
HAL Id: hal-00942861
https://hal.science/hal-00942861v2

Preprint submitted on 16 Oct 2015 (v2), last revised 4 Jul 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representations of quasiprojective groups, Flat
connections and Transversely projective foliations

Frank Loray, Frédéric Touzet, Jorge Vitorio Pereira

To cite this version:
Frank Loray, Frédéric Touzet, Jorge Vitorio Pereira. Representations of quasiprojective groups, Flat
connections and Transversely projective foliations. 2015. �hal-00942861v2�

https://hal.science/hal-00942861v2
https://hal.archives-ouvertes.fr


REPRESENTATIONS OF QUASIPROJECTIVE GROUPS, FLAT

CONNECTIONS AND TRANSVERSELY PROJECTIVE

FOLIATIONS

FRANK LORAY, JORGE VITÓRIO PEREIRA, AND FRÉDÉRIC TOUZET

Abstract. The main purpose of this paper is to provide a structure theorem
for codimension one singular transversely projective foliations on projective
manifolds. To reach our goal, we firstly extend Corlette-Simpson’s classifi-
cation of rank two representations of fundamental groups of quasiprojective
manifolds by dropping the hypothesis of quasi-unipotency at infinity. Sec-
ondly we establish an analogue classification for rank two flat meromorphic
connections. In particular, we prove that a rank two flat meromorphic connec-
tion with irregular singularities having non trivial Stokes projectively factors
through a connection over a curve.
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1. Introduction

Let X be a smooth projective manifold over C. A (holomorphic singular) codi-
mension one foliation F on X is defined by a non zero rational 1-form ω satisfying
Frobenius integrability condition ω∧dω = 0. The foliation is said transversely pro-
jective if there are rational 1-forms α, β on X such that the sl2-connection defined
on the trivial vector bundle X × C2 by

(1) Z 7→ ∇Z = dZ +AZ with A =

(
α β
ω −α

)

Key words and phrases. Foliation, Transverse Structure, Birational Geometry, Flat Connec-
tions, Irregular Singular Points, Stokes Matrices.
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is flat: dA+ A · A = 0. This definition, equivalent to [32], extends to the singular
case the classical definition [16] for smooth foliations. Outside of the polar divisor
of the matrix connection A, the foliation F admits distinguished germs of first
integrals taking values on P1, well defined up to left composition with elements
of Aut(P1) = PSL2(C). Precisely, given a local basis of ∇-horizontal sections
B = (bij) ∈ SL2(O(U)) on some open set U , i.e. satisfying dB + A · B = 0, the
ratio ϕ := b21/b22 provides such a local first integral for F ; changing to another
basis B · B0 will have the effect of composing ϕ with a Moebius transformation.

Transversely projective foliations play a singular role in the study of codimension
one foliations. They are precisely those foliations whose Galois groupöıd in the
sense of Malgrange is small (see [9, 23]). They often occur as exceptions or counter
examples [5, 18, 35] and played an important role in our study of foliations with
numerically trivial canonical bundle [21]. For these foliations, one can define a
monodromy representation by considering analytic continuation of distinguished
germs of first integrals, making the tranverse pseudo-group into a group (see [19]);
it also coincides with the (projectivization of the) monodromy of the flat connection
∇.

The goal of this paper is to provide a structure theorem for transversely pro-
jective foliations in the spirit of [7, 8] and what has been done recently in [14] for
transversely affine foliations.

In fact, we mainly work with the connection ∇ defined by (1) up to birational
bundle transformation. When it has at worst regular singularities, ∇ is charac-
terized by its monodromy representation up to birational bundle transformations
[15]. One of the main ingredients that goes into the proof of our structure theorem
is an extension of Corlette-Simpson’s classification of rank two representations of
quasiprojective fundamental groups [11] which we now proceed to explain.

1.1. Rank-two representations of quasiprojective fundamental groups.

Let X◦ be a quasiprojective manifold and consider X a projective compactifica-
tion of X◦ with boundary equal to a simple normal crossing divisor D. If Di is
an irreducible component of D then by a small loop around Di we mean a loop
γ : S1 → X◦ that extends to a smooth map γ : D → X which intersects D trans-
versely on an unique smooth point of Di. A representation ρ : π1(X

◦, x) → SL2(C)
is quasi-unipotent at infinity if for every irreducible component Di of D and every
small loop γ around Di, the conjugacy class of ρ(γ) is quasi-unipotent (eigenvalues
are roots of the unity).

A representation ρ : π1(X
◦, x) → SL2(C) projectively factors through an orbifold

Y if there exists a morphism f : X◦ → Y and a representation ρ̃ : πorb
1 (Y, f(x)) →

PSL2(C) such that the diagram

π1(X
◦, x) SL2(C)

π1
orb(Y, f(x)) PSL2(C)

ρ

f∗ proj

ρ̃

is commutative.
A polydisk Shimura modular orbifold is a quotient H of a polydisk Hn by a

group of the form U(P,Φ) where P is a projective module of rank two over the
ring of integers OL of a totally imaginary quadratic extension L of a totally real
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number field F ; Φ is a skew hermitian form on PL = P ⊗OL
L; and U(P,Φ) is the

subgroup of the Φ-unitary group U(PL,Φ) consisting of elements which preserve
P . This group acts naturally on Hn where n is half the number of embeddings
σ : L → C such that the quadratic form

√
−1Φ(v, v) is indefinite. Note that there

is one tautological representation

πorb
1 (Hn/U(P,Φ)) ≃ U(P,Φ)/{± Id} →֒ PSL2(L) ,

which induces for each embedding σ : L → C one tautological representation
πorb
1 (Hn/U(P,Φ)) → PSL2(C). The quotients Hn/U(P,Φ) are always quasipro-

jective orbifolds, and when [L : Q] > 2n they are projective (i.e. proper/compact)
orbifolds. The archetypical examples satisfying [L : Q] = 2n are the Hilbert mod-
ular orbifolds, which are quasiprojective but not projective. We refer to [11] for
a thorough discussion and point out that our definition of tautological represen-
tations differs slightly from loc. cit. as they consider polydisk Shimura modular
stacks instead of orbifolds and consequently their representations take values in
SL2(C). Here we are lead to consider representations with values in PSL2(C) be-
cause ± Id ∈ U(P,Φ) acts trivially on Hn.

Theorem 1.1 (Corlette-Simpson). Suppose that X◦ is a quasiprojective manifold
and ρ : π1(X

◦, x) → SL2(C) is a Zariski dense representation which is quasi-
unipotent at infinity. Then ρ projectively factors through

(1) a morphism f : X◦ → Y to an orbicurve Y (orbifold of dimension one); or
(2) a morphism f : X◦ → H to a polydisk Shimura modular orbifold H.

In the latter case, the representation actually projectively factors through one of the
tautological representations of H.

Although their hypothesis is natural, as representations coming from geometry
(Gauss-Manin connections) are automatically quasi-unipotent at infinity, Corlette
and Simpson asked in [11, Section 12.1] what happens if this assumption is dropped.
Our first main result answers this question.

Theorem A. Suppose that X◦ is a quasiprojective manifold and ρ : π1(X
◦, x) →

SL2(C) is a Zariski dense representation which is not quasi-unipotent at infinity.
Then ρ projectively factors through a morphism f : X◦ → Y to an orbicurve Y .

Our method to deal with representations which are not quasi-unipotent at in-
finity is considerably more elementary than the sophisticated arguments needed to
deal with the quasi-unipotent case. The non quasi-unipotency allows us to prove
the existence of effective divisors with topologically trivial normal bundle at the
boundary. We then use Malcev’s Theorem combined with a result of Totaro about
the existence of fibrations to produce the factorization.

Combining Corlette-Simpson Theorem with Theorem A and factorization re-
sults for representations of quasiprojective fundamental groups on the affine group
Aff(C), see [2, 14] and references therein, we get the following corollary.

Corollary B. Suppose that X◦ is a quasiprojective manifold and ρ : π1(X
◦, x) →

SL2(C) is a representation which is not virtually abelian. Then ρ projectively factors
through

(1) a morphism f : X◦ → Y to an orbicurve Y ; or
(2) a morphism f : X◦ → H to a polydisk Shimura modular orbifold H equipped

with one of its tautological representations.
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In the second case, the representation is Zariski dense, quasi-unipotent at infinity.

1.2. Riccati foliations. Since we are interested in PSL2 rather than SL2, we will
essentially work with the projective connection associated to (1), or more geomet-
rically the foliation H induced by ∇-horizontal sections on the total space of the
projective bundle X×P1. In the affine chart P(Z) = (z1 : z2) ∼ (1 : z), H is defined
by the “Riccati” pfaffian equation

dz + ω − 2αz − βz2 = 0.

More generally, a Riccati foliation over a projective manifold X consists of a pair
(π : P → X,H) = (P,H) where π : P → X is a locally trivial P1-fiber bundle in
the Zariski topology (i.e. P is the total space of the projectivization P(E) of a rank
two vector bundle E) and H is a codimension one foliation on P which is transverse
to a general fiber of π. If the context is clear, we will omit the P1-bundle P from
the notation and call H a Riccati foliation.

The foliation H is defined by the projectivization of horizontal sections of a
(non unique) flat meromorphic connection ∇ on E: it is the phase portrait of the
projective connection P(E,∇). The connection ∇ is uniquely determined by H and
by its trace on det(E). We say that the Riccati foliation H has regular singularities
if it can be lifted to a meromorphic connection ∇ with regular singularities (see
[15]), and irregular if not.

We will say that a Riccati foliation (P,H) over X factors through a projective
manifold X ′ if there exists a Riccati foliation (π′ : P ′ → X ′,H′) over X ′, and
rational maps φ : X 99K X ′ , Φ : P 99K P ′ such that π′ ◦ Φ = φ ◦ π, Φ has degree
one when restricted to a general fiber of P , and H = Φ∗H′.

Our second main result describes the structure of Riccati foliations having irreg-
ular singularities.

Theorem C. Suppose that X is a projective manifold, and (P,H) is a Riccati
foliation over X. If H is irregular then at least one of the following assertions
holds true.

(1) Maybe after passing to a two-fold covering, the Riccati foliation H is defined
by a closed rational 1-form.

(2) The Riccati foliation (P,H) factors through a curve.

The proof of Theorem C relies on Corollary B, on an infinitesimal criterion for
the existence of fibrations due to Neeman (Theorem 2.3), and on the semi-local
study of Riccati foliations at a neighborhood of irregular components of the polar
divisor (Section 6).

1.3. Transversely projective foliations. Our main goal, the description of the
structure of transversely projective foliations, is achieved by combining Corollary
B and Theorem C. To this end, recall that for a polydisk Shimura modular orbifold
H and any of its tautological representations ρ, Deligne extension of the associated
local system provides a logarithmic flat connection; denote by (H ×ρ P1,Hρ) the
induced Riccati foliation.

Theorem D. Let F be a codimension one transversely projective foliation on a
projective manifold X. Then at least one of the following assertions holds true.

(1) There exists a generically finite Galois morphism f : Y → X such that f∗F
is defined by a closed rational 1-form.
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(2) There exists a rational dominant map f : X 99K S to a ruled surface S,
and a Riccati foliation H on S such that F = f∗H.

(3) There exists a polydisk Shimura modular orbifold H and a rational map
f : X 99K H ×ρ P1 towards one of its tautological Riccati foliations such
that F = f∗Hρ.

Remark 1.2. In the third item, we note (see [30]) that, after blowing-up the
ambient, Hρ (resp. F) is locally defined at singular points by a 1-form of the type

k∑

i=1

λi
dxi
xi
, 1 ≤ k ≤ n, λi ∈ R>0

for local coordinates (x1, . . . , xn) (where n is the dimension of the ambient space).
In particular, for instance for X a surface, if F has (maybe after blowing-up) a
hyperbolic singular point, a saddle-node or a non linearizable saddle, then we are
in the first two items.

There are previous results on the subject [32] and on the neighboring subject of
transversely affine foliations ([8], [7], [14]). With the exception of [14], all the other
works impose strong restrictions on the nature of the singularities of the foliation.
Our only hypothesis is the algebraicity of the ambient manifold.

Theorem D also answers a question left open in [14]. There, a similar classi-
fication for transversely affine foliations is established for foliations on projective
manifolds with zero first Betti number. Theorem D gives the analogue classification
for arbitrary projective manifolds, showing that the hypothesis on the first Betti
number is not necessary.

1.4. Flat meromorphic sl2-connections. A meromorphic rank 2 connection
(E,∇) on a projective manifold X is the datum of a rank 2 vector bundle E
equipped with a C-linear morphism ∇ : E → E ⊗ Ω1

X(D) satisfying Leibniz rule

∇(f · s) = f · ∇(s) + df ⊗ s for any section s and function f.

Here D is the polar divisor of the connection ∇. The connection ∇ is flat when
the curvature vanishes, that is ∇ ·∇ = 0, meaning that it has no local monodromy
outside the support of D; we can therefore define its monodromy representation.
Throughout the text, all connections are assumed to be flat.

When det(E) = OX and the trace connection tr(∇) is the trivial connection on
OX , we say that (E,∇) is a sl2-connection. In particular, its monodromy represen-
tation takes values into SL2(C).

