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Bias correction in multivariate extremes

A.-L. Fougères∗, L. de Haan†, C. Mercadier∗

December 16, 2014

Abstract

The estimation of the extremal dependence structure is spoiled by the impact of
the bias, which increases with the number of observations used for the estimation.
Already known in the univariate setting, the bias correction procedure is studied in
this paper under the multivariate framework. New families of estimators of the stable
tail dependence function are obtained. They are asymptotically unbiased versions of
the empirical estimator introduced by Huang [1992]. Since the new estimators have a
regular behaviour with respect to the number of observations, it is possible to deduce
aggregated versions so that the choice of the threshold is substantially simplified. An
extensive simulation study is provided as well as an application on real data.

Keywords: Multivariate extreme value theory, tail dependence, bias correction, threshold
choice.

1 Introduction

Estimating extreme risks in a multivariate framework is highly connected with the estima-
tion of the extremal dependence structure. This structure can be described via the stable
tail dependence function (stdf) L, firstly introduced by Huang [1992]. For any arbitrary
dimension d, consider a multivariate vector (X(1), . . . , X(d)) with continuous marginal cu-
mulative distribution functions (cdf) F1, . . . , Fd. The stdf is defined for each positive reals
x1, . . . , xd as

lim
t→∞

tP{1− F1(X
(1)) ≤ t−1x1 or . . . or 1− Fd(X(d)) ≤ t−1xd} = L(x1, . . . , xd) .

Assuming that such a limit exists and is non degenerate is equivalent to the classical
assumption of existence of a multivariate domain of attraction for the componentwise
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maxima (see e.g. de Haan and Ferreira [2006, Chapter 7]). The previous limit can be
rewritten as

lim
t→∞

t [1− F{F−1
1 (1− t−1x1), . . . , F

−1
d (1− t−1xd)}] = L(x1, . . . , xd) , (1)

where F denotes the multivariate cdf of the vector (X(1), . . . , X(d)), and for j = 1, . . . , d,
F−1
j (t) = inf{z ∈ R : Fj(z) ≥ t}. Consider a sample of size n drawn from F and

an intermediate sequence, that is to say a sequence k = k(n) tending to infinity as
n → ∞, with k/n → 0. Denote by x = (x1, . . . , xd) a vector of the positive quadrant

Rd
+ = {(x1, . . . , xd) : xj ≥ 0, j = 1, . . . , d} and by X

(j)
k,n the kth order statistics among n

realisations of the margins X(j). The empirical estimator of L(x) is obtained from (1),
replacing F by its empirical version, t by n/k, and F−1

j (1 − t−1xj) for j = 1, . . . , d by its

empirical counterpart X
(j)

n−[nt−1xj ],n
, so that

L̂k(x) =
1

k

n∑
i=1

1n
X

(1)
i ≥X

(1)
n−[kx1]+1,n

or ... or X
(d)
i ≥X

(d)
n−[kxd]+1,n

o . (2)

See Huang [1992] for pioneer works on this estimator. Under suitable conditions, it can be
shown (see Section 2) that the estimator L̂k(x) has the following asymptotic expansion

L̂k(x)− L(x) ≈ ZL(x)√
k

+ α(n/k)M(x) , (3)

where ZL is a continuous centered Gaussian process, α is a function that tends to 0 at
infinity, and M is a continuous function. In particular

√
k{L̂k(x)−L(x)} can be approxi-

mated in distribution by ZL(x), provided that
√
kα(n/k) tends to 0 as n tends to infinity.

This condition imposes a slow rate of convergence of the estimator L̂k(x), so one would be
interested in relaxing this hypothesis. As a counterpart, as soon as

√
kα(n/k) tends to a

non null constant λ, an asymptotic bias appears and is explicitely given by λM(x). The
aim of this paper is to provide a procedure that reduces the asymptotic bias. The latter will
be estimated and then subtracted from the empirical estimator. This kind of approach has
been considered in the univariate setting for the bias correction of the extreme value index
with unknown sign by Cai et al. [2013]. Refer also to Peng [1998], Fraga Alves et al. [2003],
Gomes et al. [2008], Caeiro et al. [2009] and Peng [2010] for previous contributions on this
problem. Note finally that the case of dependent sequences has been recently studied by
de Haan et al. [2014].

The nonparametric estimation of the extremal dependence structure has been widely
studied in the bivariate case, see for instance Huang [1992], Einmahl et al. [1997], Capéraà
and Fougères [2000], Abdous and Ghoudi [2005], Guillotte et al. [2011] and Bücher et al.
[2011]. Bias correction problems in the bivariate context received less attention than in
the univariate setting. To the best of our knowledge, it seems to be reduced to Beirlant
et al. [2011] and Goegebeur and Guillou [2013], which consider the estimation of bivariate
joint tails, so differs slightly from our task.
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As for the multivariate framework, de Haan and Resnick [1993] introduces the empirical
estimator. General approaches under parametric assumptions on the function L have been
developed e.g. by Coles and Tawn [1991], Joe et al. [1992], Einmahl et al. [2008] and
Einmahl et al. [2012]. Apparently, no procedure correcting the bias can be found in the
literature for dimension greater than two. The objective of this article is to fill this gap.
Note that our method does not only consists of applying the univariate bias procedure at
several points. Indeed, the bias is not anymore a parametric function, so that the new
feature is mainly the fact that we are able to estimate and then subtract a function with
an unknown form. Two families of asymptotically unbiased estimators of the stdf are
proposed and their theoretical behaviours are studied. A practical advantage of these new
estimators is that they can be aggregated, reducing that way the variability.

The paper is organized as follows: Section 2 contains hypotheses and first results. The
bias reduction procedure is described in Section 3, and the main theoretical results are
presented therein. Several theoretical models are exhibited in Section 4, that satisfy the
required assumptions. Section 5 illustrates the performance of the new estimators on both
simulated and real data. The estimation of side components are postponed up to Section 6.
The proofs are relegated to Section 7.

