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Abstract

Selecting between different dependency structures of
hidden Markov random field can be very challeng-
ing, due to the intractable normalizing constant in
the likelihood. We answer this question with approx-
imate Bayesian computation (ABC) which provides a
model choice method in the Bayesian paradigm. This
comes after the work of Grelaud et al. (2009) who ex-
hibited sufficient statistics on directly observed Gibbs
random fields. But when the random field is latent,
the sufficiency falls and we complement the set with
geometric summary statistics. The general approach
to construct these intuitive statistics relies on a clus-
tering analysis of the sites based on the observed
colors and plausible latent graphs. The efficiency of
ABC model choice based on these statistics is evalu-
ated via a local error rate which may be of indepen-
dent interest. As a byproduct we derived an ABC
algorithm that adapts the dimension of the summary
statistics to the dataset without distorting the model
selection.

Keywords: Approximate Bayesian Computation,
model choice, hidden Gibbs random fields, summary
statistics, misclassification rate, k-nearest neighbors

1 Introduction

Gibbs random fields are polymorphous statistical
models, that are useful to analyse different types of
spatially correlated data, with a wide range of appli-
cations, including image analysis (Hurn et al., 2003),
disease mapping (Green and Richardson, 2002), ge-
netic analysis (François et al., 2006) among others.
The autobinomial model (Besag, 1974) which encom-
passes the Potts model, is used to describe the spatial
dependency of discrete random variables (e.g., shades
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of grey or colors) on the vertices of an undirected
graph (e.g., a regular grid of pixels). See for exam-
ple Alfò et al. (2008) and Moores, Hargrave, Harden,
and Mengersen (2014) who performed image segmen-
tation with the help of the above modeling. Despite
their popularity, these models present major difficul-
ties from the point of view of either parameter esti-
mation (Friel et al., 2009, Friel, 2012, Everitt, 2012)
or model choice (Grelaud et al., 2009, Friel, 2013, Cu-
cala and Marin, 2013), due to an intractable normal-
izing constant. Remark the exception of small lat-
ices on which we can apply the recursive algorithm
of Reeves and Pettitt (2004), Friel and Rue (2007)
and obtain a reliable approximation of the normal-
izing constant. However, the complexity in time of
the above algorithm grows exponentially and is thus
helpless on large lattices.

The present paper deals with the challenging prob-
lem of selecting a dependency structure of an hid-
den Potts model in the Bayesian paradigm and ex-
plores the opportunity of approximate Bayesian com-
putation (ABC, Tavaré et al., 1997, Pritchard et al.,
1999, Marin et al., 2012, Baragatti and Pudlo, 2014)
to answer the question. Up to our knowledge, this
important question has not yet been addressed in
the Bayesian literature. Alternatively we could have
tried to set up a reversible jump Markov chain Monte
Carlo, but follows an important work for the statisti-
cian to adapt the general scheme, as shown by Caimo
and Friel (2011, 2013) in the context of exponential
random graph models where the observed data is a
graph. Cucala and Marin (2013) addressed the ques-
tion of inferring the number of latent colors with an
ICL criterion but their complex algorithm cannot be
extended easily to choose the dependency structure.
Other approximate methods have also been tack-
led in the literature such as pseudo-likelihoods (Be-
sag, 1975), mean field approximations (Forbes and
Peyrard, 2003) but lacks theoretical support.
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Approximate Bayesian computation (ABC) is a
simulation based approach that can addresses the
model choice issue in the Bayesian paradigm. The al-
gorithm compares the observed data yobs with numer-
ous simulations y through summary statistics S(y)
in order to supply a Monte Carlo approximation of
the posterior probabilities of each model. The choice
of such summary statistics presents major difficul-
ties that have been especially highlighted for model
choice (Robert et al., 2011, Didelot et al., 2011). Be-
yond the seldom situations where sufficient statistics
exist and are explicitly known (Gibbs random fields
are surprising examples, see Grelaud et al., 2009),
Marin et al. (2013) provide conditions which ensure
the consistency of ABC model choice. The present
work has thus to answer the absence of available suf-
ficient statistics for hidden Potts fields as well as the
difficulty (if not the impossibility) to check the above
theoretical conditions in practice.

Recent articles have proposed automatic schemes
to construct theses statistics (rarely from scratch but
based on a large set of candidates) for Bayesian pa-
rameter inference and are meticulously reviewed by
Blum et al. (2013) who compare their performances
in concrete examples. But very few has been accom-
plished in the context of ABC model choice apart
from the work of Prangle et al. (2013). The statistics
S(y) reconstructed by Prangle et al. (2013) have good
theoritical properties (those are the posterior proba-
bilities of the models in competition) but are poorly
approximated with a pilot ABC run (Robert et al.,
2011), which is also time consuming.

The paper is organized as follows: Section 2
presents ABC model choice as a k-nearest neighbor
classifier, and defines a local error rate which is the
first contribution of the paper. We also provide an
adaptive ABC algorithm based on the local error to
select automatically the dimension of the summary
statistics. The second contribution is the introduc-
tion of a general and intuitive approach to produce
geometric summary statistics for hidden Potts model
in Section 3. We end the paper with numerical results
in that framework.

2 Local error rates and adpa-

tive ABC model choice

When dealing with models whose likelihood cannot
be computed analytically, Bayesian model choice be-
comes challenging since the evidence of each model

writes as the integral of the likelihood over the prior
distribution of the model parameter. ABC provides a
method to escape from the intractability problem and
relies on many simulated datasets from each model ei-
ther to learn the model that fits the observed data
yobs or to approximate the posterior probabilities.
We refer the reader to reviews on ABC (Marin et al.,
2012, Baragatti and Pudlo, 2014) to get a wider pre-
sentation and will focus here on the model choice pro-
cedure.

2.1 Background on Approximate

Bayesian computation for model

choice

Assume we are given M stochastic models with re-
spective paramater spaces embedded into Euclidean
spaces of various dimensions. The joint Bayesian dis-
tribution sets

(i) a prior on the model space, π(1), . . . , π(M),

(ii) for each model, a prior on its parameter space,
whose density with respect to a reference mea-
sure (often the Lebesgue measure of the Eu-
clidean space) is πm(θm) and

(iii) the likelihood of the data y within each model,
namely fm(y|θm).