We will say that any two connections (E,∇) and (E′,∇′) are birationally equiv-
alent when there is a birational bundle transformation φ : E → E′ that conjugates
the two operators ∇ and ∇′. Keep in mind that the polar divisor might be not
the same for ∇ and ∇′. The connection (E,∇) is called regular if it is birationally
equivalent to a logarithmic connection (see [15]), in particular having only simple
poles (i.e. with reduced polar divisor); it is called irregular if not.

We will say that (E,∇) and (E′,∇′) are projectively equivalent if the induced P1-
bundles coincide PE = PE′, and if moreover ∇ and ∇′ induce the same projective
connection P∇ = P∇′; equivalently, they induce the same Riccati foliation on the
total space of PE.

We provide a structure theorem for connections up to the combination of pro-
jective and birational equivalence. In order to settle our result, we note that any
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meromorphic rank 2 connection is (projectively birationally) equivalent to a sl2-
connection; moreover, any two sl2-connections (E,∇) and (E′,∇′) are equivalent
if, and only if, there exists a flat rank 1 logarithmic connection (L, δ) on X hav-
ing monodromy into the binary group {±1} ∈ Gm such that (E,∇) is birationally
equivalent to (L, δ) ⊗ (E′,∇′). In particular, (E,∇) and (E′,∇′) are birationally
equivalent after pulling them back to the ramified two-fold cover Y → X deter-
mined by the monodromy representation of (L, δ). A combination of Corollary B
and Theorem C yields:

Theorem E. Let (E,∇) be a flat meromorphic rank 2 connection on a projective
manifold X. Then at least one of the following assertions holds true.

(1) There exists a generically finite Galois morphism f : Y → X such that
f∗(E,∇) is projectively birationally equivalent to one of the following con-
nections defined on the trivial bundle:

∇ = d+

(
ω 0
0 −ω

)

or d+

(
0 ω
0 0

)

with ω a rational closed 1-form on X.
(2) There exists a rational map f : X 99K C to a curve and a meromorphic

connection (E0,∇0) on C such that (E,∇) is projectively birationally equiv-
alent to f∗(E0,∇0).

(3) The sl2-connection (E,∇) has at worst regular singularities and there ex-
ists a rational map f : X 99K H which projectively factors the monodromy
through one of the tautological representations of a polydisk Shimura mod-
ular orbifold H. In particular, the monodromy representation of (E,∇) is
quasi-unipotent at infinity, rigid, and Zariski dense.

In particular, when (E,∇) is irregular, only the former two cases occur. As
mentioned in the abstract, the connection projectively factors through a curve
whenever it has non trivial Stokes.

1.5. Structure of the paper. The paper is divided in two parts, with the first
independent of the second. In the first part, Sections 2 and 3, we recall some results
on the existence of fibrations which will be used throughout the paper, and present
the proof of Theorem A. In this first part we avoided using foliation theory aiming
at a wider audience. The second part deals with the irregular case and is organized
as follows. Section 4 presents foundational results about Riccati foliations, most
of them borrowed from [20] and [14]. In particular, we show how to reduce the
general problem to the surface case. Section 5 describes the local structure of a
Riccati foliation along its polar divisor (on a surface); we state there, in Theorem
5.6, a reduction of singularities in the spirit of Sabbah’s “good formal model”
for meromorphic connections by using blowing-ups and ramified covers; the proof
of this technical result is postponed in Section 8, using tools from the theory of
transversely projective foliations, like classification of their reduced singular points
following [4, 35]. Section 6 analyzes the structure of reduced Riccati foliations
over surfaces at a neighborhood of a connected component its irregular divisor,
showing in particular the existence of flat tranverse coordinates: it will be essential
to produce the fibration in the absence of rich monodromy. Section 7 contains the
proofs of Theorems C and E. Section 8 deals with transversely projective foliations,
including the proof of Theorem D, and the fact that it is actually equivalent to



TRANSVERSELY PROJECTIVE FOLIATIONS 7

our structure result on sl2-connections. Section 9 presents a series of examples
underlining the sharpness of our results. Finally in an appendix we prove a result
reminiscent of Sabbah’s good formal models in the context of Riccati foliations.

2. Existence of fibrations

In this section we collect three results about the existence of fibrations on pro-
jective manifolds which will be used in the sequel. For the proof of Theorem A all
we will need is Theorem 2.1 below, which is due to Totaro [33]. Toward the end of
the paper (proof of Theorem C), we will make use of the two other results below.

Theorem 2.1. Let X be a projective manifold and D1, D2, . . . , Dr, r ≥ 3, be
connected effective divisors which are pairwise disjoint and whose Chern classes lie
in a line inside of H2(X,R). Then there exists a non constant morphism f : X → C
to a smooth curve C with connected fibers which maps the divisors Di to points.

The original proof studies the restriction map H1(X,Q) → H1(D̂1,Q), where

D̂1 is the disjoint union of desingularizations of the irreducible components of D1.
When it is injective, this map leads to a divisor linearly equivalent to zero in the span
of D2, . . . , Dr which defines the fibration. Otherwise, the fibration is constructed
as a quotient of the Albanese map of X . An alternative proof, based on properties
of some auxiliary foliations is given in [28]. It goes as follows: given two divisors
with proportional Chern classes, one constructs a logarithmic 1-form with poles on
these divisors and purely imaginary periods. The induced foliation, although not
by algebraic leaves in general, admits a non-constant real first integral. Comparison
of the leaves of two of these foliations coming from three pairwise disjoint divisors
with proportional Chern classes reveals that they are indeed the same foliation.
The proportionality factor of the corresponding two logarithmic 1-forms gives, after
Stein factorization, the sought fibration. For details, see respectively [33, 28].

In general, two disjoint divisors with same Chern classes are not fibers of a
fibration. Indeed, if L is a non-torsion flat line-bundle over a projective curve C then
the surface S = P(L ⊕OC) admits two homologous disjoint curves, corresponding
to the inclusions of L and OC in L⊕OC , which are not fibers of a fibration. The
point is that the normal bundle of these curves sections are L∗ and L. Nevertheless,
if the normal bundle of one of the effective divisors is torsion then we do have a
fibration containing them as fibers.

Theorem 2.2. Let X be a projective manifold and D1, D2 be connected effec-
tive divisors which are pairwise disjoint and whose Chern classes lie in a line of
H2(X,R). If OX(D1)|D1

is torsion then there exists a non constant map f : X → C
to a smooth curve C with connected fibers which maps the divisors Di to points.

A proof of this result is presented in Section 2.1 below. There is also an infini-
tesimal variant of Theorem 2.1 due to Neeman [27, Article 2, Theorem 5.1] where
instead of three divisors we have only one divisor with torsion normal bundle and
constraints on a infinitesimal neighborhood of order bigger than the order of the
normal bundle. The formulation below is due to Totaro, see [34, paragraph before
the proof of Lemma 4.1], and the proof we present is an adaptation of Neeman’s
proof. For an alternative proof see [3, Section 3].
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Theorem 2.3. Let X be a projective manifold and D be a connected effective
divisor. Suppose that OX(D)|D is torsion of order m. If

OX(mD)|(m+1)D ≃ O(m+1)D

then there exists a nonconstant morphism f : X → C to a smooth curve C with
connected fibers which maps the divisor D to a point.

Proof. Let I = OX(−D) be the defining ideal of D. Consider the diagram

0 OX OX(mD) OX(mD)⊗ OX

Im 0

0 OD OX(mD)⊗ OX

Im+1 OX(mD)⊗ OX

Im 0

≀

deduced from the standard exact sequence

0 → OX(−mD) −→ OX −→ OX

Im
→ 0 .

In cohomology we get the diagram

H0(X,OX(mD)⊗ OX

Im ) H1(X,OX)

H0((m+ 1)D,OX(mD)⊗ OX

Im+1 ) H0(mD,OX(mD)⊗ OX

Im ) H1(D,OD)

≀

If OX(mD)|(m+1)D ≃ O(m+1)D then OX(mD)|mD ≃ OmD and

1 ∈ H0(mD,OmD) = H0(mD,OX(mD)⊗ OX

Im
)

belongs to the image of the map in the lower left corner. Exactness of the bottom
row implies that 1 ∈ H0(mD,OmD) is mapped to zero in H1(D,OD).

According to the diagram, the morphism H0(mD,OmD) → H1(D,OD) factors
through H1(X,OX) → H1(D,OD).

If 1 ∈ H0(mD,OmD) is mapped to zero in H1(X,OX) then we deduce from
the first row of the first diagram above that h0(X,OX(mD)) ≥ 2. Therefore mD
moves in a pencil and we have the sought fibration.

If instead 1 ∈ H0(mD,OmD) is mapped to a nonzero element in H1(X,OX)
then H1(X,OX) → H1(D,OD) is not injective. Thus the same holds true for the
map H1(X,OX) → ⊕H1(Di,ODi

) where Di are the irreducible components of D.
It follows that ⊕Alb(Di) (direct sum of the Albanese varieties) do not dominate
Alb(X). The morphism

X −→ Alb(X)

⊕Alb(Di)

contractsD, and is non constant. It follows (cf. [27] or [33]) that the image is a curve
and we get the sought fibration as the Stein factorization of this morphism. �
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2.1. Proof of Theorem 2.2. By assumption the effective divisors D1 and D2

have proportional Chern classes. Therefore, there exists non-zero positive integers
a1, a2 such that the line bundle L = OX(a1D1 − a2D2) lies in Pic0(X). If L is a
torsion element of Pic0(X) then there exists a rational function g : X → P1 with
zero set supported on D1 and polar set supported on D2. We can take f as the
Stein factorization of g.

Suppose now that L is not a torsion line-bundle. The restriction L|D1
of L to

D1 is isomorphic to OD1
(a1D1) and according to our assumptions is a torsion line-

bundle. Hence for some integer m 6= 0, L⊗m is in the kernel of the restriction
morphism Pic0(X) → Pic0(D1). Since we are assuming that L is not a torsion
line-bundle, it follows that the restriction morphism H1(X,OX) → H1(D1,OD1

)
is not injective. We conclude as in the proof of Theorem 2.3. �

3. Factorization of representations

3.1. Criterion for factorization. We apply Theorem 2.1 to establish a criterion
for the factorization of representations of quasiprojective fundamental groups. In
the statement below, we have implicitly fixed an ample divisor A in X and we con-
sider the bilinear pairing defined in NS(X), the Néron-Severi group of X , defined
by (E,D) = E ·D · An−2 where n = dimX . According to Hodge index Theorem
this bilinear form has signature (1, rankNS(X)− 1).

Theorem 3.1. Let X be a projective manifold, D be a reduced simple normal
crossing divisor in X, and ρ : π1(X−D) → G be a representation to a simple non-
abelian linear algebraic group G with Zariski dense image. Suppose there exists E,
a connected component of the support D with irreducible components E1, . . . , Ek,
and an (analytic) open subset U ⊂ X containing E such that the restriction of ρ
to π1(U − E) has solvable image. Then either the intersection matrix (Ei, Ej) is
negative definite or the representation factors through an orbicurve.

Proof. If the intersection matrix (Ei, Ej) is negative definite then there is nothing
to prove. Throughout we will assume that (Ei, Ej) is not negative definite.

Let S be the Zariski closure of ρ(π1(U − E)) in G. Since G is simple and non-
abelian while ρ(π1(U − E)) is solvable, we have that S 6= G. Let µ be the derived
length of S and choose an element γ of the (µ+ 1)-th derived group of π1(X −D)
such that ρ(γ) 6= id.

We apply Malcev’s Theorem (any finitely generated subgroup of G is residually
finite) [22] to obtain a morphism ̺ : π1(X −D) → Γ to a finite group Γ such that
̺(γ) 6= id. This choice of ̺ implies that the derived length of ̺(π1(X −D)) is at
least µ+ 2. Since the derived length of S is µ, it follows that c = [̺(π1(X −D)) :
̺(π1(U − E))] is at least 3.

Let us now consider the covering p : X̺ → X , ramified along D, determined by
̺. Over X − D, p|p−1(X−D) is the étale covering of X − D determined by ker̺.

In particular p−1(X −D) is a smooth quasi-projective manifold. In general, X̺ is
projective but not necessarily smooth. Notice that by construction p−1(E) has at
least c = [̺(π1(X −D)) : ̺(π1(U −E))] ≥ 3 distinct connected components in X̺.

To be able to apply Hodge index Theorem, we now proceed to desingularize
X̺. In order to keep track of the intersection matrix (Ei, Ej), instead of applying
Hironaka’s Theorem we will construct a smooth variety Y together with a ramified
covering φ : Y → X which factors through p.
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To each irreducible componentDi ofD letmi be the order of ̺(γi) on a short loop

γi around Di. Let κ : X̃ → X be a finite ramified covering of X , with X̃ smooth,
such that κ∗(Di) = miD̃i where D̃i is a smooth and irreducible hypersurface and

D̃ =
∑
D̃i is a simple normal crossing divisor. For the existence of κ with the

above properties, we can use Kawamata coverings (see [17, Proposition 4.1.12]). If
we denote the ramification divisor of κ by R and its image under κ by ∆ then we
can also assume that ∆ +D is a simple normal crossing divisor on X .

The composition ̺◦κ∗ : π1(X̃−D̃) → Γ sends short loops around the irreducible

components of D̃ to the identity of Γ and therefore induces a representation ˜̺ :
π1(X̃) → Γ. Let π : Y → X̃ be the étale covering of X̃ determined by the kernel
of ˜̺. It is a projective manifold endowed with a ramified covering φ = κ ◦ π :
Y → X . Notice that φ is the ramified covering associated to the representation
̺×ψ : π1(X−(D+∆)) → Γ×Λ. Therefore φ : Y → X factors through p : X̺ → X
as wanted. Consequently φ−1(E) has (at least) as many connected components as
p−1(E).