2 Notation, assumptions and first results

Let X1 = (X
(1)
1 , . . . , X

(d)
1 ), . . . ,Xn = (X

(1)
n , . . . , X

(d)
n ) be independent and identically dis-

tributed multivariate random vectors with cdf F and continuous marginal cdfs Fj for
j = 1, . . . , d. Suppose F is in the domain of attraction of an extreme value distribution
with cdf G. We recall that it supposes the existence for j = 1, . . . , d of sequences a

(j)
n > 0,

b
(j)
n of real numbers and a cdf G with nondegenerate marginals such that

lim
n→∞

P(max{X(1)
1 , . . . , X(1)

n } ≤ a(1)
n x1+b(1)

n , . . . ,max{X(d)
1 , . . . , X(d)

n } ≤ a(d)
n xd+b

(d)
n ) = G(x)

for all points x whereG is continuous. Denote byGj the jth marginal cdf ofG. It is possible
to show that the domain of attraction condition can be expressed as the condition (1) along
with the convergence of the marginal distributions to the Gj’s, and that

L(x) = − logG
(
{− logG1}−1(x1), . . . , {− logGd}−1(xd)

)
. (4)

Let µ be the measure defined by

µ{A(x)} := L(x) , (5)

where A(x) := {u ∈ Rd
+ : there exists j such that uj > xj} for any vector x ∈ Rd

+.

Several conditions are now described. The first two have been introduced by de Haan
and Resnick [1993].

- the first order condition consists of assuming that the limit given in (1) exists, and
that the convergence is uniform on any [0, T ]d, for T > 0.
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- the second order condition consists of assuming the existence of a positive function
α, such that α(t)→ 0 as t→∞, and a non null function M such that for all x with
positive coordinates,

lim
t→∞

1

α(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F
−1
d (1− t−1xd)}]− L(x)

}
= M(x) , (6)

uniformly on any [0, T ]d, for T > 0.

- the third order condition consists of assuming the existence of a positive function β,
such that β(t) → 0 as t → ∞, and a non null function N such that for all x with
positive coordinates,

lim
t→∞

1

β(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F
−1
d (1− t−1xd)}]− L(x)

α(t)
−M(x)

}
= N(x) ,

(7)

uniformly on any [0, T ]d, for T > 0. It implicitly requires that N is not a multiple of
the function M , see Remark 2.

Remark 1. The function L defined by (1) and that appears in (6) and (7) is homogeneous
of order 1. We refer for instance to de Haan and Ferreira [2006, pages 213 and 236].
Most of the estimators constructed in this paper use the homogeneity property. Note that
pointwise convergence in (1) entails uniform convergence on the square [0, T ]d. See for
instance de Haan and Ferreira [2006, page 237].

Remark 2. If N = c ·M for some constant c, the relation can be reformulated as

lim
t→∞

1

β(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F
−1
d (1− t−1xd)}]− L(x)

α(t)(1 + cβ(t))
−M(x)

}
= 0 ,

which we want to exclude. We refer to de Haan and Ferreira [2006, page 385] to see that
the same complication turns up in the one-dimensional case.

Remark 3. The functions M and N involved in the second and third order conditions
satisfy some usual properties, see e.g. de Haan and Resnick [1993]. More specifically, one
can show that there exists non positive reals ρ and ρ′ such that α (resp. β) is a regularly
varying function of order ρ (resp. ρ′), i.e. α(tz)/α(t)→ zρ when t→∞, for each positive
z. Besides, M is homogeneous of order 1− ρ, that is to say M(rx) = r1−ρM(x), for each
positive r and x with positive coordinates. Finally, the function N is homogeneous of order
1− ρ− ρ′.

Remark 4. An interesting situation is when the cdf F is in the domain of attraction of
an extreme value distribution G with independent components, i.e. G =

∏d
j=1Gj. Such a

cdf is said to have the property of asymptotic independence. In this case, the function M
is the limit of the joint tail of the distribution, and in dimension 2, the coefficient of tail
dependence η introduced by Ledford and Tawn [1996, 1997] equals 1/(1 − ρ), where ρ is
defined in Remark 3.
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In this paper, we will handle two sets of assumptions. First consider

(A2) - the second order condition is satisfied, so that (6) holds;

- the coefficient of regular variation ρ of the function α defined in (6) is negative;

- the function M defined in (6) is continuous.

These hypotheses allow to get the asymptotic uniform behaviour of L̂k, the empirical
estimator of L defined by (2), as detailed in the following proposition.

Proposition 1. Let X1, . . . ,Xn be independent multivariate random vectors in Rd with
common joint cdf F and continuous marginal cdfs Fj for j = 1, . . . , d. Assume that the
set of conditions (A2) hold. Suppose further that the first order partial derivatives of L
(denoted by ∂jL for j = 1, . . . , d) exist and that ∂jL is continuous on the set of points

{x = (x1, . . . , xd) ∈ Rd
+ : xj > 0}. Consider L̂k the estimator of L defined by (2) where k

is such that
√
kα(n/k)→∞. Then as n tends to infinity, we get

sup
0≤x1,...,xd≤T

∣∣∣∣ 1

α(n/k)

{
L̂k(x)− L(x)

}
−M(x)

∣∣∣∣ P−→ 0 .

Under stronger assumptions, and for some choice of the intermediate sequence, the
asymptotic distribution of the previous stochastic process can be obtained after multipli-
cation by the rate

√
kα(n/k). For a positive T , let D([0, T ]d) be the space of real valued

functions that are right-continuous with left-limits. Now, introduce the conditions

(A3) - the third order condition is satisfied, so that (6) and (7) hold;

- the coefficients of regular variation ρ and ρ′ of the functions α and β defined
in (6) and (7) are negative;

- the function M defined in (6) is differentiable and N defined in (7) is continuous.

