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Scaling limits of k-ary growing trees

Bénédicte Haas∗ & Robin Stephenson†

Abstract

For each integer k ≥ 2, we introduce a sequence of k-ary discrete trees constructed recursively by
choosing at each step an edge uniformly among the present edges and grafting on “its middle” k − 1
new edges. When k = 2, this corresponds to a well-known algorithm which was first introduced by
Rémy. Our main result concerns the asymptotic behavior of these trees as n becomes large: for all
k, the sequence of k-ary trees grows at speed n1/k towards a k-ary random real tree that belongs to
the family of self-similar fragmentation trees. This convergence is proved with respect to the Gromov-
Hausdorff-Prokhorov topology. We also study embeddings of the limiting trees when k varies.

Keywords: random growing trees, scaling limits, self-similar fragmentation trees, Gromov-Hausdorff-
Prokhorov topology

AMS subject classifications: 60F17, 60J80

1 Introduction

The model. Let k ≥ 2 be an integer. We introduce a growing sequence of k-ary trees (Tn(k), n ≥ 0),
where Tn(k) is a rooted tree with (k − 1)n+ 1 leaves, constructed recursively as follows:

• Step 0: T0(k) is the tree with one edge and two vertices: one root, one leaf.

• Step n: given Tn−1(k), choose uniformly at random one of its edges and graft on “its middle”
(k − 1) new edges, that is split the selected edge into two so as to obtain two edges separated by
a new vertex, and then add k − 1 new edges to the new vertex.
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Figure 1: A representation of Tn(3) for n = 0, 1, 2, 3. The edges are also labelled as explained in
the paragraph just above Theorem 1.3.

For all n, this gives a tree Tn(k) with indeed (k − 1)n + 1 leaves, n internal nodes and kn + 1
edges. In the case where k = 2, edges are added one by one and our model corresponds to an algorithm
introduced by Rémy [28] to generate trees uniformly distributed among the set of binary trees with
n+ 1 labelled leaves. Many other dynamical models of trees growing by adding edges one by one exist
in the literature, see e.g. [30, 8, 29, 15, 9].
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Scaling limits. We are interested in the description of the metric structure of the growing tree Tn(k)
as n becomes large. For k = 2, it is easy to explicitly compute the distribution of Tn(2) (see e.g.
[25]), which turns out to be that of a (planted) binary critical Galton-Watson tree conditioned to have
2n+2 nodes (after forgetting the order). According to the work of Aldous on scaling limits of Galton-
Watson trees [3], the tree Tn(2) then grows at speed n1/2 towards a multiple of the Brownian continuum
random tree (Brownian CRT). Let us explain this statement more formally. The trees Tn(2), n ≥ 0
may be viewed as metric spaces by considering that their edges are segments of length 1, and therefore
belong to the set of so-called R-trees. They are moreover endowed with a probability measure, the
uniform probability on their leaves, which we denote by µn(2), n ≥ 0. To compare how close two such
measured trees are, we use the so-called Gromov-Hausdorff-Prokhorov (GHP) topology on the set of
measured compact R-trees. Background on that topic will be given in Section 2. The above result on
the asymptotic behavior of the sequence (Tn(2)) can now be made precise as follows: there exists a
compact R-tree TBr distributed as the Brownian CRT and a probability measure µBr on TBr such that

(

Tn(2)

n1/2
, µn(2)

)

a.s.−→
n→∞

(

2
√
2TBr, µBr

)

(1.1)

for the GHP-topology. We point out that the almost sure convergence was not proved initially in [3],
which states, in a more general setting, convergence in distribution of rescaled Galton-Watson trees.
However, it is implicit in [26] and [24]. See also [10, Theorem 5] for an explicit statement.

Many classes of random trees are known to converge after rescaling towards the Brownian CRT.
However, other limits are also possible, among which two important classes of random R-trees: the class
of Lévy trees introduced by Duquesne, Le Gall and Le Jan [23, 11, 12] (which is the class of all possible
limits in distribution of rescaled sequences of Galton-Watson trees [11]) and the class of self-similar
fragmentation trees [16, 31] (which is the class of scaling limits of the so-called Markov branching trees
[18, 19]). We will see in this paper that the sequence (Tn(k), n ≥ 0) has a scaling limit belonging to this
second category. From now on, we will call “fragmentation tree” any self-similar fragmentation tree, the
self-similarity being implicit. Informally, a fragmentation tree with index of self-similarity α ∈ (−∞, 0)
is a random compact R-tree endowed with a probability measure that makes it self-similar: the subtrees
of this tree situated above a given height are distributed as the initial tree up to their own mass (with
respect to the probability measure on the tree) to the power α. These trees were introduced to code
the genealogy of self-similar fragmentations, which are random processes modeling the evolution of
blocks subject to splitting. We refer to [7] for background on fragmentation processes and to [16, 31]
for background on fragmentation trees. In particular, it is known that the distribution of such a tree
is characterized by three parameters: the index of self-similarity α, an erosion coefficient c ≥ 0 which
corresponds to a continuous melting of the blocks and a so-called dislocation measure which is σ-finite
on the set of decreasing positive sequences with sum less than one. The role of this measure is to
code the way sudden dislocations occur in the fragmentation process, or, in terms of trees, the way
the relative masses of the subtrees descending from a given node are distributed. This measure may
be supported by sequences with sum strictly less than one which then means that some mass is lost
during the dislocation of a fragment. In this case, the fragmentation is called non-conservative, while it
is called conservative in the other case All fragmentation trees considered in this paper have an erosion
coefficient equal to 0, which is implied from now on.

The Brownian CRT belongs to the family of fragmentation trees [6]. Its index of self-similarity is

−1/2 and its dislocation measure ν↓2 is supported on the 1-dimensional simplex S2 = {s = (s1, s2) ∈
[0, 1]2, s1 + s2 = 1} and defined by

ν↓2 (ds1) =

√

2

π
s
−3/2
1 s

−3/2
2 ✶{s1≥s2}ds1 =

√

2

π
s
−1/2
1 s

−1/2
2

(

1

1− s1
+

1

1− s2

)

✶{s1≥s2}ds1,

where ds1 denotes the Lebesgue measure on [0, 1]. Of course the constraint s1 ≥ s2 is here equivalent
to s1 ≥ 1/2, but we keep the first notation in view of generalizations.

Our main goal is to generalize the convergence (1.1) to the sequences of trees (Tn(k), n ≥ 0) for all
integers k ≥ 2. Let Sk be the closed (k − 1)-dimensional simplex and its variant Sk,≤ of dimension k
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obtained by allowing the sum to be less than 1,

Sk =

{

s = (s1, s2, ..., sk) ∈ [0, 1]k :

k
∑

i=1

si = 1

}

; Sk,≤ =

{

s = (s1, s2, ..., sk) ∈ [0, 1]k :

k
∑

i=1

si ≤ 1

}

.

Both spaces are endowed with the distance

dk(s, s
′) =

k
∑

i=1

|si − s′i|,

which makes them compact. The Lebesgue measure on Sk can be written as ds =
∏k−1

i=1 dsi, with sk
being implicitly defined by 1−∑k−1

i=1 si, whereas that on Sk,≤ should be understood as ds =
∏k

i=1 dsi.

Theorem 1.1. Let µn(k) be the uniform measure on the leaves of Tn(k). There exists a k-ary R-tree
Tk, endowed with a probability measure on its leaves µk, such that

(

Tn(k)

n1/k
, µn(k)

)

P−→ (Tk, µk)

for the GHP-topology. The measured tree (Tk, µk) belongs to the family of conservative fragmentation

trees, with index of self-similarity −1/k. Its dislocation measure ν↓k is supported on Sk and defined by

ν↓k(ds) =
(k − 1)!

k(Γ( 1k ))
k−1

k
∏

i=1

s
−(1−1/k)
i

(

k
∑

i=1

1

1− si

)

✶{s1≥s2≥...≥sk}ds,

where Γ stands for Euler’s Gamma function.

Note that the convergence is a little weaker than (1.1) since it is only a convergence in probabil-
ity. However the finite dimensional marginals of Tn(k) converge almost surely as we will see later in

Proposition 4.1. Note also that ν↓k is a σ-finite measure on Sk such that

∫

Sk

(1− s1)ν
↓
k(ds) < ∞

but with infinite total mass. This fact implies in particular that the leaves of the tree Tk are dense in
Tk (see [16, Theorem 1]).

Since the limiting tree is a fragmentation tree, we immediately have its Hausdorff dimension. Indeed,
the Hausdorff dimension of conservative fragmentation trees was computed in [16] and this result was
extended to general fragmentation trees in [31]. In particular, we know from [16, Theorem 2] that
the Hausdorff dimension of a conservative fragmentation tree with index of self-similarity α < 0 and
dislocation measure ν (and no erosion) is equal to max(|α|−1, 1) provided that the measure ν integrates
(s−1

1 − 1) on the set of decreasing sequences with sum one. Here,

∫

Sk

(s−1
1 − 1)ν↓k(ds) ≤

∫

Sk

k−1(1− s1)ν
↓
k(ds) < ∞

since s1 ≥ s2 ≥ ... ≥ sk together with
∑k

i=1 si = 1 implies that s1 ≥ 1/k.

Corollary 1.2. The Hausdorff dimension of tree Tk is almost surely k.

Remark. From the recursive construction of the sequence (Tn(k)) one could believe at first sight that
the trees Tn(k), n ≥ 0, as well as their continuous counterparts Tk, are invariant under uniform re-
rooting (which means that the law of the tree re-rooted at a leaf chosen uniformly at random is the
same as the initial tree). Actually, this is only true for k = 2. For k = 2, this is a well-known property
of the Brownian CRT ([2]). For k ≥ 3, it is easy to check for small values of n that this property is
not satisfied for Tn(k). In the continuous setting, it is known that a fragmentation tree having the
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invariance under re-rooting property necessarily belongs to the family of stable Lévy trees ([20]). It
is also well-known that, up to a multiplicative scaling, the unique stable Lévy tree without vertices
of infinite degree is the Brownian CRT ([12]). Hence Tk is not invariant under uniform re-rooting for
k ≥ 3.

Labels on edges and subtrees. Partly for technical reasons, we want to label all the edges of Tn(k),
with the exception of the edge adjacent to the root, with integers from 1 to k (see Figure 1 for an
illustration). We do this recursively. The unique edge of T0(k) has no label since it is adjacent to the
root. Given Tn(k) and its labels, focus on the new vertex added in the middle of the selected edge.
This edge was split into two: one new edge going towards the root, the other going away from it. Have
the edge going towards the root keep the original label of the selected edge (no label if it is adjacent to
the root), and have the other one be labelled 1. The k − 1 new edges added after that will be labelled
2, . . . , k, say uniformly at random (actually, the way these k − 1 additional edges are labelled is not
important for our purpose, but the index 1 is important).

Now fix 2 ≤ k′ < k. We consider, for all n, the k′-ary subtree of Tk(n) obtained by discarding all
edges with label larger than or equal to k′ + 1 as well as their descendants. This subtree is denoted
by Tk,k′(n). We are interested in the sequence of subtrees (Tk,k′(n), n ≥ 0), because up to a (discrete)
time-change in n, it is distributed as the sequence (Tk′(n), n ≥ 0) (see Lemma 5.1). As a consequence,
we will see that a rescaled version of Tk′ is nested in Tk. Moreover this version can be identified as a
non-conservative fragmentation tree. All this is precisely stated in the following theorem.

