives the Euler characteristic of an excursion set. The study of each
term that is involved in this formula yield the structure of the paper. It is presented
at the end of the section.

All over the paper we deal with a centered stationary isotropic Gaussian field
X = {X(t) : t ∈ R

d} such that Var(X(0)) = 1. Furthermore we assume that
almost every realization of X is of class C2 on R

d. We write Xi and Xij the
derivatives of X of first and second order

∂X

∂ti
(t) = Xi(t) and

∂2X

∂ti∂tj
(t) = Xij(t)

∇X(t) = (Xi(t))1≤i≤d and∇2X(t) = (Xij(t))1≤i,j≤d . Denoting by r the covariance
function of X,

r(t) = Cov(X(0), X(t)) ,

the assumption on X implies that r ∈ C4(Rd) and for any multidimensional index
m = (i1, . . . , ik) with 1 ≤ k ≤ 4 and 1 ≤ ij ≤ d, we write

∂mr

∂tm
(t) =

∂kr

∂ti1 . . . ∂tik
(t) = ri1···ik(t) .

It is well know that for any fixed t, X(t) and ∇X(t) are independent, as well as
∇X(t) and ∇2X(t). The next covariance identities are easy to obtain using the
stationarity of X,

Cov(X(0), Xi(t)) = ri(t) ; Cov(X(0), Xij(t)) = rij(t) = −Cov(Xi(0), Xj(t))

Cov(Xi(0), Xjk(t)) = rijk(t) ; Cov(Xij(0), Xkl(t)) = rijkl(t) .

Moreover, by isotropy of X, there exists a real λ ≥ 0 such that rii(0) = −λ for any
i = 1, . . . , d. In order to avoid working with a degenerate field X, we assume that
λ > 0.

1. The Euler characteristic of an excursion set

We follow the presentation of Adler & Taylor’s book [6] Section 9.4, inspired by
Morse’s theorem, to define the Euler characteristic of an excursion set.

Let us assume that T = Π
1≤j≤d

[aj , bj ] is a bounded closed rectangle in R
d and,

for ℓ = 0, 1, . . . , d, let us denote by ∂ℓT the collection of all the ℓ-dimensional faces

of T . In particular, ∂dT only contains the interior
◦
T = Π

1≤j≤d
]aj , bj [ of T and ∂0T

is the set of all the vertices of T . Each ℓ-dimensional face J of T is associated
with a cardinal ℓ subset σ(J) of {1, . . . , d} and a sequence (εj)j∈{1,...,d}\σ(J) in

{−1,+1}d−ℓ such that

J = {v ∈ T : aj < vj < bj for j ∈ σ(J),

vj = 1/2(1− εj)aj + 1/2(1 + εj)bj for j /∈ σ(J)}.
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We now deal with the Euler characteristic of the excursion set A(T, u) = {t ∈ T :
X(t) ≥ u}. Since the level u is fixed all over the paper, we will not mention it any
more and write χ(T ) for the Euler characteristic of A(T, u). It can be computed as
(see [6] pp.211-212)

χ(T ) =
∑

0≤ℓ≤d

∑

J∈∂ℓT

ϕ(J)(1)

where for any ℓ-dimensional face J of T

ϕ(J) =
ℓ∑

k=0

(−1)kµk(J)(2)

and the integers µk(J) are given by

µk(J) = # {v ∈ J : X(v) ≥ u,(3)

Xj(v) = 0 for j ∈ σ(J), εjXj(v) > 0 for j /∈ σ(J),

index((Xij(v))i,j∈σ(J)) = ℓ− k}.

Let us write (1) again as χ(T ) =
∑

0≤ℓ<d

∑
J∈∂ℓT

ϕ(J) + ϕ(
◦
T ). It is worth

remarking that ϕ(
◦
T ) actually reduces to ϕ(T ). Indeed, using (2) and (3) yields

ϕ(
◦
T ) =

∑d
k=0(−1)kµk(

◦
T ) with

µk(
◦
T ) = #{t ∈

◦
T : X(t) ≥ u, ∇X(t) = 0, index(∇2X(t)) = d− k}.

Bulinskaya Lemma (Lemma 11.2.10 of [6]) entails that with probability one there is

no point t in the boundary set ∂T satisfying ∇X(t) = 0, then µk(
◦
T ) = µk(T ) and

hence ϕ(
◦
T ) = ϕ(T ). Therefore, from now on we will work with this last formula

χ(T ) =
∑

0≤ℓ<d

∑

J∈∂ℓT

ϕ(J) + ϕ(T ).(4)

Let us mention that ϕ(T ) is sometimes named as the differential topology charac-
teristic (DT) of the excursion set A(t, u). It is traditionally studied at the same
time as the Euler characteristic.

Recall that we want to establish that χ(T ) satisfies a central limit theorem
(CLT). More precisely we will prove that

χ(T )− Eχ(T )

|T |1/2

converges in distribution to a centered Gaussian random variable as T grows to R
d,

where |T | stands for the Lebesgue volume of T .
In order to prove it, we first establish a CLT for ϕ(T ). This will be achieved

in Section 3 using a Hermite expansion of ϕ(T ) obtained in Section 2. The main
points of Section 3 consist first in the computation of the asymptotic variance V of
|T |−1/2 (ϕ(T )− Eϕ(T )) and second in the asymptotic normality. This last point is
a consequence of a convergence result, namely Proposition 3.3, which is interesting
for its own and should be used separately in further works.

Next in Section 4, we prove that for any ℓ-dimensional face J of T , with ℓ < d,
Var

(
|T |−1/2ϕ(J)

)
vanishes as T grows to R

d. This fact, together with (4), allows us
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to state our main theorem: |T |−1/2 (χ(T )− Eχ(T )) converges to a N(0, V ) random
variable.

At last, Section 5 is devoted to the computation of an explicit value of V in the
two dimensional case.

2. Hermite expansion of ϕ(T )

2.1. Approximation of ϕ(T ) via the area formula.
We introduce now the required assumption for the L2 approximation of ϕ(T ).

Assumption (H1):

t ∈ R
d 7→ Θ(t)

||t||2 is bounded near zero where Θ(t) = ∇2r(t) + λId .

Let us remark that (H1) is clearly satisfied as soon as X is supposed to have
trajectories of class C3 since in that case,

(Θij(t))1≤i,j≤d = (
∑

m,n

rijmn(0)tmtn + o(||t||2))1≤i,j≤d .

Let ε > 0 and δε be the function (2ε)−d 1[−ε,ε]d that satisfies
∫
Rd δε(z)dz = 1. The

almost sure convergence in our next proposition is contained in Theorem 11.2.3 of
[6].

Proposition 2.1. The following convergence holds almost surely

(5) ϕ(T ) = lim
ε→0

(−1)d
∫

T

det(∇2X(t))1[u,∞)(X(t))δε(∇X(t))dt.

Furthermore, under assumption (H1), ϕ(T ) ∈ L2(Ω) and the previous convergence

holds in L2(Ω).

Proof. We first establish the a.s. convergence. We proceed as in the proof of
Theorem 11.2.3 of [6] and we use the same notations. The functions appearing in
the theorem are, f(t) = ∇X(t), ∇f(t) = ∇2X(t), g(t) = (∇2X(t), X(t)) and for
each k = 0 . . . , d, B = Dk × [u,∞) with Dk = {index = d− k}.

As a consequence of Boulinskaya lemma, the following three statements hold

P{(∇X∂T )
−1{0} = ∅} = 1,

P{ω : ∃t ∈ T , ∇X(t) = 0 and ∇2X(t) = 0} = 0,

P{ω : ∃t ∈ T , ∇X(t) = 0, g(t) ∈ ∂B} = 0.

Hence with probability one there is no point t such that

• t ∈ ∂T satisfying ∇X(t) = 0.
• t ∈ T satisfying both ∇X(t) = 0 and either g(t) ∈ ∂B or det(∇2X(t)) = 0.

Under the above two conditions the set of points {t ∈ T : ∇X(t) = 0} is finite
of cardinal equal to M(ω). Hence each of such points can be surrounded by an
open ball of radius η, say B(ti, η), such that these balls do not intersect ∂T and
are disjoint. Moreover η can be chosen small enough such that for t in these balls,
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g(t) ∈ B or in the interior of Bc, but never in both. Let B∞(0, ε) = {z : z ∈
R

d, supi |zi| < ε}. We have

(∇X)−1(B∞(0, ε)) ⊂
M⋃

i=1

B(ti, η).

