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Modeling phase transition and metastable

phases

François James and Hélène Mathis

Abstract We propose a model that describes phase transition including metastable

phases present in the van der Waals Equation of State (EoS). We introduce a dynam-

ical system that is able to depict the mass transfer between two phases, for which

equilibrium states are both metastable and stable states, including mixtures. The dy-

namical system is then used as a relaxation source term in a isothermal two-phase

model. We use a Finite volume scheme (FV) that treats the convective part and the

source term in a fractional step way. Numerical results illustrate the ability of the

model to capture phase transition and metastable states.

1 Introduction

Metastable liquids are liquid states where the temperature is higher than the ebulli-

tion temperature. Such states are very unstable and a very small perturbation brings

out a bubble of vapor inside the liquid. Such phenomenon can appear at saturated

temperature (or at saturated pressure for metastable vapor) for instance inside a noz-

zle such as fuel injector or cooling circuit of water pressurized reactor. In the last

decades considerable research has been devoted to the modeling of two-phase flows

with phase transition. However the exact expressions of the transfer mass term are

usually unknown (see [2]). In particular, to our knowledge, there is very few lit-

erature about the transfer term able to depict metastable states. In [7] and [8] the

authors consider a 6 equation model where relaxation to equilibrium is achieved by

chemical and pressure relaxation terms whose kinetics are considered infinitely fast.
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We intend here to provide a new model able to depict phase transition and

metastable states with non-infinite relaxation speed. It is based on the use of the

van der Waals EOS, that is well-known to depict stable and metastable states below

the critical temperature. However this EOS is not valid in the so-called spinodal

zone where the pressure is a decreasing function of the density. This leads to in-

stabilities and computational failure and the pressure has to be corrected using the

Maxwell equal area rule construction to recover a constant pressure. But such a cor-

rection removes the metastable regions. We propose transfer terms obtained through

an optimization problem of the Helmholtz free energy of the two-phase system. For

sake of simplicity we assume the system to be isothermal. We obtained a dynami-

cal system that is able to depict mass transfer including metastable states and that

dissipates the total Helmholtz free energy. The equilibria of the dynamical system

are both stable and metastable states and mixture states that satisfies the pressures

and chemical potentials equalities. This dynamical system is used as transfer term

in a isothermal two-phase model in the spirit of [6] and [1]. We use a classical FV

scheme that treats the convective and the source terms in a splitting approach.

Section 2 is devoted to the thermodynamics of binary mixture and presents the

major properties of the van der Waals EoS. Section 3 is devoted to the construction

of the dynamical system based on results of the previous Section. In particular we

show that metastable states are attractors of the dynamical system. In Section 4 we

briefly present the splitting FV scheme we use and give numerical results where

metastable vapor appears.

2 Thermodynamics and van der Waals Equation of State

In this Section we first recall the thermodynamics theory for a single isothermal fluid

and introduce the different potentials of the van der Waals EoS, then we state the

mathematical framework for the thermodynamics of immiscible binary mixtures.

2.1 Thermodynamics of a single phase

Consider a single fluid of mass M > 0 occupying a volume V > 0. At constant

temperature if the fluid is homogeneous and at rest, its behavior is entirely described

by the Helmholtz free energy function E(M,V ) which belongs to C2(R+×R+) and

is positively homogeneous of degree 1 (PH1). Thus, at fixed volume V , one can

introduce the specific Helmholtz free energy f and the specific energy e that are

functions of the density ρ = M/V

f (ρ) = E(ρ,1), ρe(ρ) = E(ρ,1). (1)
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Fig. 1 Phase diagram for the

van der Waals EoS in the

(p,ρ) plan. The red curve

stands for an isotherm below

the critical temperature TC ,

the point C being the critical

point. The orange zone is

called spinodal zone, it corre-

sponds to unstable states. In

that area the isotherm has to

be replaced by an horizontal

segment that coincides with

the isobaric line at constant

pressure p∗.
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We introduce also the pressure p and the chemical potential µ that are partial deriva-

tives of the free energy E, respectively with respect to V and ρ . By homogeneity,

one can write them as functions of ρ solely:

p(ρ) =−∂V E(ρ,1), µ(ρ) = ∂ME(ρ,1). (2)