Theorem 1.3. For each n ∈ Z+, endow Tn(k) with the uniform probability on its leaves µn(k) and
Tn(k, k

′) with the image of this probability by the projection on Tn(k, k
′). This image measure is denoted

by µn(k, k
′). Then

((

Tn(k)

n1/k
, µn(k)

)

,

(

Tn(k, k
′)

n1/k
, µn(k, k

′)

))

P−→
n→∞

((Tk, µk), (Tk,k′ , µk,k′))

for the GHP-topology, where Tk,k′ is a closed subtree of Tk and (Tk,k′ , µk,k′) has the distribution of

a non-conservative fragmentation tree with index −1/k. Its dislocation measure ν↓k,k′ is supported on
Sk′,≤ and defined by

ν↓k,k′(ds) =
(k′ − 1)!

k(Γ( 1k ))
k′−1Γ(1− k′

k )
× 1

(1−
∑k′

i=1 si)
k′/k

k′

∏

i=1

s
−(1−1/k)
i





k′

∑

i=1

1

1− si



✶{s1≥...≥sk′}ds.

Moreover,

Tk,k′

(d)
= M

1/k′

k′/k,1/k · Tk′ (1.2)

where in the right side, Mk′/k,1/k has a generalized Mittag-Leffler distribution with parameters (k′/k, 1/k)
and is independent of Tk′ .

The identity (1.2) is similar to results established in [10] on the embedding of stable Lévy trees. The
precise definition of generalized Mittag-Leffler distribution will be recalled in Section 5. In that section
we will also see how to extract a random rescaled version of Tk′ directly from the limiting fragmentation
tree Tk by adequately pruning subtrees on each of its branch point (Proposition 5.2).

Organization of the paper. After having recalled background on R-trees and the GHP metric in
Section 2, we will use two approaches to prove our results. The first one, developed in Section 3, consists
in checking that the sequence (Tn(k), n ≥ 0) possesses the so-called Markov branching property and
then use results of Haas and Miermont [18] on scaling limits of Markov branching trees to obtain the
convergence in distribution of the rescaled trees (Tn(k)) towards a fragmentation tree. Our second
approach, in Section 4, is based on urn schemes and the Chinese restaurant process of Pitman [26].
It provides us the convergence in probability of the rescaled trees (Tn(k)) towards a compact R-tree,
but does not allow us to identify the limiting tree as a fragmentation tree. Combination of these two
approaches then fully proves Theorem 1.1. In Section 4, we also treat the convergence in probability
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of the rescaled subtrees (Tn(k, k
′)). The distribution of the limit will be identified in Section 5, hence

giving the convergence results of Theorem 1.3. Lastly, still in Section 5, we study the embedding of the
limiting trees Tk as k varies: for all k′ < k, we show how to extract directly from Tk a tree with the
distribution of Tk,k′ and prove the relation (1.2).

From now on, k and k′ are fixed, with 2 ≤ k′ < k. To lighten notation, we will use, up
until Section 4.5, Tn instead of Tn(k) and T ′

n instead of Tn(k, k
′).

2 Background on R-trees and GHP-topology

We briefly recall background on R-trees (or real trees) and Gromov-Hausdorff-Prokhorov distance, and
refer to [14, 22] for an overview on this topic.

An R-tree is a metric space (T , d) such that, for any points x and y in T , there exists a geodesic
path from x to y and, up to time-reparametrization, this is the only continuous self-avoiding path from
x to y. We denote by [[x, y]] this geodesic, and also write ]]x, y]] or [[x, y[[ when we want to exclude
x or y. Our trees will always be rooted at a point ρ ∈ T . The height of a point x ∈ T is defined as
ht(x) = d(x, ρ) and the height of the tree itself is the supremum of the heights of its points. The set
of descendants of x, called Tx, is the set of all y ∈ T such that x ∈ [[ρ, y]]. The degree of x is the
number of connected components of T \{x}. We call leaves of T all the points which have degree 1,
excluding the root. A k-ary tree is a tree whose points have degrees in {1, 2, k + 1} (with at least one
point of degree k + 1). Given two points x and y, we define x ∧ y as the unique point of T such that
[[ρ, x]]∩ [[ρ, y]] = [[ρ, x∧ y]]. It is called the branch point of x and y if its degree is larger or equal to 3.
For a > 0, we define the rescaled tree aT as (T , ad) (the metric d thus being implicit and dropped from
the notation). Finally, note that any graph-theoretical tree can be viewed as an R-tree by considering
each edge as a line segment with an arbitrarily chosen length, usually 1.

Recall that, if A and B are two nonempty compact subsets of a metric space (E, d), the Hausdorff
distance between A and B is defined by

dE,H(A,B) = inf
{

ε > 0 ; A ⊂ Bε and B ⊂ Aε
}

,

where Aε and Bε are the closed ε-enlargements of A and B. The Gromov-Hausdorff convergence
generalizes this and allows us to talk about convergence of compact R-trees. Given two compact rooted
trees (T , d, ρ) and (T ′, d′, ρ′), let

dGH(T , T ′) = inf
[

max(dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ
′(ρ′)))

]

,

where the infimum is taken over all pairs of isometric embeddings φ and φ′ of T and T ′ in the same
metric space (Z, dZ), for all choices of metric spaces (Z, dZ). We will also be concerned with measured
trees, that is R-trees equipped with a probability measure on their Borel sigma-field (it is implicit from
now on that in this paper a measure on a metric space is actually a Borel measure). To this effect,
recall first the definition of the Prokhorov distance between two probability measures µ and µ′ on a
metric space (E, d):

dE,P(µ, µ
′) = inf

{

ε > 0 ; ∀A ∈ B(E), µ(A) ≤ µ′(Aε) + ε and µ′(A) ≤ µ(Aε) + ε
}

.

Now, given two measured compact rooted trees (T , d, ρ, µ) and (T ′, d′, ρ′, µ′), we let

dGHP(T , T ′) = inf
[

max(dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ
′(ρ′)), dZ,P(φ∗µ, φ

′
∗µ

′)
]

,

where the infimum is taken on the same space as before and φ∗µ, φ
′
∗µ

′ are the push-forwards of µ, µ′

by φ, φ′.
As shown in [13] and [1], the space of compact rooted R-trees (respectively compact measured rooted

R-trees), taken up to root-preserving isomorphisms (resp. root-preserving and measure-preserving) and
equipped with the GH (resp. GHP) metric is Polish. In this paper, we will implicitly identify two
(measured) rooted R-trees when their are isometric and still use the notation (T , d) (or T when the
metric is clear) to design their isometry class. Typically, the GHP convergence of a sequence is shown
by exhibiting a specific embedding of our trees in the space ℓ1 of summable sequences, under which we
have Hausdorff convergence of the trees and Prokhorov convergence of the measures.
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3 Convergence in distribution and identification of the limit

In this section, we use [18, Theorem 5] on scaling limits of Markov branching trees to get the convergence
in distribution of the rescaled trees n−1/kTn and identify the limit distribution. Actually, the method
used in the following section will yield a stronger convergence, convergence in probability, but that
approach does not allow us to identify the distribution of the limit. We will also set up here some
material needed to identify the distribution of the limit of the subtrees n−1/kT ′

n. The convergence of
these subtrees will be proved in the next section, and the limit will then be identified in Section 5.

Let n ∈ Z+ and consider the tree Tn+1. Its root is connected to only one edge, after which there
are k subtrees. These subtrees can be identified by the label given to their first edge, and we call them
(T i

n)i≤k, where i ≤ k refers to the edge labelled n◦i (implicitly, i ≥ 1 here). For all i ≤ k, we let Xi
n be

the number of internal nodes of T i
n and we let qn be the distribution of (Xi

n)i≤k seen as an element of

Ck
n =

{

λ = (λ1, ..., λk) ∈ Z
k
+ :

k
∑

i=1

λi = n

}

.

To use the results of [18], we have to check

(i) that the sequence (Tn) is Markov branching, which roughly means that conditionally on their
sizes, the trees T i

n, i ≤ k, are mutually independent and have, respectively, the same distribution
as TXi

n
, i ≤ k;

(ii) that appropriately rescaled, the distribution qn converges.

We start by studying this probability qn in Section 3.1 and then prove the Markov branching property
and get the limit distribution in Section 3.2.

3.1 Description and asymptotics of the measure qn

Let q̄n be the distribution of (Xi
n/n)i≤k, it is a probability measure on Sk, ∀n ≥ 1. As we will see

below in Proposition 3.1, the continuous scaling limit of these distributions is the measure νk on Sk

defined by

νk(ds) =
1

k(Γ( 1k ))
k−1

1

1− s1

k
∏

i=1

s
−(1−1/k)
i ds.

Note the dissymmetry between the index 1 and the others. This is due the fact that the subtree T 1
n is

often much larger than the other ones, since, in the n-th step of the recursive construction, in the case
where the new k − 1 edges are added on the edge adjacent to the root, the subtree T 1

n has n internal
nodes whereas the k − 1 other ones have none.

Since we are also interested in describing the asymptotic behaviour of the subtrees T ′
n, we will also

need to consider, for n ≥ 1, the probability measures q′n on Sk′,≤ obtained by considering the first
k′ elements of (Xi

n/n)i≤k. Their continuous scaling limit (see Corollary 3.2) is denoted by νk,k′ and
defined on Sk′,≤ by

νk,k′(ds) =
1

k(Γ( 1k ))
k′−1Γ(1− k′/k)

× 1

(1− s1) (1−
∑k′

i=1 si)
k′/k

k′

∏

i=1

s
−(1−1/k)
i ds.

For s ∈ Sk, we let s↓ be the sequence obtained by reordering the elements of s in the decreasing order.
This map is continuous from Sk to Sk. For any probability measure µ on Sk, then let µ↓ be the image
of µ by it.

Examples. For instance, one can check that the measure ν↓k associated to νk indeed coincides with

the definition of ν↓k in Theorem 1.1. And similarly for the measure ν↓k,k′ and its expression in Theorem
1.3.

The main goal of this section is to prove the following result.
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Proposition 3.1. We have the following weak convergence of measures on Sk:

n1/k(1− s1)q̄n(ds) ⇒
n→∞

(1− s1)νk(ds).

As a consequence,
n1/k(1− s1)q̄

↓
n(ds) ⇒

n→∞
(1− s1)ν

↓
k(ds).

The symmetric Dirichlet measure on Sk with parameter k−1 is Γ(1/k)−k(
∏k

i=1 si)
−(1−1/k)ds. It is

well-known and easy to check that this defines a probability measure on Sk. As a direct consequence,
we see that

∫

Sk

(1− s1)νk(ds) =
Γ(1/k)

k
.

More generally, we will need several times in this paper the well-known fact that for any integer K ≥ 2
and all K-uplets α1, ..., αK > 0,

∫

SK

K
∏

i=1

sαi−1
i ds =

∏K
i=1 Γ(αi)

Γ
(
∑K

i=1 αi

)
, (3.1)

where xK = 1−
∑K−1

i=1 xi.

The results of Proposition 3.1 can easily be transferred to q′n:

Corollary 3.2. We have the following weak convergences of measures on Sk′,≤:

n1/k(1− s1)q̄
′
n(ds) ⇒

n→∞
(1− s1)νk,k′(ds)

and,
n1/k(1− s1)(q̄

′
n)

↓(ds) ⇒
n→∞

(1− s1)ν
↓
k,k′(ds).

In order to prove Proposition 3.1, we start by explicitly computing the measure qn in Section 3.1.1.
We then set up preliminary lemmas in Section 3.1.2 and lastly turn to the proofs of Proposition 3.1
and Corollary 3.2 in Section 3.1.3.

3.1.1 The measure qn

Proposition 3.3. For all λ ∈ Ck
n,

qn(λ) =
1

k(Γ( 1k ))
k−1

(

k
∏

i=1

Γ( 1k + λi)

λi!

