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Abstract

Selecting between different dependence structures of a hidden Markov random field can be very

challenging, due to the intractable normalizing constants in the likelihoods and the sum over all possible

latent random fields. Approximate Bayesian Computation (ABC) algorithms provide a model choice

method in the Bayesian paradigm. The scheme compares the observed data and many numerical sim-

ulations through summary statistics. When the Gibbs random field is directly observed, Grelaud et al.

(2009) exhibit sufficient summary statistics that immediately guarantee the consistency of the ABC algo-

rithm. But, when the random field is hidden, those statistics are not sufficient anymore. We provide new

summary statistics based on the geometry of the image, more precisely a clustering analysis of pixels. To

assess their efficiency, we also derive a conditional misclassification rate evaluating the power of ABC

algorithms which may be of independent interest.

Keywords: Approximate Bayesian Computation, model choice, hidden Gibbs random fields, summary

statistics, misclassification rate

1 Introduction

Gibbs random fields are polymorphous statistical models that are useful to analyse different types of spatially

correlated data such as shades of grey on a rectangular grid of pixels for digital images. The autobinomial

model (Besag, 1974) and its particular case the Potts one, is used to describe the spatial distribution of

discrete random variables (shades of grey or colors) on a lattice (grid of pixels).

Despite the wide range of applications, Gibbs random fields present major difficulties from an inference

point of view (Grelaud et al., 2009, Friel, 2012, 2013, Everitt, 2012, Cucala and Marin, 2013). Selecting

between two different dependence structures can be very challenging, due to the normalizing constants in the

likelihoods which are intractable for all but very small lattices. When the Gibbs random field is observed,

this problem can be termed ”doubly intractable” since the likelihood, but also, the posterior probability are

not available. Here, since the random field is not directly observed like for hidden Markov models, the

complexity of the problem grows to become ”triply intractable”. Currently, there exists very few works on

that model choice problem (Forbes and Peyrard, 2003, Friel et al., 2009, Cucala and Marin, 2013).

Reeves and Pettitt (2004) and Friel and Rue (2007) present a recursive algorithm to compute the normal-

izing constants for bicolor images when the number of pixels is small. But for larger images, the algorithm

is not manageable anymore and approximate methods should be used.
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Approximate Bayesian Computation (ABC) (Rubin, 1984, Tavaré et al., 1997, Pritchard et al., 1999,

Marin et al., 2012, Baragatti and Pudlo, 2014) can provide a model choice method in the Bayesian paradigm

(Grelaud et al., 2009, Didelot et al., 2011). The algorithm might be seen as an accept-reject method rejecting

simulated datasets which are far from the observed data. Indeed, we simulate jointly a model index m from

a prior π(·), a parameter value θm from the prior πm(·) and a dataset y from the Gibbs distribution fm(·|θm).

The scheme compares the observed data yobs with many such numerical simulations y through summary

statistics S (y). In that case, we obtain a Monte Carlo approximation of the posterior probabilities of each

model, namely

P(M = m|S (yobs)) ∝

∫
fm(yobs|θm)πm(θm)dθm.

Variational approches to Bayesian model selection have been presented in the literature. We mention

for example the work of Caimo and Friel (2013), based on a reversible jump Markov chain Monte Carlo

algorithm (Caimo and Friel, 2011), in the context of exponential random graph models.

It is straightforward to show that the consistency of the ABC algorithm holds if the summary statistics

S (y) are sufficient with respect to the model choice problem. Otherwise summary statistics have to be

chosen carefully (Robert et al., 2011, Marin et al., 2014). When the Gibbs random field is directly observed,

Grelaud et al. (2009) exhibited sufficient summary statistics directly based on the potential function of the

Gibbs distributions. Thus,

P(M = m|yobs) = P(M = m|S (yobs)), for all m.

However when the random field is hidden, this property does not hold anymore due to lack of sufficiency

of the above summary statistics. Robert et al. (2011) showed that the use of ABC with insufficient summary

statistics to Bayesian model choice problems can lead to inaccurate results: it may pick the wrong model.

Although, the claim of Robert et al. (2011) should be nuanced since the example detailed in the paper is

very specific and despite this first warning, the authors developped some further results. Indeed Marin

et al. (2014) provide generic conditions – much weaker than sufficiency – implying the consistency of the

ABC procedure. Beside those results, Blum (2010a) and Fearnhead and Prangle (2012) have shown that

the quality of this approximation decreases with the dimension of S (y). Thus, a balance should be found

between low dimensional and informative set of summary statistics. ABC then appears as a major method

to manage intractable likelihood. Prangle et al. (2013) proposed a scheme to build automatically statistics

S (y) with good properties but based on a first ABC run that can be time consuming. Whereas some other

works have been done to select the vector S (y) among a large set of summary statistics (Blum, 2010b, Blum

et al., 2013), we aim here to select the most informative statistics within many low dimensional vectors.