Again thanks to the homogeneity of the energy function, one has

f (ρ) = ρµ(ρ)− p(ρ), f ′(ρ) = µ(ρ). (3)

Stable pure phases are characterized by a convex energy function, which leads to

a nondecreasing pressure law. We consider a classical example of a fluid that may

experience phase transitions, namely the van der Waals monoatomic fluid. At fixed

temperature T its Helmholtz free energy is given by

E(M,V ) =−
aM2

V
+RT

(

M log
M

V −Mb
−M

)

, (4)

where R stands for the perfect gas constant and a and b are positive constants, a

accounts for binary interactions and b is the covolume. Below a critical temperature

TC the pressure law is no longer monotone (see fig. 1): in a region called the spin-

odal zone, the pressure decreases with respect to the density, thus leading to instable

states. In that region the isotherm have to be replaced by the maxwell area rule in

order to recover that phase transition happens at constant pressure and chemical po-

tential. However this construction removes admissible regions where the pressure

law is still nondecreasing. Such regions are called the metastable regions (blue re-

gions in fig. 1). We consider in the following the dimensionless equation of state and

the associated potentials for which R = 8/3, a = 3 and b = 1/3, for which TC = 1.
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2.2 Equilibrium of a two-phase mixture

We consider now two immiscible phases of a same pure fluid of total mass M and

volume V . Each phase i = 1,2, is depicted by its mass Mi ≥ 0 and its volume Vi ≥ 0.

We assume that both phases are characterized by the same van der Waals extensive

Helmholtz free energy E function of Mi and Vi, given by (4). By the conservation

of mass, the mass of the binary system is M = M1 +M2 and immiscibility implies

V =V1 +V2.

According to the second principle of thermodynamics (see [4]), for fixed mass

M and volume V the stable equilibrium states of the system are the solutions to the

constrained optimization problem

inf{E(M1,V1)+E(M2,V2)|V1 +V2 =V, M1 +M2 = M},

which can be rewritten using (1) in term of the specific Helmholtz free energy at

fixed density ρ:

inf{α1 f (ρ1)+α2 f (ρ2)| α1 +α2 = 1, α1ρ1 +α2ρ2 = ρ}, (5)

where αi = Vi/V ∈ [0,1] denotes the volume fraction and ρi = Mi/Vi is the den-

sity of the phase i = 1,2. In the sequel the fractions αi are written as functions

of ρ,ρ1 and ρ2 such that α1(ρ,ρ1,ρ2) = (ρ − ρ2)/(ρ1 − ρ2) and α2(ρ,ρ1,ρ2) =
1−α1(ρ,ρ1,ρ2).

Note that α1 and α2 are simultaneously non zero if and only if ρ1 6= ρ2. In that

case we shall always assume without loss of generality that ρ1 < ρ2 and ρ ∈ [ρ1,ρ2].
The total Helmholtz free energy F : R3

+ → R of the binary system is given by

F(ρ,ρ1,ρ2) = α1(ρ,ρ1,ρ2) f (ρ1)+α2(ρ,ρ1,ρ2) f (ρ2). (6)

Depending on the saturation of the volume fractions, one can characterize the equi-

libria of the optimization problem (5).

Proposition 1. 1. Pure states: if α1 = 0 (resp. α2 = 0) then only the phase 2 (resp.

1) is stable.