Proposition 2. Assume that the conditions of Proposition 1 are fulfilled and that the set
of conditions (A3) hold. Consider L̂k the estimator of L defined by (2) where k is such
that

√
kα(n/k)→∞ and

√
kα(n/k)β(n/k)→ 0. Then as n tends to infinity,

√
k
{
L̂k(x)− L(x)− α(

n

k
)M(x)

}
d−→ ZL(x) , (8)

in D([0, T ]d) for every T > 0 where

ZL(x) := WL(x)−
d∑
j=1

WL(xjej)∂jL(x) . (9)

The process WL above is a continuous centered Gaussian process with covariance structure
E[WL(x)WL(y)] = µ{R(x) ∩ R(y)} given in terms of the measure µ defined by (5) and of
R(x) = {u ∈ Rd

+ : there exists j such that 0 ≤ uj ≤ xj}.
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Remark 5. A difference between the previous result and Theorem 7.2.2 of de Haan and
Ferreira [2006] consists of the choice of the intermediate sequence that is larger here. In-
deed, we suppose |

√
kα(n/k)| → ∞ whereas they choose k(n) = o

(
n−2ρ/(1−2ρ)

)
which im-

plies
√
kα(n/k)→ 0. Our choice requires the more informative second order condition (6).

A non-null asymptotic bias appears in our framework.

Remark 6. The conditions on k, α and β required in Proposition 2 are not too restrictive:
because of the regular variation of α and β, they are implied by the choice k(n) = nκ, with

κ ∈
(
− 2ρ

1− 2ρ
, − 2(ρ+ ρ′)

1− 2(ρ+ ρ′)

)
.

3 Bias reduction procedure

As pointed out in Remark 5, a non-null asymptotic bias α(n/k)M(x) appears from Propo-
sition 2. The bias reduction procedure will consist in subtracting the estimated asymptotic
bias obtained in Section 3.1. The key ingredient is the homogeneity of the functions L and
M mentioned in Remarks 1 and 3. This homogeneity will also provide other constructions
to get rid of the asymptotic bias.

3.1 Estimation of the asymptotic bias of L̂k

Equation (8) suggests a natural correction of L̂k as soon as an estimator of α(n/k)M(x) is
available. In order to take advantage of the homogeneity of L, let us introduce a positive
scale parameter a which allows to contract or to dilate the observed points. We denote

L̂k,a(x) := a−1L̂k(ax) , (10)

and

∆̂k,a(x) := L̂k,a(x)− L̂k(x) . (11)

From (8) one gets

√
k
{
L̂k,a(x)− L(x)− α(

n

k
)a−ρM(x)

}
d−→ a−1ZL(ax) , (12)

in D([0, T ]d) for every T > 0. Equations (11) and Proposition 1 yield as n tends to infinity,

∆̂k,a(x)

α(n
k
)

P−→ (a−ρ − 1)M(x) . (13)

Fixing a such that a−ρ − 1 = 1, a natural estimator of the asymptotic bias of L̂k(x) is
thus ∆̂k,2−1/ρ̂(x), where ρ̂ is an estimator of ρ. Recall that the unknown parameter ρ is
the regular variation index of the function α involved in the second order condition. Let
kρ be an intermediate sequence that represents the number of order statistics used in the

6



estimator ρ̂. Assume that kρ � k where k = k(n) is the sequence used in Proposition 2.
A first asymptotically unbiased estimator of L(x) can be defined as

L̊k,1,kρ(x) := L̂k(x)− ∆̂k,2−1/ρ̂(x) . (14)

The asymptotic behaviour of this estimator is provided in Theorem 3 and Remark 8. We
refer the reader to Section 6 for more details concerning the estimation of ρ.

3.2 Estimation of the asymptotic bias of L̂k,a

The previous construction can be easily generalized by correcting the estimator L̂k,a instead

of L̂k. Indeed, from (12) one can see that the asymptotic bias of L̂k,a(x) is α(n
k
)a−ρM(x).

Recall that when n tends to infinity, one has for any positive real b,

∆̂k,b(x)

α(n
k
)

P−→ (b−ρ − 1)M(x) .

Thus, fixing b such that b−ρ−1 = a−ρ will help for canceling the asymptotic bias. It yields
the following asymptotically unbiased estimator of L

L̊k,a,kρ(x) := L̂k,a(x)− ∆̂k,(a−ρ̂+1)−1/ρ̂(x) . (15)

Theorem 3. Assume that the conditions of Proposition 2 are fulfilled and consider the esti-
mator of L defined by (15). Let kρ be an intermediate sequence such that

√
kρα(n/kρ)(ρ̂−ρ)

converges in distribution. Suppose also that k is such that k = o(kρ),
√
kα(n/k)→∞ and√

kα(n/k)β(n/k) → 0. Under these assumptions, as n tends to infinity,

√
k
{
L̊k,a,kρ(x)− L(x)

}
d−→ Y̊a(x) , (16)

in D([0, T ]d) for every T > 0, where Y̊a is a continuous centered Gaussian process defined
by

Y̊a(x) := ZL(x)− b−1ZL(bx) + a−1ZL(ax)

with covariance E[Y̊a(x)Y̊a(y)] = E[ZL(x)ZL(y)]
(
1− b−1/2 + a−1/2

)2
and b = (a−ρ+1)−1/ρ.

Remark 7. The assumption that
√
kρα(n/kρ)(ρ̂ − ρ) converges in distribution will be

reconsidered in Section 6.