By the Inverse Function Theorem we can chose ε and η small enough such that
B∞(0, ε) ⊂ ∇X(B(ti, η)) and the restriction of ∇X to this ball is a one-to-one.
The Jacobian of this transformation is | det(∇2X(t))|.
Let us define

hk,ε(t, z) = 1[u,∞)(X(t))1Dk
(∇2X(t))δε(z).

Hence by the change of variable formula we obtain∫

Rd

∑

t∈(∇X−1(z))∩B(ti,η)

hk,ε(t, z)dz

=

∫

B(ti,η)

| det(∇2X(t))|1[u,∞)(X(t))1Dk
(∇2X(t))δε(∇X(t))dt ,

yielding

µk =

∫

Rd

∑

t∈(∇X−1(z))∩T

hk,ε(t, z)dz

=
M∑

i=1

∫

B(ti,η)

| det(∇2X(t))|1[u,∞)(X(t))1Dk
(∇2X(t))δε(∇X(t))dt

= (−1)d−k

∫

T

det(∇2X(t))1[u,∞)(X(t))1Dk
(∇2X(t))δε(∇X(t))dt.

Since the left side of this equation is independent of ε, summing all the terms for
k = 0, . . . , d, finally gives the a.s. convergence in (5).

We prove now that (5) also holds with L2(Ω) convergence under assumption (H1).
Let us denote by ϕ(ε, T ) the right hand side of (5), ie

ϕ(ε, T ) = (−1)d
∫

T

det(∇2X(t))1[u,∞)(X(t))δε(∇X(t))dt.

Actually we will establish that (ϕ(ε, T ))ε→0 is a Cauchy family in L2(Ω). It will
be achieved as soon as we prove that for any ε > 0, ϕ(ε, T ) ∈ L2(Ω) and that

E (ϕ(ε, T )− ϕ(η, T ))
2
tends to 0 as ε, η tend simultaneously to 0. It is enough to

establish that there exists a real number α such that

E(|ϕ(ε, T )ϕ(η, T )|) < +∞ and E (ϕ(ε, T )ϕ(η, T )) →
ε,η→0

α .

One can write

E(|ϕ(ε, T )ϕ(η, T )|)

≤
∫

Rd×Rd

∫

T×T

δε(x)δη(x
′)φ2d(t− s, x, x′)gs,t(x, x

′) dxdx′dtds
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where φ2d(t, .) denotes the probability density function of (∇X(0),∇X(t)) and gs,t
denotes the conditional expectation,

gs,t(x, x
′) = E

(
1[u,+∞)(X(s))1[u,+∞)(X(t))| det(∇2X(s)) det(∇2X(t))|

/∇X(s) = x,∇X(t) = x′) .

Using the stationarity of X, we get

E(|ϕ(ε, T )ϕ(η, T )|)(6)

≤
∫

Rd×Rd

∫

T0

δε(x)δη(x
′)φ2d(v, x, x

′)g0,v(x, x
′) |T ∩ (T − v)| dxdx′dv

where T0 denotes the rectangle in R
d around 0 obtained from T = Π1≤j≤d[aj , bj ]

by prescribing T0 = Π1≤j≤d[aj − bj , bj − aj ]. Inverting the integrals on T0 and on
R

d×R
d, we write the above right hand side as an integral

∫
T0

|T∩(T−v)|Gε,η(v) dv .

We prove first that Gε,η is integrable near 0. We need an upper bound for
|g0,t(x, x′)| for t in a neighborhood of 0. Using Cauchy-Schwarz inequality as well
as the fact that ∇2X(t) and ∇X(t) are independent for any t, we get

g0,t(x, x
′)2 ≤ E

(
[det(∇2X(0))]2 | ∇X(0) = x,∇X(t) = x′

)

× E
(
[det(∇2X(t))]2 | ∇X(0) = x,∇X(t) = x′

)

= E
(
[det(∇2X(0))]2 | ∇X(t) = x′

)
E
(
[det(∇2X(t))]2 | ∇X(0) = x

)

:= ht(x
′)h−t(x) .

Using again the independence between ∇2X(t) and ∇X(t), it is clear that ht(x)
tends to E

(
[det(∇2X(0))]2

)
as t goes to 0. Hence, for any t near 0 and any x, x′ ∈

R
d,

|g0,t(x, x′)| ≤ 2E
(
[det(∇2X(0))]2

)
.

We now study the behavior of φ2d(t, .) for t in a neighborhood of 0. The vector
(∇X(0),∇X(t)) is a 2d centered Gaussian vector. Let us denote by Γ(t) its covari-
ance matrix. Since X is stationary and isotropic with covariance function r, we can
write

Γ(t) =

(
λ Id −∇2r(t)

−∇2r(t) λ Id

)
where λ = −rii(0) ,

so that det(Γ(t)) = λ2d−[det(∇2r(t))]2 . By hypothesis (H1) we can write∇2r(t) =

−λId+Θ(t) and we know that the function L(t) = Θ(t)
||t||2 is bounded. Using a Taylor

expansion of the determinant, we obtain

det(∇2r(t)) = (−λ)d[1− ||t||2
λ

TrL(t) + o(||t||2)].

Hence, det Γ(t) = 2λ2d−1 ||t||2 TrL(t)+o(||t||2) and therefore, for a certain constant
C,

φ2d(t, x, x
′) ≤ C ||t||−1 .

Case d > 1. Since t 7→ ||t||−1 is integrable near 0, we are now able to conclude that

E(|ϕ(ε, T )ϕ(η, T )|) ≤ 2CE
(
[det(∇2X(0))]2

) ∫

T0

|T ∩ (T − t)| ||t||−1 dt < +∞

so that ϕ(ε, T ) ∈ L2(Ω).
We are also able to write again inequality (6) without absolute values, so that

it becomes an equality where the function gs,t has been replaced by g̃s,t defined as
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gs,t without absolute values around the ‘det’. It is clear that for any fixed t 6= 0,
the map (x, x′) 7→ g̃0,t(x, x

′)φ2d(t, x, x′) is continuous. Hence,
∫

Rd×Rd

δε(x)δη(x
′)g̃0,t(x, x

′)φ2d(t, x, x
′) dxdx′ →

ε,η→0
g̃0,t(0, 0)φ2d(t, 0, 0) .

Finally, we use the dominated convergence theorem to get that

E (ϕ(ε, T )ϕ(η, T )) →
ε,η→0

α ,

with α =
∫
T0
g̃0,t(0, 0)φ2d(t, 0, 0) |T ∩ (T − t)| dt.

Case d = 1. In dimension d = 1, our proof is not valid since 1
|t| is not integrable

near 0. Nevertheless, the fact that the number of up-crossings of X at level u,
namely UX(T, u), can be approximated in L2(Ω) has already been established (see
for instance [17] or Th.10.10 in [10]). The usual condition for this result to hold is∫
|t|≤1

Θ(t)/|t| dt < +∞ , known as the Geman assumption. It is weaker than our

assumption (H1). ✷

Remark: The first study in dimension d > 1 on the finiteness of the two or-
der moment of the Euler characteristic was the article of Adler and Hasofer [5].
More recently the fact that ϕ(T ) belongs to L2(Ω) has been implicitly established
in [26] under convenient assumptions. Our upper bound proves that their assump-
tions hold under (H1). Furthermore, following the proof of Proposition 2.1 with
little changes yield that N∇X(T, 0) belongs to L2(Ω), that N∇X

ε (T, 0) tends to
N∇X(T, 0) in L2(Ω) and that v 7→ N∇X(T, v) is continuous on R

d. As far as we
know, this result cannot be found in the literature in the case d > 1.

2.2. Hermite type expansion of ϕ(T ).
In what follows, we use the Hermite polynomials (Hn)n∈N defined by Hn(x) =

(−1)n ex
2/2 ∂n

∂xn (e
−x2/2). They provide an orthonormal basis of L2(R, φ(x)dx) where

φ denotes the standard Gaussian density on R. We also denote by φm the standard
Gaussian density on R

m.

In order to get an Hermite type expansion of ϕ(T ), we establish as a first step
the expansion of ϕ(ε, T ). Let us recall that

ϕ(ε, T ) = (−1)d
∫

T

δε(∇X(t)) det(∇2X(t)) 1[u,∞)(X(t))dt

and write it as

ϕ(ε, T ) = (−1)d
∫

T

Gε(∇X(t),∇2X(t), X(t))dt.