)

n!

Γ( 1k + n+ 1)





λ1+1
∑

j=1

λ1!

(λ1 − j + 1)!

(n− j + 1)!

n!



 .

Proof. Let N1, . . . , Nn+1 be the n + 1 internal nodes of Tn+1, listed in order of apparition, and let J
be the random variable such that NJ is the first node encountered after the root of Tn. Recall that
T 1
n , . . . , T

k
n denote the ordered subtrees rooted at NJ . For λ ∈ Ck

n and j ∈ N, we first compute the
probability pj(λ) that J = j, T 1

n contains the nodes N1, . . . , Nj−1, Nj+1, Nλ1+1, T
2
n contains the nodes

Nλ1+2, . . . , Nλ1+λ2+1 and so on until T k
n , which contains the nodes Nλ1+...+λk−1+2, . . . , Nn+1. This

probability is null for j > λ1 + 1. For 1 ≤ j ≤ λ1 + 1, since each edge is chosen with probability
1/(1 + kp) when constructing Tp+1 from Tp, p ≥ 1, we get

pj(λ) =
1

1 + k(j − 1)

λ1+1
∏

p=j+1

1 + k(p− 2)

1 + k(p− 1)

k
∏

i=2

λi
∏

p=1

1 + k(p− 1)

1 + k(λ1 + . . .+ λi−1 + p)

=

∏k
i=1

∏λi−1
p=1 (1 + kp)

∏n
p=1(1 + kp)
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(by convention, a product indexed by the empty set is equal to 1). Note that pj(λ) = p1(λ) for
all j ≤ λ1 + 1. Note also that this probability does not change if we permute the indices of nodes
Nj+1, . . . , Nn (both the numerator and the denominator have the same factors, just in different orders).
We thus have

qn(λ) =

λ1+1
∑

j=1

(n− j + 1)!

(λ1 − j + 1)!
∏k

i=2 λi!
p1(λ)

=
n!

∏n
p=1(1 + pk)

k
∏

i=1

∏λi−1
p=1 (1 + pk)

λi!

λ1+1
∑

j=1

λ1!

(λ1 − j + 1)!

(n− j + 1)!

n!
.

The proof is then ended by using the fact that Γ( 1k + q) = Γ( 1k )k
−q
∏q−1

p=0(1 + kp) for any q ∈ Z+.

3.1.2 Preliminary lemmas

The proof of Proposition 3.1 relies on the convergence of some Riemann sums. To set up these conver-
gences, we first rewrite qn(λ), n ≥ 1, in the form

qn(λ) =
1

kΓ( 1k )
k−1

∏k
i=1 γk(λi)

(n+ 1)γk(n+ 1)
βn

(

λ1

n

)

, (3.2)

where, for all x ≥ 0,

γk(x) =
Γ( 1k + x)

Γ(1 + x)

and, for all x ∈ [0, 1] and n ∈ N,

βn(x) = 1 +

⌊nx⌋
∑

j=1

nx(nx− 1) . . . (nx− j + 1)

n(n− 1) . . . (n− j + 1)
.

Lemma 3.4. The following convergence of functions

x 7→ n1−1/kγk(nx) −→
n→∞

x 7→ x−(1−1/k)

holds uniformly on all compact subsets of (0, 1]. Moreover, there exists a finite constant A such that
γk(x) ≤ Ax−(1−1/k) for all x ≥ 0.

Proof. Pointwise convergence comes from a direct application of Stirling’s formula. The uniformity of
this convergence on all compact subsets of (0, 1] can be proved through standard monotonicity argument
(sometimes known as Dini’s Theorem): we only need to notice that γk is a nonincreasing function of
x ≥ 0. This can be done through differentiating; indeed, γk is differentiable and we have, for all x ≥ 0,

γ′
k(x) =

Γ′( 1k + x)Γ(x+ 1)− Γ( 1k + x)Γ′(x+ 1)

(Γ(x+ 1))2
.

Notice that the function x 7→ Γ′(x)/Γ(x) is nondecreasing on (0,+∞), since the Gamma function is
logarithmically convex (see e.g. [4]). Therefore, the derivative of γk is indeed nonpositive. Lastly, the
domination of γk by a constant times the power function x−(1−1/k) for all x ≥ 0 follows immediately
from Stirling’s formula and the fact that γk is continuous on [0,+∞).

Lemma 3.5. The function βn converges uniformly to the function x 7→ (1−x)−1 on all compact subsets
of [0, 1). Moreover (1− x)βn(x) ≤ 1 for all x ∈ [0, 1] and all n ∈ N.

8



Proof. The proof works on the same principle as the previous one: since βn is obviously a nondecreasing
function, we only need to show that the sequence converges pointwise. This is immediate for x = 0,
and will be done with the help of the dominated convergence theorem in the other cases. Note that,
for all x ∈ [0, 1] and j ∈ N

nx(nx− 1) . . . (nx− j + 1)

n(n− 1) . . . (n− j + 1)
−→
n→∞

xj and
nx(nx− 1) . . . (nx− j + 1)

n(n− 1) . . . (n− j + 1)
≤ xj , ∀n ∈ N, j ≤ ⌊nx⌋,

which is summable for x ∈ [0, 1). The dominated convergence theorem then ensures us that βn(x)
converges to

∑∞
j=0 x

j = (1− x)−1 uniformly on all compact subsets of [0, 1).

Lemma 3.6. The sequence of measures n
1
k (1− s1)q̄n(ds) satisfies:

∀ε > 0, ∃η > 0, ∀n ∈ N, n
1
k

∑

λ∈Ck
n

(

1− λ1

n

)

qn(λ)✶{∃i,λi<ηn} < ε.

Proof. We use (3.2). By individually bounding all the instances of γk(x) by Ax−(1−1/k) and (1−x)βn(x)
by 1 we are reduced to showing

∀ε > 0, ∃η > 0, ∀n ∈ N,
∑

λ∈Ck
n

k
∏

i=1

λ
−(1−1/k)
i ✶{∃i,λi<ηn} < ε.

By virtue of symmetry, we can restrict ourselves to the case where λ is nonincreasing. The condition
∃i, λi < ηn then boils down to λk < ηn. Summation over λ nonincreasing and in ∈ Ck

n is done
by choosing first λk then λk−1, going on until λ2, the first term λ1 being then implicitly defined as
n− λ2 − . . .− λk. Let ε > 0, it is enough to find η > 0 such that, for any n ∈ N,

⌊ηn⌋
∑

λk=1

⌊n/(k−1)⌋
∑

λk−1=λk

. . .

⌊n/2⌋
∑

λ2=λ3

✶{λ1≥λ2}

k
∏

i=1

λ
−(1−1/k)
i < ε.

By using λ1 ≥ n/k, we obtain

⌊ηn⌋
∑

λk=1

⌊n/(k−1)⌋
∑

λk−1=λk

. . .

⌊n/2⌋
∑

λ2=λ3

✶{λ1≥λ2}

k
∏

i=1

λ
−(1−1/k)
i ≤

(n

k

)−(1−1/k)
⌊ηn⌋
∑

λk=1

⌊n/(k−1)⌋
∑

λk−1=1

. . .

⌊n/2⌋
∑

λ2=1

k
∏

i=2

λ
−(1−1/k)
i .

Standard comparison results between series and integrals imply that, since the function t 7→ t−(1−1/k)

is nonincreasing and has an infinite integral on [1,∞), there exists a finite constant B such that, for

all n ≥ 1,
∑n

j=1 j
−(1−1/k) ≤ Bn

1
k . We thus get

⌊ηn⌋
∑

λk=1

⌊n/(k−1)⌋
∑

λk−1=λk

. . .

⌊n/2⌋
∑

λ2=λ3

✶{λ1≥λ2}

k
∏

i=1

λ
−(1−1/k)
i ≤ B′η

1
kn−(1−1/k)η

1
k (n

1
k )k−1 ≤ B′′η

1
k

where B′ and B′′ are finite constants. Choosing η ≤ (B′′)−kε makes our sum smaller than ε for all
choices of n.

3.1.3 Proof of Proposition 3.1 and Corollary 3.2

Proof of Proposition 3.1. First note that since (1 − s1)νk(ds) is a finite measure on Sk and since
νk(∃i : si = 0) = 0, for all ε > 0 there exists a η > 0 such that

∫

Sk
(1 − s1)✶{∃i:si<η}νk(ds) < ε.

Together with Lemma 3.6, this implies that Proposition 3.1 will be proved once we have checked that

n
1
k

∫

Sk

(1− s1)f(s)

k
∏

i=1

✶{si≥η}q̄n(ds) −→
n→∞

∫

Sk

(1− s1)f(s)

k
∏

i=1

✶{si≥η}νk(ds)
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for all η > 0 and all continuous functions f on Sk . In the following, we fix such a real number η > 0
and a function f . Using the expression (3.2) and Lemmas 3.4 and 3.5, we see that

n
1
k

∫

Sk

(1− s1)f(s)

k
∏

i=1

✶{si≥η}q̄n(ds) ∼
n→∞

n1−k

kΓ( 1k )
k−1

∑

λ∈Ck
n

f

(

λ

n

) k
∏

i=1

(

λi

n

)−(1−1/k)

✶{λi≥ηn}.

We conclude by noticing that this last term is in fact a Riemann sum of a (Riemann) integrable
function on [0, 1]k−1: to sum over λ ∈ Ck

n, we only need to choose λ1, . . . , λn−1 in {0, ..., n} such that
n − (λ1 + . . . + λn−1) ≥ 0. Standard results on Riemann sums then imply that it converges towards
the integral

∫

Sk

(1− s1)f(s)

k
∏

i=1

✶{si≥η}νk(ds).

The convergence of the decreasing versions of the measures follows immediately. A continuous function
f on Sk being fixed, we let gf be the function defined on Sk by gf (s) = (1 − s↓1)f(s

↓)/(1 − s1). The

function gf is then continuous and bounded on Sk (there is no singularity when s1 = 1 since s↓1 = s1
as soon as s1 ≥ 1/2). By the first part of this proof, we then have

n
1
k

∫

Sk

(1− s1)f(s)q̄
↓
n(ds) = n

1
k

∫

Sk

(1− s↓1)f(s
↓)q̄n(ds) = n

1
k

∫

Sk

(1− s1)gf (s)dq̄n(s)

→
n→∞

∫

Sk

(1− s1)gf (s)νk(ds) =

∫

Sk

(1− s1)f(s)ν
↓
k(ds).

�

Proof of Corollary 3.2. Let f be a continuous function on Sk′,≤ and assume for the moment that
k′ ≤ k − 2. Applying first Proposition 3.1 and then the identity (3.1), we get

n1/k

∫

Sk′,≤

f(s)(1− s1)q
′
n(ds) −→

n→∞

1

k(Γ( 1k ))
k−1

∫

Sk

f(s1, ..., s
′
k)

k
∏

i=1

s
−(1−1/k)
i ds

=
1

k(Γ( 1k ))
k−1

∫

Sk′,≤

f(s)

k′

∏

i=1

s
−(1−1/k)
i

(

∫

(

0,1−
∑

k′

i=1 si

]k−1−k′

k
∏

i=k′+1

s
−(1−1/k)
i dsk′+1 . . . dsk−1

)

ds

=
1

k(Γ( 1k ))
k−1

∫

Sk′,≤

f(s)

k′

∏

i=1

s
−(1−1/k)
i







Γ( 1k )
k−k′

Γ (1− k′/k)



1−
k′

∑

i=1

si





−k′/k





ds,

which gives the result for k′ ≤ k − 2. For k′ = k − 1 the calculation is more direct since we do not
need (3.1). Finally, the convergence of decreasing measures follows immediately by mimicking the end
of the proof of Proposition 3.1. �

3.2 Markov branching property and identification of the limit

Proposition 3.7 (Markov branching property). Let n ∈ Z+. Conditionally on (Xi
n)i≤k, the (T i

n)i≤k

are mutually independent and, for i ≤ k, T i
n has the same law as TXi

n
.

