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We present a short pedagogical introduction to the physics of Dirac materials, restricted
to graphene and two-dimensional topological insulators. We start with a brief reminder of
the Dirac and Weyl equations in the particle physics context. Turning to condensed matter
systems, semimetallic graphene and various Dirac insulators are introduced, including the
Haldane and the Kane–Mele topological insulators. We also discuss briefly experimental
realizations in materials with strong spin–orbit coupling.

r é s u m é

Nous présentons dans cet article une courte introduction didactique à la physique des 
matériaux de Dirac, restreinte au graphène et à des isolants topologiques en deux 
dimensions. Nous commençons par un bref rappel des équations de Dirac et de Weyl 
dans le contexte de la physique des particules. Abordant les systèmes relatifs à la matière 
condensée, le graphène semi-métallique et divers isolants de Dirac sont présentés, parmi 
lesquels les isolants topologiques de Haldane et de Kane–Mele. Nous discutons aussi 
brièvement les réalisations expérimentales avec des matériaux à fort couplage spin–orbite. 

1. Introduction

The concepts of Dirac, Majorana and Weyl fields, commonly used to describe elementary particles (electrons, quarks, neu-
trinos. . . ), have recently entered the realm of condensed matter physics. In high-energy physics, those fields are the simplest
building blocks to construct Lorentz invariant Lagrangians describing interacting particles within the standard model [1,2].
Historically, Dirac first introduced his famous wave equation in order to describe a free electron, satisfying the relativistic
dispersion relation, E2 = p2c2 + m2c4, between its energy E , momentum p and mass m (c being the velocity of light) [3].
This equation has been built to be compatible with both single particle quantum mechanics and special relativity. Dirac fur-
ther pointed out the difficulties raised by the existence of negative energy solutions of relativistic wave equations (including
his own equation [3,4] and the Klein–Gordon equation [5]). Those negative energy solutions are related to a new type of
particles, the antiparticles, which have the same mass as the electron but couple to the electromagnetic field with the
opposite charge [4]. The positron, the antiparticle of the electron, was discovered soon after this theoretical prediction. For
a massive particle in our familiar 3 + 1 space–time continuum, the Dirac wave function is a 4-component spinor which
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describes two spin one-half particles (the particle and its particle). A massless spin-one half particle is described by a two-
component Weyl spinor [6]. In contrast to the Dirac equation, the Weyl equation breaks space inversion because it can be
written separately for left-handed (and right-handed) Weyl fermions. Finally let us mention that the Majorana field is a
massive field, like the Dirac one, but describing a particle identical to its antiparticle (unlike the Dirac case) [7,8]. Hence the
Majorana field has only two independent complex components [1,2].

This paper is devoted to “Dirac materials”, namely to lattice systems where the excitations are described by relativistic
Dirac or Weyl equations. These materials are usually narrow (or zero) gap semiconductors where two (or more) bands get
strongly coupled near a level-crossing. Due to the presence of the lattice, electrons are described by Bloch states indexed
by a quasi-momentum p, and their energies E(p) are periodic over the BZ. This implies that the Weyl or Dirac equations
(and the corresponding dispersion relations) cannot be satisfied globally over the whole BZ, but only locally. The most
celebrated “Dirac material” is graphene, the two-dimensional monolayer of carbon atoms, where massless Weyl excitations
emerge near two isolated points of the reciprocal space. Graphene has two spin-degenerated Dirac cones (or equivalently 4
non-degenerated Dirac cones).

Meanwhile, a new class of band insulators, the so-called topological insulators (TIs), had been discovered [9–13]. The
2D topological insulator, also called Quantum Spin Hall (QSH) state, is distinguished from ordinary band insulators by the
presence of a one-dimensional metal along its edge [14,15] (Fig. 4 below). The nonchiral QSH edge states are also different
from the chiral edge states of the Quantum Hall insulators or Chern insulators (Fig. 3), thereby providing a new class of
one-dimensional (1D) conductors. Interestingly, the direction of the spin of the 1D charge carriers is tied to their direction
of motion. Such conductors are protected from single-particle backscattering (and Anderson localization) by time-reversal
symmetry T . Interestingly, the QSH state has a three-dimensional (3D) generalization: the 3D TIs are (at least theoretically)
insulating in the bulk, and exhibit topologically protected metallic states at their surfaces. Those two-dimensional (2D)
surface states are characterized by a single (or an odd number of) non-degenerated Dirac cone(s). In those 2D Dirac surface
states, the electron momentum is locked to the real spin in contrast to graphene where it is tied to the sublattice isospin.

This short review is a pedagogical and (highly) non-exhaustive introduction to Dirac materials, using graphene as a
guideline. It is restricted to 2D Dirac materials and topological insulators in the absence of electron–electron interaction.
We start with a short reminder of the Dirac [3,4] and Weyl [6] equations from the particle physics point of view. In Section 3,
we turn to graphene as a lattice system whose band structure is described by Weyl–Dirac-like equations near some isolated
points of the BZ. Section 4 is devoted to the descriptions of various insulators obtained by gapping out the Dirac points of
graphene with different mass terms. We also discuss recent experimental realizations in materials with strong spin–orbit
coupling. Among these insulators, the Haldane state exhibits the quantized Hall effect and has topological features, like the
existence of a topological invariant (Section 5) and chiral edge states (Section 6).

2. Relativistic wave equations

We briefly recall the Dirac and the Weyl equations for spin one-half fermions in the context of particle physics. The
Dirac equation describes massive fermions [3,4], while massless particles obey the Weyl equation [6]. Historically, these
equations were introduced as relativistic wave equations for a single free particle. Nevertheless the existence of negative
energy solutions requires to interpret these equations in the framework of (many-particle) quantum field theory [1,2]. The
negative energy solutions correspond to a new type of particles, the antiparticles, which have the same mass as the particle
but couple to the electromagnetic field with the opposite charge.

2.1. Dirac equation for massive fermions

Dirac introduced his famous equation as the simplest relativistic wave-equation describing a free electron in a 3 + 1
space–time continuum. He realized that the equation has to be first-order in the time-derivative:

ih̄
∂Ψ

∂t
= HDΨ (1)

in order to ensure the interpretation of the wave function Ψ (r, t) as a probability amplitude [3]. Then Lorentz invariance
implies that space-derivatives ∂r = (∂1, ∂2, ∂3) should appear at the same order (as the time derivative) suggesting the
combination:

HD = −ih̄cαi∂i + βmc2 (2)

where αi and β are “some coefficients”, and the summation over three space directions (i = 1,2,3) is implied. The mass of
the particle m, the speed of light c, and the reduced Planck constant h̄ = h/2π are introduced in such a way that αi and β

are dimensionless objects.
Applying twice the Hamiltonian HD on a plane wave Ψ � ei(p.r−Et)/h̄ leads to the correct relativistic wave equation:

E2 = p2c2 + m2c4 (3)

provided the “coefficients” αi and β obey the following algebra:
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α2
i = β2 = 1, {αi, β} = 0, {αi,α j} = 2δi j (4)

The Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5)

which were introduced originally in order to describe the spin of the electron, satisfy this algebra. Nevertheless there are
only (22 − 1)/2 = 3 Pauli matrices, whereas 4 anticommuting matrices are needed in 3 + 1 space–time: one for each space
dimension and one for the mass. Hence Pauli matrices are not sufficient and it is necessary to use a higher representation
consisting in four by four matrices. This is provided for instance by the so-called ordinary (or standard) representation
defined by the following matrices:

αi = σiτ1 =
(

0 σi
σi 0

)
, β = σ0τ3 =

(
σ0 0
0 −σ0

)
(6)

which are here expressed in terms of tensor products between Pauli matrices σi and τi . Alternatively, the Dirac equation
can be written in the covariant form:(

iγ μ∂μ − m
)
Ψ = 0 (7)

using the Dirac matrices γ μ = (β,βαi) and units where h̄ = c = 1. The gamma matrices satisfy the Clifford algebra:{
γ μ,γ ν