This paper sets new summary statistics based on the geometry of the image, more precisely connected

components of pixels, and assesses their efficiency for an ABC model choice between hidden random fields

models. Since the conditions given by Marin et al. (2014) to insure consistency are very difficult to check

in practice, we provide a new method based on a conditional misclassification rate to validate the whole

procedure.

The paper is organized as follows: Section 2 briefly presents hidden Potts model and the ABC algorithm

for model selection. Then, Section 3 introduces our geometric summary statistics and the estimation proce-

dure of the conditional misclassification rate used to assess their efficiency. Finally, Section 4 presents some

numerical results.
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2 ABC model choice for hidden Gibbs random fields

Let us begin with an introduction on ABC model choice methods. We focus here on the specific case of

hidden Potts model.

2.1 Hidden Potts model

Consider a finite set of sites S = {0, . . . ,N − 1}. At each site i ∈ S we observe a random variable xi taking

values in {0, . . . ,K − 1}, where K is a known integer. Let x denote the random process (x0, . . . , xN−1). When

modeling an image, the site i is called a pixel, N is the number of pixels, K is the number of colors and xi

corresponds to the color of the pixel i. Consider an undirected graph G which defines an adjacency relation

on the set of sites S: i and j are adjacent if and only if there is an edge between i and j in the graph G.

The Potts model with parameter β defined on the graph G has density

π(x|G, β) =
1

Z(G, β)
exp


β
∑

i
G
∼ j

1{xi = x j}


,

where the sum i
G
∼ j ranges the edges of G. The normalizing constant Z(G, β) – intractable except for small

value of N and K –, also called the partition function is

Z(G, β) =
∑

x∈X

exp


β
∑

i
G
∼ j

1{xi = x j}


. (2.1)

But in our case, the random field x is not directly observed. We assume that the observations y = (yi)i∈S

are conditionally independent given x. The conditional distribution of the observation is given by π(y|x) =∏
i P(yi|xi), where P is the noise distribution. The one we set is given by

Pα(yi|xi) =
exp {α(21{xi = yi} − 1)}

exp(α) + (K − 1) exp(−α)
,

and extends the one proposed by Everitt (2012) when K = 2. Note that conditionally on xi and yi , xi, yi is

then uniformly distributed over {0, . . . ,K − 1} \ {xi}.

Hence the likelihood of the hidden Potts model with parameter β on the graph G and noise distribution

Pα, denoted HPM(G, α, β), is given by

f (y|α, β,G) =
∑

x∈X

π (x|G, β) πα(y|x).

2.2 Bayesian model choice

Our purpose is to select the hidden Gibbs random field that better fits a given picture yobs within two models

M4 andM8 whereM4 is a HPM(G4, α, β) with a given prior π4 on (α, β) andM8 is a HPM(G8, α, β) with a

given prior π8 on (α, β) defined more precisely in the following paragraph. The edges of the graphs G4 and

G8 respectively link the four and the eight directly adjacent neighbours (see Figure 1).

Selecting a model m is driven by the posterior probability of both modelsM4 andM8. Say thatΘm ⊂ R
2

is the parameters space of model m, m ∈ {M4,M8}. The Bayesian analysis of a dataset yobs requires defining
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(a) (b)

Figure 1: Underlying graph G of model HPM(G, α, β). (a) The four closest neighbour graph G4 defining

modelM4. (b) The eight closest neighbour graph G8 defining modelM8

a prior distribution on the index model π(M = m) and prior distributions πm(θ) on parameter θ = (α, β) ∈ Θm.

Thus, the posterior probability of model m is given by

π (m|y) ∝ π(M = m)

∫

Θm

fm(y|θ)πm(θ)dθ.

In our case,

π (m|y) ∝

∫

Θm

1

Z(G, β)

1

C(α)
Q(y,G, θ)πm(θ)dθ, (2.2)

where Z(G, β) is the partition function defined by (2.1), C(α) =
{
exp(α) + (K − 1) exp(−α)

}N and Q(y,G, θ) =
∑

x∈X exp
{
β
∑

i
G
∼ j
1{xi = x j} + α

(
2
∑N−1

i=0 1{xi = yi} − N
)}

.