Proof. We prove this statement by induction on n ∈ Z+. Starting with n = 0, we have Xi
0 = 0 and

T i
0 = T0 for all i, everything is deterministic.
Assume now that the Markov branching property has been proven up until some integer n− 1, and

let us prove it for n. Let e be the random selected edge of Tn−1 used to build Tn and let J be the
random variable defined by: J = j if e is an edge of T j

n−1, j ≤ k, and J = 0 if e is the edge adjacent to
the root of Tn. Note that J and Tn are independent conditionally on (Xi

n−1)i≤k. Let us then determine
the law of (T i

n, i ≤ k) conditionally on J and (Xi
n)i≤k.
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If J = j 6= 0 then (T i
n)i≤k,i 6=j is the same sequence as (T i

n−1)i≤k,i 6=j and we have added an extra

edge to T j
n−1. Hence, for all j ≤ k and (x1, ..., xk) ∈ Ck

n, with xj ≥ 1, we have for all k-uplet of rooted
k-ary trees (t1, ..., tk) with respectively x1, ..., xk internal nodes,

P
(

T i
n = ti, 1 ≤ i ≤ k | Xi

n = xi, 1 ≤ i ≤ k, J = j
)

= P
(

T i
n−1 = ti, 1 ≤ i ≤ k, i 6= j, T j

n = tj | Xi
n−1 = xi, 1 ≤ i ≤ k, i 6= j, J = j

)

= P
(

T i
n−1 = ti, 1 ≤ i ≤ k, i 6= j | Xi

n−1 = xi, 1 ≤ i ≤ k, i 6= j, J = j
)

P
(

Txj
= tj

)

=
∏k

i=1 P
(

T i
xi

= ti
)

where we have used that a conditioned uniform variable is uniform in the set of conditioning to get the
second equality and then that J and Tn are independent conditionally on (Xi

n−1)i≤k, together with the
Markov branching property at n− 1, to get the third equality.

When J = 0, (T i
n)i≤k = (Tn, T0, . . . , T0). Since T0 is deterministic and the event {J = 0} is

independent of Tn, the distribution of (T i
n)i≤k conditional on J = 0 and (Xi

n)i≤k = (n, 0, ..., 0) is
indeed the same as that of the k-uplet of independent random variables (Tn, T0, . . . , T0).

Finally, since the distribution of (T i
n)i≤k conditionally on J and (Xi

n)i≤k is independent of J , one
can remove J in the conditioning, which ends the proof.

We now have the material to prove the convergence in distribution of n−1/kTn and identify its limit
as a fragmentation tree.

Proof of Theorem 1.1 (convergence in distribution part). Theorem 5 of [18] concerns sequences
of Markov branching trees indexed by their number of leaves, however our sequence (Tn) is indexed by
the number of internal nodes of the tree. This is not a real problem since Tn has 1 + (k − 1)n leaves
for all n, the sequence (Tn)n∈N can be seen as a sequence of Markov branching trees (T ◦

p )p∈1+(k−1)N

indexed by their number of leaves. For all p ∈ 1 + (k − 1)N, we let q̄◦p denote its associated splitting
distribution, that is, if p = 1 + (k − 1)n, q̄◦p is the distribution on Sk of the sequence

(

1 + (k − 1)Xi
n−1

1 + (k − 1)n

)

i≤k

.

As an immediate consequence of Proposition 3.1, we have that

(k − 1)−1/kp1/k(1− s1)q̄
◦,↓
p (ds) ⇒

p→∞
p∈1+(k−1)N

(1− s1)ν
↓
k(ds). (3.3)

Indeed, for any bounded Lipschitz function f : Sk → R, let gf : Sk → R be defined by gf (s) =
(1− s1)f(s). Then gf is also Lipschitz, say with Lipschitz constant cg. It is then easy to see that

n1/k

∣

∣

∣

∣

∣

∣

E

[

g

(

(

1 + (k − 1)Xi
n−1

1 + (k − 1)n

)↓
)]

− E

[

g

((

Xi
n−1

n− 1

)↓)]
∣

∣

∣

∣

∣

∣

≤ n1/k2kcg
1 + (k − 1)n

→
n→∞

0.

Together with Proposition 3.1 this immediately leads to (3.3).
Hence the sequence (T ◦

p )p∈1+(k−1)N is Markov branching with a splitting distribution sequence (q̄◦p)
satisfying (3.3). This is exactly the hypotheses we need to apply Theorem 5 of [18], except that this
theorem is stated for sequences of Markov branching trees indexed by the full set N, not by one of
its subsets. However, without any modifications, it could easily be adapted to that setting. Hence we
obtain from this theorem that

(

(k − 1)1/kp−1/kT ◦
p , µ

◦
p

)

−→
p→∞

p∈1+(k−1)N

(Tk, µk)

where µ◦
p is the uniform probability on the leaves of (T ◦

p ) and (Tk, µk) the fragmentation tree of Theorem

1.1. This convergence holds in distribution, for the GHP topology. Otherwise said, (n−1/kTn) endowed
with the uniform probability on its leaves converges in distribution towards (Tk, µk). �
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4 Convergence in probability and joint convergence

This section is dedicated to improving the convergence in distribution we have just obtained. We will
construct the limiting tree in the space ℓ1 of summable real-valued sequences (equipped with its usual
metric dℓ1), and convergence will be proved by using subtrees akin to finite-dimensional marginals. The
almost sure convergence of these marginals can be proved using urn schemes and results concerning
Chinese restaurant processes, as studied by Pitman in [26, Chapter 3]. Tightness properties will extend
this to the convergence of (n−1/kTn, µn). Unfortunately, almost sure convergence is lost by this method
and we are left with convergence in probability. Also, due to some technical issues, we first have to
study the Gromov-Hausdorff convergence of the non-measured trees before adding the measures.

4.1 Finite-dimensional marginals and the limiting tree

In this section we will need to define an ordering of the leaves of Tn for n ∈ Z+, calling them
(Li

n)1≤i≤(k−1)n+1. They are labelled by order of apparition: the single leaf of T0 is called L1
0, while,

given Tn and its leaves, the leaves L1
n+1, . . . , L

(k−1)n+1
n+1 of Tn+1 are those inherited from Tn, and the

leaves L
(k−1)n+2
n+1 , . . . , L

(k−1)n+k
n+1 are the leaves at the ends of the new edges labelled 2, 3, . . . , k respec-

tively.
Let p ∈ Z+. For all n ≥ p, consider the subtree T p

n of Tn spanned by the root and all the leaves Li
n

with i ≤ (k−1)p+1. The tree T p
n has the same graph structure as Tp, however the metric structure isn’t

the same: the distance between two vertices of T p
n is the same as the distance between the corresponding

vertices of Tn. The study of the sequence (T p
n)n≥p for all p will give us much information on the sequence

(Tn, µn)n∈Z+ .

Proposition 4.1. Let p ∈ Z+. We have, in the Gromov-Hausdorff sense, as n goes to infinity:

T p
n

n1/k

a.s.−→ T p, (4.1)

where T p is a rooted compact R-tree with (k−1)p+1 leaves which we will call (Li)i≤(k−1)p+1. Under a

suitable embedding in ℓ1, for p′ < p, T p′

is none other than the subtree of T p spanned by the root and
the leaves Li for i ≤ (k − 1)p′ + 1, making this notation unambiguous.

Proof. The proof hinges on our earlier description of T p
n for n ≥ p: it is the graph Tp, but with distances

inherited from Tn. As explained in Lemma A.1, we only need to show that, for i and j smaller than
(k − 1)p + 1, both n−1/kd(Li

n, L
j
n) and n−1/kd(ρ, Li

n) have finite limits as n goes to infinity. We first
concentrate on the case of n−1/kd(ρ, L1

n). This could be done by noticing that (d(ρ, L1
n))n≥0 is a Markov

chain and using martingale methods, however, in view of what will follow, we will use the theory of
Chinese restaurant processes.

For n ∈ N, we consider a set of tables indexed by the vertices of Tn which are strictly between ρ
and L1

n. We then let the number of clients on the table indexed by a vertex v be the number of internal
nodes u of Tn such that v is the branch point of u and Ln

1 (including the case u = v).
Let us check that this process is part of the two-parameter family introduced by Pitman in [26],

Chapter 3, with parameters (1/k, 1/k). Indeed, assume that, at time n ∈ N, we have l ∈ N tables with
respectively n1, . . . , nl clients (the tables can be ordered by their order of apparition in the construction).
For any i ≤ l, table i corresponds to a subset of Tn with kni − 1 edges, thus there is a probability of
(kni − 1)/(kn+1) that the next client comes to this table. This next client will sit a a new table if the
selected edge is between ρ and L1

n, an event with probability (l + 1)/(kn+ 1).
Since, for all n, d(ρ, L1

n) is equal to the number of tables plus one, Theorem 3.8 of [26] tells us that
n−1/kd(ρ, L1

n) converges almost surely towards a (1/k, 1/k)-generalized Mittag-Leffler random variable
(the definition of generalized Mittag-Leffler distributions is recalled in Section 5.2, however we will
not need here the exact distribution of this limit). The cases of d(ρ, Li

n) and d(Li
n, L

j
n) for i 6= j can

be treated very much the same way: the main difference is that the tables of the restaurant process
are now indexed by the nodes between Li

n and Lj
n, and they have a non-trivial initial configuration.
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L1
10

ρ

Figure 2: Colour-coding of the tables of T10 (here k = 3). The green table has one client, the
red table has five and the blue table has four.

Lemma A.1 finally implies that n−1/kT p
n does converge a.s. to a tree with (k − 1)p + 1 leaves in the

Gromov-Hausdorff sense.
The trees (T p, p ∈ Z+) can be embedded in ℓ1 as a growing sequence of trees using the so-called

stick-breaking method of [3], Section 2.2, by sequentially adding each leaf. Let us explain this in
reasonable detail. First, we embed the root ρ as the null vector

(

0, 0, . . .) and the first leaf L1 is as
(

ht(L1), 0, . . .
)

. Once the leaves L1, . . . , Li−1, with i ≥ 2, have been embedded in ℓ1, in order to add
the i-th leaf Li, first locate the point Hi where the path [[ρ, Li]] splits off from the subtree containing
the root and all the leaves Lj with j < i. This point is of course already embedded in ℓ1, so we can
continue the embedding by adding from that point a line segment following the i-th coordinate of length
d(Hi, Li), which completes the embedding of [[ρ, Li]].

Under this embedding in ℓ1 we let
T = ∪∞

p=0T p,

which is also an R-tree. We will see in Lemma 4.4 and Proposition 4.5 that this tree is compact and is
the limiting tree for n−1/kTn, the tree which was called Tk in the introduction.

4.2 A tightness property

To move from the convergence of T p
n for all p ∈ N to the convergence of Tn, we need some kind of

compactness to not be bothered by the choice of p, which the following proposition gives.

Proposition 4.2. For all ε > 0 and η > 0, there exists an integer p such that, for n large enough,

P
(

dGH(T
p
n , Tn) > n

1
k η
)

< ε.

The same is then true if we replace p by any greater integer p′.

Before proving this proposition, we need an intermediate result. Fix p ∈ Z+. All the variables in the
following lemma depend on a variable n ≥ p, however we omit mentioning n for the sake of readability.