} = 2ημν (8)

where ημν is the Minkowski metric tensor (η00 = −ηii = 1). Therefore the gamma matrices in the ordinary representation
read:

γ i = iσiτ2 =
(

0 σi
−σi 0

)
, γ 0 =

(
σ0 0
0 −σ0

)
(9)

2.2. Charge conjugation, space inversion and time-reversal

The Dirac equation for a free electron with charge q = −e in an external electromagnetic field (given by the potential
vector Ai ) can be written:

ih̄
∂Ψ (r, t)

∂t
= [

αi(−i∂i − q Ai) + βm
]
Ψ (r, t) (10)

in units where h = c = 1. Taking the complex conjugate of the above equation, one obtains:

ih̄
∂Ψ ∗(r, t)

∂t
= [

α∗
i (−i∂i + q Ai) − β∗m

]
Ψ ∗(r, t) (11)

Hence the wave function Ψ ∗(r, t) obeys almost the same original Dirac equation as Ψ (r, t), but with the following major
difference: the charge q in Eq. (10) is now replaced by the charge (−q) in Eq. (11). A unitary transformation UC is further
needed for UCΨ ∗(r, t) to satisfy exactly the same Dirac equation as Eq. (10) with the simple replacement q → −q. The
requirements on UC read:

(UC)−1α∗
i UC = αi, (UC)−1β∗UC = −β (12)

Hence, in the standard representation, UC commutes with α1 and α3, but anticommutes with α2 and β . The only possibility
is UC = iτ2σ2 = γ 2, so the full charge conjugation operator is given by the antiunitary transformation γ 2 Kc, where Kc is
the complex conjugation [1,2].

The charge conjugation operation relates the wave function of the particle (charge q) to the wave function of its antipar-
ticle (charge −q). The other discrete symmetries are space inversion P and time-reversal T . Following a similar procedure as
above, one finds that P and T are respectively associated with the unitary transformation U P = γ 0 and U T = γ 1γ 3 Kc [1,2].
Finally the product P C T is always a symmetry and it is associated with the matrix γ 5 = iγ 0γ 1γ 2γ 3. In the ordinary
(or Dirac) representation, this chirality or “handedness” matrix reads:

γ 5 = σ0τ1 =
(

0 σ0
σ0 0

)
(13)

Finally, one can check easily that the charge conjugation and time-reversal transformations “square differently”: (UC Kc)
2 = 1

and (U T Kc)
2 = −1. We have used (γ i)2 = −1 (i = 1,2,3), and the fact that γ 2 is purely imaginary while γ 1 and γ 3 are

real matrices.
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2.3. Weyl equation for massless particles: helicity and chirality

We now introduce another representation, the so-called chiral (or spinor) representation, which is very useful for fast
(ultrarelativistic) particles, and in particular for massless particles as we will see below. This chiral representation is defined
by the following matrices:

αi = σiτ1 =
(

σi 0
0 −σi

)
, β = σ0τ1 =

(
0 σ0
σ0 0

)
(14)

while the corresponding gamma Dirac matrices are:

γ i = βαi = σ0τ3σiτ1 = σi(iτ2) =
(

0 σi
−σi 0

)
, γ0 = β = σ0τ1, γ 5 = −σ0τ3 (15)

In this chiral representation, the Dirac equation for Ψ = (ΨL,ΨR) reads:

(iσ0∂t + icσi∂i)ΨR = (
mc2/h̄

)
ΨL (16)

(iσ0∂t − icσi∂i)ΨL = (
mc2/h̄

)
ΨR (17)

and therefore the mass appears as a coupling between the 2-component spinors ΨR and ΨL. The typical length h̄/(mc) that
shows up naturally in these coupled equations is the Compton length. We shall see counterparts of this Compton length in
condensed matter systems when studying the edge states confined between two insulators with typical energy gap Eg and
whose spatial extension will be roughly h̄vF/Eg (Section 6).

For a massless particle (m = 0), the two-component Pauli spinors ΨR (and ΨL) become decoupled and the equations
become scale-invariant. Only three αi matrices are needed in the Hamiltonian HD corresponding to the three directions of
space (the β matrix is not needed because m = 0). Hermann Weyl was the first to notice that these equations correspond
to two decoupled representations of the Lorentz group [1,2]. From Eq. (17), one gets:

(σ0∂t − cσ .∂r)ΨL = 0 (18)

whose solution, ΨL � ei(p.r−Et)/h̄ , has the energy E = −cσ .p. The positive energy solution has a spin projection that points
opposite to the momentum p (i.e. σ .p < 0), hence the name “left-handed fermion” and subscript “L”. Similarly the equation
for a right-handed particle reads:

(σ0∂t + cσ .∂r)ΨR = 0 (19)

leading to a dispersion relation E = cσ .p and a spin pointing in the direction of motion (i.e. σ .p > 0) for the positive
energy solutions. Hence a massless particle can be described by a two (complex) component spinor with definite helicity or
chirality. The chirality is the sign of the spin projection along the direction of the momentum of the particle. The chirality
is a well-defined (i.e. a frame independent concept) only for massless particles. Indeed for a massive particle it is always
possible to reverse the momentum p (by choosing an inertial frame moving faster than the particle in the initial frame)
while leaving the spin unchanged.

For several decades, it was unclear whether the neutrino was massless or has a tiny mass. Neutrino oscillation exper-
iments seem to indicate a finite mass for the neutrino, which can be seen as coupling between the two Weyl equations
above. Nowadays, the ongoing debate is on the structure of this coupling: Dirac type or Majorana type [16]. For a Dirac
mass, ΨL and ΨR are independent 2-component spinors. For a Majorana mass, ΨL and ΨR = UCΨL are tied together by the
charge conjugation symmetry UC [1,2,8].

3. Graphene

In high-energy physics, the relativistic wave equations described in the previous section have to be understood in the
framework of quantum field theory, in order to account for inelastic processes such as particle–antiparticle pair creation.
In the context of condensed matter systems, the Dirac and the Weyl equations can be used directly in the first quantization
formalism in order to describe the unique band structure of Dirac materials at low energy. We now turn to realizations
of the Weyl equation for massless fermions in a famous two-dimensional material: graphene. Note that three-dimensional
realizations are provided by the Weyl semimetals, described in another contribution of this topical issue (Pavan Hosur and
Xiaoliang Qi, Recent developments in transport phenomena in Weyl semimetals).

Graphene, the atomic-thin layer of carbon atoms, was first isolated on an insulating substrate in 2004 by two groups,
in Manchester University [17,18] and Columbia [19], respectively. Before those milestone experiments, it was already pre-
dicted that graphene should host massless Dirac–Weyl fermions [20–23] realizing the 2D Weyl equations (18), (19) where
the velocity of light is replaced by a Fermi velocity vF � c/300. This relativistic character is remarkable considering that
spin–orbit coupling is very weak in graphene. In fact the relativistic-like behavior originates from the particular honeycomb
lattice structure that gives rise to a “momentum–isopin” coupling (“p.σ ” term in the Hamiltonian). As a consequence, the
 4



Fig. 1. Left panel: Graphene honeycomb lattice structure. Red open (green filled) dots for A (B) sublattice. The red thick arrows denote the vectors δα

(α = 1,2,3) connecting of a given site to its three nearest neighbors. The black arrows are the basis vectors a1 and a2 of the Bravais lattice. The distance
between two sites is a = 0.142 nm and the surface of the unit cell is Acell = 3

√
3a2/2. Right panel: Section of the electronic energy dispersion E(k) = ±|d(k)|

of graphene for ky = 0, showing the two Dirac points at k = ±K . Color online.

isospin σ involved in the relativistic dynamics is the sublattice index, and not the real electronic spin (which stays decou-
pled from orbital motion). Those experiments evidenced the existence of 2D Dirac–Weyl fermions by the measurement of
a very particular Quantum Hall effect [18,19], which is specific to relativistic carriers. It was also demonstrated that the
density of such carriers can be tuned using a remote electrostatic gate, thereby realizing the first graphene-based field ef-
fect transistors [17]. Field effect transistors have a strong potential for applications in electronic devices, but they are also
ideal systems to investigate the scattering properties of Dirac particles, including Klein tunneling [24–28] which has been
observed experimentally [29–33]. The absence of backscattering at normal incidence is a property related to the symmetry
of the spinor wave functions [34]. This protection against backscattering is rather “weak” in the sense that it assumes the
absence of intervalley scattering, see Ref. [35].