To estimate the posterior probability, we thus face a triple intractable problem. The summation over all

the latent fields x ∈ X , that appears in Z(G, β) and Q(y,G, θ), generally involves too many terms (Kn) to

be calculated explicitly or numerically and the integral on Θm might be hard to manage. Thus (2.2) can not

be computed for realistic number of sites, instead approximate methods have to be used(see Section 2.3).

In the same spirit as the forward-backward algorithm for hidden Markov model (Rabiner, 1989), Friel and

Rue (2007) provide a recursive algorithm based on Reeves and Pettitt (2004) to compute (2.2). However,

the algorithm is manageable only if the total number of pixels does not exceed 400 pixels with the simplest

2-color model ; in addition, the complexity of the algorithm grows exponentially with the number of colors.

2.3 Approximate Bayesian Computation for model choice

Since its introduction by Tavaré et al. (1997), ABC algorithms have aimed at estimating posterior probabili-

ties in settings where the likelihood is intractable. We refer the reader to published reviews on ABC (Marin

et al., 2012, Baragatti and Pudlo, 2014) and focus on the model choice procedure.

ABC simulates data y for many parameter values θm under each model m (Algorithm 1) which are then

compared to the observed data yobs. Algorithm 1 produces the ABC reference table, that is a large set of

particules (m, θ, y) drawn from the Bayesian model. We note itD =
{(

m j, θ j, S
(
y j

))
| j = 1, . . . , nREF

}
.
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Algorithm 1: Simulation of ABC reference table

Result: A reference table of size nREF

for j← 1 to nREF do

draw m from the prior π;

draw θ = (α, β) from the prior πm;

draw y from the likelihood fm(·|θ);

compute S (y);

set (m j, θ j, S (y j))← (m, θ, S (y));

end

Among the particles ofD, ABC keeps the ones from models under which S (y) is close to S (yobs) in the

sense of a distance ρ, where S is a vector of summary statistics, see Algorithm 2.

Algorithm 2: ABC model choice algorithm returning nPOST particles

Data: A reference tableD of size nREF,

A function S (·),

A number of particles selected nPOST.

Result: A sample of size nPOST distributed according to the ABC posterior approximation

sortD according to ρ(S (y j), S (yobs));

keep the nPOST first particles;

Denore ǫ the quantile of the distance, that is the disance of the nth
POST

closest particle. The accepted

particles m j at the end of the Algorithm 2 are distributed (Biau et al., 2013) according to

π

(
m

∣∣∣∣∣∣ ρ(S (y j), S (yobs)) < ǫ

)
,

and

π̂ABC

(
m

∣∣∣∣ S
(
yobs

))
=

nREF∑

j=1

1{m j = m, ρ(S (y j), S (yobs)) < ǫ}

nREF∑

j=1

1{ρ(S (y j), S (yobs)) < ǫ}

is a Monte Carlo estimate of the posterior probability of modelMm.

Note that when ǫ → 0, ABC cannot recover anything better than π
(
m

∣∣∣∣ S (y) = S (yobs)
)
. For sufficient

summary statistics S , this has no consequence on the approximation of the posterior distribution since

π

(
m

∣∣∣∣ S (y) = S (yobs)
)
= π

(
m

∣∣∣∣ y = yobs
)
. When the Gibbs random field is directly observed, Grelaud et al.

(2009) show that the concatenation of sufficients summary statistics R for each model is sufficient for the

model choice. They are defined by

R(G4, y) =
∑

i
G4
∼ j

1{yi = y j} and R(G8, y) =
∑

i
G8
∼ j

1{yi = y j}, (2.3)

and represent the number of neighbouring pixels exhibiting the same color in each model. However those

summary statistics are not sufficient anymore if the Gibbs random field is hidden. Thus, we introduce new

summary statistics based on pixel clusters to reduce the lack of sufficiency of R.
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3 Pixels cluster and conditional misclassification rate

The following part sets new summary statistics based on pixel clusters and asses their efficiency thanks to a

new validation procedure.

3.1 Some geometrics summary statistics

Consider a picture y and a graph G. We define the graph Γ(G, y) induced by G on y as follows: there is an

edge between pixels i and j in Γ(G, y) if and only if there is an edge between i and j in G and if both pixels

share the same color, that is yi = y j.