Lemma 4.3. Let v1, . . . , vN be the internal nodes of Tn which are part of T p
n but are not branch points

of T p
n , listed in order of apparition. At each of these vertices are rooted k − 1 subtrees of Tn which we

call (Si
j ; j ≤ N, i ≤ k − 1), Si

j being the tree rooted at vj with a unique edge adjacent to vj, this edge

having label i + 1. Letting, for j ≤ N and i ≤ k − 1, Y i
j be the number of internal nodes of Si

j then,

conditionally on (Y l
q ; q ≤ N, l ≤ k − 1), the tree Si

j has the same distribution as TY i
j
.

Furthermore, these subtrees allow us to define some restaurant processes by letting n vary: for
j ≤ N , let Sj = ∪k−1

i=1 S
i
j, and Yj be the number of vertices of Sj, including vj but excluding any leaves.

Considering Sj as a table with Yj clients for all j, we have defined a restaurant process whose initial
configuration is zero tables at time n = p and has parameters (1/k, p+ 1/k).
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S1
1

S2
1

S2
2

S1
2

S3
1

S3
2

ρ
ρ

Figure 3: The tree T10 seen as an extension of T4 (k = 3). The colored sections correspond to
the tables of the Chinese restaurant, each table corresponding to two subtrees.

The subtrees (Si
j) are also conditionally independent, however this will not be useful to us.

Proof. The proof that Si
j is, conditionally on (Y l

q ; q ≤ N, l ≤ k − 1), distributed as TY i
j
is a straight-

forward induction on n. We will not give details since this is very similar to the Markov branching
property (Proposition 3.7) but the main point is that, conditionally on the event that the selected edge
at a step of the algorithm is an edge of Si

j , this edge is then uniform amongst the edges of Si
j .

The restaurant process nature of these subtrees is proved just as in Proposition 4.1: if table Sj has
Yj clients at time n ≥ p, then the subtree Sj has kYj − 1 edges, and a new client will therefore be
added to this table with probability (kYj − 1)/(kn + 1), while a new table is formed with probability
(kp + N + 1)/(kn + 1). These are indeed the transition probabilities of a restaurant process with
parameters (1/k, p+ 1/k) taken at time n− p.

Proof of Proposition 4.2. We will need Lemma 33 of [18]: since the sequence (Tn)n∈Z+
is Markov

branching and we have the convergence of measures of Proposition 3.1, we obtain that, for any q > 0,
there exists a finite constant Cq such that, for any ε > 0 and n ∈ N,

P

(

ht(Tn) ≥ εn1/k
)

≤ Cq

εq
.

Choosing q > k, applying this to all of the Si
j conditionally on Y i

j (j ≤ N, i ≤ k − 1), and using the
simple fact that

dGH(T
p
n , Tn) ≤ max

i,j
ht(Sj

i ),

we obtain

P

(

dGH(T
p
n , Tn) > ηn1/k | (Y i

j )i,j

)

≤
∑

i,j

P

(

ht(Si
j) > ηn

1
k | (Y i

j )i,j

)

≤
∑

i,j

P

(

ht(Si
j) > η

( n

Y i
j

)
1
k

(Y i
j )

1
k | (Y i

j )i,j

)

≤ Cq

ηq

∑

i,j

(

Y i
j

n

)
q
k

≤ Cq

ηq

∑

j

(

Yj

n

)
q
k

.

Let us now reorder the (Yj) in decreasing order. Theorem 3.2 of [26] states the following convergence
for all j as n goes to infinity:

Yj

n

a.s.−→ Vj
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where (Vj)j∈N is a Poisson-Dirichlet random variable with parameters (1/k, p+ 1/k). By writing out,
for each j, (Yj)

q
k ≤ (Y1)

q
k
−1Yj , we then get

lim sup
n→∞

P

(

dGH(T
p
n , Tn) > ηn1/k

)

≤ Cq

ηq
E[(V1)

q
k
−1].

We then use an estimation of the density of V1 found in Proposition 19 of [27] to obtain

E[(V1)
q
k
−1] ≤ Γ(p+ 1 + 1

k )

Γ(p+ 2
k )Γ(1− 1

k )

∫ 1

0

u
q−1
k

−2(1− u)
2
k
+p−1du

≤ Γ(p+ 1 + 1
k )Γ(

q−1
k − 1)Γ(p+ 2

k )

Γ(p+ 2
k )Γ(1− 1

k )Γ(p− 1 + q+1
k )

.

As p goes to infinity, this is, up to a constant, equivalent to p2−
q
k , which tends to 0 if we take q > 2k,

thus ending the proof.

4.3 Gromov-Hausdorff convergence

In this section and the next two sections we work with the versions of the trees T p simulnaeously
embedded in ℓ1 (see Proposition 4.1) and we recall that T = ∪∞

p=0T p.

Lemma 4.4. As p tends to infinity, we have the following convergence, in the sense of Hausdorff
convergence for compact subsets of ℓ1:

T p a.s.−→ T .

In particular, the tree T is in fact compact and T p converges a.s. to T in the Gromov-Hausdorff sense.

Proof. Let us first prove that the sequence (T p)p∈N is Cauchy in probability for the Hausdorff distance
in ℓ1, in the sense of [21], Chapter 3: we want to show that, for any ε > 0 and η > 0, if p and q are
large enough, P

(

dℓ1,H(T p, T q) > η
)

< ε. Let therefore η > 0 and ε > 0. We have, for integers p and q,

P
(

dℓ1,H(T p, T q) > η
)

= P

(

lim
n→∞

n−1/kdℓ1,H(T
p
n , T

q
n) > η

)

≤ lim inf
n→∞

P

(

n−1/kdℓ1,H(T
p
n , T

q
n) > η

)

≤ lim inf
n→∞

P

(

dℓ1,H(T
p
n , Tn) + dℓ1,H(T

q
n , Tn) > n1/kη

)

≤ lim sup
n→∞

P

(

dℓ1,H(T
p
n , Tn) > n1/k η

2

)

+ lim sup
n→∞

P

(

dℓ1,H(T
q
n , Tn) > n1/k η

2

)

.

Thus, by Proposition 4.2, choosing p and q large enough yields

P

(

dℓ1,H(T p, T q) > η
)

≤ ε.

Since the Hausdorff metric on the set of nonempty compact subsets of ℓ1 is complete, the sequence
(T p)p∈N does converge in probability, and thus has an a.s. converging subsequence. Since it is also
monotonous (in the sense of inclusion of subsets), it in fact does converge to a limit we call L, and we
only need to show that L = T . Since L is a compact subset of ℓ1 and contains T p for all p, we have
T ⊂ L. On the other hand, assuming the existence of a point x ∈ L \ T would yield ε > 0 such that
dℓ1(x, T ) ≥ ε and also dℓ1(x, T p) ≥ ε for all p, negating the Hausdorff convergence of T p to L.

Proposition 4.5. We have
Tn

n1/k

P−→ T

as n goes to infinity, in the Gromov-Hausdorff sense.
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Proof. All the work has already been done, we only need to stick the pieces together. Let n ∈ N and
p ≤ n, we use the triangle inequality:

dGH

(

Tn

n1/k
, T
)

≤ dGH

(

Tn

n1/k
,
T p
n

n1/k

)

+ dGH

(

T p
n

n1/k
, T p

)

+ dGH(T p, T ).

For η > 0, we then have

P

(

dGH

(

Tn

n1/k
, T
)

> η

)

≤ P

(

dGH

(

Tn

n1/k
,
T p
n

n1/k

)

>
η

3

)

+ P

(

dGH

(

T p
n

n1/k
, T p

)

>
η

3

)

+ P

(

dGH(T p, T ) >
η

3

)

.

Let ε > 0. By Lemma 4.4 and Proposition 4.2, there exists p such that the third term of the sum is
smaller than ε, and the first term also is for all n large enough. Apply then Proposition 4.1 with this
fixed p, to make the second term smaller than ε for large n, and the proof is over.

4.4 Adding in the measures

We now know that T is compact. This compactness will enable us to properly obtain a measure on T
and the desired GHP convergence. For all n and p ≤ n, let µp

n be the image of µn by the projection
from Tn to T p

n (see Appendix B for a precise definition of projection). Let also, for all p, πp be the
projection from T to T p. We start by proving an extension of Proposition 4.1 to the measured case.

Proposition 4.6. There exists a probability measure µp on T p such that, in the GHP sense,

( T p
n

n1/k
, µp

n

)

a.s.→ (T p, µp).

What’s more, we have, for p′ ≥ p, µp = (πp)∗µ
p′

.

Proof. We aim to apply Lemma A.3. For this we first embed the trees T p
n and T p in ℓ1 with the

stick-breaking method, by sequentially adding the leaves according to their indices, as recalled at the
end of the proof of Proposition 4.1.

The first step to apply Lemma A.3 is then to find an appropriate dense subset of T p. Since we know
from Section 3 that the distribution of the metric space T is that of a fragmentation tree and that the
dislocation measure νk has infinite total mass, Theorem 1 from [16] tells us that it is leaf-dense. As a
consequence, its branch points are also dense. Let Sp be the set of points of T p which are also branch
points of T , we then know that Sp is a dense subset of T p. In fact Sp can be simply explicited:

Sp = {Li ∧ Lj ; i ≤ (k − 1)p+ 1 or j ≤ (k − 1)p+ 1}

(recall that {Li, i ≥ 1} is the set of leaves of T that belong to ∪∞
p=0T p). Let i and j be integers such

that either i or j is smaller than or equal to (k − 1)p + 1, and let x = Li ∧ Lj . For n such that
i ≤ (k−1)n+1 and j ≤ (k−1)n+1, define xn as the branch point in Tn of Li

n and Lj
n. It is immediate

that xn converges to x, and moreover, calling (T p
n)xn

the subtree of descendants of xn in (T p
n), that

(T p
n)xn

converges to T p
x (the subtree of descendants of x in T p) in the Hausdorff sense in ℓ1. What is

left for us to do is to prove that µp
n

((

T p
n

)

xn

)

= µn

(

(Tn)xn

)

converges a.s. as n goes to infinity. To this

effect, we let Zn be the number of internal nodes of (Tn)xn
, including xn itself. Since we have

µn

(

(Tn)xn

)

=
(k − 1)Zn + 1

(k − 1)n+ 1
,

convergence of µn

(

(Tn)xn

)

as n goes to infinity is equivalent to convergence of n−1Zn. However the
distribution of Zn is governed by a simple recursion: for all n, given Zn, Zn+1 = Zn+1 with probability
(kZn)/(1+kn), while Zn+1 = Zn with the complementary probability. It is then easy to check that the
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rescaled process (Zn/(kn + 1))n∈N is a non-negative martingale, hence converges a.s.. Then, so does
µn

(

(Tn)xn

)

= n−1Zn. Hence we can apply Lemma A.3 to conclude.
The fact that µp = (πp)∗µ

p+1 is then a direct consequence of the fact that µp
n = (πp

n)∗µ
p+1
n for all

n: for any x in Sp, we have µp
n

((

T p
n

)

xn

)

= µp+1
n

((

T p+1
n

)

xn

)

and, letting n tend to infinity (and taking

left-continuous versions in x as stated in Lemma A.3), we obtain µp
(

(T p)x
)

= µp+1
(

(T p+1)x
)

, and
Lemma B.1 ends the proof.