Let B be one of the connected components of φ−1(E) with irreducible compo-
nents B1, . . . , Bℓ. Consider the ample divisor A′ := φ∗A on Y and define (·, ·)Y
using it. Notice that

(φ∗C1, φ
∗C2)Y = φ∗C1 · φ∗C2 · (φ ∗A)n−2 = deg(φ) · (C1, C2)

for any divisors C1, C2 in X . Since we are assuming that (Ei, Ej) is not negative
definite, there exists an effective divisor F supported by B with (F, F )Y ≥ 0. In
fact, there exists such divisor for each connected component of φ−1(E), therefore
at least three. Hence, we can produce F1, F2, F3 pairwise disjoint effective divisors
with connected supports on Y satisfying (Fi, Fi)Y ≥ 0 and (Fi, Fj)Y = 0. Since the
signature of the quadratic form (·, ·)Y is (1, rankNS(Y ) − 1), we deduce that all
the three divisors have proportional Chern classes; moreover, (Fi, Fi)Y = 0. Notice
also that either Fi ∩ B = ∅ or the support of Fi coincides with B. Indeed, if F is
an effective divisor with support contained in B, but not equal to B, then we can
choose an irreducible component of B, say C, not contained in the support of F
but intersecting it. Therefore (C,F )Y > 0 and, provided that (F, F )Y ≥ 0, for k
large enough C + kF is an effective divisor with (C + kF,C + kF )Y = (C,C)Y +
2k(C,F )Y + (F, F )Y > 0. But, doing so, we would produce new disjoint Fi’s with
(Fi, Fi)Y > 0, contradicting Hodge index Theorem.

We can apply Theorem 2.1 to ensure the existence of a curve Σ and a nonconstant
morphism with irreducible general fiber g : Y → Σ such that the divisors F1, F2,
and F3 are multiples of fibers of g. The morphism g is proper and open, thus all the
other connected components of φ−1(D) are mapped by g to points. Let us denote
by ρ̃ := ρ ◦ φ∗ : π1(Y − φ∗D) → G the lifted representation. We want first to prove
that ρ̃ factors through g. Note that ρ̃ also has Zariski dense image in G.

Let U ⊂ Y − φ∗D be a Zariski open subset such that the restriction of g to
U is a smooth and proper fibration, thus locally trivial in the C∞ category, over
Σo = g(U). Let also F be a fiber of g|U and H be the Zariski closure in G of
ρ̃(π1(F )), and consider the following diagram where we have used that π2(Σ

o) = 0
since Σo is a non-compact curve.
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1 H G

1 π1(F ) π1(U) π1(Σ
o) 1

g∗
ρ̃ ρ̃

From this, it is clear that π1(F ) is normal in π1(U), and since normality is a
(Zariski) closed condition, we deduce that H is a normal subgroup of G. Since G
is simple, we conclude that H must be trivial, i.e. the restriction of ρ̃ to U factors
through the curve Σo. Following the proofs of [11, Lemma 3.5] we see that this
suffices to obtain the factorization through an orbicurve. Still denote by g : Y → Σ
the factorization morphism.

We will now prove that the morphism g : Y → Σ descends to a morphism
f : X → C that factors the initial representation ρ. Here, we follow the argument
of [11, Lemma 3.6]. By Stein factorization Theorem, we can assume that g : Y → Σ
has connected fibers. Assume also φ : Y → X is Galois, with Galois group Γ; if

not, replace Y by some finite Galois covering φ̃ : Ỹ
ϕ→ Y

φ→ X (choose a finite
index normal subgroup of π1(X) that contains the subgroup defining φ). We note
that Y might become singular, but this does not matter in what follows. For any
γ ∈ Γ, we want to prove that γ permutes g-fibers, i.e. for a generic fiber F of g,
then g ◦ γ(F ) is a point.

Aiming at a contradiction assume g◦γ(F ) is not a point. Then g|γ(F ) : γ(F ) → Σ
is surjective and, since the representation ρ̃ factors through the curve Σ, it follows
that the representation ρ̃ has Zariski dense image in restriction to γ(F ). Strictly
speaking, in order to define the restriction ρ̃ to γ(F ), we have to move the base point
of the fundamental group (that we have omitted so far) to put it into γ(F ) and the
restriction depends on the way we do this, but different choices lead to conjugated
subgroups and the property of being Zariski dense is invariant by conjugation. Once
this has been done, the image H of ρ̃|γ(F ) must be of finite index in the image of
the factorizing representation π1(Σ) → G. By hypothesis G is simple and therefore
H is Zariski dense. On the other hand, since ρ̃ comes from a representation on
X = Y/Γ, it follows that ρ̃ must be trivial in restriction to γ(F ), since it is in
restriction to F . This contradiction shows that Γ, the Galois group of φ, permutes
the fibers of g : Y → Σ, and thus permutes the points of Σ (connectedness of fibers).
We get a morphism from X to the orbicurve C = Σ/Γ through which ρ factors. �

Remark 3.2. We can avoid the factorization through an orbicurve by instead
restricting the factorization to a Zariski open subset of X − D. In the opposite
direction, if we allow one dimensional Deligne-Mumford stacks with general point
having non trivial stabilizer as targets of the factorization, then we can replace sim-
ple linear algebraic groups by quasi-simple linear algebraic groups in the statement,
since our proof shows that for G quasi-simple, there exists a fibration such that the
Zariski closure of the images of fundamental groups of fibers of f under ρ are finite.

3.2. Rank-two representations at neighborhoods of divisors.

Proposition 3.3. Let X be a complex manifold, D a reduced and simple normal
crossing divisor in X, and ρ : π1(X − D) → SL2(C) a representation. Let E
be a connected divisor with support contained in D such that for each irreducible
component Ei of E and any short loop γi turning around Ei, the element ρ(γi) does
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not lie in the center of SL2(C), i.e. ρ(γi) is distinct from ± Id. Then there exists
an open subset U ⊂ X containing E such that the restriction of ρ to π1(U −D) has
solvable image.

Proof. Let E1, . . . , Ek be the irreducible components of E and γ1, . . . , γk be short
loops turning around them. We will denote the set of smooth points of D in Ei by
E◦

i , i.e. E
◦
i = Ei − ∪j 6=i(Ej ∩Ei).

Suppose first that ρ(γ1) is unipotent. Since, by hypothesis, it is different from
the identity, its action on C2 leaves invariant a one-dimensional subspace L. If U1

is a small tubular neighborhood of E1 and U◦
1 = U1−D then U◦

1 has the homotopy
type of a S1-bundle over E◦

1 and therefore the subgroup generated by γ1 in π1(U
◦
1 )

is normal. It follows that every γ ∈ π1(U
◦
1 ) also leaves L invariant. It follows that

the rank two local system induced by ρ admits a unique rank one local subsystem
determined by L on U◦

1 .
To analyze what happens at a non-empty intersection E1 ∩ Ej , we can assume

that both γ1 and γj have base points near E1 ∩ Ej . Thus γ1 commutes with
γj , both ρ(γ1) and ρ(γj) are unipotent, and they both leave L invariant. Thus
the rank one local subsystem determined by L on U◦

1 extends to a rank one local
subsystem on U◦

1 ∪ U◦
j . Repeating the argument above for the other irreducible

components E2, . . . , Ek, we deduce the existence of a neighborhood U of E such
that ρ(π1(U −D)) is contained in a Borel subgroup of SL2(C).

Similarly if ρ(γ1) is semi-simple, then the same holds true for every γi. Moreover,
the representation now leaves invariant the union of two linear subspaces L1 and
L2 (but does not necessarily leave invariant any of the two). We deduce that the
image of ρ restricted to a neighborhood of E minus D is contained in an extension
of Z/2Z by C∗. �

Remark 3.4. The proof above is very similar to the proof of [11, Lemma 4.5].

Proposition 3.5. Let X,D,E,U and ρ be as in Proposition 3.3. Assume also
that every short loop γ turning around any irreducible component of D − E which
intersects E has monodromy in the center of SL2(C). If the intersection matrix of
E is negative definite then the restriction of ρ to π1(U −D) is quasi-unipotent at
the irreducible components of E.

Proof. Let (F,∇) be a rank two vector bundle over U with a flat logarithmic con-
nection whose monodromy is given by ρ (see [15]). Since the monodromy is solvable,
around each point of U − D we have one or two subbundles of F which are left
invariant by ∇. Modulo passing to a double covering of U −D if necessary, we can
assume that (F,∇) is reducible, i.e. we have a subbundle F1 ⊂ F and a logarithmic
connection ∇1 on F1 such that ∇1 = ∇|F1

. The monodromy of ∇1 on a loop γ
around irreducible components of E equal to one of the eigenvalues of ρ(γ), say λγ .
If γi is a short loop around an irreducible component Ei of E then the residue of
∇1 along Ei satisfies

exp(2πiResE1
(∇1)) = λγ1

.

By the residue formula we can write

c1(F1) =
∑

ResE1
(∇1)Ei +

∑

ResDj
(∇1)Dj

where D1, . . . , Ds are the irreducible components of D intersecting E but not con-
tained in it. Since the eigenvalues around Dj are ±1, we have that ResDj

is a
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half-integer. Since c1(F1) lies in H
2(U,Z), we have that for every k

(c1(F1), Ek) =
∑

ResEi
(∇1)(Ei, Ek) +

∑

ResDj
(∇1)(Dj , Ek)

is an integer. Therefore the vector v = (ResE1
(∇1), . . . ,ResEk

(∇1))
t satisfies a

linear equation of the form A · v = b with A = (Ei, Ej) and 2b ∈ Zk. Since
A has integral coefficients and is negative definite, it follows that v is a rational
vector. Therefore the restriction of ρ to U −D is quasi-unipotent at the irreducible
components of E. �

Remark 3.6. The proof above is reminiscent of Mumford’s computation [26] of
the homology of the plumbing of a contractible divisor on a smooth surface.

3.3. Proof of Theorem A. Let ρ : π(X −D) → SL2(C) be a Zariski dense rep-
resentation which is not quasi-unipotent at infinity. Let E be a connected divisor
with support contained in |D| such that ρ(γ) 6= ± Id for every small loop around a
irreducible component of E, and ρ(γ) is not quasi-unipotent for at least one small
loop. If E is maximal with respect to these properties, Proposition 3.3 implies
that the restriction of the projectivization of ρ to a neighborhood of E is solvable,
and Proposition 3.5 implies that the intersection matrix of E is indefinite. Since
PSL2(C) is a simple group we can apply Theorem 3.1 to factorize the projectiviza-
tion of ρ through an orbicurve. Theorem A follows. �

4. Riccati foliations

Here we recall basic definitions and properties of Riccati foliations, and provide
some reduction lemmata. Throughout X will be a projective manifold.

4.1. Projective connections and Riccati foliations. Let E be a rank 2 vector
bundle on X and ∇ : E → E ⊗ Ω1

X(D) be a meromorphic connection on E with
(effective) polar divisor D: the operator ∇ is C-linear and satisfying Leibniz rule

∇(f · s) = f · ∇(s) + df ⊗ s for any local section s and function f.

In any local trivialization Z : E → C2, the connection is defined by

Z 7→ ∇Z = dZ +AZ with Z =

(
z1
z2

)

and A =

(
α β
ω −α

)

where A is a matrix of meromorphic 1-forms (sections of Ω1
X(D)).

The operator∇, being linear, commutes with the fiberwise action of Gm = C∗ on
E and induces a projective connection on the P1-bundle P(E). In local trivialization
above, after setting (1 : z) = (z1 : z2), the differential equation ∇Z = 0 takes the
form Ω = 0 for the Riccati 1-form

Ω = dz + ω0 + zω1 + z2ω2

with (ω0, ω1, ω2) = (ω, δ − α,−β). Any two connections (E,∇) and (E′,∇′) in-
duce the same projective connection if, and only if there is a rank 1 meromorphic
connection (L, ζ) such that (E′,∇′) = (L, ζ) ⊗ (E,∇). The connection (E,∇) is
actually determined by the (independant) data of the projective connection and
the trace connection (det(E), tr(∇)) (defined in local trivialization by d+ α+ β).
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The distribution Ω = 0 defines a (singular codimension one) foliation H on the
total space P of the P1-bundle if, and only if it satisfies Frobenius integrability
condition Ω ∧ dΩ = 0, which is equivalent to

(2)







dω0 = ω0 ∧ ω1

dω1 = 2ω0 ∧ ω2

dω2 = ω1 ∧ ω2

The flatness condition∇·∇ = 0 for the linear connection, which writes dA+A·A = 0
in local trivialization, is equivalent to (2) (flatness of the projective connection) and
the flatness d(α+δ) = 0 for the trace connection. In this case, ∇-horizontal sections
project onto the leaves of H.

We say that (P → X,H) is a Riccati foliation since over a general point of X ,
the P1-fiber is tranverse to H.

Remark 4.1. A codimension one foliation H on (the total space of a) P1-bundle
P → X is a Riccati foliation if and only if it is tranverse to the generic P1-fiber.
Indeed, in local trivialization, H must be defined by a 1-form P (x, z)dz + Ω̃(x, z)
polynomial in z. One easily checks that transversality, for finite z, implies that P
does not depend on the variable z. On the other hand, transversality near z = ∞
implies that Ω̃ has degree at most 2 in z.