Remark 8. Theorem 3 remains true when a = 1 and thus characterizes the asymptotic
behaviour of the estimator given in (14). For this particular choice of a, the covariance
reduces to E[ZL(x)ZL(y)](2− 21/2ρ)2.
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3.3 An alternative estimation of the asymptotic bias of L̂k,a

The procedure of bias reduction introduced in the previous section requires the estimation
of the second order parameter ρ. It is actually possible to avoid it, making use of combina-
tions of estimators of L. The asymptotic bias of L̂k,a(x) is α(n

k
)a−ρM(x), as already noted

from (12). Making use of (13) and homogeneity of M , one gets as n tends to infinity

∆̂kρ,a(ax)

∆̂kρ,a(ax)− a∆̂kρ,a(x)

P−→ a−ρ

a−ρ − 1
,

for any intermediate sequence kρ that satisfies
√
kρα(n/kρ)→∞. The expression

∆̂k,a(x)
∆̂kρ,a(ax)

∆̂kρ,a(ax)− a∆̂kρ,a(x)

can thus be used as an estimator of the asymptotic bias of L̂k,a(x). After simplifications,
this leads to a new family of asymptotically unbiased estimators of L(x) by substracting
the estimated bias from L̂k,a(x), namely

L̃k,a,kρ(x) =
L̂k(x)∆̂kρ,a(ax)− L̂k(ax)∆̂kρ,a(x)

∆̂kρ,a(ax)− a∆̂kρ,a(x)
, (17)

which is well defined for any real number a such that 0 < a < 1.

Theorem 4. Assume that the conditions of Proposition 2 are fulfilled and consider the esti-
mator of L defined by (17). Let kρ be an intermediate sequence such that

√
kρα(n/kρ)(ρ̂−ρ)

converges in distribution. Suppose also that k is such that k = o(kρ),
√
kα(n/k) → ∞,√

k = O(
√
kρα(n/kρ)) and

√
kα(n/k)β(n/k) → 0. Assume moreover that the function

M never vanishes except on the axes. Then, as n tends to infinity,

√
k
{
L̃k,a,kρ(x)− L(x)

}
d−→ Ỹa(x) , (18)

in D([ε, T ]d) for every ε > 0 and T > 0, where Ỹa is a continuous centered Gaussian process
with covariance E[Ỹa(x)Ỹa(y)] given by E[ZL(x)ZL(y)](a−ρ − 1)−2(a−ρ − a−1/2)2.

Remark 9. The covariance function specified above is decreasing with respect to the pa-
rameter a for any fixed value of ρ. This suggests at first glance to choose a close to 1 in
order to reduce the asymptotic variance of Ỹa, but this would give a degenerate form of
(17). See Section 5 for practical considerations for the choice of a.

4 Theoretical examples

The aim of this section is to furnish several multivariate distributions that satisfy the third
order condition (7). For the sake of simplicity, expressions are displayed in the bivariate
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setting. We start by focusing on heavy tailed margins. In this case, a first possible step
to get the pointwise convergence is to obtain, for well chosen positive reals p and q, an
expansion (for t tending to infinity) of the form

tP(X > tpx orY > tqy) = T1(x, y) + α(t)T2(x, y) + α(t)β(t)T3(x, y) + o(α(t)β(t)) ,

with T1(1, 1) > 0. One can then identify each term involved in (7) as follows

L(x, y) = T1(a(x), b(y)), M(x, y) = T2(a(x), b(y)), and N(x, y) = T3(a(x), b(y)),

where
a(x) = x−p{T1(1,+∞)}p, b(x) = x−q{T1(+∞, 1)}q .

Applying Resnick [1986, Corollary 5.18], one can check that in such a framework a form
of the bivariate extreme value distribution G is given by

G(x, y) = exp

(
−T1(x, y)

T1(1, 1)

)
.

4.1 Powered norm densities

Following the idea of Resnick [1986, page 276 and 286], consider first a norm ‖ · ‖, and
a cone D of R2, that is to say a set such that if (x, y) ∈ D, then (tx, ty) ∈ D for every
positive t. Without loss of generality, suppose that (1, 1) ∈ D. Let (X, Y ) be a bivariate
random vector with probability density function given by

f(x, y) :=
c1D(x, y)

(1 + ‖(x, y)T‖α)β
,

where c is a normalizing positive constant and where α and β are some positive real
numbers such that αβ > 2. Set AD(x, y) := {(u, v) ∈ D : u > x or v > y} and define
p := (αβ − 2)−1. One can check that, for j = 1, 2, 3,

Tj(x, y) =

∫∫
AD(x,y)

c cj dudv

‖(u, v)T‖α(β+j−1)
,

where c1 = 1, c2 = −β and c3 = β(β + 1)/2. The functions M and N are homogeneous
with order given through ρ = ρ′ = −αp.

Let us discuss some particular choices of the norm:

- For the L1-norm and α = 1, the model coincides with the bivariate Pareto of type II
distribution, denoted by BPII(β) in this paper, and referred to as MP(2)(II)(0, 1, β−
2) in [Kotz et al., 2000, p. 604]. In this case, p = q = (β − 2)−1, and L(x, y) =
x + y − (x−p + y−p)−1/p. The latter stdf is known as the negative logistic model,
introduced by Joe [1990], see also [Beirlant et al., 2004, p. 307].
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- When the Euclidean norm is chosen, one recovers the bivariate Cauchy distribu-
tion for α = 2, β = 3/2 and p = 1. On the positive quadrant, that means for
D = R2

+, we have c = 2/π, T1(u, v) = c(u−2 + v−2)1/2 and a(x) = b(x) = c/x.
On the whole plane, which means that D = R2, we get c = 1/(2π), T1(u, v) =
c
{
u−1 + v−1 + (u−2 + v−2)1/2

}
and a(x) = b(x) = 2c/x. This can also be seen as a

particular case of the following item.