The physics of Dirac fermions in graphene has been extensively reviewed in far more details elsewhere [36–38]. Here we
recall how massless fermions appear as low-energy excitations of graphene, and set-up notations for the following sections.
We discuss the protection of the Dirac points by the fundamental symmetries of the material.

3.1. Tight-binding model

Graphene consists of a honeycomb lattice of carbon atoms with two interpenetrating triangular sublattices, respectively
denoted A and B (Fig. 1). In this structure, each carbon atom has six electrons: two electrons filling the inner shell 1s, three
electrons engaged in the 3 in-plane covalent bonds in the sp2 configuration, and a single electron occupying the pz orbital
perpendicular to the plane. Much of the physics of graphene is related to the (2D) two-dimensional fluid formed by those
pz electrons. It is thus natural to use a single orbital tight-binding Hamiltonian:

H0 = t
∑
rA

3∑
α=1

c†
B(rA + δα)cA(rA) + H.c. (20)

where t � −2.7 eV is the hopping amplitude between the pz orbitals of two adjacent carbon atoms. The operator ca(ri)

destroys a fermion in the orbital pz at site ri , with a = A,B indicating the sublattice. The sum over rA runs over the A-sites,
which form a triangular Bravais lattice spanned by the basis vectors:

a1 = √
3a ex, a2 = a

2
(
√

3ex + 3e y) (21)

where a = 0.142 nm is the length of the carbon–carbon bond. The vectors δα defined by:

δ1,2 = a

2
(±√

3ex + e y), δ3 = −a e y (22)

connect any A-site to its three B-type nearest neighbors (Fig. 1). The hopping matrix elements between next-nearest neigh-
bors are neglected, which is justified by the fact that those corrections are roughly ten times smaller than the main
hopping t .

Owing to translation invariance, the two-dimensional quasi-momentum k = (kx,ky) is a good quantum number. In order
to diagonalize the Hamiltonian Eq. (20), we use the Fourier transformation:

ca(ri) = 1√
N

∑
k

e−ik.ri ca(k) (23)

where a = A,B is the sublattice index and N is the total number of sites. After substitution of Eq. (23), the Hamiltonian
Eq. (20) becomes diagonal in momentum and reads:
 5



H0 =
∑

k

c†
a(k)

[
h0(k)

]
ab cb(k) (24)

where k is restricted to the first Brillouin zone (BZ). The Bloch Hamiltonian h0(k), which acts on the sublattice isospin,
is given by:

h0(k) = d1(k)σ1 + d2(k)σ2 (25)

since only off-diagonal hopping amplitudes are included in the model defined by Eq. (20). The real functions d1(k) and
d2(k) are defined by:

d1(k) + id2(k) = t
3∑

α=1

exp(ik.δα) (26)

over the whole BZ. The functions d1(k) and d2(k) are respectively even and odd in momentum, which will be important for
the symmetry analysis in Section 3.3. The electronic energy spectrum is given by the length of the vector d = (d1,d2):

E(k) = ε0(k) ± ∣∣d(k)
∣∣ = ±

√
d2

1(k) + d2
2(k) (27)

which describes a valence band (minus sign) and a conduction band (plus sign) that are symmetric with respect to E = 0.
The zero energy corresponds to the common energy of the pz atomic orbitals on sublattices A and B . The valence and
conduction bands touch at isolated points of the Brillouin zone obtained by solving the equation d(k) = 0. There are only
two inequivalent Dirac points located at:

k = ±K = ± 4π

3
√

3a
ex (28)

in reciprocal space. Other solutions of the equation d(k) = 0 can be linked by a reciprocal lattice vector to one of these two
solutions, and therefore describe the same physical state.

The existence of isolated solutions of d(k) = 0, preventing the system to become gapped, is robust even if some crystal
symmetries are lost and more hopping amplitudes are added. For instance additional second-neighbor hoppings will break
the electron/hole symmetry discussed above, but will not affect the existence of Dirac points. Other perturbations, like
an anisotropic deformations on one type of bond, only shift the Dirac points and modify the conical dispersion around
them [39–41]. In fact the touching points are protected by more fundamental symmetries, namely space inversion and
time-reversal symmetries.

3.2. Low energy effective theory near the Dirac points

We consider now the low-energy theory for the single-particle states near the Dirac points. The momenta are written
as k = ±K + q close to the zero-energy points (|q|a � 1), and the annihilation operators for these states are denoted
cA±K (q) = cA(±K + q), where q = qxex + qye y is a small momentum deviation from the Dirac points. Expanding to first
order in momenta, the Hamiltonian describing the low energy excitations near k = ξ K (ξ = ±1) is found to be:

H (ξ K )
0 = vF

∑
k

(
c†

Aξ K (q) c†
Bξ K (q)

)(
0 ξqx − iqy

ξqx + iqy 0

)(
cAξ K (q)

cBξ K (q)

)
(29)

where vF = −3at/2 � 106 m/s−1 � c/300 is the Fermi velocity. The Fermi velocity is basically the bandwidth t divided by
the Brillouin zone (BZ) size 1/a. Therefore near each of the Dirac points, one obtains a 2D Weyl Hamiltonian describing
massless relativistic particles. Using the convenient spinor representation, c†

α(q) = (c†
AK c†

BK c†
A−K c†

B−K ), the single-electron
Hamiltonian can be written in the compact form:

H0 =
∑

q

4∑
α,β=1

c†
α(q)

[
vF(qxσ1τ3 + qyσ2)

]
αβ

cβ(q) (30)

which has exactly the form of the Dirac Hamiltonian describing a spin one-half relativistic particles with zero mass. In par-
ticular, the dispersion relation is simply:

E(q) = vF|q| (31)

typical of a relativistic massless particle, with the velocity of light replaced by vF.
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Nevertheless, we would like to emphasize again the differences between the Dirac equation in the contexts of graphene
and particle physics, respectively. In high-energy physics, the Dirac equation comes from Lorentz invariance and very general
considerations related to special relativity and quantum mechanics (Section 2). Then, in 3 + 1 space–time dimensions, the
minimal objects to satisfy Dirac equation are pairs of bispinors combining the spin and particle/antiparticle degrees of
freedom.

In graphene, the origin of the Dirac physics is totally different. As we have seen, the spinors originate from a k.p
expansion around special points of a particular band structure. Hence in graphene, there is no fundamental issue with the
negative energy states that are just the valence band states (these states are in fact bounded from below by the bottom of
the valence band). Finally the emergent Lorentz invariance of Eq. (31) is only valid near the Dirac point, namely for wave
vectors q located in a disk whose radius is far smaller than the inverse lattice spacing 1/a, whereas Lorentz invariance
applies in the whole Minkowski space–time in particle physics. Finally the 4 components of the spinors are associated with
the sublattice isospin (instead of real spin), and with the valley index (instead of particle/antiparticle label).

Fundamentally graphene is a two-band system, because it has 2 orbitals per unit cell (one pz orbital per atom and 2
atoms in the unit cell), thereby having two states per momentum k in the first Brillouin zone (BZ). Two species of massless
Dirac fermions (one for each valley) which carry a sublattice isospin coupled to their momentum. This is an illustration of
fermion doubling on a lattice. Note that the presence of 4 × 4 matrices in Eq. (30) does not mean that graphene is a 4
band system in the same sense as the genuine 4-band insulators. Indeed for a given value of k in the BZ graphene has only
two states (Fig. 1, right panel). Besides, when discussing transport or at least ballistic elastic scattering at the Fermi level,
there are effectively 4 states sharing the same energy (Fig. 1, right panel). Then the physics depends on the ratio between
intravalley and intervalley scattering rates. For instance, Klein tunneling and weak antilocalization are better observed if the
intervalley coupling is much weaker than the intravalley coupling.