One could define define Riccati foliations on arbitrary P1-bundles, not necessarily
of the form P(E). However, in this paper, all Riccati foliations are defined on
projectivized vector bundles P(E). In particular, they are birationally equivalent to
the trivial bundle X × P1 where all above formula makes sense globally; moreover,
they come from the sl2-connection on X × C2 obtained by setting α+ δ = 0.

The (effective) polar divisor (H)∞ of the Riccati foliation is defined as the direct
image under π : P → X of the tangency divisor between H and the vertical
foliation defined by the fibers of π. It corresponds to the polar divisor of Ω in
local trivialization. We have (∇)∞ ≥ (H)∞ since the trace tr(∇) may have more,
or higher order poles; however, in the sl2-case, the two divisors coincide.

The monodromy representation of the Riccati foliation (P → X,H) is the repre-
sentation

ρH : π1(X \ |(H)∞|) −→ PSL2(C)

defined by lifting paths on X \ |(H)∞| to the leaves of H. We note that ρH is just
the projectivization of the linear monodromy of ∇.

4.2. Riccati defined by a closed 1-form. Let us start with two criteria.

Lemma 4.2. Let (P,H) be a Riccati foliation over a projective manifold X. If there
exists a birational map Φ : P 99K P distinct from the identity such that Φ∗H = H
and π ◦Φ = π then there exists a generically finite morphism of degree at most two
f : Y → X such that f∗(P,H) is defined by a closed rational 1-form.

Proof. Since Φ commutes with projection π : P → X it follows that over a general
fiber of π, Φ is an automorphism. Let F = {z ∈ P − indet(Φ)|Φ(z) = z} be the
set of fixed points of Φ. Since we are dealing with a family of automorphism of P1,
the projection of Z to X is generically finite of degree one or two. Assume first
that the degree is one. Then we can birationally trivialize P in such a way that F
becomes the section at infinity and Φ is of the form z 7→ z + τ for some τ ∈ C(X).
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Let Ω = dz + ω0 + ω1z + ω2z
2 be a rational form defining H. The invariance of H

under Φ reads as

Ω ∧ Φ∗Ω = 0 ⇐⇒ ω2 = 0 and ω1 = −d log τ ⇐⇒ d(τΩ) = 0 .

If the degree of π|Z is two then after replacing X by (the resolution of) a ramified
double covering we can assume that P is trivial and that Φ is given by z 7→ λ(x)z.
The invariance of H under Φ reads as

Ω ∧ Φ∗Ω = 0 ⇐⇒ ω0 = ω2 = dλ = 0 ⇐⇒ d(z−1Ω) = 0 .

This concludes the proof of the lemma. �

Lemma 4.3. Let (P,H) be a Riccati foliation over a complex manifold X. Let
H ⊂ P be a H-invariant (maybe singular) hypersurface which intersects the generic
fiber of P → X at 2 ≤ n <∞ distinct points.

• If n ≥ 3, then H has a (non constant) meromorphic first integral.
• If n = 2, maybe passing to a two-fold cover X ′ → X, then H is defined after
a convenient bundle trivialization by Ω = dz

z
+ ω with ω a closed 1-form.

In particular, the monodromy of H is virtually abelian.

Since H is H-invariant, the intersection set between H and a fiber must be
(globally) invariant by the monodromy group computed on the same fiber. For
n = 2, this implies that the monodromy is dihedral, and for n > 2, that it is finite.
The conclusion of the Lemma is much stronger in case H is irregular, since H could
have no monodromy but transcendental leaves in that case.

Proof. Maybe passing to a finite cover X ′ → X , we can assume that H splits into
n meromorphic sections. For n ≥ 3 one can send three of them to z = 0, 1,∞
and observe that their H-invariance implies ω0 = ω1 = ω2 = 0. Therefore, z is a
first integral and all leaves have algebraic closure. For n = 2 one can send the two
sections to z = 0 and z = ∞ and we get that the Riccati 1-form defining H takes
the form dz + ωz; Frobenius integrability implies dω = 0. �

Let us now describe Riccati foliations defined by closed 1-forms.

Proposition 4.4. Let (P,H) be a Riccati foliation over a complex manifold X. If
H is defined by a closed 1-form Ω on P , then:

• either H has a (non constant) meromorphic first integral,
• or after a convenient bimeromorphic bundle trivialization, we have

(3) Ω = c

(
dz

z
+ ω

)

or Ω = dz + ω

with ω a meromorphic closed 1-form on X and c ∈ C∗.

Proof. Since Ω is closed, the support H of the divisor div(Ω) is H-invariant. The
hypersurface H intersects the generic fiber of P → X in n ≥ 1 distinct points
(1-forms have non trivial divisor on P1). If n ≥ 3, then H has a first integral.

If n = 2, then H splits into the union of two meromorphic sections, H0 and H∞

say; indeed, either they are zero and polar locus of Ω, or they are both simple pole,
but with opposite residue. After trivialization of P sending them to z = 0 and
z = ∞ respectively, we get that H is defined by a closed 1-form Ω′ := dz

z
+ ω; but

Ω = f · Ω′ is closed as well, which implies that f is a first integral. We are thus in
one of the two items depending on f is constant or not.
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Finally, when n = 1, we can assume H = {z = ∞} and we get that Ω =
f(dz + ω0 + zω1 + z2ω2) restrict to the generic fiber as c · dz, with c ∈ C∗. This
means that f does not depend on z and, by gauge transformation z 7→ cz, we can
assume f = 1. The 1-form Ω is closed if, and only if, dω0 = ω1 = ω2 = 0. �

4.3. Generically finite morphisms and factorizations. In order to prove The-
orems C and D, it will be useful to blow-up the manifold X and pass to a finite
cover in order to simplify the foliation. At the end, we will need the following
descent lemma to come back to a conclusion on X .

Proposition 4.5. Let (P,H) be a Riccati foliation over X and assume that
f∗(P,H) is not defined by a closed rational 1-form for any dominant morphism

f : Y → X. If the pull-back ϕ∗(P,H) via generically finite morphism ϕ : X̃ → X
factors through a curve, then the same holds true for (P,H).

Proof. It is very similar to the proof of [11, Lemma 3.6]. Maybe composing by a
generically finite morphism, we can assume that

(1) ϕ is Galois in the sense that there is a finite group G of birational trans-

formations acting on X̃ and acting transitively on a general fiber;
(2) there is a morphism f̃ : X̃ → C̃ with connected fibers and a Riccati foliation

(P̃0, H̃0) over C̃ such that its pull-back on X̃ is birationally equivalent to

(P̃ , H̃) := ϕ∗(P,H).

In consequence, for any g ∈ G, g∗(P̃ , H̃) is birationally equivalent to (P̃ , H̃) and the

Riccati foliation (P̃ , H̃) factors through f̃ ◦ g : X̃ 99K C̃. Consider a general fiber Z

of f̃ . The Riccati foliation (P̃ , H̃)|Z restricted to Z is birationally equivalent to the
trivial Riccati foliation on Z, and thus admits a rational first integral. If the map
f̃ ◦ g were dominant in restriction to Z, this would imply that (P̃0, H̃0) also has a

rational first integral, and the same for (P̃ , H̃) and (P,H), contradiction. Thus g

(and G) must permute general fibers of f̃ and acts on C̃. Moreover, g∗(P̃0, H̃0) is

birational to (P̃0, H̃0) for all g ∈ G. Lemma 4.2 implies that over each g : X̃ 99K X̃

there exists a unique birational map ĝ : P̃ 99K P̃ such that ĝ∗H̃ = H̃, and a similar
statement holds true for the action of G on C̃. Therefore, we get an action of G on
the diagram

P̃ //

��

P̃0

��

X̃
f̃

// C̃

which preserves the Riccati foliations. Passing to the quotient, we get a commuta-
tive diagram

P //

��

P0

��

X
f

// C

where P0 99K C has P1 as a general fiber. Moreover, the quotient foliation H0 on
P0 is transverse to the general fiber and thus of Riccati type. �
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4.4. Monodromy and factorization. We say that a Riccati foliation (P,H) has
regular singularities when it can be locally induced by a flat meromorphic linear
connection having regular singularities in the sense of [15, Chapter II]. Like in the
linear case, any two Riccati foliations (P,H) and (P ′,H′) having regular singulari-
ties have the same monodromy if and only if there exists a birational bundle map
φ : P 99K P ′ such that φ∗H′ = H, see [14, Lemma 2.13]. In particular, if the
monodromy factors through a curve, then so does the Riccati foliation. The next
proposition, borrowed from [14, Proposition 2.14], tells us what remains true in the
irregular case.

Proposition 4.6. Let (P,H) be a Riccati foliation over X. Suppose there exists a
morphism f : X → C with connected fibers such that the polar divisor (P)∞ of P
intersects the general fiber of f at most on regular singularities; assume moreover
that the monodromy representation ρ of P factors through f , i.e. there exists a
divisor F supported on finitely many fibers of f and a representation ρ0 from the
fundamental group of C0 = f(X − |(P)∞ + F |) to PSL2(C) fitting in the diagram
below.

π1(X − |(P)∞ + F |) PSL2(C)

π1(C0)

ρ

f∗ ρ0

Then (P,H) factors through f : X → C.

Remark 4.7. For a Riccati or a linear connection, to have regular singularities
is a local property which, if satisfied at some point of the polar divisor, remains
true all along the irreducible component. The support of the polar divisor splits
into regular and irregular components. The assumption in Proposition 4.6 that
the general fiber of f intersect only regular singularities just means that the fiber
intersects only regular components of the polar locus. Equivalently, the connection
(or Riccati foliation) restricts to the fiber as a regular singular connection (resp.
Riccati foliation).

4.5. Reduction to the two-dimensional case. The proposition below allows
us to reduce our study of Riccati foliations over arbitrary projective manifolds to
study of Riccati foliation over projective surfaces.

Proposition 4.8. Let (P,H) be a Riccati foliation over a projective manifold X and
assume it has no rational first integral. If the restriction of (P,H) to a sufficiently
general surface Z ⊂ X factors through a curve, then the same holds true for (P,H)
over X.

Proof. Denote by π : P → X the natural projection. Let (PZ ,HZ) be the restriction
of (P,H) to Z ⊂ X , i.e. PZ = P|π−1(Z) and HZ = H|π−1(Z). By assumption, we
get a rational bundle map φ : PZ 99K P0 such that φ∗H0 = HZ . This shows that
HZ contains a foliation by algebraic curves.

Applying the same argument for different choices of Z, we obtain that through
a general point p ∈ P the leaf of H through p contains an algebraic subvariety
Ap. It is known that the germ of leaf at a general point contains an unique germ
of algebraic subvariety maximal with respect to inclusion which turns out to be
irreducible, see the proof of [21, Lemma 2.4]. In our setup, we can thus assume
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that Ap has codimension at most two, since otherwise we would be able to enlarge
Ap by choosing an appropriate Z and applying the above argument.

It follows from [21, Lemma 2.4] that H contains a foliation G with all leaves
algebraic and having codimension at most two, and that H is the pull-back of a
foliation on a curve or a surface. In the former case, we get a rational first integral
for H, contradiction. Hence the codimension of G must be equal to two. Let now
L be a general leaf of G and consider its projection to X . Since H is tranverse to
the general of fiber of π, this projection is generically étale and π(L) is (a Zariski
open subset) of a divisor DL on X . The construction method of G makes clear
that π−1(DL) is invariant by G, and also that the restriction of H to π−1(DL) is
birationally equivalent to the foliation on a trivial P1-bundle over DL given by the
natural projection to P1. This is sufficient to show that H is the pull-back of a
Riccati foliation on a P1-bundle over a curve. �

5. Polar divisor and reduction of Riccati foliations

In the next two sections, we will restrict our attention to Riccati foliations over
projective surfaces. Proposition 4.8 allows to transfer the conclusions to Riccati
foliations over arbitrary projective manifolds. The general case will come back into
play only at the proofs of Theorems C and D.

Let (P,H) be a Riccati foliation over a projective surface S. In this section,
we review the local structure of (P,H) over a neighborhood of a general point of
(H)∞. Maybe blowing-up S and passing to a ramified cover, we arrive to a list of
nice local models that either are defined by a first integral, or factor through a curve
(a local version of Theorem C). Let us first recall the one dimensional classification
following the description of [6, Chapter 4, Section 1].

5.1. A review of the one dimensional case. Here, we follow the description of
[6, Chapter 4, Section 1] which corresponds to Levelt-Turritin normalization.

Proposition 5.1. Let (P → ∆,H) be a Riccati foliation over a disc 0 ∈ ∆ ∈ C

with a pole at 0. Maybe after passing to the two-fold cover

∆ → ∆ ; x 7→ x2,

after bimeromorphic bundle trivialization and change of x coordinate, the Riccati
1-form Ω defining the foliation fits into one of the following types:

• Ω = dz (trivial case)
• LogGm : Ω

z
= dz

z
+ λdx

x
, with λ ∈ C \ Z;

• LogGa : Ω = dz + dx
x
;

• Irreg: Ω = dz+ b(x)z2dx+
(

dx
xk+1 + λdx

x

)
z+ c(x)dx with b, c holomorphic,

k ∈ Z≥1 and λ ∈ C.