In the following we identify any symmetric matrix of size d×d with the d(d+1)/2-
dimensional vector containing the coefficients on and above the diagonal and write
d̃et the associated determinant map. Hence we consider the map Gε as

Gε : R
d × R

d(d+1)/2 × R → R

(x,y, z) 7→ δε(x) d̃et(y) 1[u,∞)(z)

At this point, we need some notations. Let us define

D = d+ d(d+ 1)/2 + 1
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and write for any z ∈ R
D,

z = (z, z̄) with z ∈ R
d and z̄ = (z, zD) ∈ R

d(d+1)/2 × R.

Then, one can remark that Gε(z) can be factorized as

(7) Gε(z) = δε(z)f(z̄) with f(z̄) = d̃et(z)1[u,∞)(zD).

On the other hand, let Λ be the D ×D matrix such that

(∇X(t),∇2X(t), X(t)) = ΛY (t)

with Y (t) a N(0, ID) Gaussian vector. Given that the field X is stationary, it holds
that ∇X(t) is independent from (∇2X(t), X(t)) for each fixed t. Hence, the matrix

Λ factorizes into

(
Λ1 0
0 Λ2

)
and since X is isotropic, Λ1 = λ Id where λ = −rii(0)

for any i = 1, . . . , d. We define

G̃ε(y) = Gε(Λy) = δε(Λ1y)f(Λ2ȳ) = δε ◦ Λ1(y) f ◦ Λ2(ȳ).

Since the map G̃ε clearly belongs to L
2(RD, φD(y)dy) the following expansion con-

verges in this space

G̃ε(y) =
∞∑

q=0

∑

|n|=q

c(G̃ε,n)H̃n(y)

where n = (n1, n2, . . . , nD), |n| = n1 + n2 + · · ·+ nD and H̃n(y) = Π
1≤j≤D

Hnj
(yj).

The n-th Hermite coefficient of G̃ε is given by

c(G̃ε,n) =
1

n!

∫

RD

G̃ε(y)H̃n(y)φD(y) dy

with n! = n1!n2! . . . nD!. The factorization (7) induces a factorization of the Her-
mite coefficient into

c(G̃ε,n) = c(δε ◦ Λ1, n) c(f ◦ Λ2, n̄)

with self understanding notations concerning n = (n, n̄) and the Hermite coefficients
of the maps δε ◦ Λ1 and f ◦ Λ2.

Writing ϕ(ε, T ) as ϕ(ε, T ) =
∫
T
G̃ε(Y (t))dt yields the following expansion

(8) ϕ(ε, T ) = (−1)d
∞∑

q=0

∑

n=(n,n̄)

|n|=q

c(δε ◦ Λ1, n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt.

We will take the limit as ε goes to 0 in (8) to obtain the Hermite expansion of ϕ(T ).
Let us first compute the limit of the coefficient c(δε ◦ Λ1, n):

c(δε ◦ Λ1, n) =
1

n!

∫

Rd

δε(λy)H̃n(y)φd(y) dy

−→
ε→0

λ−d

(2π)d/2n!
H̃n(0) := d(n) .(9)

Let us point out that this coefficient is zero if at least one of the indices nj is odd

and in the other cases d(2p) = λ−d(−1)|p|

(2π)d/2 2|p| p!
.
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We are now able to establish the following proposition which gives the Hermite
expansion of ϕ(T ).

Proposition 2.2. Under Assumption (H1), the following expansion holds in L2(Ω)

ϕ(T ) = (−1)d
∞∑

q=0

∑

n=(n,n̄)

|n|=q

d(n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt

Proof. Let us take the formal limit of the rhs of (8) and define the random variable

η(T ) := (−1)d
∞∑

q=0

∑

n=(n,n̄)

|n|=q

d(n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt.

The first step consists in proving that it belongs to L2(Ω).
Let us denote by ηQ(T ) the projection of η(T ) obtained with the finite expansion

ηQ(T ) = (−1)d
Q∑

q=0

∑

n=(n,n̄)

|n|=q

d(n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt.

The orthogonality of the Hermite polynomials allows us to bound its second mo-
ment. So,

Eη2Q(T ) =

Q∑

q=0

E[
∑

n=(n,n̄)

|n|=q

d(n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt]2

≤
Q∑

q=0

lim
ε→0

E[
∑

n=(n,n̄)

|n|=q

c(δε ◦ Λ1, n) c(f ◦ Λ2, n̄)

∫

T

H̃n(Y (t)) dt]2

≤ lim
ε→0

Eϕ2(ε, T ) = Eϕ2(T ) <∞,

where we observe that in the second line we have used Fatou’s Lemma. Thus
Eη2(T ) <∞.

We will now establish that ϕ(T ) = η(T ).

We introduce πQ the projection onto the first Q-order chaos ⊕k=Q
0 Hk and πQ the

projection onto the chaos ⊕∞
k=Q+1Hk. So, ηQ(T ) = πQ(η(T )) and similarly we write

ϕQ(ε, T ) = πQ(ϕ(ε, T )). For || · || being the norm in L2(Ω), we have
||ϕ(T )− η(T )||

≤ ||ϕ(T )− ϕ(ε, T )||+ ||πQ(ϕ(ε, T ))||+ ||πQ(η(T ))||+ ||ϕQ(ε, T )− ηQ(T )||
≤ ||ϕ(T )− ϕ(ε, T )||+ ||πQ(ϕ(ε, T )− ϕ(T ))||+ ||πQ(ϕ(T ))||+ ||πQ(η(T ))||

+||ϕQ(ε, T )− ηQ(T )||
≤ 2||ϕ(T )− ϕ(ε, T )||+ ||πQ(ϕ(T ))||+ ||πQ(η(T ))||+ ||ϕQ(ε, T )− ηQ(T )||.

It holds that ||πQ(ϕ(T ))||+ ||πQ(η(T ))|| tends to zero whenever Q→ ∞ because
both functionals ϕ(T ) and η(T ) are in L2(Ω). Hence by taking limit when ε → 0
and Q→ ∞, we get ϕ(T ) = η(T ). ✷
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3. Central limit theorem for ϕ(T )

In this section we concentrate on the normalized differential topology character-

istic ζ(T ) = ϕ(T )−Eϕ(T )
|T |1/2 .We are interested in the asymptotics of ζ(T ) as T grows to

R
d. To make this precise, we assume that the compact domain T has the following

shape T = [−N,N ]d with N a positive integer, and we let N go to infinity. We will
prove that, as N → +∞, the random variable

ζ([−N,N ]d)) =
ϕ([−N,N ]d)− Eϕ([−N,N ]d)

(2N)d/2

converges in distribution to a centered Gaussian variable. From now on, in order
to simplify computations, we will drop the (−1)d terms, it has no consequence on
the CLT result.

We need to introduce two more assumptions.

Assumption (H2): Introducing ψ(t) = max|m|≤4

∣∣∣∂mr
∂tm (t)

∣∣∣,

ψ ∈ L1(Rd, dt) and ψ(t) → 0 when ||t|| → +∞

Note that (H2) implies that r ∈ L1(Rd) and hence that X admits a spectral density
fX that is continuous. Note also that (H2) implies that r ∈ Lq(Rd) for all q ≥ 1.

Assumption (H3): the spectral density fX satisfies fX(0) > 0.

We start with a crucial result that states that the asymptotic variance of ζ([−N,N ]d))
does not degenerate as N goes to infinity. As expected, the asymptotic variance
depends on the level u. Surprisingly, there are at most d+ 1 values of u for which
we are not able to establish that it does not vanish.

Proposition 3.1. Under Assumptions (H1) and (H2), as N → +∞,

Var (ζ([−N,N ]d)) → V (u) with V (u) < +∞.

Moreover, under Assumption (H3), V (u) is positive except at most d+1 values of

u where it may vanish.

In order to demonstrate this proposition, we need a “generalized Mehler’s formula”
given in the next lemma. It is an extension of Lemma 10.7 in [10] and can be proved
in the same way.

Lemma 3.1. Let (Y, Z) = (Y1, . . . , YD, Z1, . . . , ZD) be a 2D centered Gaussian

vector with covariance matrix given by

(
ID K
K ID

)

Then, for any n ∈ N
D and m ∈ N

D,

• if |n| 6= |m| then E

(
H̃n(Y )H̃m(Z)

)
= 0,

• if |n| = |m| then

E

(
H̃n(Y )H̃m(Z)

)
=

∑

dij≥0
∑

i dij=nj ;
∑

j dij=mi

n!m! Π
1≤i,j≤D

(Kij)
dij

(dij)!
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Proof of Proposition 3.1.
First step: we prove that Var ζ([−N,N ]d)) → V < +∞.