2. Mixture: if α1α2 6= 0, then the equilibrium state is characterized by one of the

following equivalent properties

a. equality of the chemical potentials and the pressures

µ(ρ1) = µ(ρ2) = µ∗, p(ρ1) = p(ρ2) = p∗, (7)

b. Maxwell area rule on the chemical potential

∫ 1

0
µ(ρ2 + t(ρ1 −ρ2))dt = µ(ρ1) = µ(ρ2) = µ∗, (8)

c. the difference of the energies reads
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f (ρ2)− f (ρ1) = µ(ρ1)(ρ2 −ρ1) = µ(ρ2)(ρ2 −ρ1). (9)

The densities such that (7), (8) or (9) hold are denoted ρ∗
1 and ρ∗

2 , see fig. 1.

The most important consequence of this result is that in the metastable zones there

are two possible equilibrium states corresponding to a pure metastable state and a

stable mixture state. Hence the EoS at equilibrium is not single-valued. The differ-

ence between stable and metastable states lies in their dynamical behaviour with

respect to perturbations, see [5].

3 Dynamical system and phase transition

We turn now to the study of dynamical stability of equilibrium states. First we ad-

dress the homogenous case, introducing a dynamical system for which the equi-

libria are both stable and metastable states as well as states in the spinodal area

such that (7)-(8) are satisfied. Next the dynamical system is plugged as a relaxation

source terms in a isothermal two-fluid model. Some properties of the full model are

given: hyperbolicity, existence of a energy function that decreases in time.

3.1 Dynamical system

Assuming that ρ , ρ1 and ρ2 are only time-dependent, we introduce the following

dynamical system, which derives from the optimality conditions of Proposition 1:

ρ̇ = 0,

ρ̇1 = −(ρ −ρ1)(ρ −ρ2)(ρ2(µ(ρ2)−µ(ρ1))+ p(ρ1)− p(ρ2)) , (10)

ρ̇2 = (ρ −ρ1)(ρ −ρ2)(ρ1(µ(ρ1)−µ(ρ2))− p(ρ1)+ p(ρ2)) .

Straightforward computions show that the total Helmholtz free energy F defined

by (6) decreases in time along the solutions of this system. We focus now on the

equilibria which can be reached by the model (under the assumption ρ1 < ρ2).

Theorem 1. The equilibria of the system (10) are

1. the monophasic states such that α1 = 1 (resp. α1 = 0) that is ρ = ρ1 = ρ with

any ρ2 6= ρ (resp. ρ = ρ2 = ρ with any ρ1 6= ρ). In that case, if ρ = ρi, i = 1 or

2 such that

a. ρ 6∈ [ρ−,ρ+], then the equilibrium is an attractor and corresponds to monopha-

sic and metastable states,

b. ρ ∈ [ρ−,ρ+], then the equilibrium is a repeller and corresponds to states

belonging to the spinodal zone (which is non admissible),

2. the unique state such that 0 < α1 < 1 and the relations (7)-(8) are satisfied.
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A remarkable feature of this system is that a perturbation of a pure metastable state

involving the other phase leads to a mixture equilibrium state, corresponding to the

definition of metastable state [5].

3.2 The isothermal model

The previous dynamical system (10) is now coupled with a modified version of

the isothermal two-phase model proposed in [1] (see also [6]). The model admits a

mixture pressure α1 p(ρ1)+α2 p(ρ2) and one velocity u for both phases. It reads

∂tρ +∂x(ρu) =
1

ε
ρ̇ = 0,

∂tρi +∂x(ρiu) =
1

ε
ρ̇i, i = 1,2

∂t(ρu)+∂x(ρu2 +α1 p(ρ1)+α2 p(ρ2)) = 0,

(11)

where the source terms are given by the dynamical system (10) and account for

mass and mechanical transfer. The parameter ε > 0 is a relaxation parameter that

represents the relaxation time to reach thermodynamical equilibrium. In order to

capture metastable states, we will consider 0 < ε < 1 in computations.