In cases LogGm and Irreg, λ is unique modulo addition by an integer, i.e.
is unique in C/Z; in case λ ∈ Z, we choose λ = 0 corresponding to the trivial
connection. In the irregular case, k is also unique and is called irregularity index

(or Poincaré-Katz rank) of the singular point (see [1]); the order of pole cannot
decrease by birational gauge transformation.

Remark 5.2. If we allow only birational bundle modification and change of coor-
dinate x, i.e. no ramification x 7→ x2, then we have to add the irregular ramified
case (called nilpotent in [6]) in the list of Proposition 5.1
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Re(x3) = 0

Sectors containing x
3
∈ iR>0

Re(x3) = 0

Sectors containing x
3
∈ iR<0

Figure 1.

• Irregram: Ω = dz +
(

z2−x
4xk − 1

2

)
dx
x
+ holomorphic with k ∈ Z≥1.

After ramification x = x̃2, we get a singularity of irregular (unramified) type Irreg

with irregularity index k̃ = 2k− 1; we say that this ramified singularity has irregu-
larity index 2k−1

2 . We will get rid of this kind of singular points by using ramified
coverings.

5.2. Irregular singular points and Stokes matrices. For details on what fol-
lows, see [24, Chapitre VI] or [19, Section 5]. In the normal form Irreg, coefficients
b(x) and c(x) can be choosen with arbitrary large vanishing order at x = 0; in fact,
these coefficients can be killed by formal (generally divergent) gauge transformation
and we arrive at the formal normal form

(4)
Ω

z
=
dz

z
+

dx

xk+1
+ λ

dx

x

In the setting of sl2-connections, this normal form writes

d+

(
− 1

2 0
0 1

2

)

(
dx

xk+1
+ λ

dx

x
).

In general this last normalization is not convergent. Nevertheless, there are 2k
closed sectors covering a neighborhood of 0 in the x-variable such that the differ-
ential equation is holomorphically conjugate to the normal form over the interior
of the sector, and the conjugation extends continuously to the boundary. Each
of the sectors contains exactly one of the arcs {x ∈ Dε|xk ∈ iR} − {0}. Over
each of these sectors there are only two solutions with well defined limit when x
approaches zero which correspond to the solutions {z = 0} and {z = ∞} for the
normal form. When we change from a sector intersecting xk ∈ iR>0 to a sector
intersecting xk ∈ iR<0 in the counter clockwise direction then we can continuously
extend the solution corresponding to {z = +∞} but the same does not hold true
for the solution corresponding to {z = 0}. Similarly, when changing from sectors
intersecting xk ∈ iR<0 to sectors with points in xk ∈ iR>0 in the counter clockwise
direction we can extend continuously the solution corresponding to {z = 0} but
not the one corresponding to {z = ∞}.

The obstructions to glue continuously the two distinguished solutions over ad-
jacent sectors are the only obstructions to analytically conjugate the differential
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equation to its normal form. These obstructions are codified by the Stokes matri-
ces (matrix point of view is more convenient here):

(
1 b1
0 1

)(
1 0
c1 1

)

· · ·
(
1 bk
0 1

)(
1 0
ck 1

)

(well-defined up to simultaneous conjugacy by a diagonal matrix). Precisely, bi’s
(resp. ci’s) are responsible for the divergence of the central manifold at z = ∞
(resp. z = 0). In other terms, the bi’s (resp. the ci’s) are the obstructions to
kill the coefficient b(x) (resp. c(x)). The monodromy around x = 0 is given by
multiplying this sequence of Stokes matrices (in this cyclic order) with the formal
monodromy

(
e−iπλ 0
0 eiπλ

)

(on the left or the right, as this does not matter up to diagonal conjugacy).
If x = ϕ(x̃) is a change of coordinate compatible with normal form Irreg, then

the linear part ϕ′(0) is a kth root of unity; it permutes the sectors, and consequently
induces a cyclic permutation of (indices of) Stokes matrices. All these classical
results can be found in [24, Chapitre VI.2]. Furthermore, one also finds there
explicit examples of Riccati foliations with non trivial Stokes matrices. The most
famous of them is undoubtly Euler’s equation that can be interpreted as a Riccati
foliation over P1 defined by the rational 1-form

dz − (z − x)

x2
dx.

The fiber over {x = 0} is irregular unramified with non-trivial Stokes, since the
weak separatrix through (0, 0) is divergent.

5.3. Local factorization at a generic point of the polar divisor. After re-
viewing the situation in dimension one we now move back to the two dimensional
case. Let (π : P → S,H) be a Riccati foliation over a surface S and let H ⊂ S
be an irreducible component of the polar divisor (H)∞. The hyperplane π−1(H)
can be H-invariant or not. In fact, the following assertions are equivalent (see [20,
Lemma 4.1])

• H is not H-invariant,
• the polar order of dΩ along H is strictly greater than the polar order of Ω.

Moreover, in this case, if H is smooth (e.g. if (H)∞ is simple normal crossing),
then we can make a bundle modification over H such that H is no more a polar
component of H.

The singular set of H is located over the polar divisor, and in restriction to
π−1(H), it consists in a curve Γ intersecting the generic fiber π−1(p), p ∈ H in 1 or
2 points. Vertical irreducibles components π−1(p) of Γ occur over singular points
of (H)∞ and so-called turning points for the connection. Let us call them special
points. The remaining (non vertical) part of Γ can consist in one or two sections,
or also of an irreducible double section. When H is H-invariant, then we have (see
[20, Lemma 4.1])

Lemma 5.3. Let H be an irreducible component of the polar divisor of (P,H). If
π−1(H) is H-invariant then the foliation H locally factors through a curve along H
minus its set of special points.
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The proof is given in Section 8.1. By local factorization we mean the following.
At any non special point p ∈ H , and for sufficiently small disk ∆ ⊂ S tranverse to
H at p, there exists a neighborhood U ⊂ S of p and a a submersion f : U → ∆
with f−1(p) = H ∩ U such that the Riccati (P,H)|U over the neighborhood U is
biholomorphically equivalent to the pull-back of its restriction to ∆ through a fibre
bundle isomorphism. In other words, the Riccati foliation is locally a product of
a Riccati foliation over a disk by a disk (or a polydisk in higher dimension). In
this situation, the isomorphism class of the Riccati foliation (P,H)|∆ is called the
transverse type of (P,H) along the component H .

Remark 5.4. For a linear sl2-connection (E,∇), the corresponding Riccati folia-
tion obtained by projectivization satisfies the assumption of Lemma 5.3 at a non
special point p ∈ H of the polar divisor if, and only if, the matrix connection A of
∇ in any local trivialization of E satisfies (dA)∞ ≤ (A)∞. In the case of simple
poles, this just means that the pole is actually logarithmic.

Corollary 5.5 ( [20] ). Let (π : P → S,H) be a Riccati foliation over a projective
surface S. Up to birational bundle modification, we can assume that all irreducible
components H of (H)∞ satisfy assumption of Lemma 5.3 and the Riccati foliation
locally factors through a curve at the neighborhood of any non special point p ∈ S.

We now explain how special points can be simplified by blowing-up.

5.4. Reduction of singularities for Riccati foliations over surfaces. The
following result will be proved in Appendix A.

Theorem 5.6. Let (π : P → S,H) be a Riccati foliation over a projective surface
S, with P a birationally trivial bundle. There exists a generically finite morphism
φ : S̃ → S (with S̃ smooth) and a birational bundle modification of the pull-back
bundle φ∗P such that the pull-back Riccati foliation has normal crossing divisor D,
and is locally defined over any point p ∈ |D| by a Riccati 1-form having one of the
following types:

(1) LogGm : Ω
z
= dz

z
+ λx

dx
x
, or Ω

z
= dz

z
+ λx

dx
x
+ λy

dy
y
;

(2) LogGa : Ω = dz + dx
x
, or Ω = dz + dx

x
+ λdy

y
;

(3) Irreg0: Ω
z
= dz

z
+ df

fk+1 + λx
dx
x
+ λy

dy
y
, where f = x or xy;

(4) Irreg: Ω = dz +
(

df

fk+1 + λdf
f

)

z +
(
b(f)z2 + c(f)

)
df , where f = x or xy.

In all cases, we have λ ∈ C∗, λx, λy ∈ C \ Z, b, c holomorphic and k ∈ Z≥1.

The first part of the proof has to be compared with Sabbah’s result in [31]. He
defines, for linear meromorphic connections, a notion of good formal model at a
point of a normal crossing divisor; this allows him to define Stokes matrices. Bad
formal models occur in codimension 2; they correspond to special points of Section
5.3. When the base manifold X is a surface (and up to rank 5 connection), Sabbah
proved that, maybe blowing-upX , we can assume that all points of the polar divisor
have good formal model; this was generalized by André in [1] for any rank.

In Appendix ??, for the surface and rank 2 case, we provide a proof using
an auxiliary (transversely projective) foliation, Seidenberg’s resolution of singular
points and the classification of reduced singular points of transversely projective
foliations by Berthier and the third author in [4, 35]. We use ramified coverings to
get rid of ramified irregular singular points.
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5.5. Closed 1-form and Stokes matrices. Let (P,H) be a reduced Riccati foli-
ation on a complex surface S. Let p ∈ S be a point of the support of the irregular
divisor I. The local model for H is either (3), or (4) in Theorem 5.6. In the first
case, H is defined by the closed 1-form Ω

z
of the model. In the second case, the

coefficients b(f), c(f) can be killed by a formal bundle transformation ẑ = φ̂(z), i.e.

with φ̂ ∈ PGL2(C[[f ]]). By this way, we arrive at the normal form

Ω̂ =
dẑ

ẑ
+

(
λ

f
+

1

fk+1

)

df

which is closed. From this formal model, one easily check that ẑ = 0 and ẑ = ∞
are the only formal sections on the bundle that are H-invariant (i.e. in restriction

to which Ω̂ identically vanish). Therefore, Ω has exactly two H-invariant formal
sections of P at p. The obstruction to the convergence of these two formal sections
is given by non diagonal coefficients of Stokes matrices.

Lemma 5.7. At a sufficiently small neighborhood Vp of p, the following assertions
are equivalent:

• H|Vp
is defined by a meromorphic closed 1-form on the restriction P |Vp

,
• there are two analytic sections Vp → P of the bundle that are H-invariant,
• Stokes matrices are all trivial at p.

The two analytic H-invariant sections induce the formal sections at p.

Proof. If H|Vp
is defined by a meromorphic closed 1-form Ω, then it follows from

Proposition 4.4 that Ω = c ·
(
dz
z
+ ω

)
after convenient bundle trivialization, with

ω a meromorphic closed 1-form on X and c ∈ C∗. Indeed, H cannot have a
meromorphic first integral over p since it is irregular, and it cannot be defined by
dz + ω since it has two H-invariant formal sections. Therefore, z = 0 and z = ∞
are two H-invariant sections which must coincide with the two formal ones at p.
Conversely, if H has two analytic sections, then it is defined by a closed 1-form (see
Lemma 4.3 and its proof). �

Remark 5.8. At the neighborhood of an irregular singular point p, a Riccati
foliation H has no other local (formal) multi-section than the two formal sections
discussed above. It has no meromorphic (formal) first integral and the unique

formal 1-form defining H is, up to a scalar constant, the 1-form Ω̂ above.

6. Irregular divisor

Throughout this section, (P,H) is a reduced Riccati foliation over a projective
surface S, i.e. H is as in the conclusion of Theorem 5.6. We study the irregular
part of the polar divisor of H. Precisely, since H is reduced, we have (H)∞ =
∑

i(1+ ki)Di where ki is the irregularity index of H along Di; in particular, ki = 0
precisely if H is logarithmic at the generic point of Di. Then we can decompose

(H)∞ = (H)∞,red + I

where (H)∞,red is the reduced divisor and I :=
∑

i kiDi denotes the irregular

divisor.
We note that the irregularity index ki must be constant along each connected

component of I, due to the local model of H at intersection points p ∈ Di∩Dj (see
(4) of Theorem 5.6).
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6.1. Self-intersection. We start by noticing that the irregular part of the polar
divisor of a reduced Riccati foliation has zero self-intersection.

Proposition 6.1. Let (P,H) be reduced Riccati foliation on a projective surface S.
Let D be a connected component of the irregular divisor I of H; then D2 = 0.

Proof. Although this is mainly a consequence of Proposition 6.2, we give a direct
and short proof using Camacho-Sad formula (see [6, Chap.2, sec.2]). Consider
an auxiliary foliation F on S defined as the pull-back of H by a general section
σ : S 99K P . Since D = kDred, then it is enough to check that Dred =

∑

iDi

has zero self-intersection. If p ∈ sing(F) ∩ |D|, then we can check from the list of
models of Theorem 5.6 that we have two possibilities:

• p belongs to the smooth part of |D| and is a saddle-node for F , with strong
separatrix contained in |D|; consequently, the Camacho-Sad index of F
along D is zero.

• p is an intersection point of two components Di and Dj and is a saddle for
F ; moreover, Camacho-Sad index is −1 for each separatrix.