The evidence of model m is then defined as

e(m, y) :=

∫
fm(y|θm)πm(θm)dθm

and the posterior probability of model m as

π(m|y) =
π(m)e(m, y)∑

m′ π(m′)e(m′, y)
. (1)

When the goal of the Bayesian analysis is the selec-
tion of the model that best fits the observed data
yobs, it is performed through the maximum a poste-
riori (MAP) defined by

m̂MAP(y
obs) = argmaxm π(m|yobs). (2)

The latter can be seen as a classification problem pre-
dicting the model number given the observation of y.
From this standpoint, m̂MAP is the Bayes classifier,
well known to minimize the 0-1 loss (Devroye et al.,
1996). One might argue that m̂MAP is an estima-
tor defined as the mode of the posterior probabilities
which form the density of the posterior with respect
to the counting measure. But the counting measure,
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namely δ1+· · ·+δM , is a canonical reference measure,
since it is invariant to any permutation of {1, . . . ,M}
whereas no such canonical reference measure (invari-
ant to one-to-one transformation) exists on compact
subset of the real line. Thus (2) does not suffer from
the drawbacks of posterior mode estimators (Druilhet
and Marin, 2007).

To approximate m̂MAP, ABC starts by simulating
numerous triplets (m, θm, y) from the joint Bayesian
model. Afterwards, the algorithm mimics the Bayes
classifier (2): it approximates the posterior probabil-
ities by the frequency of each model number associ-
ated with simulated y’s in a neighborhood of yobs. If
required, we can eventually predict the best model
with the most frequent model in the neighborhood,
or, in other words, take the final decision by plugging
in (2) the approximations of the posterior probabili-
ties.

If directly applied, this first, naive algorithm faces
the curse of dimensionality, as simulated datasets y
can be complex objects and lie in a space of high
dimension (e.g., numerical images). Indeed, find-
ing a simulated dataset in the vicinity of yobs is al-
most impossible when the ambient dimension is high.
The ABC algorithm performs therefore a (non linear)
projection of the observed and simulated datasets
onto some Euclidean space of reasonable dimension
via a function S, composed of summary statistics.
Moreover, due to obvious reasons regarding computer
memory, instead of keeping track of the whole sim-
ulated datasets, one commonly saves only the simu-
lated vectors of summary statistics, which leads to a
table composed of iid replicates (m, θm, S(y)), often
called the reference table in the ABC literature, see
Algorithm 1.

Algorithm 1: Simulation of the ABC reference
table
Output: A reference table of size nREF

for j ← 1 to nREF do

draw m from the prior π;
draw θ from the prior πm;
draw y from the likelihood fm(·|θ);
compute S(y);
save (mj , θj , S(yj))← (m, θ, S(y));

end

return the table of (mj , θj , S(yj)),
j = 1, . . . , nREF

From the standpoint of machine learning, the ref-
erence table serves as a training database composed
of iid replicates drawn from the distribution of in-
terest, namely the joint Bayesian model. The re-
gression problem of estimating the posterior prob-
abilities or the classification problem of predicting
a model number are both solved with nonparamet-
ric methods. The neighborhood of yobs is thus de-
fined as simulations whose distances to the observa-
tion measured in terms of summary statistics, i.e.,
ρ(S(y), S(yobs)), fall below a threshold ε commonly
named the tolerance level. The calibration of ε is
delicate, but had been partly neglected in the papers
dealing with ABC that first focused on decreasing
the total number of simulations via the recourse to
Markov chain Monte Carlo (Marjoram et al., 2003)
or sequential Monte Carlo methods (Beaumont et al.,
2009, Del Moral et al., 2012) whose common tar-
get is the joint Bayesian distribution conditioned by
ρ(S(y), S(yobs)) ≤ ε for a given ε. By contrast, the
simple setting we adopt here reveals the calibration
question. In accepting the machine learning view-
point, we can consider the ABC algorithm as a k-
nearest neighbor (knn) method, see Biau et al. (2013);
the calibration of ε is thus transformed into the cal-
ibration of k. The Algorithm we have to calibrate is
given in Algorithm 2.

Algorithm 2: Uncalibrated ABC model choice

Output: A sample of size k distributed
according to the ABC approximation
of the posterior

simulate the reference table T according to
Algorithm 1;
sort the replicates of T according to
ρ(S(yj), S(y

obs));
keep the k first replicates;
return the relative frequencies of each model
among the k first replicates and the most
frequent model;

Before entering into the tuning of k, we highlight
that the projection via the summary statistics gen-
erates a difference with the standard knn methods.
Under mild conditions, knn are consistent nonpara-
metric methods. Consequently, as the size of the ref-
erence table tends to infinity, the relative frequency
of model m returned by Algorithm 2 converges to

π(m|S(yobs)).
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Unfortunately, when the summary statistics are not
sufficient for the model choice problem, Didelot et al.
(2011) and Robert et al. (2011) found that the
above probability can greatly differ from the genuine
π(m|yobs). Afterwards Marin et al. (2013) provide
necessary and sufficient conditions on S(·) for the
consistency of the MAP based on π(m|S(yobs)) when
the information included in the dataset yobs increases,
i.e. when the dimension of yobs tends to infinity.
Consequently, the problem that ABC addresses with
reliability is classification, and the mentioned theo-
retical results requires a shift from the approximation
of posterior probabilities. Practically the frequencies
returned by Algorithm 2 should solely be used to or-
der the models with respect to their fits to yobs and
construct a knn classifier m̂ that predicts the model
number.
It becomes therefore obvious that the calibration of

k should be done by minimizing the misclassification
error rate of the resulting classifier m̂. This indicator
is the expected value of the 0-1 loss function, namely
1{m̂(y) 6= m}, over a random (m, y) distributed ac-
cording to the marginal (integrated in θm) of the joint
Bayesian distribution, whose density in (m, y) writes

π(m)

∫
fm(y|θm)πm(θm)dθm. (3)

Ingenious solutions have been already proposed and
are now well established to fullfil this minimization
goal and bypass the overfitting problem, based on
cross-validation on the learning database. But, for
the sake of clarity, particularly in the following sec-
tions, we decided to take advantage of the fact that
ABC aims at learning on simulated databases, and we
will use a validation reference table, simulated also
with Algorithm 1, but independently of the train-
ing reference table, to evaluate the misclassification
rate with the averaged number of differences between
the true model numbers mj and the predicted val-
ues m̂(yj) by knn (i.e. by ABC) on the validation
reference table.