- The Student distributions with Pearson correlation coefficient θ arise choosing the
norm ‖(x, y)T‖ = ν−1/2(x2 − 2θxy + y2)1/2, for a positive real number ν, α = 2,
β = (ν + 2)/2 and p = ν−1. In this case, the integral form of the function T1 can not
be totally simplified, and one classically writes the stdf as

L(x, y) = (x+y)

[
y

x+ y
Fν+1

{
(y/x)1/ν − θ√

1− θ2

√
ν + 1

}
+

x

x+ y
Fν+1

{
(x/y)1/ν − θ√

1− θ2

√
ν + 1

}]
,

where Fν+1 is the cdf of the univariate Student distribution with ν + 1 degrees of
freedom. This dependence structure is also obtained for some elliptical models, see
e.g. [Krajina, 2012, p. 1813] and next subsection.

- Other choices for the norm would lead to other distributions. Note that one can also
relax the symmetry condition, considering for instance the Mahalanobis pseudo-norm
defined by ‖(x, y)T‖2 = (x/σ)2−2ρ(x/σ)(y/τ)+(y/τ)2 for a real number ρ such that
|ρ| < 1 and some positive real numbers σ and τ .

4.2 Elliptical distributions

Consider the usual representation of the centered elliptical distribution (X, Y )T = RAU,
in terms of a positive random variable R, a 2× 2 matrix A such that Σ = AAT is of full
rank, and a bivariate random vector U independent of R, uniformly distributed on the
unit circle of the plane. Assume that R has a probability density function denoted by gR.
One can then express the probability density function of (X, Y ) as

f(x, y) :=
1

|detA|
gR
{

(x, y)Σ−1(x, y)T
}
.

A sufficient condition to satisfy (7) is to assume that the distribution of R belongs to the
Hall and Welsch class (Hall and Welsh [1985]), viz.

P(R > r) = cr−1/γ
{

1 +D1r
ρ/γ +D2r

(ρ+ρ1)/γ + o(r(ρ+ρ1)/γ)
}
,

with positive real c, non null reals D1 and D2, and negative reals ρ and ρ1.
One can check that, for j = 1, 2, 3,

Tj(x, y) =
c

2πγ|detA|

∫∫
{(u,v):u>x or v>y}

dudv

{(u, v)Σ−1(u, v)T}1+1/(2γ)+pj
,

10



where p1 = 0, p2 = −ρ/(2γ) and p3 = −(ρ+ ρ1)/(2γ).

Assuming for simplicity that Σ =

(
1 θ
θ 1

)
, the stdf can be written as

L(x, y) = (x+y)
[

y

x+ y
F1/γ+1

{
(y/x)γ − θ√

1− θ2

√
1/γ + 1

}
+

x

x+ y
F1/γ+1

{
(x/y)γ − θ√

1− θ2

√
1/γ + 1

}]
,

which is the form already obtained for the Student distribution in Subsection 4.1 for
ν = 1/γ. See Demarta and McNeil [2005] for more details. Note finally that for a general
matrix Σ and the special case gR(r) = c(1 + rα)−β, one recovers the Mahalanobis pseudo-
norm already mentioned in the previous subsection.

When dealing with margins that are not heavy tailed, the calculus are done directly
from (6). The last two examples of bivariate distributions have short and light tailed
margins respectively.

4.3 Archimax distributions

Consider the bivariate cdf defined for each 0 ≤ u, v ≤ 1 by

F (u, v) =
{

1 + L(u−1 − 1, v−1 − 1)
}−1

, (19)

given in terms of a stdf L. This distribution has standard uniform univariate margins and
corresponds to a particular case of Archimax bivariate copulas introduced in Capéraà et al.
[2000], in which the function φ(t) = t−1 − 1 is the Clayton Archimedean generator with
index 1. Expanding the left-hand side term of (6) leads to, as t tends to infinity,

t
{

1− F
(
1− t−1x, 1− t−1y

)}
= L(x, y) + t−1M(x, y) + t−2N(x, y) + o

(
t−2
)
,

where

M(x, y) := x2∂1L(x, y) + y2∂2L(x, y)− L2(x, y)

N(x, y) := x4/2∂2
11L(x, y) + x2y2∂2

12L(x, y) + y4/2∂2
22L(x, y)

+ L3(x, y) +
(
x3 − 2x2L(x, y)

)
∂1L(x, y) +

(
y3 − 2y2L(x, y)

)
∂2L(x, y) .

This allows to identify ρ = ρ′ = −1. Above, the notation ∂ijL stands for ∂2L/(∂xi∂xj).

4.4 Multivariate Symmetric logistic distributions

Consider the cdf defined by

F (x, y) = exp
{
−
(
e−x/s + e−y/s

)s}
, (20)

for each x, y ∈ R, which corresponds to the bivariate extreme value distribution with Gum-
bel univariate margins F1(x) = F2(x) = exp{−e−x} and symmetric logistic stdf L(x, y) =
(x1/s + y1/s)s, where 0 < s ≤ 1. This distribution has been introduced in Tawn [1988], see

11



e.g. [Beirlant et al., 2004, p. 304]. Expanding t
[
1− F

{
F−1

1 (1− t−1x), F−1
2 (1− t−1y)

}]
leads to

L(x, y) + t−1M(x, y) + t−2N(x, y) + o
(
t−2
)
,

where

M(x, y) :=
1

2
(xx1/s + yy1/s){L(x, y)}1−1/s − 1

2
{L(x, y)}2

N(x, y) :=
1

3
(x2x1/s + y2y1/s){L(x, y)}1−1/s +

1− s
8s

(xy)1/s(x− y)2{L(x, y)}1−2/s

+
1

3!
{L(x, y)}3 − 1

2
(xx1/s + yy1/s){L(x, y)}2−1/s .

This allows to identify ρ = ρ′ = −1. The identification of second and third order terms
has previously be derived by Ledford and Tawn [1997].