Lemma 4.7. As p tends to infinity, µp converges a.s. to a probability measure µ on T which satisfies,
for all p, µp = (πp)∗µ

Proof. Since T is compact, Lemma A.2 shows that we can define a unique measure µ on T such that,
for all p and x ∈ T p, µ(Tx) = µp(T p

x ) (Proposition 4.6 assures us that this is well-defined since it does
not depend on the choice of p). By definition, we then have µp = (πp)∗µ for all p, and Lemma B.3 ends
the proof.

Proof of Theorem 1.1 (convergence in probability part). We want to prove that

( Tn

n1/k
, µn

)

P→ (T , µ). (4.2)

Once this will be done, the distribution of (T , µ) will be that of the fragmentation tree mentioned in
Theorem 1.1, since we have already proved the convergence in distribution to that measured tree in
Section 3. To get (4.2), notice that Lemma B.3 directly improves Proposition 4.2, since we can replace
the GH distance by the GHP distance, adding the measures µn and µp

n respectively to the trees Tn

and T p
n . Once we know this, as well as Proposition 4.6 and Lemma 4.7, the same proof as that of

Proposition 4.5 works.

4.5 Joint convergence

For the sake of clarity, we return to the notations of the introduction: for n ∈ Z+, Tn(k) is the tree
at the n-th step of the algorithm, its scaling limit is Tk. For p ≤ n, we let T p

n(k) and T p
k be the

respective finite-dimensional marginals we have studied, endowed, respectively, with the probability
measures µp

n(k) and µp
k. Let k

′ be an integer with 2 ≤ k′ < k. Recall now that Tn(k, k
′) is the subtree

of Tn(k) obtained by discarding all edges with labels greater than or equal to k′ + 1, as well as their
descendants. The objective of this section is to prove the convergence in probability of n−1/kTn(k, k

′)
by using what we know of the convergence of n−1/kTn(k). This method once again fails to give the
distribution of the limiting tree, which will be obtained in Section 5.1.

For all n, the tree Tn(k, k
′) comes with a measure µn(k, k

′) which is the image of µn(k) by the
projection from Tn(k) onto Tn(k, k

′). Similarly, for p ≤ n, define

T p
n(k, k

′) = Tn(k, k
′) ∩ T p

n(k),

and the image measure µp
n(k, k

′). For fixed p, the almost sure convergence of n−1/kT p
n(k) to T p

k as n
goes to infinity allows us to extend the edge labellings to T p

k , and thus define T p
k,k′ and µp

k,k′ in analogous

fashion. Note that the sequence
(

n−1/kT p
n(k, k

′), µp
n(k, k

′)
)

converges almost surely to (T p
k,k′ , µ

p
k,k′) as

n goes to infinity, by using Lemmas A.1 and A.3 and imitating the proofs of Propositions 4.1 and 4.6.
Finally, considering again versions of all these trees embedded in ℓ1 via the stick-breaking construction,
we let

Tk,k′ = ∪∞
p=0T p

k,k′ .

Clearly, Tk,k′ ⊂ Tk and we let µk,k′ be the image of µk under the projection from Tk onto Tk,k′ .

Proof of Theorem 1.3 (convergence in probability part). What we want to show is that the
sequence of measured trees

(

n−1/kTn(k, k
′), µn(k, k

′)
)

converges in probability to (Tk,k′ , µk,k′) as n goes
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to infinity, and it is in fact a simple consequence of Lemma B.2. Indeed, this lemma directly gives us
the fact that, for p ≤ n,

dGHP

((

T p
n(k, k

′)

n1/k
, µp

n(k, k
′)

)

,

(

Tn(k, k
′)

n1/k
, µn(k, k

′)

))

≤ dGHP

((

T p
n

n1/k
, µp

n

)

,

(

Tn

n1/k
, µn

))

,

as well as, for any p,

dGHP

((

T p
k,k′ , µ

p
k,k′

)

, (Tk,k′ , µk,k′)
)

≤ dGHP ((T p
k , µp

k), (Tk, µk)) .

Since we know that (T p
k , µp

k) → (Tk, µk) a.s. as p → ∞, that
(

n−1/kT p
n(k, k

′), µp
n(k, k

′)
)

→ (T p
k,k′ , µ

p
k,k′)

a.s. for all p as n → ∞, and that there exists a GHP version of Proposition 4.2 (see the convergence in
probability part of the proof of Theorem 1.1), the proof can then be ended just as that of Proposition
4.5. �

5 Stacking the limiting trees

This section is devoted to the study of Tk,k′ , seen as a subtree of Tk. We start by giving the distribution
of the measured tree (Tk,k′ , µk,k′), then move on to prove (1.2), which is the last part of Theorem 1.3,
and then finally show that, even without the construction algorithm, one can extract from Tk a tree
distributed as Tk,k′ . In Subsections 5.1 and 5.3 below, some of our arguments rely on specific properties
of fragmentation processes and fragmentation trees. We invite the reader which is not familiar with
these topics to refer to [5, 6, 7, 16, 31] for background information.

5.1 The distribution of (Tk,k′ , µk,k′)

In Section 3, the distribution of Tk was obtained by using the main theorem of [18]. We would like to do
the same with Tk,k′ , but the issue is that the results of [18] are restricted to conservative fragmentations.
The aim of this section is therefore to concisely show that the arguments used in [18] still apply in
our context and prove the last part of Theorem 1.3: that (Tk,k′ , d, ρ, µk,k′) has the distribution of

a fragmentation tree with index −1/k and dislocation measure ν↓k,k′ (defined in Theorem 1.3). For

reference, we let (T 0, d0, ρ0, µ0) be such a fragmentation tree.
To prove this identity in distribution, we will look at the finite-dimentional marginals of (Tk,k′ , µk,k′)

and (T 0, µ0), in the traditional sense of finite-dimentional marginals for measured R-trees. Specifically,
for all integers l, let X1, . . . , Xl be i.i.d. points of Tk,k′ distributed according to µk,k′ conditionally
on (Tk,k′ , µk,k′) and X0

1 , . . . , X
0
l be i.i.d. points of T 0 distributed according to µ0 conditionally on

(T 0, µ0). We will prove that the finite metric spaces
(

(ρ,X1, . . . , Xl), d
)

and
(

(ρ0, X0
1 , . . . , X

0
l ), d

0
)

have the same distribution for all l ∈ N, and this will imply that (Tk,k′ , µk,k′) and (T 0, µ0) also have
the same distribution, because each tree is the completion of the union of its finite-dimensional marginals
(this is true because both measures µk,k′ and µ0 are fully supported on their respective trees, which
itself is true because (Tk, µk) and (T 0, µ0) are fragmentation trees with infinite dislocation measures –
see [16, Theorem 1], and moreover the property of having full support is conserved under projection).
We already know that n−1/k

(

Tn(k, k
′), µn(k, k

′)
)

converges to (Tk,k′ , µk,k′) in probability for the GHP-
topology, which implies the convergence of the finite-dimensional marginals in distribution. It will
therefore suffice to show that the finite-dimensional marginals of n−1/k

(

Tn(k, k
′), µn(k, k

′)
)

converge
to those of (T 0, µ0). This is essentially Proposition 30 of [18]: we will show by induction on l ≥ 1 that,
if, for all n ∈ Z+, (X1(n), . . . , Xl(n)) are, conditionally on

(

Tn(k, k
′), µn(k, k

′)
)

, independent points of

Tn(k, k
′) with distribution µn(k, k

′), then the space
(

(ρ,X1(n), . . . , Xl(n)), d
)

converges in distribution

to
(

(ρ0, X0
1 , . . . , X

0
l ), d

0
)

.
We start with the case where l = 1, where, just as in Lemma 28 in [18], the result is a consequence

of Theorem 2 of [17]. For n ∈ Z+, let X(n) ∈ Tn(k, k
′) have distribution µn(k, k

′). Note that the only
information contained in the metric space

(

(ρ,X(n)), d
)

is the the height of X(n), so we set out to
prove the convergence in distribution of this height, when rescaled, to the height of a point of T 0 with

18



distribution µ0. This height can be explicited with the help of a non-increasing Markov chain: follow
the path from the root to X(n) and, at every point, out of the k′ subtrees of Tn(k, k

′) rooted at that
point, take the µn(k, k

′)-mass of the one containing X(n), multiplied by (k−1)n+1 to make an integer,
with two exceptions: for the root, where there is only one subtree, take the value (k−1)n+1, and when
we reach X(n), take the value 0. This is indeed a decreasing Markov chain on Z+ because of the Markov
branching property, its initial value is (k − 1)n + 1 and its transition probabilities pa,b (with b ≤ a)
do not depend on n and are best described by the following. First let (q′n−1)

↓, in analogous fashion
to q̄′n−1 from Section 3.1, be the distribution of the reordering of the first k′ terms of a sequence with
distribution qn−1. When the Markov chain is at (k − 1)n+ 1 ∈ N, take a variable λ with distribution
(q′n−1)

↓, jump to value (k − 1)λi + 1 with probability ((k − 1)λi + 1)/((k − 1)n + 1) and jump to 0
with the complementary probability. The height of X(n) is then the time at which this Markov chain
reaches 0. For any function f , setting rn = (k − 1)n+ 1, we obtain

rn
∑

b=0

f

(

b

rn

)

prn,b =

k′

∑

λ=(λ1,...,λk′ )∈Zk′

+ :
∑

k′

i=1 λi≤n−1

(q′n−1)
↓(λ)

(

k′

∑

i=1

(rλi

rn

)

f
(rλi

rn

)

+

(

1−
k′

∑

i=1

rλi

rn

)

f(0)

)

.

With this and Corollary 3.2, it then follows that the measure n1/k(1−x)
∑rn

b=0 prn,bδb/rn(dx) converges
weakly to

∫

Sk′

( k′

∑

i=1

(1− si)siδsi +

(

1−
k′

∑

i=1

si

)

δ0

)

ν↓k,k′(ds).

Theorem 2 of [17] is then applicable and shows that, when renormalized by n−1/k, the height of
X(n) does converge in distribution to the height of a point of T 0 with distribution µ0, which can
be written

∫∞

0
e−ξt/kdt, where (ξs)s≥0 is a subordinator with Laplace exponent defined for q ≥ 0 by

∫

Sk′,≤
(1−

∑k′

i=1 s
q+1
i )ν↓k,k′(ds).

Now take l > 1 and assume that the convergence of l′-dimensional marginals has been proven for
all l′ < l. For n ∈ N, take (Y1(n), . . . , Yl(n)) to be i.i.d. uniform leaves of Tn(k), conditioned to
being all different, an event which has probability tending to 1, and let (X1(n), . . . , Xl(n)) be their
projections on Tn(k, k

′). Lemma 29 of [18] still applies, namely: the height of the branch point of
(X1(n), . . . , Xl(n)) converges in distribution to the height of the branch point of l variables in T 0

which are i.i.d. with distribution µ0 and this convergence holds jointly with the masses of the subtrees
containing the (Xi(n))i∈[l] above this branch point, as well as the allocations of the (Xi(n))i∈[l] in these
subtrees. Applying the induction hypothesis and the self-similarity property of T 0 on each of these
subtrees then ends the proof. The fact that Lemma 29 of [18] still holds will be left for the reader to
check: it hinges on the sublemmas 26 and 27 of [18], which require some modification to account for
non-conservativeness. These details will appear in [32]. �

5.2 Proof of (1.2)

For n ≥ 0, let In denote the number of internal nodes of Tn(k) which are in Tn(k, k
′).

Lemma 5.1. One has
(Tn(k, k

′), n ≥ 0) =
(

T̃In(k
′), n ≥ 0

)

,

where (T̃i(k
′), i ≥ 0) is a sequence distributed as (Ti(k

′), i ≥ 0) and independent of (In, n ≥ 0). More-
over, (In, n ≥ 0) is a Markov chain with transition probabilities

P (In+1 = i+ 1 | In = i) = 1− P (In+1 = i | In = i) =
k′i+ 1

kn+ 1
,

and as a consequence,
In

nk′/k

a.s.−→ Mk′/k,1/k,
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where the limit is a (k′/k, 1/k)-generalized Mittag-Leffler random variable.