Here we have not considered explicitly the real spin simply because it is not coupled to the momentum in the absence
of spin–orbit. In fact at each valley, there are two completely degenerated and decoupled Dirac cones corresponding to each
spin direction. Hence graphene has 4 Dirac cones with sublattice-momentum locking. This is at odds with surface state of
3D strong topological insulators which has a single Dirac cone with momentum coupled to the real spin.

3.3. Symmetries: space inversion and time reversal

Here we discuss the robustness of the Dirac points in graphene. It turns out that those Dirac points are remarkably
robust as long as some fundamental symmetries are obeyed and spin–orbit is weak [13]. These fundamental symmetries
are time-reversal symmetry T and inversion symmetry P . Again we restrict our discussion to spinless fermions.

The inversion symmetry P switches the sublattice A and B , and therefore should transform the Pauli matrices as:

P : (σ1,σ2,σ3) → (σ1,−σ2,−σ3) (32)

while the time-reversal operation leaves invariant the sublattice but complex conjugates the wave functions amplitudes,
acting therefore as:

T : (σ1,σ2,σ3) → (σ1,−σ2,σ3) (33)

Hence the inversion and time-reversal operations will be written as:

P = σ1, T = σ0 Kc (34)

where Kc is complex conjugation. It is important to note that this time-reversal operation obeys T 2 = 1, because we deal
with spinless fermions. When the spin is included, the full time-reversal operation square to −1 with Kramers degeneracy
as a fundamental consequence. It is clear that the form of the symmetry operations T and P depends on the fact that
the Pauli matrices σi represent the sublattice isospin [13], and not real electronic spin. In particular the expressions for
T = σ0 Kc and P = σ1 differ from the ones obtained in particle physics (U T and U P in Section 2.2).

In order to discuss the stability of the Dirac points, we might investigate how a perturbation like d3(k)σ3 transforms
under application of P and T . Invariance under P , implies d3(k) = −d3(−k) while invariance under T , implies d3(k) =
−d3(−k). This means that such a perturbation breaks either inversion or time-reversal symmetry, and we would study in
detail the corresponding graphene insulators below (Section 4).

Now we can check that the Hamiltonian is invariant both under the time-reversal operation T and inversion P :

T h0(k)T −1 = (
d∗

1(k)σ1 − d∗
2(k)σ2

) = (
d1(−k)σ1 + d2(−k)σ2

) = h0(−k) (35)

Ph0(k)P−1 = σ1
(
d1(k)σ1 + d2(k)σ2

)
σ1 = h0(−k) (36)

because the real functions d1(k) and d2(k) are respectively even and odd in momentum as shown by Eq. (26).
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Finally, in the low-energy effective theory, representations gathering the valley and the sublattice isospins are often used.
Then one has to take into account that space inversion and time-reversal operations also switch the valleys. For instance, in
the representation c†

a(q) = (c†
AK c†

BK c†
A−K c†

B−K ) introduced in Section 3.2, the space inversion and time-reversal operations
are four by four matrices:

P = σ1τ1, T = σ0τ1 Kc (37)

involving a supplementary Pauli matrix τ1 for the valley inversion.

4. Masses in graphene: Semenov, Haldane, Kane–Mele insulators

Semimetallic graphene exhibits robust massless Weyl–Dirac fermions protected as long as space inversion and time-
reversal symmetries are not broken. In this section we discuss how to generate gaps at the Dirac points and emphasize the
concept of mass in graphene. Owing to the sublattice isospin, distinct insulating phases can be built (at least theoretically)
by adding proper perturbations [42].

4.1. Two-band model

A mass term is a matrix that acts on the sublattice isospin and anticommutes with the Hamiltonian of semimetallic
graphene. When discussing the case of spinless fermions on a bipartite lattice, the only matrix anticommuting with the
“velocity” matrices (σ1 and σ2 in Eq. (25)) is the third Pauli matrix σ3. Due to the simplicity of the model, there is no
choice on the matrix, but there are still many different functions d3(k) that can enter the Hamiltonian. Therefore, the
simplest and most generic model for spinless fermions on a bipartite lattice is the two-band model:

h(k) = ε0(k)σ0 + d1(k)σ1 + d2(k)σ2 + d3(k)σ3 = ε0(k)σ0 + d(k).σ (38)

Of course materials usually have much more bands, but this model single out two bands where “interesting things” happen.
By “interesting things”, we mean at first vicinity of the Fermi level, and eventually a band-crossing that may induce non-
trivial topological properties [9,10,13]. This is in the same spirit as the two-level model in atomic physics. Nevertheless there
is a crucial difference: in materials the coefficients of the Pauli matrices gain a k-dependence, which allows the possibility
of Berry–Zak phase effects [43]. Moreover, including additional internal degrees of freedom usually leads to an increase in
the number of various possible mass terms. For spinless fermions on the honeycomb lattice, there are only 4 possible mass
terms (Semenov, Haldane and two Kekule distortions) which all break some symmetry. When the spin is included, there
are 16 different masses, most of them breaking some symmetries while others, like the Kane–Mele mass, respect all the
symmetries [42].

4.2. Semenov insulator

The simplest choice consists in a constant mass term d3(k) = MS (independent of k), which was first discussed by
Semenov [22]. Such a mass corresponds physically to a staggered on-site potential that spoils the inversion symmetry
(equivalence between A and B sites) while leaving time-reversal symmetry intact. It is realized for a honeycomb lattice
where the A and B sites are actually occupied by distinct atoms, like BN crystals. In this review, we will call such gapped
electronic system a Semenov insulator. This Semenov phase is also realized with cold atoms trapped in tunable optical
lattices [44]. The spectrum of the bulk excitations is given by the relativistic dispersion relation E2 = v2

F p2 + M2
S , and there

is no edge state. Hence this system is insulating both in the bulk and along its edges.

4.3. Haldane model and quantum anomalous Hall insulators (spinless electrons)

Motivated by the search of quantum Hall phases in the absence of the Landau level structure, Haldane proposed a Bloch
band insulator model that exhibits quantized Hall conductance ±e2/h [23].

Model and bulk physics. In order to realize a finite quantum Hall response with Bloch states, it is necessary to break
time-reversal symmetry while preserving the translational symmetry of the Bravais lattice. This can be done by inserting
local fluxes that sum up to zero over each unit cell. Such a pattern preserves the Bloch nature of electronic states. In the
Haldane model of graphene, these fluxes can be described by introducing unimodular phase factors in the second neighbor
hopping amplitudes t2 → t2e±iφ , where the ± sign corresponds to the different chiralities (Fig. 2, left panel). To be more
specific, the second-neighbor hoppings are:

H2 = t2

3∑(∑
c†

A(rA)cA(rA + bi)eiφ +
∑

c†
B(rB)cB(rB + bi)e−iφ

)
+ H.c. (39)
i=1 rA rB
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Fig. 2. Left panel: Next-nearest neighbor (NNN) couplings in the Haldane model of graphene. Blue arrows (direction indicated by the oriented loops inside
the hexagons) stands for t2eiφ . The vectors connecting NNN neighbor sites are defined by b1 = δ2 − δ3, b2 = δ3 − δ1, and b3 = δ1 − δ2. Right panel: The
gaps at the Dirac points depend on the phase φ and m±K = d3(k � ±K ) = ∓3

√
3t2 sin(φ). Color online.

where b1 = δ2 − δ3, b2 = δ3 − δ1, and b1 = δ2 − δ3, are the vectors connecting next-nearest neighbor sites. After a Fourier
transform, this Hamiltonian becomes:

h2(k) = ε0(k)σ0 + d3(k)σ3 (40)

with:

ε0(k) = 2t2 cos(φ)

3∑
i=1

cos(k.bi), d3(k) = 2t2 sin(φ)

3∑
i=1

sin(k.bi) (41)

The NNN perturbation is dispersive (k-dependent), because it is nonlocal in the real space. The part of h2(k) that is propor-
tional to the identity just shifts the energies and spoils the electron–hole symmetry of the purely NN model. Nevertheless
the system remains gapless (if φ = 0,π ) under introduction of a real NNN hoppings, because both P and T are preserved
for real NNN hoppings. In contrast, for complex hoppings, the term proportional to σ3 opens gaps at the Dirac points. Near
the Dirac points, one has simply to substitute k = K (or k = −K ) as a zero order approximation, and one obtains:

d3(k � ±K ) = ∓3
√

3t2 sin(φ) (42)

using that:

∑
i=1,2,3

cos(K .bi) = −3

2
,

∑
i=1,2,3

sin(±K .bi) = ∓3
√

3

2
(43)

This Haldane mass term d3(k) is odd in momentum and in particular changes sign in different valleys (Fig. 2, right panel).
This is at odds with the Semenov insulator where both valleys are characterized by the same gap. The spectrum is again
obtained by squaring the Bloch Hamiltonian, and using the properties of the Pauli matrices:

E2 = v2
F p2 + 27t2 sin2 φ (44)

The gap/mass depends on the flux and cancels for φ = 0 where the time-reversal is trivially restored. This is also the case
at φ = π because eiπ = e−iπ = −1.

Chiral edge mode. As we shall see in more details in Section 6, the gapped bulk excitation coexists with a single edge
state that carries the Hall conductance ±e2/h. There is no backscattering because the excitations propagate only in a single
direction and there are no states circulating in the opposite direction.

Quantum anomalous Hall (or Chern) insulators. The Haldane model is representative of a wider class of 2D insulators
exhibiting a finite Chern number and the QHE: the Chern insulators, also called the Quantum Anomalous Hall (QAH) insu-
lators [45–50]. Nevertheless such Chern insulators were so far difficult to realize experimentally since a nontrivial magnetic
(or gauge field) texture is required. Recently, experimental evidence of the QAH state has been reported thin films of
chromium-doped (Bi,Sb)2Te3 (Section 4.5) [51]. Note that those QAH (or Chern insulators) can also lead to incompressible
states, similar to the fractional quantum Hall states, in presence of interactions and for partially filled flat bands. These
so-called fractional Chern insulators are reviewed in another contribution of this topical issue (S.A. Parameswaran, R. Roy,
and S.L. Sondhi, Fractional Quantum Hall Physics in Topological Flat Bands).
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Fig. 3. Haldane insulator (see Section 4.3) is characterized by a robust chiral edge state (green arrows). It belongs to the wider class of Chern insulators
characterized by the presence of bands carrying a finite Chern number. The tilted (blue) arrows refer to the unique spin direction (fermions are assumed
to be spinless, i.e. totally spin-polarized). Color online.

4.4. Kane–Mele model and quantum-spin Hall insulators (spinful electrons)

We have seen that the Haldane model for spinless fermions on the honeycomb lattice (as all other Chern insulator
models) breaks time-reversal symmetry and exhibits the topologically protected integer quantum Hall effect [23]. In 2005,
C.L. Kane and E.G. Mele proposed a generalization of the Haldane model that respects time-reversal invariance and includes
the spin via the spin–orbit interaction. Their idea launched the field of time-reversal invariant topological insulators which
has known a rapid expansion since then [9–12]. In the absence of spin–orbit coupling, the Dirac points of graphene are
protected by the combination of two fundamental discrete symmetries: time-reversal and space inversion. This situation is
drastically changed when the spin is coupled to electronic motion: intrinsic spin–orbit coupling does open a gap at the Dirac
points without breaking any of those fundamental symmetries [14,15]. The resulting insulator, the so-called Quantum Spin
Hall (QSH), is a novel state of electronic matter that cannot be adiabatically connected to a trivial atomic insulator without
closing (and re-opening) the bulk gap. Note that the terminology “Quantum Spin Hall insulator” can be misleading in the
following sense: the QSH insulator refers to a new insulating state that is very different from the doped semiconductors
exhibiting the so-called intrinsic spin Hall effect [52–55]. Nevertheless, if the Fermi level is raised into the 2D conduction
or valence bands, the Kane–Mele insulator becomes a doped semiconductor with strong Berry phase effects causing the
intrinsic (band induced) spin Hall effect.

Bulk physics. In their seminal paper, C.L. Kane and E.G. Mele first discussed the lattice model for spinful electrons on the
honeycomb lattice [14] described by the Hamiltonian:

H = t
∑
〈i, j〉

c†
iαc jα + it2

∑
〈〈i, j〉〉

νi jc
†
iα(s3)αβc jβ (45)

where i, j denote the sites of the honeycomb lattice, the Pauli matrix s3 refers to the physical spin of electrons, and the
summation over repeated spin index (α,β) is implied. The first term is a sum over the nearest-neighbor sites, denoted
〈〈i, j〉〉, which defines the usual tight binding model for graphene (see Section 3). The second term, introduced by Kane
and Mele, is a sum over next-nearest neighbors (〈〈i, j〉〉) where the hopping term it2νi j s3 describes a spin–orbit coupling
between the spin direction s3 = ±1 (units of h̄/2) and the “chirality” νi j = ±1 of the circulating electrons. This can be seen
as a L.S coupling where the “orbital momentum L” would be associated with the chirality. Since [H, sz] = 0, the model
Eq. (45) can be decoupled into two subsystems for spin-up (s3 = 1) and spin-down (s3 = −1) respectively. The Hamiltonian
for spin-up (resp. spin-down) electrons is the Haldane Hamiltonian, Eq. (39), with φ = π/2 (resp. φ = −π/2). Hence many
properties can be deduced from our knowledge of the Haldane model for spinless fermions. Firstly, the system is gapped in
the bulk. Indeed the low-energy theory of the lattice Hamiltonian Eq. (45) is directly derived from Eq. (42):

Hso = �soσ3τ3s3 (46)

where �so = −3
√

3t2. This perturbation anticommutes with the kinetic Hamiltonian H0, and therefore opens a gap at the
Dirac points. For spinless electrons on the honeycomb lattice, the time-reversal operator is T = τ1 K , where τ1 switches the
valleys and K is the complex conjugation. For spinful electrons, it is:

T = τ1is2 K (47)

where the additional factor is2 produces the reversal of the electronic spin. It is clear that the mass term �soσ3τ3s3 is now
even under T because both τ3 and s3 change signs under time-reversal. Therefore, the spin-coupling coupling allows to
open a gap while respecting the fundamental symmetries T and P of graphene.
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Fig. 4. The Kane–Mele insulator belongs to the wider class of quantum-spin Hall insulators (Section 4.4), which are characterized by a Z2 topological
invariant in the bulk and a helical edge mode (represented schematically with the red and green arrows along the edge of the insulator). The tilted
(blue) arrows refer to the two spin directions. There is a complete spin-momentum locking: spin-up electrons circulate clockwise while their Kramer
partners circulate anticlockwise with spin-down. This helical mode is protected from backscattering (between clockwise and anticlockwise movers) as long
as time-reversal symmetry is obeyed and as long as the bulk gap remains open. Color online.

Helical edge mode. As a spin conserving model, we have seen that the Kane–Mele system consists in two copies of a Chern
insulator (or QAH state), each copy being associated with a spin orientation. Since the QAH has a single chiral edge state,
we can deduce that the QSH state will have two spin-filtered counter propagating states (Fig. 4).