Subsequently, we introduce a set of four summary statistics based on pixel clusters. We remind that the

connected components of a graph Γ are all the subgraphs formed by the equivalence classes of the adjacency

relation of Γ. In other words, a connected component of a graph Γ is a subgraph of Γ in which any two

pixels are connected to each other by a path, and which is connected to no other vertices of Γ. We then

define two summary statistics taking values in N: T (G, y) is the number of connected components of Γ(G, y)

and U(G, y) is the size of the biggest component of Γ(G, y). Thus, given any picture y, the set of geometric

summary statistics we consider is T (G4, y), U(G4, y), T (G8, y) and U(G8, y). See Figure 2 for an example on

a bicolor (red/black) picture y.

Γ(G4, y) Γ(G8, y)

Figure 2: The induced graph Γ(G4, y) and Γ(G8, y) on a given bicolor image y of size 5×5. The four summary

statistics on y are thus T (G4, y) = 7, U(G4, y) = 12, T (G8, y) = 4 and U(G8, y) = 16

This paper compares three nested sets of summary statistics S 1(y) ⊂ S 2(y) ⊂ S 3(y) in order to see if

we get more information on the hidden random field by adding some geometric summary statistics. The

first set is S 1(y) = {R(G4, y); R(G8, y)} where R is defined by (2.3). The second set is S 2(y) = S 1(y) ∪

{T (G4, y); T (G8, y)} and the third one is S 3(y) = S 2(y) ∪ {U(G4, y); U(G8, y)}. Very informally, we believe

that the geometry of Potts models with graphs G4 and G8 are different in term of such clusters, and that the

noise does not destroy this signal.

3.2 Conditional or local misclassification rate

It is straitghtforward looking at Algorithm 2 that each set S ℓ(y) defines a different ABC procedure. The

question is then: what is the most relevant set of summary statistics for our model choice purpose? Given

a reference table and a set of summary statistics, for any new observed data y, ABC can predict the index

of the model with a maximum ABC a posteriori rule, say m̂ℓ(y). Facing some observed data yobs, the user

of an ABC algorithm is interested in the error he commits believing m̂ℓ(y
obs) computed with the reference

table he has at his disposal, and a given set of summary statistics S ℓ(y). In this paragraph, we define an error,
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say τℓ(y
obs), or more precisely a misclassification rate given yobs, in order to evaluate the local efficiency of

ABC. Then we propose an estimation algorithm of this conditional error rate.

In what follows, we work given an ABC reference table D. Then, with any new data y∗ in Y , the

ABC algorithm with a set of summary statistics S ℓ(y) can predict an index model using the value of m that

maximises the ABC estimates of the posterior probability of model Mm. The predicted index might be seen

as the following, perfectly deterministic function of y∗, namely

m̂ℓ(y
∗) = arg max

m

π̂ABC(m|S ℓ(y
∗)). (3.1)

First, we introduce the following function of m∗ and y∗ ∈ Y as

τ(m∗, S ℓ(y
∗)) = P

(
m̂ℓ(Y) , m∗

∣∣∣∣∣ρ
(
S ℓ(Y), S ℓ(y

∗)
)
≤ η

)
(3.2)

where P denotes an integral when Y is distributed according to the marginal distribution (in y) of the Bayesian

model. We shall remark here that the radius η of the neighborhood of S ℓ(y
∗) can be fixed independently of

the quantile ǫ used in Algorithm 2.

Actually, we can see the prediction of m as a machine learning problem. Assume η = 0, the well known

misclassification rate used in machine learning to estimate the accuracy of m̂ℓ is then

τℓ =
∑

m

"
τ(m, S ℓ(y)) π(M = m)πm(θ) fm(y|θ) dθdy, (3.3)

that is to say the expected value of τ(m, S ℓ(y)) with respect to the Bayesian model. We advocate here in

favor of a conditional version of this error given S ℓ(y
∗), namely,

τ(S ℓ(y
∗)) =

∑

m

π(m|S ℓ(y
∗))τ(m, S ℓ(y

∗)). (3.4)

Explicitly we integrate τ(m, S ℓ(y)) over the distribution of the Bayesian model given S ℓ(y) = S ℓ(y
∗). The

marginal in m of this conditional distribution is clearly π(m|S ℓ(y
∗)).