We recall that a generalized Mittag-Leffler random variable Mα,θ with parameters α ∈ (0, 1) and
θ > −α has its distribution characterized by its positive moments, given by

E

[

Mp
α,θ

]

=
Γ(θ + 1)Γ(θ/α+ p+ 1)

Γ(θ/α+ 1)Γ(θ + pα+ 1)
, p ≥ 0.

Proof. This proof is very similar to those of Lemma 8 and Lemma 9 of [10]. Given Ti(k) and Ti(k, k
′)

for 0 ≤ i ≤ n, the new node added to get Tn+1(k) from Tn(k) will belong to Tn+1(k, k
′) if and only

if the selected edge is in Tn(k, k
′), which occurs with probability (k′In + 1)/(kn + 1) since k′In + 1

is the number of edges of Tn(k, k
′) and kn + 1 that of Tn(k). Moreover, conditionally to the fact

that this new node belongs to Tn+1(k, k
′), it is located uniformly at random on one of the edges of

Tn(k, k
′), independently of the whole process (In, n ≥ 0) and of Ti(k, k

′) for 0 ≤ i ≤ I−1
In

− 1 where

I−1
m := inf{n ≥ 0 : In = m}, m ≥ 0. From this, it should be clear that the process defined for all i ≥ 0
by

T̃i(k
′) = TI−1

i
(k, k′)

is distributed as (Ti(k
′), i ≥ 0) and independent of (In, n ≥ 0). Moreover, we have that Tn(k, k

′) =
T̃i(k

′) if In = i, hence Tn(k, k
′) = T̃In(k

′).
Lastly, the few lines above show that (In, n ≥ 0) is a Markov chain with the expected transition

probabilities. It turns out that these probabilities are identical to those of the number of tables in a
(k′/k, 1/k) Chinese restaurant process. Therefore, using again Theorem 3.8 in [26], n−k′/kIn converges
almost surely towards a (k′/k, 1/k)-generalized Mittag-Leffler random variable. �

Proof of (1.2). This is a straightforward consequence of the joint convergence in probability settled
in Theorem 1.3 and of Lemma 5.1. Indeed, we know that

(

Tn(k)

n1/k
,
Tn(k, k

′)

n1/k

)

P→
n→∞

(Tk, Tk,k′)

(we are not interested in measures on trees here). Then, for n ≥ 1,

Tn(k, k
′)

n1/k
=

Tn(k, k
′)

I
1/k′

n

×
(

In
nk′/k

)1/k′

.

On the one hand, the left hand side converges in probability towards Tk,k′ . On the other hand, by
Lemma 5.1 and since In converges a.s. to +∞,

Tn(k, k
′)

I
1/k′

n

P→
n→∞

T̃k′ ,

where T̃k′ is distributed as Tk′ . Moreover this holds independently of the a.s. convergence of In/n
k′/k

towards the generalized Mittag-Leffler r.v. Mk′/k,1/k. The result follows by identification of the limits.
�

Actually, following the ideas of the proof of Theorem 15 in [10], we can reinforce the identity in
distribution (1.2) in an identity of distribution of measured trees. For the sake of brevity, we do not
state this additional result here and refer the interested reader to [10, Theorem 15] for a similar result
in the context of stable Lévy trees, which can easily be adapted to our context.
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5.3 Extracting a tree with distribution Tk′ from Tk

We know from the discrete approximation that there is a subtree of Tk which is distributed as

M
1/k′

k′/k,1/k · Tk′ (or, equivalently, as a fragmentation tree with index −1/k and dislocation measure

ν↓k,k′). Our goal is now to explain how to extract such a tree directly from Tk. Our approach strongly
relies on the fact that (Tk, µk) is a fragmentation tree.

As a fragmentation tree, Tk has a countable number of branch points, almost surely. We denote
this set of branch points {b(n), n ∈ N}. For each n ∈ N, we recall that

Tb(n) = {v ∈ Tk : b(n) ∈ [[ρ, v]]}

is the subtree of descendants of b(n) (ρ denotes the root of Tk). Since Tk is k-ary, the set Tb(n)\{b(n)}
has exactly k connected components. We label them as follows: Tb(n),1 is the connected component
with the largest µk-mass, Tb(n),2 is the connected component with the second largest µk-mass, and so
on (if two or more trees have the same mass, we label them randomly).

For n ∈ N and i = 1, ..., k, let

si(n) =
µk(Tb(n),i)
µk(Tb(n))

.

Almost surely, for all n ∈ N, these quotients are well-defined, strictly positive and sum to 1 (see [16, 31]).
We then mark the sequences s(n), independently for all n ∈ N, by associating to each sequence s ∈ Sk

an element s∗ ∈ Sk′,≤ by deciding that for all 1 ≤ i1 < ... < ik′ ≤ k

(s∗1, ..., s
∗
k′) = (si1 , ..., sik′ ) with probability

(k′ − 1)!(k − k′)!

(k − 1)!

∑

j∈{i1,...,i′k}

∏

1≤i 6=j≤k(1− si)
∑k

j=1

∏

1≤i 6=j≤k(1− si)
. (5.1)

This means that we attribute a weight
∏

i 6=j(1−si) to the jth term of the sequence s, for all 1 ≤ j ≤ k,
and then choose at random a k′-uplet of terms (with strictly increasing indices) with a probability
proportional to the sum of their weights. One can easily check that, for any sequence s, the quotient
in (5.1) indeed defines a probability distribution since (k − 1)!/((k′ − 1)!(k − k′)!) is the number of
k′-uplets (i1, ..., ik′), with 1 ≤ i1 < ... < ik′ ≤ k, containing a given integer j ∈ {1, ..., k}. For n ∈ N, if
(s∗1(n), ..., s

∗
k′(n)) = (si1(n), ..., sik′ (n)), we then let

T ∗
b(n) =

⋃

j∈{1,...,k}\{i1,...,ik′}

Tb(n),j .

Finally we set

T ∗
k,k′ = Tk\

⋃

n∈N

T ∗
b(n). (5.2)

In words, T ∗
k,k′ is obtained from Tk by removing all groups of trees T ∗

b(n) for n ∈ N. This tree (which is

well-defined almost surely) has the required distribution:

Proposition 5.2. The tree T ∗
k,k′ is a non-conservative fragmentation tree, with index of self-similarity

−1/k and dislocation measure ν↓k,k′ .

Proof. Let PN denote the set of partitions of N, and equip it with the distance

dPN
(π, π′) = exp

(

− sup{k ≥ 1 : π|[k] = π′|[k]}
)

where (π, π′) denote any pair of partitions of N, and π|[k], π′|[k] their respective restrictions to the k
first positive integers. Let then (Ai)i∈N be an exchangeable sequence of leaves of Tk directed by µk.
Define from it a càdlàg partition-valued process (Π(t))t≥0 by declaring, for t ≥ 0, that two different
integers i and j are in the same block of Π(t) if Ai and Aj are in the same connected component of
{x ∈ Tk, ht(x) > t}. According to [16, Section 2.3] or [31, Proposition 3.1], this is a partition-valued

fragmentation process with dislocation measure ν↓k and self-similarity index −1/k (and no erosion). We
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thus know thanks to [5, 6] that, up to a family of suitable time-changes (that we do not recall here),
the process Π can be constructed from a Poisson point process

(

(∆(s), i(s)), s ≥ 0
)

on PN × N, with
intensity measure κν↓

k

⊗#, where # denotes the counting measure on N and κν↓
k

is a σ-finite measure

on PN defined by

κν↓
k

(dπ) =

∫

Sk

κs(dπ)ν
↓
k(ds)

where κs denotes the exchangeable probability on PN with paintbox s.
The connection between the Poisson point process

(

(∆(s), i(s)), s ≥ 0
)

and the tree Tk can be
partially summarized as follows (the following assertions hold almost surely). There is a bijection
between the set of atoms of this Poisson point process and the set of branch points of Tk. For each
atom (∆(s), i(s)), let b(n∆(s),i(s)) be the corresponding branch point, with n∆(s),i(s) ∈ N. There exists
then an infinite subsequence (Aim ,m ∈ N) of (Ai, i ∈ N) composed by the leaves that belong to
Tb(n∆(s),i(s)). Then, two integers m1 and m2 are in a same block of ∆(s) if and only if Aim1

and Aim2

are in a same subtree Tb(n∆(s),i(s)),j of Tb(n∆(s),i(s)) for some 1 ≤ j ≤ k. For more details (the roles of
the integers i(s) and time s ≥ 0) we refer to [16]. We decide to label the k blocks of ∆(s) according to
the indices of the corresponding subtrees Tb(n∆(s),i(s)),j , 1 ≤ j ≤ k.

We then mark the Poisson point process as follows: for each atom (∆(s), i(s)), we extract randomly
k′ blocks of ∆(s) by setting

(∆∗
1(s), ...,∆

∗
k′(s)) = (∆i1(s), ...,∆ik′ (s))

if
(s∗1(n∆(s),i(s)), ..., s

∗
k′(n∆(s),i(s))) = (si1(n∆(s),i(s)), ..., sik′ (n∆(s),i(s))),

where the sequence s∗(n∆(s),i(s)) is the one obtained from s(n∆(s),i(s)) by the marking procedure (5.1).
Then, we make ∆∗(s) into a partition of N with dust by putting every integer which is not originally
in a block ∆∗

1(s), ...,∆
∗
k′(s) into a singleton. The process

(

(∆∗(s), i(s)), s ≥ 0
)

is therefore a marked
Poisson point process with intensity κν↓,∗

k

⊗#, where

κν↓,∗
k

(dπ) =

∫

Sk′,≤

κs(dπ)ν
↓,∗
k (ds) and

∫

Sk′,≤

f(s)ν↓,∗k (ds) =

∫

Sk

E[f(s∗)]ν↓k(ds),

for all suitable test functions f . Now, the key-point is that

ν↓,∗k = ν↓k,k′ .

This is easy to check by using the definitions of ν↓k , ν
↓
k,k′ and of the marking procedure (5.1), together

with the identity (3.1). The details of this calculation are left to the reader.

To finish, let Π∗ be the (−1/k, ν↓k,k′)-fragmentation process derived from the Poisson point process
(

(∆∗(s), i(s)), s ≥ 0
)

. For all i ∈ N, let D∗
i = inf{t ≥ 0, {i} ∈ Π∗(t)} and note that D∗

i ≤ Di, where
Di := inf{t ≥ 0, {i} ∈ Π(t)} is the height of Ai in Tk. Let then A∗

i be the unique point of Tk belonging
to the geodesic [[ρ,Ai]] which has height D∗

i . It is not hard to see that T ∗
k,k′ , defined by (5.2), is the

closure of the subtree ∪i≥1[[ρ,A
∗
i ]] of Tk spanned by the root and all the vertices A∗

i (almost surely).
But by definition (see [31]), this closure is the genealogy tree of Π∗. Thus T ∗

k,k′ has the distribution of

a (−1/k, ν↓k,k′)-fragmentation tree.