Topological robustness in presence of spin mixing. The intrinsic spin–orbit coupling, Eq. (46), leads to the realization of
a new state of matter characterized by an insulating gap and a metallic edge. Nevertheless it is quite unlikely that the
spin–orbit coupling manifests itself only through this spin-conserving term. Other spin–orbit coupling terms, which mix
all spin components, should also be present. Since the previous analysis relies on the description of the system as two
decoupled Haldane insulators, it is a natural to ask whether the helical edge states will survive in presence of mixing
between the two copies of the Haldane model. Kane and Mele have shown that the counter propagating edge states are in
fact robust as long as the bulk is gapped and time-reversal is obeyed. A Rashba term (due to the presence of a substrate or by
a perpendicular electric field) mixes the two spin directions, and spoils the conservation of s3. The corresponding spectrum
becomes gapless when the Rashba coupling exceeds the intrinsic spin–orbit coupling [14]. When the Rashba coupling is
increased, the bulk gap decreases, but the helical edge states remain gapless (metallic), as long as the gap bulk gap is finite.

4.5. Experimental realizations

We conclude this section by enumerating some experimental realizations of the topological phases introduced above,
including the Quantum Spin Hall (QSH) insulator, the Quantum Anomalous insulator (also called Chern insulator).

The quantum spin Hall state. Unfortunately the QSH state is extremely difficult to observe in graphene due to the actual
weakness of the spin–orbit interaction [56,57]. In 2006, Bernevig, Hughes and Zhang (BHZ) predicted that CdTe/HgTe/CdTe
quantum wells should host such a QSH state in their inverted regime [58]. The transition between the trivial (non-inverted
regime) and the topological phase (inverted regime) is triggered by varying the thickness of the central HgTe layer of the
quantum well. The theoretical prediction was soon followed by the experimental observation of conducting edge states by
the group led by Laurens Molenkamp [59]. Using various multi terminal configurations [60], the same group established
that their transport measurements are in agreement with counter-propagating edge modes (using a Landauer–Buttiker for-
malism).

The QSH state has also been predicted in InAs/GaSb quantum wells [61] with the interesting possibility to tune the
transition between the topological and the trivial phases using a gate voltage. The QSH phase and the corresponding edge
conduction has been observed in InAs/GaSb quantum wells [62].

The quantum anomalous Hall state. It has been predicted that the time-reversal invariant QSH state (with its helical
edge mode) can be transformed into a QAH state (with its chiral edge mode) by adding magnetic atoms like Mn in
CdTe/HgTe/CdTe quantum wells [63]. The observation of such a QAH state in magnetic topological insulators has been
challenging until it was finally reported in thin films of chromium-doped (Bi,Sb)2Te3 [51], whose Fermi level can be tuned
by an electrostatic gate. At zero external magnetic field, the quantization of the Hall resistance was observed at h/e2 in a
wide range of gate voltage, with a simultaneous drop of the longitudinal resistance. Those samples are expected to be in the
QSH state in the absence of chromium, and chromium apparently develops the suitable spontaneous magnetic order to drive
the QSH state into the QHA state. The fact that the longitudinal resistance is not completely vanishing can be explained by
the coexistence of the helical and chiral edge modes [64].
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Fig. 5. Mapping k → d̂(k) = d(k)/|d(k)| between the BZ (torus) and the Bloch sphere. Each point on the unit sphere represents a spinor Eq. (50)
parametrized by the angles θk and φk . Color online.

5. Chern insulators: bulk topological invariant

In the previous section, we have seen that the Semenov insulator (which breaks inversion symmetry) and the Haldane
insulator (which breaks time-reversal symmetry) have the same spectra typical of a massive Dirac fermion. Nevertheless
these insulators have very different excitations and physical responses. The Semenov insulator is insulating both in the bulk
and along its edge, and has no Hall response. The Haldane insulator is insulating in the bulk, but has also conducting edge
channels which carry the integer quantized quantum Hall effect. In this section, we explain that those insulators belong
to distinct topological classes of band structures. The Haldane state is characterized by a finite Chern number C− (the
upper-script refers to the lowest band) which measures the quantum Hall conductance (in units e2/h) and can be identified
to the winding number nw of a mapping between the BZ and the Bloch sphere (Fig. 5). This winding number is zero for the
Semenov insulator.

5.1. Wave functions and Berry phases

Here we discuss the characterization of topological insulators in terms of the structure of wave functions. The Hamilto-
nian Eq. (38) describes a generic two-band insulator. The band structure consists of an upper (α = +) and a lower (α = −)
bands:

Eα=±(k) = ε0(k) ± ∣∣d(k)
∣∣ (48)

the corresponding wave functions being the spinors:

Φ+(k) =
(

u+
1 (k)

u+
2 (k)

)
=

(
cos θk

2 eiφk

sin θk
2

)
(49)

in the upper band, and

Φ−(k) =
(

u−
1 (k)

u−
2 (k)

)
=

(
sin θk

2 e−iφk

− cos θk
2

)
(50)

in the lower band. The k-dependent quantities θ = θk and φ = φk are the spherical coordinate angles of the unit vector:

d̂(k) = d(k)

|d(k)| =
⎛
⎝ cosφk sin θk

sinφk sin θk

cos θk

⎞
⎠ (51)

which resides on the unit sphere S2 while k spans the d-dimensional toroidal Brillouin zone. The mapping k → d̂(k) =
d(k)/|d(k)| is essential and captures the topological properties of the Hamiltonian h(k) = d(k).σ . We assume that the
system is insulating, so |d(k)| 
= 0 everywhere and the mapping is well defined over the whole BZ.

We can interpret k as a parameter that we can vary along a loop drawn in the BZ and limit ourselves to d = 2. Along
such a loop, the spinor will acquire a Berry phase which is the circulation of the Berry vector potential, also called Berry
connection Aα(k) = (Aα

x (k),Aα
y (k)) and defined by:

Aα(k) = i
2∑

a=1

(
uα

a

)∗∇kuα
a , (52)

in each band α = ±1. The Berry curvature is the curl of the Berry connection:

F α
xy = [∇k ∧Aα(k)

] = ∂k Aα
y − ∂k Aα

x (53)
z x y
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The flux of Bα(k) through the whole BZ (torus T 2),

Cα = 1

2π

∫
BZ

dk F α
xy(k) (54)

is called the Chern number of the band α. At this stage this Cα is a property characterizing how the spinors wrap or wind
around the whole BZ. For most materials, the bands have zero Chern number, because a continuous gauge can be defined
over the whole BZ and application of the Stokes theorem on a manifold without boundary leads to Cα = 0. Chern topological
insulator (like the Haldane insulator) are systems where it is not possible to define such a unique choice of phases for the
spinors [13]. Finally we focus on the lowest band α = −1, and evaluate the Berry connection:

A−(k) = i
2∑

a=1

(
u−)∗∇ku− = sin2 θk

2
∇kφk (55)

and the corresponding Berry curvature:

F −
xy = ∂kx A−

y − ∂ky A−
x = 1

2
sin θk

(
∂θk

∂kx

∂φk

∂ky
− ∂φk

∂kx

∂θk

∂ky

)
(56)

The Chern number of the occupied band is given by the formula:

C− = 1

4π

∫
BZ

dk sin θk

(
∂θk

∂kx

∂φk

∂ky
− ∂φk

∂kx

∂θk

∂ky

)
(57)

5.2. Hall conductance as a winding number

The electromagnetic response of 2D two-band insulators can be computed using the Kubo formalism and the expressions
of the anomalous current j, whose components ji are defined by (i = 1,2 refer to x- and y-axis respectively):

ji = ∂h(k)

∂ki
= ∂ε0(k)

∂ki
σ0 + ∂d(k)

∂ki
.σ (58)

In space dimension d = 2, the Hall conductance is exactly given by the Chern number of the lower band. This is also the
winding number of the mapping k → d̂ = d(k)/|d(k)|, which explains geometrically the quantization of the Hall conductance
in such two-band model. This is reminiscent of the Thouless–Kohmoto–Nightingale–den Nijs (TKKN) invariant for quantum
Hall systems [65].