5 Finite sample performances

The purpose of this section is to evaluate the performance of the estimators of L introduced
in Section 3. For simplicity, we will focus on dimension 2, and simulate samples from the
distributions presented in Section 4. Thanks to the homogeneity property, one can focus
on the estimation of t 7→ L(1 − t, t) for 0 ≤ t ≤ 1, which coincides with the Pickands
dependence function A (see e.g. Beirlant et al. [2004], p. 267). Considering first the
estimation at t = 1/2 leads to define aggregated versions of our estimators. These new
estimators will be both compared in terms of L1-errors for L or associated level curves.

5.1 Estimators in practice

Let us start with the estimation of L(1/2, 1/2) for the bivariate Student distribution with 2
degrees of freedom. This model is a particular case of Sections 4.1 and 4.2. For one sample
of size 1000, Figure 1 gives, as functions of k, the estimation of L at point (1/2, 1/2) by
L̂k, L̊k and L̃k respectively defined by (2), (15) and (17). For the last two estimators, the
parameters have been tuned as follows: a = 0.4, kρ = 990 and ρ estimated using (22) with
a = r = 0.4. These values have been empirically selected based on intensive simulation,
and will be kept throughout the paper. One can check from Figure 1 that the empirical
estimator L̂k behaves fairly well in terms of bias for small values of k. Besides, the bias
is efficiently corrected by the two estimators L̊k and L̃k. Since the bias almost vanishes
along the range of k, one can think about reducing the variance through an aggregation in
k (via mean or median) of L̊k or L̃k. This leads to consider the two following estimators

L̊agg := Median(L̊k, k = 1, · · · , κn) ,

L̃agg := Median(L̃k, k = 1, · · · , κn) ,

where n is the sample size and κn is an appropriate fraction of n. Their performances will
be compared to those of the family {L̂k, k = 1, . . . , n− 1}. Simplified notation {L̂k, k} will

12
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Figure 1: Estimation of L(1/2, 1/2) for the bivariate Student(2) law based on a sample of size
1000.

be used instead of {L̂k, k = 1, . . . , n−1}. Because any stdf L satisfies max(t, 1−t) ≤ L(1−
t, t) ≤ 1, the competitors have been corrected so that they satisfy the same inequalities.

Remark 10. If κn satisfies the condition imposed on kn in Theorem 3 and 4, then the
aggregated estimators L̊agg and L̃agg would inherit the asymptotic properties of L̊k and L̃k.
Indeed, all the estimators jointly converge, since they are based on a single process.

Remark 11. In the following simulation study, κn is arbitrarily fixed to n − 1. Such a
choice is open to criticism since it does not satisfy the theoretical assumptions mentioned
in the previous remark. But it is motivated here by the fact that the bias happened to be
efficiently corrected even for very large values of k, as already illustrated on Figure 1. Note
however that such a choice would not be systematically the right one. In presence of more
complex models such as mixtures, κn should not exceed the size of the subpopulation with
heaviest tail. To illustrate this point, take e.g. the bivariate cdf F = pG+ (1− p)H, where
G is the cdf of the bivariate BPII(3) model and H is the uniform cdf on [0, 1]2. Then the
stdf is L(x, y) = x + y − (1/x + 1/y)−1, and only p% of the data belong to the targeted
domain of attraction, so κn should not exceed pn.

Classical criteria of quality of an estimator θ̂ of θ are the absolute bias (ABias) and the
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mean square error (MSE) defined by

ABias =
1

N

N∑
i=1

|θ̂(i) − θ| ,

MSE =
1

N

N∑
i=1

(θ̂(i) − θ)2 ,

where N is the number of replicates of the experiment and θ̂(i) is the estimate from the ith
sample. Note that what we call here Abias is also referred as MAE (for Mean Absolute
Error) in the literature. Figure 2 plots these criteria in the estimation of L(1/2, 1/2)
for the bivariate Student(2) model when n = 1000 and N = 200. Figure 2 exhibits the
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Figure 2: (a) ABias (b) MSE for the estimation of L(1/2, 1/2) in the bivariate Student(2) model
when n = 1000 as a function of k.

strong dependence of the behaviour of L̂k in terms of k, as well as the efficiency of the
bias correction procedures. The estimator L̊k given by (15) outperforms the estimator L̃k
defined by (17), no matter the value of k. Moreover, the ABias and MSE curves associated
to L̊k almost reach the minimum of those of L̂k. Finally, the aggregated version L̊agg

answers surprisingly well to the estimation problem of the stdf L. First, its performances
are similar to the best reachable from the original estimator L̂k. Second, it gets rid of the
delicate choice of a threshold k (or would at least simplify this choice, see Remark 11).
These comparisons have also been done for five other models obtained from Section 4. The
results are very similar to the ones obtained for the bivariate Student(2) distribution and
are therefore not presented.
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5.2 Comparisons in terms of L1-error for L

The comparisons are now handled not only at a single point but for the whole function
using an L1-error defined as follows

1

T + 1

T∑
t=1

∣∣∣∣L̂(1− t

T
,
t

T

)
− L

(
1− t

T
,
t

T

)∣∣∣∣ (21)

where T is the size of the subdivision of [0, 1]. Figure 3 gives the boxplots based on N = 100
realisations of L̊agg, L̃agg and {L̂k, k} for T = 30 in the case of six bivariate models:

• First row: Cauchy and Student(2) models;

• Second row: BPII(3) model and Symmetric logistic model with s = 1/3;

• Third row: Archimax model with logistic generator L(x, y) = (x2 + y2)1/2 and mixed
generator L(x, y) = (x2 + y2 + xy)/(x+ y).
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Figure 3: Boxplot of the L1-error of function L for the estimators L̊agg, L̃agg and {L̂k, k}.
First row: bivariate Cauchy model (left) and bivariate Student(2) model (right).
Second row: bivariate BPII(3) model (left) and bivariate Symmetric logistic model
(right).
Third row: bivariate Archimax model with logistic (left) and mixed generator (right).
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As already observed in Figure 2, the estimator L̊agg is again very competitive compared

to the best element of {L̂k, k} no matter the choice of model. Recall that the value of k
leading to the best L̂k depends crucially on the model, and is consequently unknown in
practice, which invites any users to apply this new procedure.