A GHP-convergence of discrete trees with edge-lengths

Let T be a rooted finite graph-theoretical tree: we think of it as a set of vertices equipped with a set
of edges E. For any strictly positive function l on E, we let Tl be the R-tree obtained from T by
considering every edge e as a line segment with length l(e), and call dl its metric. In the following, we
will sometimes need to embed such trees in ℓ1, simultaneously for several different functions l. In order
to do this in a way which lets us simply compare the trees, we first label the leaves of T (labels that are
of course transposed to Tl for all l) and then use the stick-breaking construction of Aldous, as recalled
at the end of the proof of Proposition 4.1.
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Lemma A.1. Let (ln)n∈N be a sequence of strictly positive functions on E and assume that, for all
e ∈ E, ln(e) which converges to a strictly positive number l(e) as n goes to infinity. We then have

Tln
GH−→

n→∞
Tl.

With the extra assumption that no vertices of T have degree 2, it is then in fact sufficient to know that,
for all leaves L and L′ of T , dln(L,L

′) and dln(ρ, L) converge respectively to dl(L,L
′) and dl(ρ, L).

Moreover, with the ℓ1-embedded versions of the trees, we have Hausdorff convergence in ℓ1.

Proof. For the first point, we just need to prove the Hausdorff convergence in ℓ1 of the embedded
versions of the trees. For this, one only needs to notice that

dℓ1,H(Tln , Tl) ≤
∑

e∈E

|ln(e)− l(e)|,

which converges to 0. The proof of the second point is merely a matter of noticing that, if we know
the distances between the leaves (including the root), we can recover the whole metric on a tree.

We now recall a result of [31] which gives us a practical way of building measures on a compact
R-tree. Let T be any compact rooted tree and m a nonnegative function on T . We say that m is
decreasing if, for all x and y in T with x ∈ [[ρ, y]], we have m(x) ≥ m(y). In this case, one can define
a left-limit m(x−) of m at x as

m(x−) = lim
z→x

z∈[[ρ,x[[

m(z)

(in the case of the root, we simply let m(ρ−) = m(ρ)). One can also define what we call the additive
right-limit. Recall that Tx is the subtree of descendants of x. Suppose first that x is not a leaf. By
compactness, the space Tx \ {x} has countably many connected components, say (Ti)i∈S for a finite or
countable set S. Let, for all i ∈ S, xi ∈ Ti. We then set

m(x+) =
∑

i∈S

lim
z→x

z∈]]x,xi]]

m(z).

If x is a leaf, then we let m(x+) = 0.

Lemma A.2 ([31, Proposition 2.7]). Assume that, for all x ∈ T , we have m(x−) = m(x) ≥ m(x+).
Then there exists a unique measure µ on T such that, for all x in T , we have

µ(Tx) = m(x).

We then also have
µ({x}) = m(x)−m(x+), ∀x ∈ T .

Note that the converse is also true (but elementary): for any finite measure µ on T , the function
m defined by m(x) = µ(Tx) satisfies m(x−) = m(x) ≥ m(x+) for all x ∈ T .

Our next result shows that this theory is compatible with the convergence of discrete trees. Return
to the assumptions of Lemma A.1: T is a finite graph-theoretical tree and, for all n, we have a length
functions ln on the set of edges. The sequence (ln(e))n∈N is assumed to converge to a strictly positive
l(e) for every edge e and then, every tree being embedded in ℓ1 with the stick-breaking method, Tln

converges, in the Hausdorff sense for compact subsets of ℓ1, to Tl.

Lemma A.3. For n ∈ N, let µn be a probability measure on Tln with mn the corresponding decreasing
function. Let S be any dense subset of Tl, and assume that, for all x ∈ S, there exists a sequence
(xn)n∈N, such that

• xn ∈ Tln for all n, xn converges to x as n goes to infinity,

• (Tln)xn
converges to (Tl)x in the Hausdorff sense,
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• mn(xn) converges to a number we call f(x).

We then have
(Tln , µn)

GHP−→
n→∞

(Tl, µ),

where µ is the unique probability measure on Tl such that, for all x ∈ Tl, µ((Tl)x) = f(x−), and f(x−)
is defined as

f(x−) = lim
y→x

y∈S∩[[ρ,x[[

f(y), (A.1)

and f(ρ−) = 1. More precisely, since we consider the versions of the trees embedded in ℓ1, we have
Hausdorff convergence of the sets and Prokhorov convergence of the measures.

Proof. Since Tl is compact, (∪Tln)∪Tl also is and Prokhorov’s theorem ensures us that a subsequence of
(µn)n∈N converges weakly. Without loss of generality, we can assume therefore that (µn)n∈N converges
to a measure µ on Tl. We will show that µ must be as explicited in the statement of the lemma.
This will be done by showing the following double inequality for all x ∈ S, which is inspired by the
Portmanteau theorem,

µ
(

(Tl)x \ {x}
)

≤ f(x) ≤ µ
(

(Tl)x
)

. (A.2)

We start by showing the right part of (A.2): f(x) ≤ µ((Tl)x). Let ε > 0, by Hausdorff convergence in
ℓ1, for n large enough, we have (Tln)xn

⊂ ((Tl)x)
ε, where Aε is the closed ε-enlargement of a set A.

Since we also have dℓ1,P(µn, µ) ≤ ε for n large enough, we obtain

µn

(

(Tln)xn

)

≤ µn

(

(

(Tl)x
)ε
)

≤ µ
(

((Tl)x)
2ε
)

+ ε,

and making n tend to infinity then gives us

f(x) ≤ µ
(

(

(Tl)x
)2ε
)

+ ε.

Letting ε tend to 0 and using the fact that (Tl)x is closed gives us f(x) ≤ µ
(

(Tl)x
)

.

A similar, slightly more involved argument will show that µ
(

(Tl)x \ {x}
)

≤ f(x) for x ∈ S. Let
x ∈ S and let d+ 1 be its degree (there is nothing to say if x is a leaf or the root). Let T 1, . . . , T d be
the connected components of (Tl)x \ {x} and let y1, . . . , yd be any points of T 1, . . . , T d which also are
in S. We give ourselves the corresponding sequences (y1n)n∈N, . . . , (y

d
n)n∈N. Take ε > 0, we have, for n

large enough,
∪d
i=1

(

(Tl)yi

)

⊂ ∪d
i=1

(

(Tln)yi
n

)ε
,

and therefore, using the Prokhorov convergence of measures, for possibly larger n,

µ
(

∪d
i=1

(

(Tl)yi

)

)

≤ µ
(

∪d
i=1

(

(Tln)yi
n

)ε
)

≤ µn

(

∪d
i=1

(

(Tln)yi
n

)2ε
)

+ ε.

Since µn is supported on Tn, if we take 2ε < max1≤i≤d d(y
i, x), and n large enough, we obtain

µn

(

∪d
i=1

(

(Tln)yi
n

)2ε
)

≤ µn

(

(Tln)xn

)

,

thus giving us

µ
(

∪d
i=1

(

(Tl)yi

)

)

≤ µn

(

(Tln)xn

)

+ ε.

Letting n tend to infinity and then ε tend to 0, we obtain

µ
(

∪d
i=1

(

(Tl)yi

)

)

≤ f(x),

and finally we let all the yi tend to x, which makes the left-hand side tend to µ
(

(Tl)x \ {x}
)

.
Having proved (A.2), we only need to check that, calling m the decreasing function associated to

µ, m is equal to the left-limit of f as defined in (A.1), which is immediate: let x ∈ Tl\{ρ} and evaluate
(A.2) at a point y ∈ [[ρ, x[[∩S. By left-continuity of m, if we let y tend to x, both the left and right
members converge to m(x), while the middle one converges to f(x−), which ends the proof.
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B Trees, subtrees and projections

Let (T , d, ρ) be a compact and rooted R-tree and T ′ be a compact and connected subset of T containing
ρ. The boundary ∂T ′ of T ′ in T is then finite or countable. We recall that Tx denotes the subtree of
T rooted at x, ∀x ∈ T , and similarly let T ′

x denote the subtree of T ′ rooted at x, for x ∈ T ′. We then
have

T = T ′ ∪
⋃

x∈∂T ′

Tx

with only the elements of ∂T ′ being counted multiple times in this union.
For x ∈ T , there exists a highest ancestor of x which is in T ′. We call it π(x). The map π is called

the projection from T on T ′. For technical reason, we consider it as a map from T to T , so that, for
any measure µ on T , π∗µ defines a measure on T (that only charges T ′).

Lemma B.1. For any probability measure µ on T , π∗µ is the unique probability measure ν on T ′ which
satisfies

∀x ∈ T ′, ν(T ′
x) = µ(Tx).

Proof. The fact that π∗µ satisfies the relation comes from the fact that, for all x ∈ T ′, we have
Tx = π−1(T ′

x). Uniqueness is a consequence of Lemma A.2.

Lemma B.2. The map π is 1-Lipschitz whether one considers points of T , the Hausdorff distance
between compact subsets of T or the Prokhorov distance between probability measures on T :

• ∀x, y ∈ T , d(π(x), π(y)) ≤ d(x, y),

• for A and B non-empty compact subsets of T , dT ,H(π(A), π(B)) ≤ dT ,H(A,B),

• for any two probability measures µ and ν on T , dT ,P(π∗µ, π∗ν) ≤ dT ,P(µ, ν).

Proof. Let x and y be elements of T . Assume first that x ∈ [[ρ, y]]. If both of them are in T ′ then
π(x) = x and π(y) = y, while if they are both not in T ′, then π(x) = π(y). If x is in T ′ but y is not,
then π(y) ∈ [[x, y]]. In all these three cases, we have d(π(x), π(y)) ≤ d(x, y). By symmetry we also have
the case where y ∈ [[ρ, x]]. Last, when neither x ∈ [[ρ, y]] nor y ∈ [[ρ, x]], one just needs to consider
z = x ∧ y, use the fact that d(x, y) = d(x, z) + d(y, z) and use the previous argument twice.

Let A and B be compact subsets of T and let ε such that A ⊂ Bε = {x ∈ T , ∃b ∈ B, d(x, b) ≤
ε}. Let x ∈ π(A) and a ∈ A such that x = π(a) and then let b ∈ B such that d(a, b) ≤ ε. We
then have d(x, π(b)) ≤ ε and thus π(A) ⊂ π(B)ε. Reversing the roles of A and B then shows that
dT ,H(π(A), π(B)) ≤ dT ,H(A,B).

Let µ and ν be two probability measures on T and let ε such that dP (µ, ν) ≤ ε. Let A be a mea-
surable subset of T , we then have π∗µ(A) = µ(π−1(A)) ≤ ν((π−1(A))ε)+ ε. We also have (π−1(A))ε ⊂
π−1(Aε) and thus π∗µ(A) ≤ π∗ν(A) + ε. Reversing the roles of µ and ν yields dT ,P(π∗µ, π∗ν) ≤ ε.

Let Zπ = sup
x∈T

d(x, π(x)). This quantity controls all of the difference between T and T ′, even when

measured:

Lemma B.3. We have
Zπ = sup

x∈∂T ′

ht(Tx),

where ht(Tx) = supy∈Tx
d(x, y), and

dT ,H(T , T ′) = Zπ

and, for any measure µ on T ,
dT ,P(µ, π∗µ) ≤ dT ,H(T , T ′).
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Proof. The first point is a direct consequence from the fact that, if x ∈ T ′ then π(x) = x, while if
x ∈ T \ T ′, x ∈ Tπ(x). The second point is also a fairly straightforward consequence of the definition
of Zπ. The third point involves simple manipulations of the Prokhorov metric. Let A be a subset of
T . Since A ⊂ π−1(π(A)) and π(A) ⊂ AZπ , we automatically have µ(A) ≤ π∗µ(π(A)) ≤ π∗µ(A

Zπ ). On
the other hand, we have π−1(A) ⊂ AZπ , which implies π∗µ(A) ≤ µ(AZπ ).
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