We write again the Hermite expansion in L2(Ω) as it is given in Proposition 2.2
under Assumption (H1).

(10) ϕ([−N,N ]d) =
∞∑

q=0

∑

n∈ND

|n|=q

a(n)

∫

[−N,N ]d
H̃n(Y (t)) dt

with a(n) = d(n) c(f ◦ Λ2, n̄) for n = (n, n̄).

Hence, using the first item of Lemma 3.1 and the orthogonality properties for
different chaos yield the following expression for Var ζ([−N,N ]d)):

(2N)−d
∞∑

q=1

∑

n,m∈ND

|n|=|m|=q

a(n)a(m)

∫

[−N,N ]d

∫

[−N,N ]d
Cov(H̃n(Y (t)), H̃m(Y (s))) ds dt.

Using the stationarity of Y , we get∫

[−N,N ]d

∫

[−N,N ]d
Cov(H̃n(Y (t)), H̃m(Y (s))) ds dt

= (2N)d
∫

[−2N,2N ]d
Cov(H̃n(Y (0)), H̃m(Y (v))) Π

1≤k≤d
(1− |vk|

2N
) dv.

Finally, with Lemma 3.1,

Var (ζ([−N,N ]d)) =

∞∑

q=1

∑

n,m∈ND

|n|=|m|=q

a(n)a(m)n!m!RN (n,m)(11)

where

RN (n,m) =
∑

dij≥0
∑

i dij=nj ;
∑

j dij=mi

∫

[−2N,2N ]d
Π

1≤i,j≤D

(ΓY
ij(v))

dij

(dij)!
Π

1≤k≤d
(1− |vk|

2N
) dv

and

ΓY
ij(v) = Cov(Yi(0), Yj(v)) for i, j = 1, . . . , D.

Since ΓY (v) = Λ−1ΓX(v)t(Λ−1) where ΓX is the covariance function of (∇X,∇2X,X),
we have for any v ∈ R

d,

sup
1≤i,j≤D

|ΓY
ij(v)| ≤ K ψ(v)

where ψ has been introduced in Assumption (H2) and K equals the norm of the
matrix (Λ−1)2.

Hence, for any n,m ∈ N
D such that |n| = |m| = q and any sequence (dij)ij such

that dij ≥ 0 ;
∑

i dij = nj ;
∑

j dij = mi, it holds
∣∣∣∣∣ Π
1≤i,j≤D

(ΓY
ij(v))

dij

(dij)!
Π

1≤k≤d
(1− |vk|

2N
)

∣∣∣∣∣ ≤ Π
1≤i,j≤D

1

(dij)!
Kq ψq(v).
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By Assumption (H2), ψ ∈ Lq(Rd, dλ). So we can apply the dominated convergence
theorem and get

(12) RN (n,m) −→
N→∞

R(n,m) =
∑

dij≥0
∑

i dij=nj ;
∑

j dij=mi

∫

Rd

Π
1≤i,j≤D

(ΓY
ij(v))

dij

(dij)!
dv.

Equations (11) and (12) allow us to write

VN := Var (ζ([−N,N ]d)) =

∞∑

q=1

uNq

with uNq ≥ 0 and

(13) uNq −→
N→∞

uq :=
∑

n,m∈ND

|n|=|m|=q

a(n)a(m)n!m!R(n,m).

We will establish that

(14) sup
N

∞∑

q=Q+1

uNq −→
Q→∞

0.

Using Fatou Lemma, it will prove that the series V =
∑∞

q=1 uq is convergent and
that VN tends to V . And the first step of Proposition 3.1 will be achieved.
Let us remark that (14) is equivalent to

Var
(
πQ(ζ([−N,N ]d))

)
−→
Q→∞

0 uniformely w.r.t N,

where πQ is the projection onto the chaos of order > Q.
Let s ∈ R

d and set θs the shift operator associated with the field X, i.e. θsX· =
Xs+· . Introducing the set of indices

IN = [−N,N)d ∩ Z
d

we can write

ζ([−N,N ]d) = ζ([−N,N)d) = (2N)−d/2
∑

s∈IN

θs ◦ ζ([0, 1)d).

Then, denoting by VN,Q the variance Var
(
πQ(ζ([−N,N ]d))

)
and using the station-

arity of X, we obtain

VN,Q = (2N)−d
∑

s∈I2N

αs(N)E
(
πQ(ζ([0, 1)

d))πQ(θs ◦ (ζ([0, 1)d)))
)
,

where αs(N) denotes the cardinal of {t ∈ IN : t− s ∈ IN} which is certainly less
than (2N)d.

Let chose a such that ψ(s) ≤ ρ < 1/K for ||s||∞ ≥ a. We split VN,Q into
V 1
N,Q + V 2

N,Q where in V 1
N,Q the sum runs for the indices s ∈ {s ∈ I2N : ||s||∞ <

a+ 1} and in V 2
N,Q for {s ∈ I2N : ||s||∞ ≥ a+ 1}.

At first, it holds for 2N > a+ 1,

|V 1
N,Q| ≤ (2N)−d (2a+ 2)d (2N)d E

(
πQ(ζ([0, 1)

d))2
)

which goes to 0 as Q goes to ∞ uniformly with respect to N .
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Next, for any s ∈ I2N such that ||s||∞ ≥ a+ 1, we write

E
(
πQ(ζ([0, 1)

d))πQ(θs ◦ (ζ([0, 1)d)))
)

=

∞∑

q=Q+1

∫

[0,1)d

∫

[0,1)d
E[Fq(Y (t))Fq(Y (s+ u))]dtdu,(15)

where

E[Fq(Y (t))Fq(Y (s+u))] = E[
∑

n∈ND;|n|=q

a(n)H̃n(Y (t))
∑

n∈ND ; |n|=q

a(n)H̃n(Y (s+u)].

Arcones inequality ([9] Lemma 1), implies that

|E[Fq(Y (t))Fq(Y (s+ u))]| ≤ Kq ψq(s− (u− t))
∑

n∈ND; |n|=q

a(n)2n!.

Let us remark that the series
∑

n∈ND a(n)2n! diverges so that we have to handle
carefully in what follows. Recall that a(n) = d(n) c(f ◦ Λ2, n) with d(n) given by

(9). In Imkeller et al. [14] it is shown that supx |Hl(x)√
l!
ϕ(x)| ≤ C for a universal

constant C. This yields d2(n)n! ≤ Cd and hence
∑

n∈ND; |n|=q

a(n)2n! ≤ Cd qd
∑

|n|≤q

c(f ◦ Λ2, n)
2n! ≤ Cd qd ||f ◦ Λ2||2.

Therefore the absolute value of (15) can be bounded by

Cd ||f ◦ Λ2||2
∞∑

q=Q+1

qdKq

∫

[0,1)d

∫

[0,1)d
ψq(s− (u− t)) dudt.

Hence

|V 2
N,Q| ≤

∑

s∈I2N ; ||s||∞≥a+1

∣∣E
(
πQ(ζ([0, 1)

d))πQ(θs ◦ (ζ([0, 1)d)))
)∣∣

≤ Cd ||f ◦ Λ2||2
∞∑

q=Q+1

qdKq ρq−1

×
∑

s∈I2N ; ||s||∞≥a+1

∫

[0,1)d

∫

[0,1)d
ψ(s− (u− t)) dudt

where we have used that for any ||s||∞ ≥ a+1 and any u, t ∈ [0, 1)d, ψ(s−(u−t)) ≤
ρ.
On the one hand, since ρ < 1/K,

∑∞
q=Q+1 q

dKqρq−1 is the tail of a convergent
series.
On the other hand,

∑

s∈I2N ; ||s||∞≥a+1

∫

[0,1)d

∫

[0,1)d
ψ(s− (u− t)) dudt

≤
∑

s∈I2N

∫

[0,2)d
ψ(s+ u) du ≤ 2

∫

Rd

ψ(u) du < +∞.
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Hence supN |V 2
N,Q| goes to 0 asQ goes to infinity and we have proved that Varζ([−N,N ]d)

tends to

(16) V =

∞∑

q=1

∑

n,m∈ND

|n|=|m|=q

a(n)a(m)n!m!R(n,m) < +∞.

Second step: We assume now that (H3) is satisfied, i.e. that the spectral den-
sity fX of X is such that fX(0) > 0, and we prove that V is positive for all values
of u except for at most d+ 1 of them.
We only need to prove that at least one of the terms in the sum (16) is positive.
This will be achieved for the q = 1 term

V1 =
∑

n,m∈ND

|n|=|m|=1

a(n)a(m)R(n,m).