The estimator L̃agg is definitely less competitive compared to L̊agg. Given these results
we will not pursue with the L̃agg estimator in the rest of this paper, and will focus our

attention on the behaviour of L̊agg.

5.3 Comparisons between L̊agg, a convex version of L̊agg, and
Peng’s estimator

A natural step is now to compare the performance of our best estimator L̊agg with an
existing competitor, recently introduced by Peng [2010]. In his work, Peng provides a
data-driven method which chooses the threshold via estimating a stdf. Another interesting
task is to compare L̊agg with a convexified version of itself, since any stdf is a convex function
(see e.g. [Beirlant et al., 2004, Section 8.2.2] or de Haan and Ferreira [2006, Section 6.1.5]).
Note that a general convexification procedure has been proposed in dimension 2 by Fils-
Villetard et al. [2008]; see also some alternative suggestions in Bücher et al. [2011].

In order to take maximal advantage from this simulation study, the three different
models implemented have been considered in two versions for each: the first model is the
Gaussian one, simulated with Pearson’s correlation coefficient ±0.5. The Gaussian model is
a particular case of elliptical distributions (see Section 4.2) which illustrates the asymptotic
independent situation (cf. Remark 4). The second model is the bivariate Symmetric
logistic one, introduced in Section 4.4, with two different strengths of dependence (close
to independence on the left column, stronger dependence on the right column). The third
model is the bivariate Student family, introduced in Sections 4.1 and 4.2 as a particular
case. Two strengths of dependence have also been chosen, close to asymptotic independence
on the left column, stronger dependence on the right column.

Our results, summarized in Figure 4, will thus exhibit in particular how the performance
in the estimation of the stdf depends on the distance to the asymptotic independence
case. The y-axis scale has been fixed for all the six cases so that one can measure that
the estimation of the stdf is a more ambitious problem under asymptotic independence.
However, our estimator L̊agg has still nice properties when comparing it to the empirical

estimator L̂k.
The convex version L̊aggc performs quite equivalently as L̊agg. A reason for this is that by
construction our estimator is actually not far from a convex function. So balancing the
cost of convexifying with the benefit in the performance motivates the simple use of L̊agg.

Finally, regarding Peng’s estimator L̂P , one observes that this estimator is an interesting
alternative to the original family {L̂k, k}, which however never outperforms our proposal.
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Figure 4: Boxplot of the L1-error of function L for the estimators L̊agg, L̊aggc, L̂P and {L̂k, k}.
First row: bivariate Normal model with correlation τ : τ = 0.5 (left) and τ = −0.5
(right).
Second row: bivariate Symmetric logistic(s) model: s = 1/1.2 (left) and s = 1/3 (right).
Third row: bivariate Student(ν) model: ν = 20 (left) and ν = 2 (right).
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5.4 Estimating a failure probability

Let us illustrate in this subsection the question of estimating an arbitrarily chosen failure
probability P (X > 104 orY > 2 · 104), where (X, Y ) comes from the BPII(3) model, so
that P (X > 104 orY > 2 · 104) = 0.00011665. Samples of size n = 1000 are considered.
Thus, empirical estimation will be useless for evaluating the probability of exceeding such
extreme values for X or Y , and an extrapolation based on Extreme Value Theory is thus
needed.
First assume that it is known that the margins are standard Pareto. This probability can
be approximated by

P (X > 104 orY > 2 · 104) '
(
10−4 + 5 · 10−5

)
L(2/3, 1/3)

that naturally comes from (1), the projection on the simplex and the homogeneity of L.
Estimating the unknown parameter L(2/3, 1/3) with our candidate L̊agg and the origi-

nal family {L̂k, k} gives several boxplots (based on 500 replicates) that are presented in
Figure 5. The comparison of these estimates is again favourable to L̊agg.
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Figure 5: Boxplot (based on 500 replicates) for the estimation of P (X > 104 orY > 2 · 104) when
(X,Y ) is drawn from the BPII(3) model with sample size n = 1000 and assuming
margins to be known.

Remark 12. We also investigated the possible use of a second-order term in the approxi-
mation of the probability P (X > 104 orY > 2 ·104), making use of the following estimators

(
10−4 + 5 · 10−5

)
L̊agg

(
2

3
,
1

3

)
+

(
k

n

)ρ̂ (
10−4 + 5 · 10−5

)1−ρ̂
∆̂k,2−1/ρ̂

(
2

3
,
1

3

)
.

The results were so similar to those obtained in Figure 5 that we chose to skip them.
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Second, when the margins are not assumed to be known, the estimation of p1 = 1 −
F1(104) and p2 = 1 − F2(2 · 104) can be reached by the POT method (see e.g. [Beirlant
et al., 2004, Section 7.4]) for several values of a threshold. After the study of Mean Residual
Life Plots and Quantile Plots, the thresholds have been fixed to be Xn−k,n and Yn−k,n for
k = 200. The POT estimates deduced with these thresholds are respectively denoted by
p̂1 and p̂2. The probability P (X > 104 orY > 2 · 104) is then approximated by

P (X > 104 orY > 2 · 104) ' (p̂1 + p̂2)L
(

p̂1

p̂1 + p̂2
,

p̂2

p̂1 + p̂2

)
.

Estimating on each repetition the unknown parameter L (p̂1/(p̂1 + p̂2), p̂2/(p̂1 + p̂2)) with
our candidate L̊agg and the original family {L̂k, k} gives several boxplots (based on 500
replicates) presented in Figure 6. It seems clear that the uncertainty on the margins F1
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Figure 6: Boxplot (500 replicates) of the estimation of P (X > 104 orY > 2 · 104) when (X,Y ) is
drawn from the BPII(3) model with sample size n = 1000 and estimating margins by
POT method.

and F2 is much more influent than that of the stdf L. Such findings corroborate previous
studies, see e.g. Bruun and Tawn [1998] and de Haan and Sinha [1999].