Algorithm 3: Estimation of τ(m∗, S ℓ(y
∗)) given an ABC reference tableD

Data: an ABC reference tableD,

a function S (·),

a number of particles selected nNEI

Result: τ̂ (m∗, S (y∗)) defined in (3.2)

choose randomly a particule (mi, θi, yi) inD;

set (m∗, θ∗, y∗)← (mi, θi, yi);

remove (mi, yi) fromD;

foreach particle y j among the nNEI nearest particles from y∗ do

compute m̂ j with Algorithm 2 using the summary statisctics S ℓ andD;

end

compute τ̂ (m∗, S (y∗))←
1

nNEI

∑

nNEI nearest particles

1

{
m̂ j , m∗

}
;

Algorithm 3 estimates the function τ(m∗, S ℓ(y
∗)) with the ABC reference table at hand and provides

realizations of τ̂(m∗, S ℓ(y
∗)) when (m∗, y∗) is distributed with respect to the Bayesian model. The global
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accuracy of the ABC model choice procedure based on the ℓth set of summary statistics might be evaluated

with τ̂ℓ, the average of the realizations provided by Algorithm 3. The estimate τ̂ℓ is in the same spirit as a

cross-validation error rate (Hastie et al., 2009) using a non exhaustive leave-one-out procedure. However the

estimate τ̂(S ℓ(y
∗)) of the conditional error might be a better evaluation of the error when we are interested

in conducting a Bayesian analysis of only one data set y∗ since it is local. Comparing those error rates given

y∗ (or various projection of y∗ with summary statistics) provides a procedure to select the relevant summary

statistics that are efficient locally around y∗.

The goal we strive here is to construct a predictor of the index model given y based on a collection of

predictors (3.1) for various summary sets and also to estimate its error with (3.4). Selecting the best set

ℓ̂(y⋆) leads to a procedure based on the Bayesian machinery, as empirical Bayesian estimators for instance.

Indeed, π̂ABC(m|S
ℓ̂(y⋆)

(y⋆)) uses the data twice: a first one to calibrate the set of summary statistics, and a

second one to compute the ABC posterior. But as mentioned above, no ABC procedure comparing data sets

through non sufficient statistics can claim approximating the true posterior π(m|y) (Robert et al., 2011). The

sole guarantee that remains is that ABC will pick the correct model if we provide enough data (Marin et al.,

2014) and the proposed predictor is reliable.

4 Experiments results

Using two numerical experiments, one for K = 2 colors and one for K = 16 colors, we evaluate the

efficiency of the geometric summary statistics from a local and global point of view thanks to the previous

misclassification rates.

tab:example

Table 1: Prior distribution and experiment settings

First experiment Second experiment

with K = 2 colors with K = 16 colors

Model m
M4 (0.5) M8 (0.5) M4 (0.5) M8 (0.5)

(prior probability)

Parameter priors α ∼ U(0.42; 2.3) α ∼ U(0.42; 2.3) α ∼ U(1.78; 4.8) α ∼ U(1.78; 4.8)

πm(α, β) β ∼ U(0; 1) β ∼ U(0; 0.35) β ∼ U(0; 2.4) β ∼ U(0; 1)

Picture size 100 × 100

MCMC iterations to

generate Potts pictures 2 × 104 4 × 104

Simulations in the

ABC reference table 4 × 105 4 × 105

We simulated the latent fields with independent runs of the clever MCMC algorithm of Swendsen and Wang (1987).

Dependence between pixels is growing with β, such that for large enough β, pictures becomes unicolor (a phase

transition occurs). We tuned the upper bound on the prior of β in order to avoir this phenomenon. Moreover, the noise

model changes the color of a random amount of pixels, and the prior bounds on α were tuned to change less than 30%

of pixels on average.
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Given an ABC reference table D, simulated following Table 1, we study the behaviour of the different

procedures. Algorithm 3 was run one hundred times for each set S ℓ with nPOST = nNEI = 100. We shall

remark that the following results present two different aspects but both show that the geometric summary

statistics improve mostly the prediction given by the ABC algorithm. The integrated misclassification rates

given in the Table 2 indicate the general behaviour of the procedure whereas Figure 4 illustrates a local

comparison.

Before giving further details, let us point out the suitability of such comparisons in this framework.

Considering the observation of Robert et al. (2011) and the inability to check conditions of Marin et al.