2.2 Local error rates

The misclassification rate τ of the knn classifier m̂ at
the core of Algorithm 2 provides consistant evidence
of its global accuracy. It supplies indeed a well-known
support to calibrate k in Algorithm 2. The purpose of
ABC model choice methods though is the analyse of
an observed dataset yobs and this first indicator is ir-
relevant to assess the accuracy of the classifier at this
precise point of the data space, since it is by nature

a prior gauge. We propose here to disintegrate this
indicator, and to rely on conditional expected value
of the misclassification loss 1{m̂(y) 6= m} knowing y
as an evaluation of the efficiency of the classifier at
y. We recall the following proposition whose proof is
easy, but might help clarifying matters when applied
to the joint distribution (3).

Proposition 1. Consider a classifier m̂ that aims
at predicting m given y on data drawn from the joint
distribution f(m, y). Let τ be the misclassification
rate of m̂, defined by P(m̂(Y ) 6= M ), where (M , Y )
is a random pair with distribution f under the proba-
bility measure P. Then, (i) the expectation of the loss
function is

τ =
∑

m

∫

y

1{m̂(y) 6= m}f(m, y) dy.

Additionally, (ii), the conditional expectation knowing
y, namely τ(y) = P

(
m̂(Y ) 6= M

∣∣Y = y
)
, is

τ(y) =
∑

m

1{m̂(y) 6= m}f(m|y) (4)

and τ =
∫
y
f(y)τ(y) dy, where f(y) denotes the

marginal distribution of f (integrated over m) and
f(m|y) = f(m, y)/f(y) the conditional probability of
m given y. Furthermore, we have

τ(y) = 1− f(m̂(y) | y). (5)

The last result (5) suggests that a conditional ex-
pected value of the misclassification loss is a valuable
indicator of the error at y since it is admitted that
the posterior probability of the predicted model re-
veals the accuracy of the decision at y. Neverthe-
less, the whole simulated datasets are not saved into
the ABC reference table but solely some numerical
summaries S(y) per simulated dataset y, as explained
above. Thus the disintegration process of τ is practi-
cally limited to the conditional expectation of the loss
knowing some non one-to-one function of y. Its def-
inition becomes thereforemuch more subtle than the
basic (4). Actually, the ABC classifier can be trained
on a subset S1(y) of the summaries S(y) saved in
the training reference table, or on some deterministic
function (we still write S1(y)) of S(y) that reduces
the dimension, such as the projection on the LDA
axes proposed by Estoup et al. (2012). To highlight
this fact, the ABC classifier is denoted by m̂(S1(y)) in
what follows. It is worth noting here that the above
setting encompasses any dimension reduction tech-
nique presented in the review of Blum et al. (2013),
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though the review in oriented on parameter inference.
Furthermore we might want to disintegrate the mis-
classification rate with respect to another projection
S2(y) of the simulated data that can or cannot be re-
lated to the summaries S1(y) used to train the ABC
classifier, albeit S2(y) is also limited to be a deter-
ministic function of S(y). This yields the following.

Definition 2. The local error rate of the m̂(S1(y))
classifier with respect to S2(y) is

τS1
(S2(y)) := P

(
m̂(S1(Y )) 6= M

∣∣S2(Y ) = S2(y)
)
,

where (M , Y ) is a random variable with distribution
given in (3).

The purpose of the local misclassification rate in
the present paper is twofold and requires to play with
the distinction between S1 and S2, as the last part
will show on numerical examples. The first goal is
the construction of a prospective tool that aims at
checking whether a new statistic S′(y) carries addi-
tional information regarding the model choice, be-
yond a first set of statistics S1(y). In the latter case,
it can be useful to localize the misclassification error
of m̂(S1(y)) with respect to the concatenated vec-
tor S2(y) = (S1(y), S

′(y)). Indeed, this local error
rate can reveal concentrated areas of the data space,
characterized in terms of S2(y), in which the local er-
ror rate rises above (M − 1)/M , the averaged (local)
amount of errors of the random classifier among M
models, so as to approach 1. The interpretation of
the phenomenon is as follows: errors committed by
m̂(S1(y)), that are mostly spread on the S1(y)-space,
might gather in particular areas of subspaces of the
support of S2(y) = (S1(y), S

′(y)). This peculiarity
is due to the dimension reduction of the summary
statistics in ABC before the training of the classifier
and represents a concrete proof of the difficulty of
ABC model choice already raised by Didelot et al.
(2011) and Robert et al. (2011).
The second goal of the local error rate given in Def-

inition 2 is the evaluation of the confidence we may
concede in the model predicted at yobs by m̂(S1(y)),
in which case we set S2(y) = S1(y). And, when both
sets of summaries agree, the results of Proposition 1
extend to

τS1
(S1(y)) =

∑

m

π(m|S1(y))1{m̂(S1(y)) = m}

= 1− π(m̂(S1(y)) |S1(y)). (6)

Besides the local error rate we propose in Defini-
tion 2 is an upper bound of the Bayes classifier if we

admit the loss of information committed by replacing
y with the summaries.

Proposition 3. Consider any classifier m̂(S1(y)).
The local error rate of this classifier satisfies

τS1
(s2) = P (m̂(S1(Y )) 6= M |S2(Y ) = s2)

≥ P (m̂MAP(Y ) 6= M |S2(Y ) = s2) , (7)

where m̂MAP is the Bayes classifier defined in (2) and
s2 any value in the support of S2(Y ). Consequently,

P (m̂(S1(Y )) 6= M ) ≥ P (m̂MAP(Y ) 6= M ) . (8)

Proof. Proposition 1, in particular (5), implies that
m̂MAP(y) is the ideal classifier that minimizes the
conditional 0-1 loss knowing y. Hence, we have

P (m̂(S1(Y )) 6= M |Y = y)

≥ P (m̂MAP(Y ) 6= M |Y = y) .