Note that |n| = 1 implies that only one coordinate ni is different from zero and
equal to one. So we can write n = ei for one index i = 1, . . . , D with the usual
convention concerning the canonical basis (ei)1≤i≤D of RD.
We recall that the following factorization occurs a(n) = d(n)c(f ◦Λ2, n). Hence for
n = ei, due to the explicit form of d(n) given in (9), we have

a(ei) =

{
0 if 1 ≤ i ≤ d

d(0) c(f ◦ Λ2, ei) if d+ 1 ≤ i ≤ D

with d(0) = λ−d(2π)−d/2. Hence,

V1 =
∑

d+1≤i,j≤D

d(0)2 c(f ◦ Λ2, ei) c(f ◦ Λ2, ej)R(ei, ej)

where we deduce from (12) that R(ei, ej) =
∫
Rd Γ

Y
i,j(v) dv.

Lemma 3.2. We consider the D-dimensional Gaussian field X = (∇X,∇2X,X)
and denote by ΓX its covariance function. For any 1 ≤ i, j ≤ D,∫

Rd

ΓX

i,j(v) dv = (2π)d fX(0) δD,D(i, j)

where δ stands for the Kronecker symbol.

Proof of Lemma 3.2.
For (i, j) = (D,D) we have

ΓX

D,D(v) = E(X(0)X(v)) = r(v) =

∫

Rd

eiλ.v fX(λ) dλ

and then, since fX is supposed to be continuous,∫

Rd

ΓX

D,D(v) dv =
̂̂
fX(0) = (2π)d fX(0) .

For (i, j) 6= (D,D), recall that ΓX

i,j equals a derivative of order between one and
four of the function r. Since r and all its derivative tends to 0 at infinity due to
assumption (H2), we get

∫
Rd Γ

X

i,j(v) dv = 0 for (i, j) 6= (D,D). ✷

We come back to the proof of Proposition 3.1. Let us recall that we wrote X = ΛY
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with a matrix Λ that factorizes into

(
Λ1 0
0 Λ2

)
. Then Lemma 3.2 implies that for

any d+ 1 ≤ i, j ≤ D,∫

Rd

ΓY
i,j(v) dv = (2π)d fX(0) (Λ−1

2 )i,D(Λ−1
2 )j,D.

Finally, we obtain

(17) V1 = (2π)d fX(0) d(0)2


 ∑

d+1≤i≤D

c(f ◦ Λ2, ei)(Λ
−1
2 )i,D




2

.

In order to conclude that V1 > 0, under the assumption fX(0) > 0, it remains to
establish that ∑

d+1≤i≤D

c(f ◦ Λ2, ei)(Λ
−1
2 )i,D is not equal to 0.

Let us denote by HΛ(u) this sum of Hermite coefficients which depends on the level
u as we will see in the next computation.

HΛ(u) :=
∑

d+1≤i≤D

c(f ◦ Λ2, ei)(Λ
−1
2 )i,D

=

∫

RD−d

f ◦ Λ2(x)


 ∑

d+1≤i≤D

xi(Λ
−1
2 )i,D


φD−d(x) dx

For convenience reason, we choose Λ, and so Λ2, to be upper triangular with ΛD,D =

1. Then we can write the matrices Λ2 and t(Λ−1
2 ) as

Λ2 =

(
U v
0 1

)
and t(Λ−1

2 ) =

(
L 0
h 1

)

with U a d(d + 1)/2 upper triangular matrix, L a d(d + 1)/2 lower triangular
matrix, v a d(d+ 1)/2 vertical vector and h a d(d+ 1)/2 horizontal vector. Hence,
for x = (y, z) ∈ R

D−d = R
d(d+1)/2 × R, we have

f ◦ Λ2(y, z) = 1[u,+∞)(z) d̃et(Uy + zv) and
∑

d+1≤i≤D

xi(Λ
−1
2 )i,D = 〈h, y〉+ z .

Therefore,

HΛ(u) =

∫

Rd(d+1)/2×R

1[u,+∞)(z) d̃et(Uy + zv)(〈h, y〉+ z)φd(d+1)/2(y)φ(z) dy dz

=

∫

[u,+∞)

φ(z)

(∫

Rd(d+1)/2

d̃et(Uy + zv)(〈h, y〉+ z)φd(d+1)/2(y) dy

)
dz .

Note that the inner integral is nothing but a polynomial function of z with degree
d+1. Let us denote it by PΛ (its coefficients depend on Λ) and remark that it has

the same parity as d+ 1 since d̃et(−(Uy + zv)) = (−1)dd̃et(Uy + zv). Hence

HΛ(u) =

∫

[u,+∞)

φ(z)PΛ(z) dz

and it is not difficult to establish that HΛ(u) 6= 0 except for at most d values of u
(depending on PΛ) when d is even and d+ 1 values of u when d is odd. ✷
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Remark: The explicit value of V seems to be very difficult to obtain in the general
case. Nevertheless, we tackle this question in the Appendix in the case d = 2. We
also compute the exact value of HΛ(u) in the case d = 2 and exhibit the only two
values of u for which HΛ(u) vanishes.

Since Proposition 3.1 guarantees a finite asymptotic variance, we are now able
to state our main result.

Theorem 3.2. Let X be a stationary isotropic Gaussian field indexed by R
d with

C2 trajectories that satisfies Assumptions (H1) and (H2). As N ր +∞,

ζ([−N,N ]d) =
ϕ([−N,N ]d)− Eϕ([−N,N ]d)

(2N)d/2

converges in distribution to a centered Gaussian variable with finite variance V
given by (16).
Moreover, V depends on the level u and under Assumption (H3) V does not vanish

except for at most d+ 1 values of u.

Proof. By the proof of Proposition 3.1, we already know that

sup
N

Var
(
πQ(ζ([−N,N ]d))

)
−→
Q→∞

0 .

So πQ(ζ([−N,N ]d)) → 0 in L2(Ω) when N → ∞ and Q→ ∞ in this order. Hence
in order to establish the CLT, it is enough to show the asymptotic normality, for a
fixed Q as N goes to infinity, of the sequence

πQ(ζ([−N,N ]d)) =
1

(2N)d/2

Q∑

q=1

∑

n∈ND

|n|=q

a(n)

∫

[−N,N ]d
H̃n(Y (t)) dt

:=
1

(2N)d/2

∫

[−N,N ]d

Q∑

q=1

Gq(Y (t)) dt,(18)

where we have defined

Gq(x) =
∑

n∈ND

|n|=q

a(n)H̃n(x).

Moreover Proposition 3.1 states that the asymptotic variance of πQ(ζ([−N,N ]d))
is finite. Then the result follows from the classical Breuer-Major Theorem. A
reference for this can be found for instance in the paper of Arcones [9]. However,
in this result the parameter set is the set of integers whereas in our setting the
parameter set is Rd. Therefore for completeness, we give a statement and a proof
of this famous theorem, both adapted to our setting, namely Proposition 3.3 below.
✷

Proposition 3.3. Let X be a stationary isotropic Gaussian field indexed by R
d with

C2 trajectories that satisfies Assumptions (H1) and (H2). For any fixed positive

integer Q, as N ր +∞, πQ(ζ([−N,N ]d)) converges in distribution to a centered

Gaussian variable with finite variance σ2
Q =

∑Q
q=1 uq, where the uq’s are introduced

in (13).
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Proof. Our proof follows very closely the method of proof of the CLT in Nourdin
et al. [20], considering R

d as parameter set instead of Z. To set up our framework
we must consider the isonormal process associated to some zero mean stationary
Gaussian process Y : Ω × R

d → R
D. The following paragraph has for goal this

objective.

Let W j , j = 1, . . . , D be a complex Wiener process defined on R
d and F (λ) :=

(fjl(λ)) a definite positive self-adjoint matrix of densities functions i.e. for any Borel
set A of Rd we have that (

∫
A
fjl(λ)dλ) is definite positive. Let B(λ) = (bjl(λ)) a

square root of F . In this form defining

W j
F (A) =

D∑

l=1

∫

A

bjl(λ)dW
l(λ) ,

it holds

E[W j
F (A)W

k
F (C)] =

D∑

l=1

∫

A∩C

bjl(λ)blk(λ)dλ =

∫

A∩C

fjk(λ)dλ.