The Hall conductivity can be calculated from Kubo formalism as [66]:

σxy = e2

4πh

∫
d2k

(
f+(k) − f−(k)

)(∂d̂(k)

∂kx
× ∂d̂(k)

∂ky

)
.d̂(k) (59)

where f±(k) are the occupation numbers of the conduction and valence bands. It is assumed that the Fermi level lies in
the bulk gap. Hence at zero temperature, where f− = 1 and f+ = 0, we have the relation:

σxy = e2

h
nw (60)

where nw is the winding number (or Pontryagin index) of the mapping k → d̂(k) = d(k)/|d(k)| between the Brillouin zone
(torus T 2) and the unit sphere (S2):

nw = 1

4π

∫
d2k

(
∂d̂(k)

∂kx
× ∂d̂(k)

∂ky

)
.d̂ (61)

In contrast to the Berry phase, this number is directly constructed from the parameters d(k) of the Hamiltonian, Eq. (38)
(rather than from derivatives of its eigenstates). This winding number is an integer that counts the number of times the unit
vector d̂(k) wraps around the whole sphere S2 while k is spanning the whole Brillouin zone T 2. In accordance with general
classifications, there is a single number that characterizes the general structure of wave functions globally in k-space. This
number is a relative integer, and it measures the charge Hall conductance in units of e2/h. To change nw, it is necessary to
change the parameter of the bulk Hamiltonian d̂(k) in such a way that the bulk gap closes.

Let us calculate this winding number for the simple model of massive Dirac fermions introduced previously. We use the
parameterization of Eq. (51) to rewrite the winding number as:

nw = 1

4π

∫
d2k sin θk

(
∂θk

∂k

∂φk

∂k
− ∂φk

∂k

∂θk

∂k

)
= C− (62)
x y x y
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which identifies the winding number nw and the Chern number defined above by Eq. (57). In principle, the number nw = C−
should be always zero because integration is taken over the whole torus. Finite values can arise from singularities in ∇φ

that are always located at the poles θ = 0 and θ = π . Hence:

nw = − 1

4π

∫
d2k ∇k ∧ (cos θk∇φk) = − 1

4π

∫
cos θk∇kφk.dl (63)

where the last integral is taken along loops encircling the poles.

5.3. Calculations for the Semenov and Haldane insulators

For graphene, the poles are reached when k is at the Dirac points. Then the sign of d3(k = ±K ) indicates whether the
north or south pole has been reached. For the Semenoff mass, we have d3(k = ±K ) = MS in both valleys. Then we have to
notice that d = (ξkx,ky, MS) accumulates opposite phases, at k = +K and k = −K , while winding around the same pole
(due to the presence of the valley index ξ = ±1): hence nw = 0. For the Haldane mass, one has d3(k = ±K ) = MHξ which
means that the accumulated phases (at south and north poles respectively) add up and finally nw = 1/2 + 1/2 = 1. The
general formula is:

nw = − 1

4π

∑
ξ=±1

2πξsign(Mξ ) = 1

2

(
sign(M−) − sign(M+)

)
(64)

because the winding of the angle φ in valley ξ is 2πξ and cos θ = sign(Mξ ) where Mξ is the mass in valley ξ . From this
formula, one sees that the global winding number is zero when the masses are equal in both valleys, and why it is nw = ±1
in the Haldane phase characterized by a band inversion. This has been formulated in a more elegant and general way in
Ref. [67].

Let us now consider the example of graphene in presence of some inversion breaking and time-reversal breaking terms.
So the mass matrix is (MS − 3

√
3t2 sin(φ)ξ)σ3 implying that the gap can close for MS = ξ3

√
3t2 sin φ in one valley (labeled

by ξ = ±1). This equality signals a one-electron topological quantum transition separating a QAH insulator and a trivial
atomic insulator. Finally we would like to make a comment on the terminology. This type of phase transition is purely
a change between two one-electron Hamiltonians. It has in particular nothing to do with topological order defined by
Wen. In particular the transition discussed here is not a transition between two topological orders. It is rather a transition
between two band-insulators having distinct topological invariants (which characterize the winding of one-electron wave
functions).

6. Edge states

The 2D topological insulators (the QAH and the QSH states) are insulating in the bulk and conducting along their edge.
They are characterized by:

• a bulk topological invariant (the Chern number for QAH, and the Z2 index for QSH insulators),
• characteristic edge states (chiral for QAH, and helical for QSH states).

Here we describe more thoroughly this deep connection between bulk band structure properties and the existence of edge
states by computing explicitly the edge state running at the interface between different pairs of insulating phases. Two
different situations are to be contrasted. First one might consider a mass kink without change of the topological invariant,
for instance an interface between two Semenov insulators characterized by opposite values of the parameter MS, or two
Haldane insulators (in the terminology introduced in Section 3) having opposite masses. Then the edge states exist but they
are not protected against scattering. In contrast, the edge states residing at the interface between a Semenov phase and a
Haldane phase (two topologically distinct insulators) are topologically protected, and remain metallic as long as the bulk
gaps are preserved. Our examples are specialized in spacial dimension 2, implying that the edge modes are running along
1D interfaces. Nevertheless the idea is rather general and valid for D − 1-dimensional surface gapless modes emerging at
interfaces between D-dimensional gapped phases. This physics is reminiscent of the Jackiw–Rebbi model introduced in field
theory [68] and of the physics of solitons in polyacetylene (D = 1) [69,70].

6.1. Interface between topologically distinct insulators

We assume that one half-plane (x < 0) is filled with a “Semenov insulator”, while a “Haldane insulator” occupies the
other half-plane (x > 0) (Fig. 6). In principle one should define this heterojunction on the lattice by varying the mass
parameters of the model (namely the on-site mass MS and the chiral phase φ) near the interface. Since we are mainly
interested in eventual zero modes confined near the interface x = 0, we use the low energy effective model valid near the
Dirac points (energies smaller than the bandwidth t). Using the translational invariance along the y-direction, the wave
function can be written Ψ (r) = Ψ (x)eiky y and the corresponding wave equation for Ψ (x) reads:
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Fig. 6. Left panel: Interface between the Semenov insulator (x < 0, light green) and the Haldane insulator (x > 0, yellow). There is always a zero-energy
bound state located near the interface x = 0. Right panel: dispersion E(ky) = sign(MH)h̄vFky of the chiral edge mode along the y-axis (solid green arrow).
Color online.(−ih̄vFσ1τ3∂x + h̄vFkyσ2 + M(x)

)
Ψ (x) = EΨ (x) (65)

with M(x) = MSΘ(−x)σ3 + MHΘ(x)σ3τ3. In fact, we can even consider a more general shape by replacing the Heaviside
functions Θ(x) with smooth functions interpolating between zero for negative arguments and one for large positive argu-
ments. Nevertheless, the sharp step model is accurate, provided the length scale for the variation of the lattice parameters
is smaller than the extension of the eventual edge state, namely h̄vF/max(MS, MH). The two sets of Pauli matrices σi and
τi represent respectively the sublattice isospin and the valley degrees of freedom.

One first shows the existence of a zero-energy solution at ky = 0, by solving the equation:

h̄vF∂xΨ (x) = −iσ1τ3M(x)Ψ (x) (66)

obtained by multiplying both sides of Eq. (65) by iσ1τ3. In the region x > 0, this equation reads:

h̄vF∂xΨ = −σ2MHΨ (67)

and the bounded solution (decaying at x → ∞) is the eigenstate of σ2 with eigenvalue sign(MH).
For x < 0, there is an additional valley matrix τ3 in the wave equation:

h̄vF∂xΨ = −σ2τ3MSΨ (68)

and the corresponding bounded solution is the eigenstate of σ2 with the eigenvalue: −sign(ξ MS). So the matching is
possible, and there is a zero mode at the boundary (x = 0) only if the two solutions above correspond to the same eigenvalue
of σ2, namely if:

sign(MH ) = −sign(ξ MS) (69)

For any choice of the masses, this equality is always valid in one valley which is fixed by the relative signs of MH and MS.
Therefore, one always obtains a zero mode which is polarized in the valley ξ = −sign(MSMH).