(2014), one might object that, if the new added summary statistics are not sufficient, we are wasting time

since they can give inacurrate results anyway. We would agree if the procedures were mostly picking the

wrong model, that is if the error rates τ̂(S ℓ(y)) defined in (3.4) were high. However, Figure 3 representing

the distribution of τ̂(m, S ℓ(y)) for each procedure ℓ = {1; 2; 3} shows that the probability of selecting the

wrong model is small and therefore we are not trying to compare useless procedures. We shall note also that

when we add the geometric summary statistics the error rate τ̂(m, S ℓ(y)) is indeed decreasing and may even

go to zero.

l = 1 l = 2 l = 3

0
.0

0
.1

0
.2

0
.3

0
.4

(a)

l = 1 l = 2 l = 3

0
.0

0
.1

0
.2

0
.3

0
.4

(b)

Figure 3: Comparison of the distributions of τ̂(m, S ℓ(y)) defined in (3.2) for (a) K =2 colors and (b) K =16

colors.

Let us begin with the generally adopted point of view. We are interested in the averages of the boxplots

of Figure 3 which estimate the integrated misclassification rates τℓ defined in (3.3). Results are presented in

Table 2. The main point to notice is that the integrated error is divided by 3/2 for both cases when we add

geometric summary statistics.

In addition, the integrated misclassification rate is not the most interesting error to consider here. Any

user of an ABC algorithm is mainly interested in the best choice of S ℓ(y) he can achieve. In other words,

he seeks the set of summary statistics that has the best local behaviour around yobs. The (conditional)

misclassification rates are represented in Figure 4. The main drawback is to find a space where we can

represent the local error rates for the different observations we have at hand. Y is clearly not good due to

its high dimension. We thus project all the pictures in a common space with R(G4, y). This is the x-axis of

Figure 4. Replacing R(G4, y) by R(G8, y) does not change anything since those two summary statistics are
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Table 2: Estimation of the integrated misclassification rates τ̂ℓ

Summary statistics ℓ = 1 ℓ = 2 ℓ = 3

Error for K = 2 colors 0.082 0.049 0.053

Error for K = 16 colors 0.038 0.027 0.026

The table contains the estimation of the integrated misclassification rates τℓ defined by (3.3). The estimator

τ̂ℓ is the average of the distributions of τ̂(m, S ℓ(y)) presented in Figure 3

strongly correlated. The y-axis of Figure 4 denoted ∆ is defined as the relative benefit when adding some

geometric summary statistics. It compares by using the conditional misclassification rate τ̂(S 1(y)) with the

τ̂(S ℓ(y)) for ℓ = 2, 3

∆ = max
{̂
τ(S 1(y)) − τ̂(S 2(y)), τ̂(S 1(y)) − τ̂(S 3(y))

}
.

The quantity ∆ is thus positive when the geometric statistics improve the ABC procedure and negative

otherwise.

Figure 4 shows how much the efficiency is locally dependent. Even if the procedures with S 2(y) and

S 3(y) are globally better there exists pictures in Y for which ∆ < 0. In those cases, the geometric statistics

do not manage to provide relevant information regarding the model choice issue. But in the others, most

common cases, they actually do.
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Figure 4: Comparison of ABC procedures for the three sets of summary statistics S ℓ with (a) K =2 colors

and (b) K =16 colors. ∆ > 0 when the geometric statistics improve the ABC procedure and ∆ < 0 otherwise
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5 Conclusion

The model choice issue between hidden Potts models is one of the interesting statistical setting facing a

triple intractable problem. In the paper, we have shown the pertinence of ABC in this context. Moreover, we

have presented a new class of statistics that summarize images using pixel clusters. And, we have exhibited

their efficiency in ABC model choice procedures to answer the intractable problem. To this aim, we derived

a new local error rate, and should like to highlight here that the ability to evaluate the local behaviour of the

procedure presents a wider interest than just comparing the performances of algorithms. Indeed, it allows

us to select the most relevant set of summary statistics.

Geometric summary statistics based on pixel clusters are relevant for the problem of model selection

between hidden Gibbs random fields. Despite the gain being most significant when the summary statistics

T (G, y) and U(G, y) distinguish the models, there are some given parameters for which they bring little or

no information to select the model (Figure 4). We expect that happens for geometries that are too complex

to be described only by the number of connected components and the size of the biggest one. Put in another

way, the correlation between all the summary statistics is such that we add little or no extra information or

maybe even noise in adding the summary based on pixel clusters. Our future work, then, aims to study more

precisely the distribution of the size of the connected components in order to find some other geometric

summary statistics which might improve the information of the procedure.

A natural extension of this work would be to consider a more realistic noise distribution such as the

Gaussian one (Cucala and Marin, 2013). The geometric summary statistics we introduced in our paper can

be extended to such a continuous framework if we consider that two neighbouring pixels share the same

color if the difference of their grey levels is less than a given threshold. This might also be the subject of our

future work.
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