The convective part of the model (11) is hyperbolic with the eigenvalues

λ1 = u− c, ,λ2 = λ3 = u, λ4 = u+ c, (12)

where the speed of sound is c =

√

1

ρ
(α1ρ1 p′(ρ1)+α2ρ2 p′(ρ2)).

Proposition 2. The function E (ρ,ρ1,ρ2,u) =
ρu2

2
+α1 f (ρ1)+α2 f (ρ2), satisfies

the following equation

∂t(E )+∂x(u(E +α1 p(ρ1)+α2 p(ρ2)) = (∂ρ1
F)ρ̇1 +(∂ρ2

F)ρ̇2 ≤ 0. (13)

Note that E is not an entropy of the system since f is a non-convex function of the

density.

4 Numerical illustration

We present here numerical results that assess the ability of the model to cap-

ture phase transition including metastable states. We use a standard Finite Volume

method to approximate the Cauchy problem

∂tW +∂xF(W ) = S(W ), W (0,x) =W0(x), x ∈ R, (14)
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where W = (ρ,ρ1,ρ2,ρu)T , F(W ) = (ρu,ρ1u,ρ2u,ρu2 + α1 p(ρ1) + α2 p(ρ2))
T ,

and S(W ) = (0,
1

ε
ρ̇1,

1

ε
ρ̇2,0)

T . We use a fractional step approach. We denote ∆ t

the time step and ∆x the length of the cell (xi−1/2,xi+1/2) on the regular 1D-mesh.

Let W n be the Finite Volume approximation at time tn = n∆ t, n ∈ N. The first step

corresponds to the approximation of the convective part which provides the solution

W n,− at time tn,−. It is treated by a classical Rusanov scheme. The second step is

the approximation of the source terms (relaxation), at this stage we merely use an

explicit Euler method.

Fig. 2 First line, densities: ρ , ρ1, ρ2, second line, chemical potentials: µ , µ1, µ2, third line, pres-

sures: p, p1, p2, last line fractions α1, α2 and the velocity u.

We consider the van der Waals equation at constant temperature T = 0.85. The

extrema of the isotherm curve are ρ− = 0.581079 and ρ+ = 1.488804. The Maxwell

construction on the chemical potential defines the densities ρ∗
1 = 0.319729 and ρ∗

2 =
1.807140 such that µ(ρ∗

1 ) = µ(ρ∗
2 ) = 3.977178 and p(ρ∗

1 ) = p(ρ∗
2 ) = 0.504492. If

the Riemann problem consists in an initial constant pressure and constant chemical
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potential state, the numerical scheme preserves this state exactly as it is expected.

Another test case consists in an initial constant pressure state which is subjected to a

disequilibrium in chemical potential. The initial data are ρL = ρ1,L = ρ−, ρ2,L = 1.6,

ρR = ρ2,R = 1.837840, ρ1,R = 0.2 and uL = uR = 0. The discontinuity is applied at

x = 0 in the domain [−1,1]. The mesh contains with 2000 cells and the time of

computation is t = 0.2. Note that ρ2,L belongs to the metastable liquid region and

ρ2,R belongs to the pure liquid region such that p(ρ2,R) = p(ρ−) = p(ρ1,L) and ρ1,R

belongs to the pure gaseous region. Fig. 2 presents the results for ε = 10−3 and ε =
10−4. The main feature to notice here is that the relaxation approximation introduces

a mixture zone on both sides of the interface, which remains stable. Within this zone,

there are variations of the velocity, which remains compressive (u > 0 for x < 0,

u < 0 for x > 0).

5 Conclusion and prospects

The first tests with this model show that it is able to cope with phase transitions with

metastable states using a van der Waals EoS. Due to the complexity of the source

term, we propose as a first step an explicit treatment of the relaxation term. We aim

at providing a semi-implicit scheme in the spirit of [3]. Moreover this model is a toy

one since it is isothermal. We attend to add the temperature dependance to obtain a

fully heat, mass and mechanical transfer model in order to compare our results to

the one of [7] and [8].
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