Camacho-Sad formula yields

Di ·Di = −
∑

j 6=i

Di ·Dj

and we get

D ·D =
∑

i

Di ·Di +
∑

i6=j

Di ·Dj = 0

as wanted. �

6.2. Flat coordinates. It turns out that the irregular divisor has not only zero
self-intersection, but it also has torsion normal bundle. Indeed something even
stronger holds true as proved in the proposition below. Before to state it, we note
that the singular set sing(H) over the irregular divisor I consists of finitely many
P1-fibers, located over intersection points of the polar divisor, and a smooth curve
Z ⊂ π−1(I) on which π induces a 2-fold étale covering π|Z : Z → I. If we restrict
this picture to a connected component D of I, the curve Z|D may split as a union
of two sections, say Z0 and Z∞, or be irreducible (i.e. unsplit).

Proposition 6.2. Let (P,H) be a reduced Riccati foliation on a projective surface
S. Let D = k ·Dred be a connected component of the irregular divisor I. Then, the
normal bundle of Dred is torsion of order r dividing 2k. Assume now that the non
vertical part Z ⊂ sing(H) of the singular set splits over D. In this case, torsion r
actually divides k, and moreover

OS(rDred)|kDred
≃ OkDred

.

Proof. Take an open covering of a neighborhood of D by sufficiently small open
sets Vi on which H is defined by models of Theorem 5.6, for convenient analytic
coordinates xi, yi; the restriction |D| ∩ Vi is defined by {fi = 0} with fi = xi or
fi = xiyi. We can assume that intersections Vi ∩ Vj do not contain intersection
points of the polar divisor (H)∞. We want to prove that, on Vi ∩ Vj , we have

fi = aijfj + bijf
k+1
j

with constant a2kij = 1 and bij holomorphic; moreover, in the split case, we can

modify fi so that all akij = 1. This will prove the Proposition.
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We are going to work at the formal completion of V along D. Over Vi ∩ Vj , we
can choose formal coordinates zi and zj such that the foliation H is defined by the
closed formal 1-forms

Ωi =
dzi
zi

+

(

λ
dfi
fi

+
dfi

fk+1
i

)

and Ωj =
dzj
zj

+

(

λ
dfj
fj

+
dfj

fk+1
j

)

.

For instance, if H has model (3) on Ui, with fi = xiyi, and if Uj intersects xi = 0
and not yi = 0, then we have

dz

z
+

dfi

fk+1
i

+ λx
dxi
xi

+ λy
dyi
yi

=

(
dz

z
+ (λy − λx)

dyi
yi

)

+
dfi

fk+1
i

+ λx
dfi
fi

and we get the normal form Ωi by setting zi = z · exp((λy − λx) log(yi)) for a
convenient determination of the logarithm. We are obviously assuming that the
Vi’s have simply connected intersections, we omit details.

We claim that Ωi = ±Ωj over Vi ∩ Vj . Indeed, since Ωi and Ωj define the same
foliation, they must be proportional: we have Ωi = gijΩj for some (formal) function
gij . From closedness condition for these 1-forms, we deduce the gij must be a first
integral for H; therefore, gij is constant. Actually gij = ±1 since residues of non
vertical poles zi, zj = 0,∞ are already fixed to ±1.

If λ 6= 0, then Ωi = Ωj because of the sign of the residue over D. If λ = 0,
we note that (xi, zi) 7→ (axi, 1/zi) is an automorphism of H when ak = −1, that
permutes the two non vertical poles; it conjugates Ωi to −Ωi and change the sign
of the residues along non vertical poles. In the split case, the non vertical polar
locus splits into two disjoint components so that we can fix a priori the sign of the
residue.

From now on, we assume that we are in the split case, i.e. that Ωi = Ωj on
intersections Vi ∩Vj . Then, we must have zi = gij(xj , yj)zj for some non vanishing
function gij on Vi ∩ Vj . On the other hand, set fi = fij(xj , yj)fj for some non
vanishing function fij . Then we get

0 = Ωi − Ωj =
dgij
gij

+ λ
dfij
fij

+
1

fk
j

dfij

fk+1
ij

+

(

1

fk
ij

− 1

)

dfj

fk+1
j

We deduce that

gij = cij · exp
(

−
∫
(

λ
dfij
fij

+
1

fk
j

dfij

fk+1
ij

+

(

1

fk
ij

− 1

)

dfj

fk+1
j

))

for some constant cij ∈ C∗.

Notice that the integrand is the sum of the regular 1-form, λ
dfij
fij

, with

1

fk
j

dfij

fk+1
ij

+

(

1

fk
ij

− 1

)

dfj

fk+1
j

=
1

fk+1
ij

(

dfij

fk
j

+
(
fij − fk+1

ij

) dfj

fk+1
j

)

︸ ︷︷ ︸

Θ

.

Since gij has no essential singularities we deduce that Θ, the 1-form over braces,
cannot have poles.

Notice that the residue of fk
j Θ along {fj = 0} is nothing but fij−fk+1

ij mod fj.

Therefore fk
ij = 1 mod fj. It follows that the normal bundle ofD is torsion of order

r for some r dividing k.
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Now, let us write fij = aij(1 + bijf
n
j ) for some n > 0 and bij holomorphic (and

akij = 1). Then we get

Θ =
(n− k)aijbijf

n
j + o(fn

j )

fk+1
j

.

If n < k, then bij must vanish along D and we can set fij = aij(1 + b̃ijf
n+1
j ). By

induction, we arrive at n = k. This establishes the proposition. �

Remark 6.3. In the system of “transverse coordinates” fi : Vi → C constructed
along the proof, the Riccati foliation H|Vi

is also locally defined by

Ωi =
dzi
zi

+

(

bi(fi)zi + λ
1

fi
+

1

fk+1
i

+
ci(fi)t

zi

)

dfi

for holomorphic bundle coordinates zi, where bi, ci are holomorphic functions of
fi. We can assume the functions bi, ci vanishing at arbitrary high order along |D|.
Recall from Section 5.2 that the obstruction to make them just zero is given by the
non triviality of Stokes matrices. On Vi ∩ Vj we get

{
fi = αijfj + βijf

k+1
j

zi = γijzj

with αk
ij = 1 and βij ∈ OVi∩Vj

, γij ∈ O∗
Vi∩Vj

satisfying γij exp(βij)||D| ≡ 1.

Remark 6.4. Since transition functions {fij ∈ O∗
S(Vi ∩ Vj)} are equal to a kth-

root of the unity when restricted to |D|, we have an induced representation ψ :
π1(|D|) → C∗ taking values in values in the group of kth-roots of the unity, which
describe how the differentials dfi change when we follow closed paths along D.

6.3. Smooth fibration. We have just proved that a connected component D of
the irregular divisor I have local equations fk

i : Vi → C that patch together up
to order k, where k is the irregularity index. In the smooth C∞ setting, we can
modify these local equations so that they can patch together to define a fibration
on V having D as a singular fiber and which is smooth elsewhere.

Lemma 6.5. Let (P,H) be a reduced Riccati foliation on a projective surface S.
Let D be a connected component of the irregular divisor I like in Proposition 6.2.
Then there exists a C∞ map f : V → D defined on an analytic neighborhood V of
|D| such that:

• f induces a C∞ locally trivial fibration over D∗ = D \ {0},
• f coincides with local equations fk

i : Vi → C of Remark 6.3 up to order k.

Proof. The transition functions {fij ∈ O∗
V (Vi ∩ Vj)} of the proof of Proposition

6.2 define an element in H1(V,O∗
V ) which corresponds to OV (D). Let AV and A∗

V

denote, respectively, the sheaves of C∞ functions and of C∞ invertible functions.
Notice that H1(V,A∗

V ) is isomorphic to H2(V,Z), as AV has no cohomology in
positive degree (AV is a fine sheaf). Notice also that the restriction morphism
from H2(V,Z) to H2(|D|,Z) is an isomorphism since the inclusion of |D| in V is a
homotopy equivalence.

Since fk
ij ||D|∩Vi

= 1, the element {fk
ij} ∈ H1(V,O∗

V ) maps to the trivial element

of H1(V,A∗
V ) ≃ H2(V,Z) ≃ H2(|D|,Z). Thus we can find non-vanishing C∞-

functions {gi ∈ A∗
V (Vi)} such that fk

ij =
gi
gj
. Moreover, we can choose the functions
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gi satisfying gi||D|∩Vi
= 1. Our assumptions imply that we can further assume that

the function fk
ij are constant equal to one when restricted to D.

Therefore we can define a C∞ function f : V → C by the formulas f|Vi
=

(fi)
k/gi. The function f clearly satisfies f−1(0) = |D| set-theoretically. We claim

that, after perhaps shrinking V , the critical set of f is contained in |D|. At a
neighborhood of a smooth point of |D| the function f is a power of a submersion. At
a neighborhood of a singular point of H , the function f is of the form h(x, x, y, y)xy
and therefore df = xydh + h(ydx + xdy) . Since this expression has an isolated
singularity at zero (the singular point of |D|) it follows that the critical set of
f is indeed contained in D. Replacing V by f−1(Dε) for a sufficiently small ε
we have just proved the existence of a C∞ proper map f : V → Dε from V to
the disk of radius ε which maps |D| to the origin in Dε and when restricted to
V − |D| becomes a locally trivial fibration over D∗

ε. Moreover, the construction of
f respects the representation ψ, in the sense that R|F : F → |D|, the restriction
of the deformation retract R : V → |D| to a general fiber F of f , has monodromy
given by ψ. �

6.4. Closed 1-form and Riccati. Here follow a semi-local version of Lemma 5.7

Proposition 6.6. Let D be a connected component of the irregular divisor of (P,H)
and V be a sufficiently small neighborhood of |D|. Maybe after passing to a étale
two-fold cover V ′ → V , the following assertions are equivalent:

• H|V is defined by a meromorphic closed 1-form on the restriction P |V ,
• there are two analytic sections V → P of the bundle that are H-invariant,
• at some point p ∈ |D| (in fact any), the local model for H is of type Irreg0,
or of type Irreg with trivial Stokes (see Theorem 5.6).

Proof. Like in the beginning of Section 6.2, let us consider the non vertical compo-

nent Z of sing(H) over D: the projection π induces a two-fold étale cover Z
2:1→ |D|.

The monodromy of π|Z is a representation π1(|(H)∞|) → Z/2Z and since |(H)∞|
and S have the same homotopy type, it induces a representation π1(S) → Z/2Z.
After passing to the étale covering determined by this representation we can assume
Z has two distinct irreducible components.

If the local model for H has trivial Stokes at p (which is automatic for type
(1)), then it has two invariant analytic sections. By using local trivializations of
H given in Section 5.3 (see also Remark 6.3), we see that this property propagates
all along |D|. By the way, we get a two-fold section of the bundle; since they
are locally attached to the two irreducible components of Z, we get actually two
distinct global H-invariant sections. It follows from Lemma 4.3 that H is defined
by a meromorphic closed 1-form. Finally, it follows from Lemma 5.7 that, if defined
by a closed 1-form, then Stokes are trivial at any point p ∈ |D|. �

Remark 6.7. When the formal invariant is not trivial, λ 6= 0, then the two-fold
cover V ′ → V is not necessary in Proposition 6.6.

Corollary 6.8. Let (P,H) be an irregular Riccati foliation on a connected complex

surface S. If there exists a generically finite morphism f : S̃ → S such that f∗(P,H)

is defined by a closed rational 1-form, then there exists another one f ′ : S̃′ → S of
degree at most two with the same property.
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Proof. The pull-back f∗(P,H) must be also irregular. At the neighborhood of a
smooth point p of the irregular divisor, the closed 1-form defining f∗(P,H) must
coincide with the formal model dẑ

ẑ
+
(
λ
x
+ 1

xk+1

)
dx. In particular, the invariant sec-

tions ẑ = 0,∞ extend as an invariant double-section of the bundle. After pushing-
forward by f , we get an invariant multi-section of P → S for H, which intersects a
generic fiber at least twice. We conclude applying Lemma 4.3: by irregularity, H
cannot have non constant meromorphic first integral and we are again in the case
of a double section. �

6.5. Monodromy around the irregular divisor.

Proposition 6.9. Let (P,H) be a reduced Riccati foliation on a complex surface S.
Let D be a connected component of the irregular divisor I of the form D = kDred.
Then, there is a neighborhood V of |D| in S in restriction to which the monodromy of
(P,H) is virtually abelian. More precisely, maybe after passing to an étale covering

Ṽ → V of degree two, at least one of the following assertions holds true.

(1) The Riccati foliation H is defined by a closed meromorphic 1-form over V .
(2) The supports of (H)∞ and D coincide on V , and there exists a C∞-fibration

f : V −D → D∗ which factors the monodromy.

Proof. Let V be the connected component of a union of sufficiently small tubular
neighborhood of the irreducible component of (H)∞ containing D, and let R : V →
|D| be a deformation retract. Since the statement is local, from now on H will
be seen as a Riccati foliation defined over V . Like in the first part of the proof of
Proposition 6.6, maybe passing to an étale covering Ṽ → V of degree two, we may
assume that the singular locus sing(H) consists in two disjoint sections D → P |D,
and fibers over singular points of D.

If (H)∞ and D have distinct support in V , this means that the model at the
intersection point p is (3) in Theorem 5.6. Following Proposition 6.6, we are in case
(1) of the statement.

Let us now analyze the case where (H)∞ and D have the same support. In this
case, P satisfy all the assumptions of Proposition 6.2. If all the Stokes matrices
along D are trivial, then we can conclude as in the previous case, since we do have
two meromorphic sections on a neighborhood of |D|.