Consider nowmd the Lebesgue measure in R
d and ν the counting measure ν({j}) =

1 for j = 1, 2, . . . , D. We can define the product measure µ̃ : P({1, 2, . . . .D}) ⊗
B(Rd) → R

+ as µ̃(A1 × A2) = #A1 × md(A2), where A1 ⊂ {1, 2, . . . .D} and
A2 ∈ B(Rd). If h : {1, 2, . . . .D} × R

d → C is a measurable function,

∫

W
h(ω) dµ̃(ω) =

D∑

j=1

∫

Rd

h(j, λ) dmd(λ) where W = {1, 2, . . . .D} × R
d.

Moreover ∫

W
h(ω)g(ω) dµ̃(ω) =

D∑

j=1

∫

Rd

h(j, λ)g(j, λ) dmd(λ),

yielding that H = L2(W, µ̃) ∼= L2(Rd,RD,md). Thus we can define for h ∈ H

W (h) =

D∑

j=1

∫

Rd

h(j, λ)dW j(λ).

In the same form considering the space

HF := {h : ||h||2F :=

∫

Rd

< h(λ), F (λ)h(λ) > dλ <∞} ,

we can define

WF (h) =

D∑

j=1

D∑

l=1

∫

Rd

h(j, λ)bjldW
l(λ) =W (tBh).(19)

This implies

E[WF (h)WF (h)] =

D∑

j1=1

D∑

j2=1

D∑

l=1

∫

Rd

h(j1, λ)bj1l(λ)blj2(λ)h(j2, λ)dλ

=
D∑

j1=1

D∑

j2=1

∫

Rd

h(j1, λ)fj1j2(λ)h(j2, λ)dλ =

∫

Rd

< h(λ), F (λ)h(λ) > dλ.
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HenceWF appears as the isonormal process associated to the spaceHF . In the same
form,W results the isonormal space associated toH = L2(W, µ̃) ∼= L2(Rd,RD,md).

We assume now that F = (fjl)1≤j,l≤D is the matrix of spectral densities asso-
ciated with a zero mean stationary Gaussian process Y : Ω × R

d → R
D. In other

words, we assume that Var(Y (0)) = ID and

E[Yj(0)Yl(s)] =

∫

Rd

ei<s,λ>fjl(λ)dλ , ∀s ∈ R
d.

It yields

Yj(t) =

D∑

l=1

∫

Rd

ei<t,λ>bjl(λ)dW
l(λ) =W (ϕt,j) ,

where we consider the functions ϕt,j(l, λ) = ei<t,λ>bjl(λ)el, for j = 1, . . . , D and
(el)1≤l≤D the canonical basis of RD. Moreover

(20) < ϕt,j , ϕt,l >HF
=

∫

Rd

fj,l(λ)dλ = E[Yj(0)Yl(0)] = δjl.

Hence, the functions (ϕt,j)1≤j≤D are orthogonal in HF . Recall that the isonormal
process associated to the Hilbert space HF is WF = {WF (h) : h ∈ H}. For each
q let us denote Hq the closed linear subspace of L2(Ω) generated by the random
variables {Hq(WF (h)), h ∈ HF , ||h||HF

= 1}. It holds L2(Ω) = ⊕∞
q=0Hq, see [21]

page 6. By the relation (19) the elements of Hq can be represented as a multiple
integral of Itô-Wiener. In fact any functional G ∈ L2(Ω) admits the following
expansion

G =

∞∑

q=0

Iq(gq), where the series converges in L2(Ω),

with I0(g0) = E(G) and the kernels gq are uniquely determined by G. In our par-
ticular case H = L2(W,A, µ̃), one has that H⊙q = L2

s(Wq,A⊗q, µ̃⊗q) is the space
of symmetric and square integrable functions on Wq. Moreover Iq(g) coincides
with the multiple Wiener-Itô integral of order q, with respect to W . For a detailed
account of these matters, see the classical Peter Major’s book [18] .

The Itô formula for multiple Wiener integrals (see [21] page 13 although the nor-
malization is different. In this book the Hermite polynomials are the same of that
we use but multiplied by 1

m! . See also [18] page 37) allows us to write the next
formula. For any k = 1, . . . , D and any positive integer l,

Hl(Yk(s)) = Hl(W (ei<t,·>
D∑

l=1

bkl(·)el)) = Il(ϕs,k ⊗ . . .⊗ ϕs,k) = Il(ϕ
⊗l
s,k),

where the tensorial product has l terms.
Recall that we aim at computing Gq(Y (s)) with

Gq(Y (s)) =
∑

|n|=q

anH̃n(Y (s)) =
∑

|n|=q

anHn1
(Y1(s)) . . . HnD

(YD(s))

=
∑

|n|=q

an In1
(ϕ⊗n1

s,1 ) . . . InD
(ϕ⊗nD

s,D ).(21)
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The multiplication formula (formula (3.33) of [20]) entails

In1(ϕ
⊗n1
s,1 )In2(ϕ

⊗n2
s,2 ) =

n1∧n2∑

r=0

r!

(
n1

r

)(
n2
r

)
In1+n2−2r(ϕ

⊗n1
s,1 ⊗̃rϕ

⊗n2
s,2 ).

The relation of orthogonality (20) yields that in the above sum the only non van-
ishing term is for r = 0. Thus

In1(ϕ
⊗n1
s,1 )In2(ϕ

⊗n2
s,2 ) = In1+n2(ϕ

⊗n1
s,1 ⊗̃ϕ⊗n1

s,1 ),

where the tilde tensorial product ⊗̃ denotes the symmetrization of ϕ⊗n1
s,1 ⊗ ϕ⊗n2

s,2 ,
namely ∑

m∈{1,2}n1+n2

ϕs,m1
⊗ . . .⊗ ϕs,mn1+n2

.

Thus

In1(ϕ
⊗n1
s,1 )In2(ϕ

⊗n2
s,2 ) = In1+n2(

∑

m∈{1,2}n1+n2

ϕs,m1 ⊗ . . .⊗ ϕs,mn1+n2
).

We iterate the process in order to compute (21). For a more convenient form, we
introduce before some notation. For n = (n1, . . . , nD) ∈ N

D such that |n| = q, we
define

An = {m ∈ {1, . . . , D}q :

q∑

j=1

1{i}(mj) = ni , i = 1, . . . , D}

and remark that

{1, 2, . . . , D}q = ∪n∈ND;|n|=qAn .

So we are able to introduce the following symmetric kernel
∑

m∈{1,2,...,D}q∩An

ϕs,m1 ⊗ ϕs,m2 . . .⊗ ϕs,mq ,

which leads us to write

(22) Gq(Y (s)) =
∑

|n|=q

an
∑

m∈An

Iq(ϕs,m1
⊗ ϕs,m2

. . .⊗ ϕt,mq
).

Let set

bm = an whenever m ∈ An

and remark that the sets An are invariant by the permutations of {1, . . . , q}. Indeed
if m = (m1, . . . ,mq) ∈ An it holds also that m′ = (mσ(1), . . . ,mσ(q)) ∈ An, for any
permutation σ. Thus the function m 7→ bm is symmetric on {1, 2, . . . , D}q.
Thus (22) writes

Gq(Y (s)) =
∑

m∈{1,2,...,D}q

bm
∑

m∈An

Iq(ϕs,m1 ⊗ ϕs,m2 . . .⊗ ϕt,mq )

and moreover

E
(
Gq(Y (s))2

)
= q!

∑

|n|=q

a2
n
= q!

∑

m∈{1,2,...,D}q

b2
m
.

We begin now to prove the CLT. We still follow the article [20] and when it is
possible its notations. From now on, our field Y is the same that we have considered
in the other sections, whose covariance function is ΓY .
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The linearity of multiple Wiener integral and Fubini theorem for multiple Wiener
integrals applied to formula (18) yield

πQζ([−N,N ]d) =

Q∑

q=1

Iq(g
N
q )

where

gNq =
1

(2N)d/2

∫

[−N,N ]d

∑

m∈{1,2,...,D}q

bm ϕs,m1 ⊗ ϕs,m2 . . .⊗ ϕs,mqds,

as [20] pages 806-807.
Let us first get an upper bound for q!||gNq ||2H⊗q .

q!||gNq ||2H⊗q =
q!

(2N)d

∫

[−N,N ]d

∫

[−N,N ]d

∑

ml∈{1,2,...,D}q

bmbl

q∏

j=1

ΓY
mj lj (s1 − s2)ds1ds2

= q!

∫

[−2N,2N ]d

∏

1≤k≤d

(1− |vk|
2N

)
∑

ml∈{1,2,...,D}q

bmbl

q∏

j=1

ΓY
mj lj (v)dv.