Integrating the above with respect to the distribution
of Y knowing S2(Y ) leads to (7), and a last integral
to (8).

Proposition 3 shows that the introduction of new
summary statistics cannot distort the model selection
insofar as the risk of the resulting classifier cannot
decrease below the risk of the Bayes classifier m̂MAP.
We give here a last flavor of the results of Marin et al.
(2013) and mention that, if S1(y) = S2(y) = S(y) and
if the classifiers are perfect (i.e., trained on infinite
reference tables), we can rephrase part of their results
as providing mild conditions on S under which the
local error τS(S(y)) tends to 0 when the size of the
dataset y tends to infinity.

2.3 Estimation algorithm of the local

error rates

The numerical estimation of the local error rate
τS1

(S2(y)), as a surface depending on S2(y), is there-
fore paramount to assess the difficulty of the classifi-
cation problem at any s2 = SS(y), and the local accu-
racy of the classifier. Naturally, when S1(y) = S2(y)
for all y, the local error can be evaluated at S2(y

obs)
by plugging in (6) the ABC estimates of the posterior
probabilities (the relative frequencies of each model
among the particles returned by Algorithm 2) as sub-
stitute for π(m|S(yobs)). This estimation procedure
is restricted to the above mentioned case where the
set of statistics used to localize the error rate agrees
with the set of statistics used to train the classifier.
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Moreover, the approximation of the posterior proba-
bilities returned by Algorithm 2, i.e., a knn method,
might not be trustworthy: the calibration of k per-
formed by minimizing the prior error rate τ does
not provide any certainty on the estimated posterior
probabilities beyond a ranking of these probabilities
that yields the best classifier in terms of misclassi-
fication. In other words, the knn method calibrated
to answer the classification problem of discriminating
among models does not produce a reliable answer to
the regression problem of estimating posterior prob-
abilities. Certainly, the value of k must be increased
to face this second kind of issue, at the price of a
larger bias that might even swap the model ranking
(otherwise, the empirical prior error rate would not
depend on k, see the numerical result section).
For all these reasons, we propose here an alterna-

tive estimate of the local error. The core idea of our
proposal is the recourse to a nonparametric method
to estimate conditional expected values based on the
calls to the classifier m̂ on a validation reference ta-
ble, already simulated to estimate the global error
rate τ . Nadaraya-Watson kernel estimators of the
conditional expected values

τS1
(S2(y)) =

E (1{m̂(S1(Y )) 6= M } |S2(Y ) = S2(y)) (9)

rely explicitly on the regularity of this indicator, as
a function of s2 = S2(y), which contrasts with the
ABC plug-in estimate described above. We thus hope
improvements in the accuracy of error estimate and
a more reliable approximation of the whole function
τS1

(S2(y)). Additionally, we are not limited anymore
to the special case where S1(y) = S2(y) for all y.
It is worth stressing here that the bandwidth of the
kernels must be calibrated by minimizing the L2-loss,
since the target is a conditional expected value.
Practically, this leads to Algorithm 3 which re-

quires a validation or test reference table independent
of the training database that constitutes the ABC ref-
erence table. We can bypass the requirement by re-
sorting to cross validation methods, as for the compu-
tation of the global prior misclassification rate τ . But
the ensued algorithm is complex and it induces more
calls to the classifier (consider, e.g,. a ten-fold cross
validation algorithm computed on more than one ran-
dom grouping of the reference table) than the basic
Algorithm 3, whereas the training database can al-
ways be supplemented by a validation database since
ABC, by its very nature, is a learning problem on
simulated databases. Moreover, to display the whole

Algorithm 3: Estimation of τS1
(S2(y)) given an

classifier m̂(S1(y)) on a validation or test refer-
ence table
Input: A validation or test reference table and a

classifier m̂(S1(y)) fitted with a first
reference table

Output: Estimations of (9) at each point of the
second reference table

for each (mj , yj) in the test table do

compute δj = {m̂(S1(yj)) 6= mj};
end

calibrate the bandwidth h of the
Nadaraya-Watson estimator predicting δj
knowing S2(yj) via cross-validation on the test
table;
for each (mj , yj) in the test table do

evaluate the Nadaraya-Watson estimator
with bandwidth h at S2(yj);

end

surface τS1
(S2(y)), we can interpolate values of the

local error between points S2(y) of the second ref-
erence table with the help of a Kriging algorithm.
We performed numerical experiments (not detailed
here) concluding that the resort to a Kriging algo-
rithm provides results comparable to the evaluation
of Nadaraya-Watson estimator at any point of the
support of S2(y), and can reduce computation times.

2.4 Adaptive ABC

The local error rate can also represent a valuable way
to adjust the summary statistics to the data point
y and to build an adaptive ABC algorithm achiev-
ing a local trade off that increases the dimension of
the summary statistics at y only when the additional
coordinates add information regarding the classifica-
tion problem. Assume that we have at our disposal a
collection of ABC classifiers, m̂λ(y) := m̂λ(Sλ(y)),
λ = 1, . . . ,Λ, trained on various projections of y,
namely the Sλ(y)’s, and that all these vectors, sorted
with respect to their dimension, depend only on the
summary statistics registered in the reference tables.
Sometimes low dimensional statistics may suffice for
the classification (of models) at y, whereas other
times we may need to examine statistics of larger di-
mension. The local adaptation of the classifier is ac-
complished through the disintegration of the misclas-
sification rates of the initial classifiers with respect to
a common statistic S0(y). Denoting τλ(S0(y)) the lo-
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cal error rate of m̂λ(y) knowing S0(y), this reasoning
yields the adaptive classifier defined by

m̃(S(y)) := m̂
λ̂(y)(y),

where λ̂(y) := argminλ=1,...,Λ τλ(S0(y)). (10)

This last classifier attempts to avoid bearing the cost
of the potential curse of dimensionality from which all
knn classifiers suffer and can help reduce the error of
the initial classifiers, although the error of the ideal
classifier (2) remains an absolute lower bound, see
Proposition 3. From a different perspective, (10) rep-
resents a way to tune the similarity ρ(S(y), S(yobs))
of Algorithm 2 that locally includes or excludes com-
ponents of S(y) to assess the proximity between S(y)
and S(yobs). Practically, we rely on the following
algorithm to produce the adaptive classifier, that re-
quires a validation reference table independent of the
reference table used to fit the initial classifiers.