Let us finally assume that Stokes matrices are non trivial at a smooth point
x0 ∈ D. Let Σ be a germ of curve transverse to D at x0. Let π : P → V be the
natural projection. The restriction ofH to π−1(Σ), is a Riccati foliation over Σ with
an invariant fiber {x0}×P1 having two saddle-nodes over it. As explained in Section
5.2, if k is the order of D at x0 then there are 2k closed sectors on Σ, such that
over the interior of each of them, the Riccati foliation is analytically conjugated to
dz
z
+ dx

xk+1 + λdx
x

and the conjugation extends continuously to the boundary. Over
each of these sectors there are exactly two leaves with distinguished topological
behavior: the closure of each of these distinguished leaves intersect the central fiber
{x0} × P1 at a unique point.

Let SΣ be the interior of one of these sectors. The local triviality of H along
the smooth part of D, and the local normal form of H at the singularities of D,
allow us to construct an open set S ⊂ V − |D| which extends SΣ and over which we
never lose sight of the two distinguished leaves of the restriction of H to π−1(SΣ).
In particular, the restriction of the monodromy representation of P to S has its
image (up to conjugation) contained in C∗ as H over S has two distinguished leaves
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Re(x3) = 0
SΣ

The sector SΣ. The intersection of S and Σ.

Figure 2.

which are not permuted because of the assumption on sing(H). We can choose SΣ

sufficiently small in such a way that the intersection of the resulting open set S

and the initial transversal Σ has r = #ψ(π1(|D|)) distinct connected components,
where ψ : π1(|D|) → C∗ is the unitary representation defined in Remark 6.4.

By construction the set S has the same homotopy type as a general fiber of
f|V−|D| : V − |D| → D∗. Therefore π1(S) is a normal subgroup of π1(V − |D|).
If we do this construction choosing base points at two adjacent sectors with non
trivial Stokes transition matrix, we conclude that indeed the monodromy of P on S

is trivial since a nontrivial Stokes matrix at one hand conjugates the corresponding
monodromy representations, and at the other hand it does not respect the fixed
points of the two monodromy representations. We conclude that in the presence of a
nontrivial Stokes matrix the monodromy factors through f∗ : π1(V −|D|) → π1(D

∗)
as wanted. �

Lemma 6.10. Let (P,H), D, k, and r be as in the statement of Proposition 6.9.
Assume that H is not given by a closed meromorphic 1-form at the neighborhood
V of D. If r = k, i.e. if OS(jDred)|kDred

is not isomorphic to OkDred
for every j

satisfying 0 < j < k and OS(kDred)|kDred
≃ OkDred

then the monodromy of (P,H)
is non-trivial.

Proof. Notation as in the proof of Proposition 6.9. Let γ ∈ |D| a loop such that
ψ(γ) = exp(2πi/k) for the unitary representation ψ : π1(|D|) → C∗ defined in
Remark 6.4. We can lift γ to an open path γ̃ in a region S such that the initial and
final points lie in two consecutive small sectors. Moreover, since H is not given by a
closed meromorphic 1-form we can assume that at least one of the two distinguished
leaves over the initial sector is not a distinguished leaf for the final sector. Closing
the path γ̃ using an arc on the transversal Σ, we obtain a path in V − |D| with
non-trivial monodromy. �

7. Structure

7.1. Proof of Theorem C. Let (P,H) be a Riccati foliation over the projective
manifold X with irregular singular points. Assuming that it is not defined by a
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closed 1-form after a finite covering, our aim is to prove that it factors through a
curve.

According to Proposition 4.8, it suffices to prove the factorization of (P,H) in
restriction to a general surface S ⊂ X . Furthermore, Proposition 4.5 allows us to
assume that the singularities of (P,H) are as in the conclusion of Theorem 5.6.

Let D be a connected component of the irregular divisor I: we have D = kDred.
It follows from Proposition 6.1 that D ·D = 0, and from Proposition 6.9 that the
monodromy of (P,H) is virtually abelian at the neighborhood V of D.

First case: the global monodromy of (P,H) on S is not virtually abelian. In
particular, it is strictly larger than the local monodromy around D:

ρ(π1(S − |(H)∞|)) 6= ρ(π1(V −D)).

Then arguments used in the proof of Theorem 3.1 show that D is the fiber of
a fibration f : S → C (we use extra topology in S − V to construct a ramified
cover with several disjoint copies of D and then apply Theorem 2.2). Like in the
proof of Theorem 3.1, the monodromy of a general fiber of f is a normal subgroup
of the global monodromy group and is therefore trivial. Thus, the monodromy
representation factors through f . But the general fiber of f does not intersect the
irregular divisor and we can apply Proposition 4.6 to conclude that the Riccati
foliation factors as well.

We can now assume that the global monodromy is virtually abelian, and after
passing to a finite covering, that it is torsion free. Thus the global monodromy
either is cyclic abelian and infinite, or trivial.

Second case: the global monodromy of (P,H) on S is cyclic abelian and infinite.
In conclusion (2) of Proposition 6.9, the monodromy factors, around D, through

the C∞-fibration f : V −D → D∗: the monodromy is infinite cyclic. If the represen-
tation takes values in Ga we compose a suitable multiple of it with an exponential
so that we can assume that it takes values in Gm and is still infinite. Consider the
Deligne logarithmic flat connection (L,∇) realizing this representation. By con-
struction, the residue of ∇ along an irreducible component Ei of the polar divisor
takes the form kiλ+ni, where λ is an irrational number (the monodromy is infinite)
and ki, ni are integers. The residue formula gives

0 =
∑

i

ResEi
c1(Ei) + c1(L) =

(
∑

i

kic1(Ei)

)

λ +

(
∑

i

nic1(Ei) + c1(L)

)

.

Since λ is irrational, each term in parenthesis is zero and we get in particular

0 =
∑

i

kic1(Ei) = c1(D)− c1(E)

where D is our connected component of the irregular divisor, and E is a divisor
disjoint from D and contained in |(H)∞|. After splitting E = E+ − E− with E+

and E− effective, we know that E+ and E− have non positive self-intersection by
Hodge index Theorem. On the other hand, the equality

0 = D ·D = E ·E = E+ ·E+ − 2E+ ·E− + E− ·E−

forces each term, a priori ≤ 0, to be zero. Finally, again by Hodge index Theorem,
E+ and E− must be disjoint and have Chern classes proportional to the Chern class
of D. We can apply Theorem 2.3 to produce a fibration.
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We have just proved, in the case monodromy is abelian and infinite, that D is
fiber of a holomorphic fibration f : S → C. It remains to show that the Riccati
foliation H factors. When the monodromy is trivial along a generic fiber of f ,
this clearly follows from Proposition 4.6. If not, we have infinite monodromy along
fibers and, by looking at a fiber close to D, we must be in case (1) of Proposition
6.9. In particular, the monodromy takes values in C∗, i.e. has two fixed points.
Over each fiber, we have exactly two sections of the P1-bundle P that are invariant
by the Riccati foliation H. The sections are tangent to the Riccati foliation H
and also to the pull-back to P of the foliation defined by the fibration. We obtain
two curves in the Hilbert scheme of P . Since tangency to foliations define closed
subscheme of the Hilbert scheme, these two curves have Zariski closure of dimension
one (recall that over each fiber of f we have exactly two sections of P ). Thus they
spread two surfaces, sections of P , which are invariant by H. After birational
bundle transformation, we can assume P = S × P1

z (the trivial bundle) with the
two sections {z = 0} and {z = ∞}. Then the Riccati 1-form Ω = dz+αz2+βz+γ
defining H satisfies α = γ = 0 and integrability condition shows that Ω

z
is closed,

contradiction.
Third case: the monodromy of the Riccati foliation H is trivial. Like in the

previous case, if H is defined by a closed 1-form at the neighborhood of D, then
it extends as a global 1-form except if there is another irregular polar component,
in which case we get a fibration by Theorem 2.2 and H factors by Proposition
4.6. On the other hand, if we are in case (2) of Proposition 6.9, then Lemma 6.10
implies that r < k, i.e. the order of the normal bundle of Dred is strictly smaller
than the multiplicity of the irregular divisor. The existence of a fibration with a
fiber supported on |D| follows from Theorem 2.3, and the Riccati foliation factors
according to Proposition 4.6. �

7.2. Proof of Theorem E. Let (E,∇) be a flat meromorphic sl2-connection on
X . In the case (E,∇) is regular, then the conclusion of Theorem E directly follows
from Corollary B. Let us assume (E,∇) irregular.

Let us consider P := PE the P1-bundle associated to E; horizontal section of
∇ induce a Riccati foliation H on π : P → X which is irregular by assumption.
We can apply Theorem C to the projective connection/Riccati foliation (P,H) and
discuss the two possible conclusions.

Assume first that H is defined by a closed 1-form (maybe passing to a finite
covering of X). After birational bundle transformation, we can assume P0 = X×P1

and H0 defined by

Ω0 =
dz

z
+ 2ω or Ω0 = dz + ω

with ω a closed 1-form on X (see Proposition 4.4). These Riccati foliations are
induced by those explicit connections of Corollary E (1):

∇0 = d+

(
ω 0
0 −ω

)

or ∇0 = d+

(
0 ω
0 0

)
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on the trivial bundle E0 := OX ⊕ OX . There is a birational bundle trivialization
E 99K E0 making commutative the diagram

E
φ

//

��

E0

��

P // P0

Obviously, φ∗∇ is projectively equivalent to one of the models ∇0: φ∗∇ = ∇0 ⊗ ζ
with (OX , ζ) a flat rank one connection overX , birationally equivalent to the trivial

connection by construction. This means that one can write ζ = d+ df
f

and, maybe

tensoring by the logarithmic connection (OX , d + 1
2
df
f
) (whose square has trivial

monodromy), we get equality φ∗∇ = ∇0. Note that, passing to the 2-fold covering
defined by z2 = f , the connection ∇ is birationally gauge equivalent to ∇0 (without
tensoring).

Assume now that (P,H) is birationally gauge equivalent to the pull-back
f∗(P0,H0) of a Riccati foliation over a curve, f : X 99K C with P0 = C × P1.
Denote by ∇0 the unique sl2-connection on the trivial bundle E0 over C induc-
ing the projective connection (P0,H0). Then (E,∇) is birationally equivalent to
f∗(E0,∇0) ⊗ (OX , ζ) with ζ logarithmic rank one connection having monodromy
in the center of SL2(C). �

8. Transversely projective foliations

8.1. Basic Lemma. Let F be a transversely projective foliation on a projective
manifold X defined by a triple (ω0, ω1, ω2). The Riccati foliation H defined on
X × P1 by

dz + ω0 + zω1 + z2ω2 = 0

is integrable (2)






dω0 = ω0 ∧ ω1

dω1 = 2ω0 ∧ ω2

dω2 = ω1 ∧ ω2

and the foliation F is defined by restricting H to the section σ : X → P given by
z = 0. Another projective triple (ω′

0, ω
′
1, ω

′
2) defines the same transversely projective

foliation, i.e. the same foliation F with the same collection of local first integrals
at a general point of X if, and only if, there are rational functions a, b on X such
that a 6≡ 0 and

(5)







ω′
0 = aω0

ω′
1 = ω1 − da

a
+ 2bω0

ω′
2 = 1

a

(
ω2 + bω1 + b2ω0 − db

)

(see [32]). This exactly means that the Riccati foliation H′ defined by Ω′ = dz̃ +
ω′
0 + z̃ω′

1 + z̃2ω′
2 is derived by gauge transformation 1

z
= a 1

z̃
+ b. The following is

well known (cf [32, Chap. II, Prop. 2.1, p.193] and [10, Lemma 2.20]).

Lemma 8.1. If F is defined by a closed 1-form ω, dω = 0, then up to gauge
transformation (5), the Riccati foliation H is defined by

Ω = dz + ω(1 + φz2) where φ is a first integral for F .
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Proof. One can first write ω = aω0 for some rational function a and use gauge
transformation (5) to set (ω0, ω1, ω2) = (ω, 0, ω′

2). Indeed, once ω0 = ω is closed, we
deduce from (2) that ω0∧ω1 = 0, and therefore ω1 = bω0 for some rational function
b; consequently, ω1 can be killed by gauge transformation. Finally, integrability
condition gives dω′

2 = ω ∧ ω′
2 = 0, which means that ω′

2 = fω and d(fω) = 0 for
some rational function f . The latter condition, together with closedness of ω, gives
df ∧ ω = 0, i.e. f is a first integral for F . �

Corollary 8.2. If F is defined by a closed 1-form, then H is also defined by a
closed 1-form, or factors through a curve. If F admits a rational first integral, then
H factors through a curve.

Proof. If F admits a rational first integral f , then after resolution of indeterminacy
points of f by blowing-ups X̃ → X , Stein Factorization gives a fibration f̃ : X̃ → C
over a curve with connected fibers coinciding generically with leaves of F̃ . Applying
Lemma 8.1 to ω = df , we get that φ = φ(f̃ ) and H actually factors through f̃ . If
F is now defined by a closed 1-form ω, but does not admit a rational first integral,
then applying Lemma 8.1, we get that φ = c ∈ C is a constant, and H is defined
by dz

1+cz2 + ω which is closed. �

Remark 8.3. Statements similar to Lemma 6.10 and Corollary 8.2 hold with the
very same proofs in the local setting, replacing rational functions and 1-forms by
their meromorphic analogues.