We divide the domain of integration in two parts |v| < 2K for a constant K and
its complement. Using Schwarz inequality for the first term and the definition of ψ
for the second one we get

q!||gNq ||2H⊗q ≤ q!(2K)d
∑

m∈{1,2,...,D}q

b2
m

+ q!

∫

|v|>K

ψ(v)qdv
( ∑

m∈{1,2,...,D}q

|bm|
)2

≤ q!(2K)d
∑

m∈{1,2,...,D}q

b2
m

+ q!

∫

|v|>K

(Dψ(v))qdv
∑

m∈{1,2,...,D}q

b2
m

≤ q!
∑

m∈{1,2,...,D}q

b2
m

(
(2K)d +Dq

∫

Rd

ψ(v)qdv
)
.

The dominated convergence theorem allows us to obtain

q!||gNq ||2H⊗q → uq.

Let us denote D the Malliavin derivative (see [20] for the definition). We have
E[ 1q ||DIq(gNq )||2H] = q!||gNq ||2H⊗q so that

(23)

Q∑

q=1

||uq −
1

q
||DIq(gNq )||2H||L2(Ω) → 0.

Next step consists in showing that for q > p

||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||2L2(Ω) → 0.(24)



22 ANNE ESTRADE AND JOSÉ RAFAEL LEÓN

Formula (3.6) of [20] implies

||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||2L2(Ω)

≤ p!

(
q − 1

p− 1

)2

(q − p)!E[Ip(g
N
p )]2||gNq ⊗q−p g

N
q ||H⊗2p

+
p2

2

p−1∑

l=1

(l − 1!2
(
p− 1

l − 1

)2(
q − 1

l − 1

)2

(p+ q − 2l)!(||gNp ⊗p−l g
N
p ||H⊗2l + ||gNq ⊗q−l g

N
q ||H⊗2l),

where

gNp ⊗e g
N
p =

1

(2N)d

∫

[−N,N ]d×[−N,N ]d

∑

ml∈{1,...,D}p

bmbl

e∏

j=1

ΓY
mj lj ((s1 − s2)

×us1,me+1
⊗ . . .⊗ us1,mp

⊗ us2,le+1
⊗ . . .⊗ us2,lpds1ds2

In this form defining I(N) = [−N,N ]d × [−N,N ]d × [−N,N ]d × [−N,N ]d we get

||gNp ⊗e g
N
p ||2H⊗2(p−e) ≤

(
Dp

∑

m∈{1,...,D}p

|bm|2
)2 Z(N),

with

Z(N) =
1

(2N)2d

∫

I(N)

ψe(s1−s2)ψe(s3−s4)ψp−e(s1−s3)ψp−e(s2−s4)ds1ds2ds3ds4 .

Moreover we have ψe(s3 − s4)ψ
p−e(s1 − s3) ≤ ψp(s3 − s4) + ψp(s1 − s3). Thus we

can write Z(N) ≤ Z1(N) + Z2(N) where

Z1(N) ≤ 1

(2N)2d

∫

I(N)

ψe(s1 − s2)ψ
p(s3 − s1)ψ

p−e(s2 − s4)ds1ds2ds3ds4.

Let us look at the integral
∫

[−N,N ]d
ψp(s3 − s1)ds3 ≤

∫

Rd

ψp(v)dv <∞,

and for the remaining terms

1

(2N)2d

∫

[−N,N ]d[×−N,N ]d×[−N,N ]d
ψe(s1 − s2)ψ

p−e(s2 − s4)ds1ds2ds4

≤ 1

(2N)2d

∫

[−N,N ]d[×[−N,N ]d
ψe⋆ψp−e(s1−s2)ds2ds2 ≤ 1

(2N)d

∫

Rd

ψe⋆ψp−e(s)ds→ 0.

The term Z2(N) can be treated similarly obtaining

||gNp ⊗e g
N
p ||2H⊗2(p−e) → 0.

Hence (24) holds in force. It implies that

∑

1≤p 6=q≤Q

||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||L2(Ω) → 0

since
∑

1≤p<q≤Q

||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||L2(Ω)+

∑

1≤q<p≤Q

||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||L2(Ω)
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=
∑

1≤p<q≤Q

p+ q

p
||1
q
< DIp(g

N
p ),DIq(g

N
q ) >H ||L2(Ω).

The Central Limit Theorem for πQ(ζ([−N,N ]d)) follows from the following bound.
Let h be a two times differentiable and bounded map with bounded derivatives
and let ZQ be a centered Gaussian random variable with variance equal to σ2 =∑Q

q=1 uq. Following (4.47) of [20], it yields

|E[h(ZQ)− E[h(πQ(ζ([−N,N ]d)]]|

≤ ||h′′||∞
2

Q∑

p,q=1

||δpqup −
1

q
< DIp(g

N
p ),DqIq(g

N
q ) > ||L(Ω).

The right hand term tends to zero asN goes to +∞ as a consequence of the previous
computations. ✷

4. The other faces

In this section we deal with the faces of T that have a dimension lower than d.
Our goal is to prove that Theorem 3.2 provides a CLT for the Euler characteristic
χ(T ) through the identity (4). We still assume that T = [−N,N ]d and we establish
that for any ℓ = 0, 1, . . . , d− 1 and any face J in ∂ℓT , the variance of |T |−d/2ϕ(J)
tends to 0 as T grows to R

d.

For ℓ = 0, the previous statement is obvious since ϕ({v}) is either 0 or 1 for
any vertex v of T .

Let us now be concerned with ℓ ∈ {1, . . . , d−1}. We deal with a fixed face J ∈ ∂ℓT .
We recall that J can be written as

J = {v ∈ T : −N < vj < N for j ∈ σ(J), vj = εjN for j /∈ σ(J)}
where σ(J) ⊂ {1, . . . , d} has cardinal ℓ and ε(J) = (εj)j∈{1,...,d}\σ(J) ∈ {−1,+1}(d−ℓ).
Let us introduce the following notations:

• With any v ∈ R
ℓ, we associate v(J) = (v

(J)
1 , . . . , v

(J)
d ) ∈ R

d defined by

v
(J)
j = vj if j ∈ σ(J) ; v

(J)
j = εjN if j /∈ σ(J) .

• A random field X(J) is defined on R
ℓ by

X(J)(v) = X(v(J)) for any v ∈ R
ℓ .

It clearly inherits the properties of X so that X(J) is Gaussian, stationary,
centered and its trajectories are a.s. smooth.

With these notations, (2) and (3) can be written as

ϕ(J) =

ℓ∑

k=0

(−1)kµk(J)

with

µk(J) = # {v ∈ [−N,N ]ℓ : X(J)(v) ≥ u,

∇X(J)(v) = 0, index(∇2X(J)(v)) = ℓ− k,

εjXj(v
(J)) > 0 for j /∈ σ(J)}.
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Following the same arguments as in Section 2, one can get an analogous proposition
of Proposition 2.1

ϕ(J)
L2(Ω)
= lim

ε→0
(−1)ℓ

∫

[−N,N ]ℓ
det(∇2X(J)(v))1[u,∞)(X

(J)(v))δε(∇X(J)(v))

×Πj /∈σ(J)1(0,∞)(εjXj(v
(J))) dv .

One can get as well an analogous proposition of Proposition 2.2

ϕ(J)
L2(Ω)
= (−1)ℓ

∞∑

q=0

∑

n=(n,n̄)∈D(ℓ)

|n|=q

d(J)(n) c(J)(n̄)

∫

[−N,N ]ℓ
H̃n(Y

(J)(v)) dv

where

• D(ℓ) = d+ ℓ(ℓ+ 1)/2 + 1
• Y (J)(v) is a Gaussian N(0, ID(ℓ)) vector such that

(∇X(J)(v),∇X(J)(v),∇2X(J)(v), X(J)(v)) = Λ(J)Y (J)(v) ,

where ∇X(J)(v) denotes the vector (Xk(v
(J)))k/∈σ(J)

and Λ(J) is a D(ℓ)×D(ℓ) matrix that can be factorized into

(
Λ
(J)
1 0

0 Λ
(J)
2

)

• d(J)(n) = limε→0 c((δε ⊗ 1(0,+∞)d−ℓ) ◦ Λ(J)
1 , n)

• c(J)(n̄) = c(f ◦ Λ(J)
2 , n̄).

At last, a similar proposition as Proposition 3.1 can be formulated

Var

(
ϕ(J)− Eϕ(J)

(2N)ℓ/2

)
→

N→+∞
V (J) < +∞

and hence

Var

(
ϕ(J)− Eϕ(J)

(2N)d/2

)
→

N→+∞
0 .