Algorithm 4: Adaptive ABC model choice

Input: A collection of classifiers m̂λ(y),
λ = 1, . . . ,Λ and a validation reference
table

Output: An adaptive classifier m̃(y)

for each λ ∈ {1, . . . ,Λ} do
estimate the local error of m̂λ(y) knowing
S0(y) with the help of Algorithm 3;

end

return the adaptive classifier m̃ as a function
computing (10);

The local error surface estimated within the loop
of Algorithm 4 must contrast the errors of the col-
lection of classifiers. Our advice is thus to build a
projection S0(y) of the summaries S(y) registered in
the reference tables as follow. Add to the validation
reference table a qualitative trait which groups the
replicates of the table according to their differences
between the predicted numbers by the initial clas-
sifiers and the model numbers mj registered in the
database. For instance, when the collection is com-
posed of Λ = 2 classifiers, the qualitative trait takes
three values: value 0 when both classifiers m̂λ(yj)
agree (whatever the value of m̂j), value 1 when the
first classifier only returns the correct number, i.e.,
m̂1(yj) = mj 6= m̂2(yj), and value 2 when the sec-
ond classifier only returns the correct number, i.e.,
m̂1(yj) 6= mj = m̂2(yj). The axes of the linear dis-
criminant analysis (LDA) predicting the qualitative

trait knowing S(y) provide a projection S0(y) which
contrasts the errors of the initial collection of classi-
fiers.

Finally it is important to note that the local error
rates are evaluated in Algorithm 4 with the help of a
validation reference table. Therefore, a reliable esti-
mation of the accuracy of the adaptive classifier can-
not be based on the same validation database because
of the optimism bias of the training error. Evaluating
the accuracy requires the simulation of a test refer-
ence table independently of the two first databases
used to train and adapt the predictor, as is usually
performed in the machine learning community.

3 Hidden random fields

Our primary intent with the ABC methodology ex-
posed in Section 2 was the study of new summary
statistics to discriminate between hidden random
fields models. The following materials numerically
illustrate how ABC can choose the dependency struc-
ture of latent Potts models among two possible neigh-
borhood systems, both described with undirected
graphs, whilst highlighting the generality of the ap-
proach.

3.1 Hidden Potts model

This numerical part of the paper focuses on hidden
Potts models, that are representative of the general
level of difficulty while at the same time being widely
used in practice (see for example Hurn et al., 2003,
Alfò et al., 2008, François et al., 2006, Moores et al.,
2014). we recall that the latent random field x is a
family of random variables xi indexed by a finite set
S , whose elements are called sites, and taking values
in a finite state space X := {0, . . . ,K − 1}, inter-
preted as colors. When modeling a digital image, the
sites are lying on a regular 2D-grid of pixels, and their
dependency is given by an undirected graph G which
defines an adjacency relationship on the set of sites
S : by definition, both sites i and j are adjacent if
and only if the graph G includes an edge that links di-
rectly i and j. A Potts model sets a probability distri-
bution on x, parametrized by a scalar β that adjusts
the level of dependency between adjacent sites. The
latter class of models differs from the auto-models
of Besag (1974), that allow variations on the level
of dependencies between edges and introduce poten-
tial anisotropy on the graph. But the difficulty of all
these models arises from the intractable normalizing
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(a)

(b)

Figure 1: Neighborhood graphs G of hidden Potts
model. (a) The four closest neighbour graph G4

defining model HPM(G4, α, β). (b) The eight closest
neighbour graph G8 defining model HPM(G8, α, β)

constant, called the partition function, as illustrated
in the distribution of Potts models defined by

π(x|G , β) =
1

Z(G , β)
exp


β

∑

i
G
∼j

1{xi = xj}


 .

The above sum i
G
∼ j ranges the set of edges of the

graph G and the normalizing constant Z(G , β) writes
as

Z(G , β) =
∑

x∈X

exp


β

∑

i
G
∼j

1{xi = xj}


 , (11)

namely a summation over the numerous possible re-
alizations of the random field x, that cannot be com-
puted directly (except for small grids and small num-
ber of colors K). In the statistical physic literature,
β is interpreted as the inverse of a temperature, and
when the temperature drops below a fixed threshold,
values xi of a typical realization of the field are almost
all equal (due to important dependency between all
sites). These peculiarities of Potts models are called
phase transitions.
In hidden Markov random fields, the latent process

is observed indirectly through another field; this per-
mits the modeling of a noise that may be encountered

in many concrete situations. Precisely, given the real-
ization x of the latent field, the observation y is a fam-
ily of random variables indexed by the set of sites, and
taking values in a set Y , i.e., y = (yi; i ∈ S ), and are
commonly assumed as independent draws that form
a noisy version of the hidden fields. Consequently,
we set the conditional distribution of y knowing x
as the product π(y|x, α) =

∏
i∈S

P (yi|xi, α), where
P is the marginal noise distribution parametrized by
some scalar α. Hence the likelihood of the hidden
Potts model with parameter β on the graph G and
noise distribution Pα, denoted HPM(G , α, β), is given
by

f(y|α, β,G ) =
∑

x∈X

π (x|G , β)πα(y|x)

and faces a double intractable issue as neither the
likelihood of the latent field, nor the above sum can
be computed directly: the cardinality of the range of
the sum is of combinatorial complexity. The following
numerical experiments are based on two classes of
noises, producing either observations in {0, 1, . . . ,K−
1}, the set of latent colors, or continuous observations
that take values in R.