Proof of Lemma 5.3. At a generic point p ∈ π−1(H), the foliation H is smooth
and vertical: let p0 = π(p) be the projection and σ : (X, p0) → P be a germ of
section transverse to H. The induced transversely projective foliation is regular
and therefore admits a holomorphic first integral. By the local version of Corollary
8.2, H locally factors through a curve. �

8.2. Proof of Theorem D. Under previous notations, we now apply to (P,H)
our results on projective connections (Corollary B and Theorem C, or equivalently
Theorem E). There are three cases.

First case. There is a generically finite morphism f : Y → X such that f∗H is
defined by a closed 1-form Ω. The pull-back f∗F on Y is still defined by restricting
the Riccati foliation to the pull-back section σ̃ : Y → f∗P ; it is therefore also
defined by restricting the closed 1-form Ω to the section.

Second case. There is a map f : X → C to a curve and a Riccati H0 on
P0 = C × P1 such that (P,H) is equivalent to f∗(P0,H0) by birational bundle
transformation. We thus deduce a map Φ : P 99K P0 such that H = Φ∗H0.
Consider the composition Φ ◦ σ : X → P0. Then either it is dominant and F is the
corresponding pull-back of H0, or the image is a curve and fibers force the leaves
of F to be algebraic.

Third case. There exists a rational map f : X 99K H to a polydisk Shimura
modular orbifold such that (P,H) is equivalent to the pull-back of one the tauto-
logical Riccati foliations (Pρ := H×ρ P

1,Hρ) by birational bundle transformation.
Again, we deduce a map Φ : P 99K Pρ such that H = Φ∗Hρ, and considering
Φ ◦ σ : X → Pρ, we can conclude as before. �

8.3. Theorem D implies Theorem E. Although we have followed the other
direction, it is interesting to notice that our results on projective (or sl2) connections
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and transversely projective foliations are actually equivalent. Indeed, given say a
Riccati foliation (π : P → S,H), with P birationally trivial, we can take a general
rational section σ : S → P and consider the induced transversely projective foliation
F := σ∗H. Applying Theorem D to F gives the following possibilities.

First case. The foliation F has a rational first integral. By Corollary 8.2, we
deduce that H factors through a curve.

Second case. There is a generically finite morphism f : Y → X such that f∗F
is defined by a closed 1-form ω, but F does not admit a rational first integral. By
Corollary 8.2, we deduce that f∗H is also defined by a closed 1-form.

Third case. Maybe after blowing-up S, there is a morphism f : S → P0 :=
C × P1 and a Riccati foliation H0 on P0 such that F = f∗H0. Then, considering
now the pull-back φ∗H0 the fiber product:

P
φ

//

π

��

P0

π0

��

X
f

// C

we get another transversely projective structure for F . If F is not defined by a
closed 1-form up to finite cover, then its projective structure is unique, and H is
birational to H0, thus pull-back from a curve.

Fourth case. There exists a polydisk Shimura modular orbifold H and a rational
map f : X 99K Pρ := H×ρ P

1 towards one of its tautological Riccati foliations such
that F = f∗Hρ. Like in the previous case, we can prove that F is defined by
a closed 1-form after a finite cover (and go back to the first two cases), or H is
birationally equivalent to the pull-back of (Pρ,Hρ) by f . �

9. Examples

We will now present some examples which show that our results are sharp.

Example 9.1. Let Y be a projective manifold and consider a representation ρ :
π1(Y ) → (C,+). It determines a cohomology class [ρ] ∈ H1(Y,C). If its image
under the natural morphism H1(Y,C) → H1(Y,OY ) is non zero then it determines
a non trivial extension 0 → OY → E → OY → 0, endowed with a flat connection
with monodromy given by

(
1 ρ
0 1

)

.

The projectivization X = P(E) is a P1-bundle over Y with a Riccati foliation
defined by a closed rational 1-form ω with polar divisor equal to 2∆, where ∆ is
image of the unique section Y → P(E). If P is the trivial P1-bundle P over X then
we have a family of Riccati foliations Hλ, λ ∈ C, on it defined by

dz + ω(1 + λz2).

The Riccati foliation Hλ is irregular for λ 6= 0, does not factor through a curve, and
its irregular divisor is not a fiber of a fibration. If we take Y equal to an elliptic
curve, then X−|∆| is nothing but Serre’s example of Stein quasi-projective surface
which is not affine.

Example 9.2. Let n ≥ 2 and let X be the quotient of Hn by cocompact torsion-
free irreducible lattice Γ ⊂ PSL2(R)

n. The natural projections Hn → H define n
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codimension one smooth foliations on X which are transversely projective (indeed
transversely hyperbolic). Contrary to what have been stated by the second author
and Mendes in [25, Theorem 1], countably many leaves of these foliations may have
nontrivial topology (with fundamental groups isomorphic to isotropy groups of the
action of Γ on the corresponding one dimensional factor of Hn), but the very general
leaf is biholomorphic to Hn−1. The maximal principle tells us that the general leaf
cannot contain positive dimensional subvarieties, and consequently the foliations
are not pull-backs from lower dimensional manifolds.

Again the assumptions on Γ can be considerably weakened. All we have to ask is
that Γ is an irreducible lattice of PSL2(R)

n for some n ≥ 2. Notice that the rigidity
theorem of Margulis (resp. the classification of representations by Corlette and
Simpson) implies that all these lattices are commensurable to (resp. conjugated to a
subgroup of) arithmetic lattices of the form U(P,Φ)/± Id for some totally imaginary
quadratic extension L of a totally real number field F , some rank two projective
OL-module P and some skew Hermitian form Φ. Besides the n representations
coming from the n projections πorb

1 (X) ≃ Γ ⊂ PSL2(R)
n → PSL2(R), we also

have [L : Q]− 2n representations of πorb
1 (X) with values in PSL2(C) which do not

factor through lower dimensional projective manifolds. The associated P1-bundles
are birationally trivial (since the underlying representation is a Galois conjugate of
the representations coming from the transversely projective foliations on X defined
by the submersions Hn → H), and by taking a rational section we can produce
further examples of transversely projective foliations on X which do not factor.
Although the underlying representations are Galois conjugate to the representations
in PSL2(R), the topology of the Riccati foliations over X associated to embeddings
σ : L → C for which

√
−1Φ is definite is quite different. In the former case the

Riccati foliation leaves invariant two open subsets, corresponding to the complement
of P1(R) ≃ S1 in P1, while in the latter case the Riccati foliation is quasi-minimal:
all the leaves not contained in π−1((H)∞) are dense in the corresponding P1-bundle.

Explicit examples of foliations on P2 defined by the submersions H2 → H with
Γ ⊂ PSL2(2,R)

2 and Γ isomorphic to PSL2(OK) (and certain subgroups) have been

determined by the second author and Mendes in [25] (K = Q(
√
5)) using the work

of Hirzebruch on the description of these surfaces, and by Cousin in [12], see also

[13], (K = Q(
√
3)) using an algebraic solution of Painlevé VI equation.

Example 9.3. The degree of the generically finite morphism in Assertion (1)
of Theorem D cannot be bounded, even if we restrict to transversely projective
foliations on a rational surface. Let Cd = {xd + yd + zd = 0} ⊂ P2 be the
Fermat curve of degree d ≥ 3. On Sd = Cd × Cd consider the action of Z/dZ
given by ϕ(x, y) = (ξdx, ξdy) where ξd is a primitive d-th root of the unity. Let
ω ∈ H0(Sd,Ω

1
Sd
) be a general holomorphic 1-form satisfying ϕ∗ω = ξdω. The in-

duced foliation is invariant by the action of Z/dZ, but the 1-form ω is not. The
quotient of Sd by Z/dZ is a rational surface R and the foliation induced by ω on
R is transversely projective (indeed transversely affine). The monodromy group
is an extension of the group of d-th of unities by an infinite subgroup of (C,+).
Explicit equations for birational models of these foliations on P2 can be found in
[29, Example 3.1].
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Appendix A. Reduction of singularities of Riccati foliations

This appendix is devoted to the proof of Theorem 5.6.
Let (π : P → S,H) be a Riccati foliation over a projective surface S. One

can first blow-up S until we get a simple normal crossing polar divisor (H)∞,
and then apply elementary transformations over irreducible components of (H)∞
until we minimize order of poles on each component. This is explained in [20].
Then all components of poles satisfy assumptions of Lemma 5.3 and, outside of
special π-fibers, the Riccati foliation locally factors into one dimensional models of
Proposition 5.1 or Remark 5.2. In particular, we can define the irregularity divisor
as I =

∑

i kiDi where Di run over irreducible components of (H)∞, and ki ∈ 1
2Z≥0

is the irregularity index.
To get rid of special points, we use the fact that π : P → S is birationally trivial

and choose a rational section σ : S 99K P which is not invariant by H. Consider
the transversely projective foliation F = σ∗H and apply Seidenberg’s Theorem:
maybe blowing-up S, we can now assume that F has only reduced singular points.
Following the classification of Berthier and the third author [4, 35], reduced singular
points of transversely projective foliations fall into one of the following types:

(1) F admits the holomorphic first integral:
• First integral: ω = d(xpyq) with p, q ∈ Z>0;

(2) F is defined by a closed 1-form ω (but without first integral):

• Linear: ω = dx
x
+ λdy

y
with λ ∈ C−Q;

• Saddle-node: ω = dy
y
+ dx

xk+1 + λdx
x

with λ ∈ C;

• Resonant saddle: ω = dy
y
+ df

fk+1 + λdf
f

with f = xpyq and λ ∈ C;

(3) F is the pull-back of a singular point of a Riccati foliation by a ramified
cover:

• Riccati saddle-node: ω = dy +
(
b(x)y2 + ( 1

xk+1 + λ
x
)y + c(x)

)
dx;

• Bernoulli saddle-node: ω = dz +
(
b(x)z2 + ( 1

xk+1 + λ
x
)z
)
dx with

z = yν ;

• Resonant saddle: ω = dz +
(

b(f)z2 + ( 1
fk+1 + λ

f
)z + c(f)

)

df with

f = xpyq and z = yν ;

In case (1), the local version of Corollary 8.2 tells us that H factors through f ,
and we can reduce it to the models given by Proposition 5.1.

In case (2), where F is defined by a closed 1-form ω, we can similarly reduce H
to either Ω = dz + ω, or dz

z
+ λω with λ ∈ C∗.

Finally, in case (3), we again see that H factors through f = x or f = xpyq,

reducing to the model Ω = dz+
(

b(f)z2 + ( 1
fk+1 + λ

f
)z + c(f)

)

df and F is defined

by z = y or z = yν .
We summarize all the possibilities studied above in the next result.

Theorem A.1. Let (π : P → S,H) be a Riccati foliation over a projective surface

S, with P a birationally trivial bundle. There exists a birational morphism φ : S̃ →
S (with S̃ smooth) and a birational bundle modification of the pull-back bundle φ∗P
such that the pull-back Riccati foliation has normal crossing divisor D, and is locally
defined over any point p ∈ |D| by a Riccati 1-form having one of the following types:

(1) LogGm : Ω
z
= dz

z
+ λx

dx
x
, or Ω

z
= dz

z
+ λx

dx
x
+ λy

dy
y
;

(2) LogGa : Ω = dz + dx
x
, or Ω = dz + dx

x
+ λdy

y
;
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(3) Irreg0: Ω
z
= dz

z
+ df

fk+1 + λx
dx
x
+ λy

dy
y
, where f = x or xpyq;

(4) Irreg: Ω = dz+
(

df
fk+1 + λdf

f

)

z+
(
b(f)z2 + c(f)

)
df , where f = x or xpyq;

(5) Irregram: Ω = dz + (z2 + xǫ1yǫ2φ(f)) df
xp̃yq̃fk −

(

p̃dx
x
+ q̃ dy

y
+ k df

f

)

with f

and φ holomorphic, φ(0) 6= 0, ǫ1, ǫ2 = 0, 1 and (p, q) = (2p̃− ǫ1, 2q̃ − ǫ2).

We note that the meromorphic gauge reduction process of Proposition 5.1 which
is a priori local can be done globally along irreducible components of the polar
divisor. Indeed, it can be checked on the proof of Proposition 5.1 that when the
polar divisor is not minimal along an irreducible component Di, then the non
vertical part of the singular set of H is a (smooth) section; after an elementary
transformation along it (blowing-up the section and then contracting the strict
transform of π−1(Di)), the polar order decreases. After a finite number of steps,
the polar order is minimal, and all local models reduce to those of Proposition 5.1
by local biholomorphic bundle trivialization. For details, see the proof of the main
result of [20].

The last step towards Theorem 5.6 consists in passing to use a ramified covering
in order to kill ramifications. Going back to the irregular divisor I =

∑

i kiDi,
we can choose positive integers mi such that miki = k for some fixed positive
integer k (a common multiple of all ki’s). We now consider a Kawamata covering

([17, Proposition 4.1.12]): there exists a ramified cover f : S̃ → S with S smooth

such that f∗Di = miD̃i for some smooth reduced divisors D̃i on S̃, and
∑

iDi

has simple normal crossings. One easily check from models of Theorem A.1 that
they are stable under ramified covers in variables x or y, and that ramifying at
order mi along Di multiply the irregularity index by mi. Finally, after covering,
the irregularity index is k all along the irregular divisor. In particular, there are no
more ramified components, and we have no more to consider the model Irregram

of Theorem A.1. �
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