Now, in order to obtain the wave function and dispersion E(ky) of this edge mode, let us restore the finite energy E and
the parallel momentum ky in Eq. (65). Without any further calculation, one simply notices that the zero mode at ky = 0 is
also eigenstate of h̄vFkyσ2, and therefore the expression of its wave function is still valid at finite energy and momentum
with the dispersion:

E = −sign(ξ MS)h̄vFky = sign(MH)h̄vFky (70)

The edge mode is chiral and shows up in the valley that is experiencing a mass inversion at the interface. In the limit of
large MS, the Semenov insulator can represent the vacuum. By reproducing this calculation for various orientation of the
interface it is easy to demonstrate that the Haldane insulator is surrounded by a 1D edge chiral edge mode that circulates
clockwise if sign(MSMH) is positive, and anticlockwise for negative MSMH. Note that if we assume that the vacuum is
represented by a large positive MS, then the sign of MSMH is simply the sign of MH = −3

√
3t2 sin(φ), which is set by the

chirality of the flux pattern in the microscopic Haldane model.

6.2. Kink in the Haldane mass

We consider now a linear junction between two Haldane insulators with opposite chiralities. In the low-energy effective
model, the full wave equation for this situation reads:(−ih̄vFσ1τ3∂x + h̄vFkyσ2 + MH(x)σ3τ3

)
Ψ (x) = EΨ (x) (71)
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Fig. 7. Left panel: Kink in the Haldane mass with the sign change occurring at x = 0. There is always twofold degenerate zero-energy bound states located
near x = 0 (indicated by 2 solid arrows in green). Right panel: dispersion E(ky) = sign(MH)h̄vFky of the two independent chiral edge modes (solid and
dashed curves respectively). Color online.

where MH(x) is a real monotonic function describing a kink with MH(∞) positive and MH(−∞) negative hereafter (the
other kink configuration can be treated similarly). We choose the origin (x = 0) where M(x) has its zero. We expect that a
bound state might show up near x = 0 because the insulator becomes “locally” gapless there (Fig. 7).

We first look for a E = 0 solution at ky = 0 by solving the equation:

ih̄vFσ1τ3∂xΨ (x) = MH(x)σ3τ3Ψ (x) (72)

By multiplying each side by −iσ1τ3, it is obtained:

h̄vF∂xΨ (x) = −MH(x)σ2τ0Ψ (x) (73)

which has the solution (valid for all values of x):

Ψ (x) = exp

(
−

x∫
0

dx′ MH
(
x′)/h̄vF

)
|σ2τ0 = +1〉 (74)

= exp

(
−

x∫
0

dx′ MH
(
x′)/h̄vF

)⎡
⎢⎣a

⎛
⎜⎝

1
i
0
0

⎞
⎟⎠ + b

⎛
⎜⎝

0
0
1
i

⎞
⎟⎠

⎤
⎥⎦ (75)

where a and b are complex coefficients. Hence there is a twofold degenerate zero mode (at ky = 0) due to the presence of
the identity matrix τ0 in Eq. (73).

Now we can restore a finite transverse momentum ky and observe that the above solution is an eigenmode of hvFσ2
with energy E = h̄vFky . The two degenerate chiral zero modes Eq. (75) yield two degenerate chiral modes propagating in
the same direction along y-axis:

Ψ (r) = Ψ (x)eiky y = exp

(
iky y −

x∫
0

dx′ MH
(
x′)/h̄vF

)
|σ2τ0 = +1〉 (76)

This is consistent with the fact that the Haldane model breaks time-reversal symmetry. We can understand the Haldane
kink as two remote Haldane insulators (with opposite chiralities) that would have been brought in contact adiabatically.
After such a process, one would have two modes running in the same direction along the interface considered.

6.3. Kink in the Semenov mass

One can easily reproduce the similar analysis for a kink of the Semenov mass (Fig. 8) by solving the wave equation:(−ih̄vFσ1τ3∂x + h̄vFkyσ2 + MS(x)σ3
)
Ψ (x) = EΨ (x) (77)

where MS(x) is a real function satisfying MS(0) = 0, MS(∞) > 0 and MS(−∞) < 0. The equation for the eventual zero
energy mode at ky = 0 is then:

h̄vF∂xΨ = −MS(x)σ2τ3Ψ (78)

whose solution reads:
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Fig. 8. Left panel: Kink in the Semenov mass MS(x) = M(x)σ3 with the sign change occurring at x = 0. There is always twofold degenerated zero energy
bound states located near x = 0 (indicated by the solid lines in red). Right panel: dispersion E(ky) = ±h̄vFky of the two counter-propagating edge modes
(solid and dashed curves respectively). This counter propagation is the natural consequence of the time-reversal invariance of the system. Color online.

Ψ (x) = exp

(
−

x∫
0

dx′ MS
(
x′)/h̄vF

)
|σ2τ3 = +1〉 (79)

= exp

(
−

x∫
0

dx′ MS
(
x′)/h̄vF

)⎛
⎜⎝a

⎛
⎜⎝

1
i
0
0

⎞
⎟⎠ + b

⎛
⎜⎝

0
0
1
−i

⎞
⎟⎠

⎞
⎟⎠ (80)

where a and b are complex numbers. As a major difference with the Haldane kink, the two parts of the wave function
leads to opposite chiralities when a finite ky is restored. This is because they correspond to eigenmodes of σ2 with opposite
eigenvalues ±1. This is consistent with the global time-reversal symmetry of the system (Fig. 8).

7. Conclusion

In high-energy physics, spin one-half fermions are described by fields whose free dynamics follow the wave equations
initially discovered by Paul Dirac in 1928 [3], and Hermann Weyl in 1929 [6] (Section 2). In “Dirac materials”, the Bloch
wave functions follow Dirac-like or Weyl-like equations at least at vicinity of some special points of the Brillouin zone. As a
famous example of a “Dirac material”, semimetallic graphene hosts low-energy excitations behaving as massless fermions
described by a 2D Weyl equation near two isolated points of the BZ (Section 3). Some insulators with strongly coupled
bands are locally (in the k-space) described by a Dirac equation where the mass is replaced with the band gap. In condensed
matter systems, the discrete degrees of freedom that couple to the quasi-momentum k might be related to many origins:
real electronic spin, sublattice isospin, orbital index, etc. Therefore one might obtain different kinds of insulting states, like
the Semenov, the Haldane or the Kane–Mele insulators reviewed in Section 4.

In contrast to experiments in high-energy colliders, electrons in materials (or cold atoms in optical lattices) are affected
by the presence of a dense lattice. As a consequence, Bloch shown that the electronic spectrum form bands E(p) that
are periodic in the quasi-momentum p, i.e. the reciprocal space becomes a compact manifold: the Brillouin zone (BZ).
This implies the possibility of some nontrivial wrapping of the wave functions around the BZ, which leads to topological
properties like the quantization of the integer quantum Hall effect (Section 5) and the existence of protected edge states in
some insulators (Section 6).

Finally, condensed matter and cold atom systems allow the interesting possibility of modifying the topological prop-
erties of Dirac insulators by applying time-dependent perturbations to the system. For instance, an ordinary insulator or
semimetallic graphene could be driven into the Haldane insulating phase by applying circularly polarized light [71–74],
or into a QSH state by applying the suitable linearly polarized light [75,76]. Another exciting perspective is the recent
realizations of artificial honeycomb lattice systems that mimic graphene. Those “artificial graphenes” (see Ref. [77] for a
review) are realized with cold atoms loaded in optical lattices [44], with molecules deposited on a metallic surface by a
STM tip [78], or by nanopatterning a two-dimensional electron gas [79,80]. Although this (very) non-exhaustive review has
been primarily devoted to solid state materials, it should mentioned that this field has profound roots in the physics of
superfluid He3 [81,82] and is currently seeding other fields like photonics topological insulators [83,84].
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