The common point of our examples is to select the
hidden Gibbs model that better fits a given yobs com-
posed of N = 100× 100 pixels within different neigh-
borhood systems represented as undirected graphs G .
We considered the two widely used adjacency struc-
tures in our simulations, namely the graph G4 (re-
spectively G8) in which the neighborhood of a site
is composed of the four (respectively eight) closest
sites on the two-dimensional lattice, except on the
boundaries of the lattice, see Fig. 1. The prior prob-
abilities of both models were set to 1/2 in all exper-
iments. The Bayesian analysis of the model choice
question adds another integral beyond the two above
mentioned sums that cannot be calculated explic-
itly or numerically either and the problem we illus-
trate are said triple intractable. Up to our knowl-
edge the choice of the latent neighborhood structure
has never been seriously tackled in the Bayesian lit-
erature. We mentioned here the mean field approxi-
mation of Forbes and Peyrard (2003) whose software
can estimate paramaters of such models, and com-
pare models fitness via a BIC criterion. But the first
results we try to obtain with this tool were worse
than with ABC, except for very low values of β. This
means that either we did not manage to run the soft-
ware properly, or that the mean field approximation
is not appropriate to discriminate between neighbor-
hood structures. The detailed settings of our three
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experiments are as follows.

First experiment. We considered Potts models
with K = 2 colors and a noise process that switches
each pixel independently with probability

exp(−α)/(exp(α) + exp(−α)),

following the proposal of Everitt (2012). The prior on
α was uniform over (0.42; 2.3), where the bounds of
the interval were determined to switch a pixel with
a probability less than 30%. Regarding the depen-
dency parameter β, we set prior distributions below
the phase transition which occurs at different levels
depending on the neighborhood structure. Precisely
we used a uniform distribution over (0; 1) when the
adjacency is given by G4 and a uniform distribution
over (0; 0.35) with G8.

Second experiment. We increased the number of
colors in the Potts models and set K = 16. Like-
wise, we set a noise that changes the color of each
pixel with a given probability parametrized by α, and
conditionally on a change at site i, we rely on the
least favorable distribution, which is a uniform draw
within all colors except the latent one. To extend
the parametrization of Everitt (2012), the marginal
distribution of the noise is defined by

Pα(yi|xi) =
exp

{
α
(
21{xi = yi} − 1

)}

exp(α) + (K − 1) exp(−α)

and a uniform prior on α over the interval (1.78; 4.8)
ensures that the probability of changing a pixel with
the noise process is at most 30%. The uniform prior
on the Potts parameter β was also tuned to stay be-
low the phase transition. Hence β ranges the interval
(0; 2.4) with a G4 structure and the interval (0; 1) with
a G8 structure.

Third experiment. We introduced a homoscedas-
tic Gaussian noise whose marginal distribution is
characterized by

yi | xi = c ∼ N (c, σ2) c ∈ {0; 1}

over bicolor Potts models. And both prior distribu-
tions on parameter β are similar to the ones on the
latent fields of the first experiment. The standard de-
viation σ = 0.39 was set so that the probability of a
wrong prediction of the latent color with a marginal
MAP rule on the Gaussian model is about 15%.

3.2 Geometric summary statistics

Performing a Bayesian model choice via ABC algo-
rithms requires summary statistics that capture the
relevant information from the observation yobs to
discriminate among the competing models. When
the observation is noise-free, Grelaud et al. (2009)
noted that the joint distribution resulting from the
Bayesian modeling falls into the exponential family,
and they obtained consecutively a small set of sum-
mary statistics, depending on the collection of consid-
ered models, that were sufficient. In front of noise,
the situation differs substantially as the joint distri-
bution lies now outside the exponential family, and
the above mentioned statistics are not sufficient any-
more, whence the urge to bring forward other con-
crete and workable statistics. The general approach
we developed reveals geometric features of a discrete
field y via the recourse to colored graphs attached
to y and their connected components. Consider an
undirected graph G whose set of vertices coincides
with S , the set of sites of y.

Definition 4. The graph induced by G on the field
y, denoted Γ(G , y), is the undirected graph whose set
of edges gathers the edges of G between sites of y that
share the same color, i.e.,

i
Γ(G ,y)
∼ j ⇐⇒ i

G
∼ j and yi = yj .

We believe that the connected components of such
induced graphs capture major parts of the geometry
of y. Recall that a connected component of an undi-
rected graph Γ is a subgraph of Γ in which any two
vertices are connected to each other by a path, and
which is connected to no other vertices of Γ. And the
connected components form a partition of the ver-
tices. Since ABC relies on the computation of the
summary statistics on many simulated datasets, it
is also worth noting that the connected components
can be computed efficiently with the help of famous
graph algorithms in linear time based on a breadth-
first search or depth-first search over the graph. The
empirical distribution of the sizes of the connected
components represents an important source of geo-
metric informations, but cannot be used as a statis-
tic in ABC because of the curse of dimensionality.
The definition of a low dimensional summary statis-
tic derived from these connect components should be
guided by the intuition on the model choice we face.
Our numerical experiments discriminate between

a G4- and a G8-neighborhood structure and we con-
sidered two induced graphs on each simulated y,
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Γ(G4, y) Γ(G8, y)

Figure 2: The induced graph Γ(G4, y) and Γ(G8, y) on a given bicolor image y of size 5×5. The six summary
statistics on y are thus R(G4, y) = 22, T (G4, y) = 7, U(G4, y) = 12, R(G8, y) = 39, T (G8, y) = 4 and
U(G8, y) = 16

namely Γ(G4, y) and Γ(G8, y). Remark that the two-
dimensional statistics proposed by Grelaud et al.
(2009), which are sufficient in the noise-free con-
text, are the total numbers of edges in both induced
graphs. After very few trials without success, we
fixed ourselves on four additional summary statistics,
namely the size of the largest component of each in-
duced graph, as well as the total number of connect
components in each graph. See Fig. 2 for an example
on a bicolor picture y. To fix the notations, for any
induced graph Γ(G , y), we define

• R(G , y) as the total number of edges in Γ(G , y),

• T (G , y) as the number of connected components
in Γ(G , y) and

• U(G , y) as the size of the largest connected com-
ponent of Γ(G , y).