Finally, recalling (4) that gives χ(T ) =
∑

0≤ℓ<d

∑
J∈∂ℓT

ϕ(J) + ϕ(T ), we are
able to state that Theorem 3.2 not only provides a central limit theorem for the
differential topology characteristic ϕ([−N,N ]d) but also for the Euler characteristic
χ([−N,N ]d), with the same asymptotic variance.

5. Appendix: the case d = 2

In this section, we assume X : Ω×R
2 → R to be a stationary centered isotropic

Gaussian field with the required conditions (H1),(H2),(H3). We provide an ex-
plicit value for the asymptotic variance V (see (16)) as well as an explicit value for
V1 (see (17)) which ensures the positivity of V .

Since d = 2, we will deal with 6-dimensional Gaussian vectors X(v) and Y (v)
such that for any v ∈ R

2,

• X(v) = (X1,X2,X3,X4,X5,X6)(v) with ∇X = (X1,X2) = (X1, X2),
X3 = X11,X4 = X22,X5 = X12 and X6 = X.

• Y (v) is a standard N(0, I6) Gaussian vector,
• X(v) = ΛY (v) with Λ a 6× 6 upper triangular matrix.
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The usual independence properties between a stationary random field and its
derivatives, as well as the isotropy property of X, yield the following shape for Λ

Λ =

(
Λ1 0
0 Λ2

)
with Λ1 =

(
λ 0
0 λ

)
and Λ2 =




σ3 γ 0 β
0 σ4 0 α
0 0 σ5 0
0 0 0 1




Note that we use the following regression model to get Λ2

X6 = X = Y6

X5 = X12 = σ5Y5

X4 = X22 = αX + σ4Y4

X3 = X11 = βX + γY4 + σ3Y3

Denoting by fX the spectral density of X and using the isotropy of X, we can write

fX(x) = f̄(||x||) for any x ∈ R
2, with f̄ : [0,+∞) → [0,+∞] .

Then we are able to compute the covariance matrix of the vector X(v)



λ 0 0 0 0 0
0 λ 0 0 0 0
0 0 3ζ ζ 0 −λ
0 0 ζ 3ζ 0 −λ
0 0 0 0 ζ 0
0 0 −λ −λ 0 1




where

{
λ = π

∫∞
0
ρ3f̄(ρ)dρ

ζ = π
4

∫∞
0
ρ5f̄(ρ)dρ

At last, using the regression equations, the coefficients of Λ2 can be computed

α = −λ ; β = −λ ; γ = ζ−λ2√
3ζ−λ2

σ2
5 = ζ ; σ2

4 = 3ζ − λ2 ; σ2
3 = 4ζ(2ζ2−λ2)

3ζ2−λ2 .

5.1. Exact computation of V .

Following (16), we have V =
∞∑

q=1

∑

n,m∈N6

|n|=|m|=q

a(n)a(m)n!m!R(n,m) and it remains to

compute the a(n)’s and the R(n,m)’s.

First step: we start with a(n) = d(n) c(f ◦ Λ2, n̄) for n = (n, n̄).

By (9), for n = (n1, n2),

d(n) =
λ−2

(2π)n!
Hn1(0)Hn2(0)

which equals zero if at least one of the indices nj is odd.
For n̄ = (n3, n4, n5, n6),

c(f ◦ Λ2, n̄) =
1

n̄!

∫

R4

f ◦ Λ2(x)H̃n̄(x)φ4(x) dx.
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Using the specific form of f and Λ2 and writing x = (y, z) = (y3, y4, y5, z) ∈ R
3×R,

we get

f ◦ Λ2(y, z) = 1[u,+∞)(z) d̃et(Λ2(y, z))

= 1[u,+∞)(z)[σ3σ4y3y4 + γσ4y
2
4 − σ2

5y
2
5 + (ασ3y3 + βσ4y4 + αγy4)z + αβz2] .

We introduce the following quantity which will be computed later on:

(25) ℓk(n, u) =

∫

[u,+∞)

Hn(z)z
kφ(z) dz for any integers k, n ≥ 0

Hence, plugging the expression of f ◦Λ2(y, z) into the integral allows us to split the
Hermite coefficient c(f ◦ Λ2, n̄) into three terms

c(f ◦ Λ2, n̄) = c0(n̄) + c1(n̄) + c2(n̄) ,

where we use the orthogonality of the Hermite polynomials to get

c0(n̄) = ℓ0(n6, u) [σ3σ4δ(1,1,0) + γσ4(δ(0,0,0) + δ(0,2,0))− σ2
5(δ(0,0,0) + δ(0,0,2))](n3, n4, n5) ,

c1(n̄) = ℓ1(n6, u) [ασ3 δ(1,0,0) + (βσ4 + αγ)δ(0,1,0)](n3, n4, n5) ,

c2(n̄) = ℓ2(n6, u)αβ δ(0,0,0)(n3, n4, n5) .

Here above, δ(i,j,k)(n3, n4, n5) denotes as usual the Kronecker symbol.
At last, let us compute the ℓk(n, u)’s given by (25). We recall the Hermite’s expan-
sion of the function 1[u,∞)(·):

1[u,∞)(z) = Ψ(u) +

∞∑

m=1

Hm−1(u)φ(u)

m!
Hm(z) .

Hence, one can easily obtain

ℓ0(n, u) = Ψ(u) δ0(n) +
1

n!
φ(u)Hn(u)δ≥1(n) ,

and with an integration by part, for k ≥ 1,

ℓk(n, u) = (k − 1)ℓk−2(n, u) + nℓk−1(n− 1, u) + uk−1φ(u)Hn(u) .

This concludes the computation of a(n).

Second step: we focus now on R(n,m). By (12), we know that

R(n,m) =
∑

dij≥0
∑

i dij=nj ;
∑

j dij=mi

∫

R2

Π
1≤i,j≤6

(ΓY
ij(v))

dij

(dij)!
dv.

Recall that the covariance function ΓY (.) is given by ΓY (v) = Λ−1ΓX(v)t(Λ−1) for
any v ∈ R

2. The covariance function ΓX(.) of X, and hence ΓY (.), can be written
in terms of integrals with respect to the radial part f̄ of the spectral density fX .
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5.2. Exact computation of V1 and HΛ(u).
Equation (17) gives

V1 = λ−4 fX(0)HΛ(u)
2 with HΛ(u) =

∑

3≤i≤6

c(f ◦ Λ2, ei)(Λ
−1
2 )i,6 .

The last column of the matrix Λ−1
2 and the Hermite coefficients of f ◦ Λ2 are the

following




(Λ−1
2 )3,6 = − β

σ3
+ αγ

σ3σ4

(Λ−1
2 )4,6 = − α

σ4

(Λ−1
2 )5,6 = 0

(Λ−1
2 )6,6 = 1

and





c(f ◦ Λ2, e3) = φ(u)ασ3
c(f ◦ Λ2, e4) = φ(u)(βσ4 + αγ)
c(f ◦ Λ2, e5) = 0
c(f ◦ Λ2, e6) = φ(u)(u2 + 1)αβ

so that V1 = fX(0)φ(u)2 (u2 − 1)2 which only vanishes for u = ±1.

References

[1] Adler R.J. A spectral moment problem in two dimension. Biometrika, 64, 367-373 (1977).
[2] Adler R. The Geometry of Random Fields. Wiley Series in Probability and Mathematical

Statistics, Wiley, Chichester, UK (1981).
[3] Adler R. On excursion sets, tube formulas and maxima of random fields. Ann. Appl. Probab.,

vol 10, 1-74 (2000).
[4] Adler R.J., Bartz K. and Kou S., Estimating thresholding levels for random fields via Euler

characteristics. Preprint (2011).
[5] Adler R., Hasofer A.M., Level crossings for random fields, Ann. Probab.,vol 4, 1-12 (1976).

[6] Adler R., Taylor J.E. Random Fields and Geometry. Springer Monographs in Mathematics.
Springer (2007).

[7] Adler R., Taylor J.E., Worsley, K.J. Applications of random fields and geometry: foundations

and case studies. In preparation, available on R. Adler’s home page (2007).
[8] Ahmad O., Pinoli J-C. Lipschitz-Killing curvatures of the excursion sets of skew Student’s t

random fields. Stochastic Models, Vol 29, 273-289 (2013).
[9] Arcones M. A. Limit theorems for nonlinear functionals of a stationary Gaussian sequence of

vectors. Ann. Probab., vol 22, 2242-2274 (1994).
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