And to sum up the above, the set of summary statis-
tics that where registered in the reference tables for
each simulated field y is

S(y) =
(
R(G4, y);R(G8, y);T (G4, y);

T (G8, y);U(G4, y);U(G8, y)
)

in the first and second experiments.
In the third experiment, the observed field y takes

values in R and we cannot apply directly the approach
based on induced graphes because no two pixels share
the same color. All of the above statistics are mean-
ingless, including the statistics R(G , y) used by Gre-
laud et al. (2009) in the noise-free case. We rely on
a quantization preprocessing performed via a kmeans
algorithm on the observed colors that forgets the spa-
tial structure of the field. The algorithm was tuned

to uncover the same number of groups of colors as the
number of latent colors, namely K = 2. If q2(y) de-
notes the resulting field, the set of summary statistics
becomes

S(y) =
(
R
(
G4, q2(y)

)
;R

(
G8, q2(y)

)
;T

(
G4, q2(y)

)
;

T
(
G8, q2(y)

)
;U

(
G4, q2(y)

)
;U

(
G8, q2(y)

))
.

We have assumed here that the number of latent col-
ors is known to keep the same purpose of selecting
the correct neighborhood structure. Indeed Cucala
and Marin (2013) have already proposed a (complex)
Bayesian method to infer the appropriate number of
hidden colors. But more generally, we can add statis-
tics based on various quantizations qk(y) of y with k
groups.

3.3 Numerical results

In all three experiments, we compare three nested sets
of summary statistics S2D(y), S4D(y) and S6D(y) of
dimension 2, 4 and 6 respectively. They are defined
as the projection onto the first two (respectively four

Table 1: Evaluation of the prior error rate on a test
reference table of size 30, 000 in the first experiment.

Prior error rates
Train size 5,000 100,000
2D statistics 8.8% 7.9%
4D statistics 6.5% 6.1%
6D statistics 7.1% 7.1%

Adaptive ABC 6.2% 5.5%
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Figure 3: First experiment results. (a) Prior error rates (vertical axis) of ABC with respect to the
number of nearest neighbors (horizontal axis) trained on a reference table of size 100, 000 (solid lines) or
50, 000 (dashed lines), based on the 2D, 4D and 6D summary statistics. (b) Prior error rates of ABC based
on the 2D summary statistic compared with 4D and 6D summary statistics including additional ancillary
statistics. (c) Evaluation of the local error on a 2D surface
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and six) axes of S(y) described in the previous sec-
tion. We stress here that S2D(y), which is composed
of the summaries given by Grelaud et al. (2009), are
used beyond the noise-free setting where they are suf-
ficient for model choice. In order to study the infor-
mation carried by the connected components, we add
progressively our geometric summary statistics to the
first set, beginning by the T (G , y)-type of statistics in
S4D(y). Finally, remark that, before evaluating the
Euclidean distance in ABC algorithms, we normal-
ize the statistics in each reference tables with respect
to an estimation of their standard deviation since
all these summaries take values on axis of different
scales. Simulated images have been drawn thanks to
the Swendsen and Wang (1987) algorithm. In the
least favorable experiment, simulations of one hun-
dred pictures (on pixel grid of size 100 × 100) via
20, 000 iterations of this Markovian algorithm when
parameters drawn from our prior requires about one
hour of computation on a single CPU with our opti-
mized C++ code. Hence the amount of time required
by ABC is dominated by the simulations of y via the
Swedsen-Wang algorithm. This motivated Moores,
Mengersen, and Robert (2014) to propose a cut down
on the cost of running an ABC experiment by remov-
ing the simulation of an image from hidden Potts
model, and replacing it by an approximate simula-
tion of the summary statistics. Another alternative
is the clever sampler of Mira et al. (2001) that pro-
vides exact simulations of Ising models and can be
extended to Potts models.

First experiment. Fig. 3(a) illustrates the cali-
bration of the number of nearest neighbors (parame-
ter k of Algorithm 2) by showing the evolution of the
prior error rates (evaluated on a validation reference
table including 20, 000 simulations) when k increases.
We compared the errors of six classifiers to inspect the
differences between the three sets of summary statis-
tics (in yellow, green and magenta) and the impact of
the size of the training reference table (100, 000 sim-
ulations in solid lines; 50, 000 simulations in dashed
lines). The numerical results exhibit that a good cal-
ibration of k can reduce the prior misclassification er-
ror. Thus, without really degrading the performance
of the classifiers, we can reduce the amount of simu-
lations required in the training reference table, whose
computation cost (in time) represents the main ob-
stacle of ABC methods, see also Table 1. Moreover,
as can be guessed from Fig. 3(a), the sizes of the
largest connected components of induced graphs (in-

Table 2: Evaluation of the prior error rate on a test
reference table of size 20, 000 in the second experi-
ment.

Prior error rates
Train size 50,000 100,000
2D statistics 4.5% 4.4%
4D statistics 4.6% 4.1%
6D statistics 4.6% 4.3%

cluded only in S6D(y)) do not carry additional infor-
mation regarding the model choice and Table 1 con-
firms this results through evaluations of the errors on
a test reference table of 30, 000 simulations drawn in-
dependently of both training and validation reference
tables.

One can argue that the curse of dimensionality does
not occur with such low dimensional statistics and
sizes of the training set, but this intuition is wrong, as
shown in Fig. 3(b). The latter plot shows indeed the
prior misclassification rate as a function of k when we
replace the last four summaries by ancillary statistics
drawn independently of m and y. We can conclude
that, although the three sets of summary statistics
carry then the same information in this artificial set-
ting, the prior error rates increase substantially with
the dimension (classifiers are not trained on infinite
reference tables!). This conclusion shed new light on
the results of Fig. 3(a): the U(G , y)-type summaries,
based on the size of the largest component, are not
concretely able to help discriminate among models,
but are either highly correlated with the first four
statistics; or the resolution (in terms of size of the
training reference table) does not permit the exploita-
tion of the possible information they add.

Fig. 3(c) displays the local error rate with respect
to a projection of the image space on a plan. We have
taken here S1(y) = S2D(y) in Definition 2. And S2(y)
ranges a plan given by a projection of the full set of
summaries that has been tuned empirically in order
to gather the errors committed by calls of m̂(S2D(y))
on the validation reference table. The most strik-
ing fact is that the local error rises above 0.9 in the
oval, reddish area of Fig. 3(c). Other reddish areas
of Fig. 3(c) in the bottom of the plot correspond to
parts of the space with very low probability, and may
be a dubious extrapolation of the Kriging algorithm.
We can thus conclude that the information of the new
geometric summaries depends highly on the position
of y in the image space and have confidence in the in-
terest of Algorithm 4 (adaptive ABC) in this frame-
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work. As exhibited in Table 1(d), this last classifier
does not decrease dramatically the prior misclassi-
fication rates. But the errors of the non-adaptive
classifiers are already low and the error of any clas-
sifier is bounded from below, as explained in Propo-
sition 3. Interestingly though, the adaptive classifier
relies on m̂(S2D(y)) (instead of the most informative
m̂(S6D(y))) to take the final decision at about 60% of
the images of our test reference table of size 30, 000.

Second experiment. The framework was de-
signed here to study the limitations of our ap-
proach based on the connected components of in-
duced graphs. The number of latent colors is indeed
relatively high and the noise process do not rely on
any ordering of the colors to perturbate the pixels.
Table 2 indicates the difficulty of capturing relevant
information with the geometric summaries we pro-
pose. Only the sharpness introduced by a training
reference table composed of 100, 000 simulations dis-
tinguishes m̂(S4D(y)) and m̂(S6D(y)) from the basic
classifier m̂(S2D(y)). This conclusion is reinforced by
the low value of number of neighbors after the calibra-
tion process, namely k = 16, 5 and 5 for m̂(S2D(y)),
m̂(S4D(y)) and m̂(S6D(y)) respectively. Hence we do
not display in the paper other diagnosis plots based
on the prior error rates or the conditional error rates,
which led us to the same conclusion. The adaptive
ABC algorithm did not improve any of these results.

Third experiment. The framework here includes
a continuous noise process as described at the end
of Section 3.1. We reproduced the entire diagnosis
process performed in the first experiment and we ob-
tained the results given in Fig. 4 and Table 3. The
most noticeable difference is the extra information
carried by the U(G , y)-statistics, representing the size
of the largest connected component, and the adaptive
ABC relie on the simplest m̂(S2D(y)) in about 30%
of the data space (measured with the prior marginal

Table 3: Evaluation of the prior error rate on a test
reference table of size 30, 000 in the third experiment.

Prior error rates
Train size 5,000 100,000
2D statistics 14.2% 13.8%
4D statistics 10.8% 9.8%
6D statistics 8.6% 6.9%

Adaptive ABC 8.2% 6.7%

distribution in y). Likewise, the gain in misclassifica-
tion errors is not spectacular, albeit positive.

4 Conclusion and perspective

In the present article, we considered ABC model
choice as a classification problem in the framework
of the Bayesian paradigm (Section 2.1) and provided
a local error in order to assess the accuracy of the
classifier at yobs (Sections 2.2 and 2.3). We derived
then an adaptive classifier (Section 2.4) which is an
attempt to fight against the curse of dimensionality
locally around yobs. This method contrasts with most
projection methods which are focused on parameter
estimation (Blum et al., 2013). Additionally, most
of them perform a global trade off between the di-
mension and the information of the summary statis-
tics over the whole prior domain, while our proposal
adapts the dimension with respect to yobs (see also
the discussion about the posterior loss approach in
Blum et al., 2013). Besides the inequalities of Propo-
sition 3 complement modestly the analysis of Marin
et al. (2013) on ABC model choice. Principles of our
proposal are well founded by avoiding the well-known
optimism of the training error rates and by resorting
to validation and test reference tables in order to eval-
uate the error practically. And, finally, the machine
learning viewpoint gives an efficient way to calibrate
the threshold of ABC (Section 2.1).
Regarding latent Markov random fields, the pro-

posed method of constructing summary statistics
based on the induced graphs (Section 3.2) yields
a promising route to construct relevant summary
statistics in this framework. This approach is very
intuitive and can be reproduced in other settings.
For instance, if the goal of the Bayesian analysis
is to select between isotropic latent Gibbs models
and anisotropic models, the averaged ratio between
the width and the length of the connect compo-
nents or the ratio of the width and the length of the
largest connected components can be relevant numer-
ical summaries. We have also explained how to adapt
the method to a continuous noise by performing a
quantization of the observed values at each site of
the fields (Section 3.2). And the detailed analysis of
the numerical results demonstrates that the approach
is promising. However the results on the 16 color ex-
ample with a completely disordered noise indicate the
limitation of the induced graph approach. We believe
that there exists a road we did not explore above with
an induced graph that add weights on the edges of the
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Figure 4: Third experiment results. (a) Prior error rates (vertical axis) of ABC with respect to the
number of nearest neighbors (horizontal axis) trained on a reference table of size 100, 000 (solid lines) or
50, 000 (dashed lines), based on the 2D, 4D and 6D summary statistics. (b) Prior error rates of ABC based
on the 2D summary statistics compared with 4D and 6D summary statistics including additional ancillary
statistics. (c) Evaluation of the local error on a 2D surface
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graph according to the proximity of the colors, but
the grouping of sites on such weighted graph is not
trivial.
The numerical results (Section 3.3) highlighted

that the calibration of the number of neighbors in
ABC provides better results (in terms of misclassi-
fication) than a threshold set as a fixed quantile of
the distances between the simulated and the observed
datasets (as proposed in Marin et al., 2012). Conse-
quently, we can reduce significantly the number of
simulations in the reference table without increas-
ing the misclassification error rates. This represents
an important conclusion since the simulation of a la-
tent Markov random field requires a non-negligible
amount of time. The gain in misclassification rates
of the new summaries is real but not spectacular and
the adaptive ABC algorithm was able to select the
most performant classifier.
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