5.5 Q-curves

Another nice representation of a function of several variables is through its level sets. In
the case of the function L, it consists of looking (for any positive real c) at sets of the form
{(x, y) ∈ R2

+, L(x, y) ≤ c}. From homogeneity property, it is characterized by

Q := {(x, y) ∈ R2
+, L(x, y) ≤ 1} .
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Following de Haan and Ferreira [2006, page 245], the boundary of this set can be written
as

∂Q =
{(
b(θ) cos θ, b(θ) sin θ

)
: b(θ) = (L(cos θ, sin θ))−1, θ ∈ [0, π/2]

}
.

The estimation of ∂Q is naturally obtained by replacing L by any estimator, and this is
done here for the estimators L̊agg and {L̂k, k}. Figure 8 (left) exhibits the bias phenomenon

(as k increases) induced by L̂k in the estimation of the Q-curve. The bias factor on L̂k
is illustrated with k = 50, k = 100 and k = 800. The correction of the bias with L̊agg is
effective. As done in the previous section, the comparison of the different estimators is
provided in terms of a global criterium based on the L1-norm, given by

π

2(T + 1)

T∑
t=0

∣∣∣∣b̂( πt2T

)
− b
(
πt

2T

)∣∣∣∣ {cos

(
πt

2T

)
+ sin

(
πt

2T

)}
.

Figure 7 displays the boxplots of this measure, based on N = 100 realisations and for
T = 30 under the six bivariate models given in the previous section.
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Figure 7: Boxplot of the L1-error of Q-curve for the estimators L̊agg and {L̂k, k}.
First row: bivariate Cauchy model (left) and bivariate Student(2) model (right).
Second row: bivariate BPII(3) model (left) and bivariate Symmetric logistic model
(right).
Third row: bivariate Archimax model with logistic (left) and mixed generator (right).
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The estimation of the Q-curve based on the original estimator L̂k is strongly sensitive to
the choice of k: the bias (resp. the variability) is an increasing (resp. decreasing) function
of k. The performances of L̊agg is similar to that of the best L̂k, which is unknown in
practice. These features corroborate the conclusions drawn in Section 5.2.

To close this section, let us illustrate the Q-curve estimation on the wave heights data
set of de Haan and Ferreira [2006, page 207]. As explained therein, wave height (HmO) and
still water level (SWL) have been recorded during 828 storm events on the Dutch coast.
The analogous of Figure 7.2 from de Haan and Ferreira [2006] is reported in Figure 8
(right). Even if the two curves are not so close, the conclusion remains the same: the
estimated boundary is concave, which indicates that the high values of the two variables
are dependent.
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Figure 8: Left: Estimation of the Q-curve for the bivariate Student(2) law based on a sample of
size 1000. Right: Estimated Q-curve for the wave heights data introduced in de Haan
and Ferreira [2006].

6 Estimation of second order components ρ and M

In this section, we focus on the estimation of the function M coming from the second order
condition (6) and on the estimation of its homogeneity parameter 1− ρ.

6.1 Second order parameter ρ

A possible way to estimate ρ is to use on each margin one of the techniques developed
in the univariate setting, see e.g. Gomes et al. [2002] or Ciuperca and Mercadier [2010].
Other methods make use of the multivariate structure of the data, see e.g. Peng [2010]
and also Goegebeur and Guillou [2013] in a slightly different framework. The construction
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described here takes likewise advantage of the multivariate information of the sample. On
this purpose, the following proposition shows that a variable of interest is the ratio of two
terms ∆̂k,a, defined by (11).

Proposition 5. Assume that the conditions of Proposition 1 are fulfilled and fix positive
real numbers r and a ∈ (0, 1). Assume moreover that the function M never vanishes except
on the axes. Then, as n tends to infinity, for every ε > 0 and T > 0,

sup
ε≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)

∆̂k,a(x)
− r1−ρ

∣∣∣∣∣ P−→ 0 .

Remark 13. In case the requirement that the function M is either positive or negative in
the positive quadrant does not hold, one could consider the integral of (∆̂k,a(x))2 over the
set {x = (x1, . . . , xd) s.t. x2

1 + . . . + x2
d = 1} and prove a result like Lemma 7 for this

statistic. Then the integral of M2 appears in the denominator in Proposition 5 instead of
M itself and the sign of M does not matter. This will be part of a future work.

A family of consistent estimators of the parameter ρ can be derived from Proposition 5.

ρ̂k,a,r(x) :=

(
1− 1

log r
log

∣∣∣∣∣∆̂k,a(rx)

∆̂k,a(x)

∣∣∣∣∣
)
∧ 0 . (22)

The following property can be obtained from the asymptotic expansion given in Proposi-
tion 2.

Proposition 6. Assume that the conditions of Proposition 2 are fulfilled and fix positive
real numbers r and a ∈ (0, 1). Consider the estimator of ρ defined by (22). Assume
moreover that the function M never vanishes except on the axes. Then, as n tends to
infinity,

√
kα(

n

k
){ρ̂k,a,r(x)− ρ} d−→ Ẑρ,a,r(x) ,

in D([ε, T ]d) for every ε > 0 and T > 0, with

Ẑρ,a,r(x) :=
a−1ZL (ax)− ZL(x)

(a−ρ − 1)M(x) log r
− a−1ZL (rax)− ZL(rx)

(a−ρ − 1)M(x)r1−ρ log r
.

Figure 9 illustrates the finite sample behaviour of this estimator of ρ for a collection
of bivariate models introduced in Section 4, for which the true value of ρ is equal to -1.
These boxplots show that the estimator performs reasonably well in median, no matter
the choice of model, but the uncertainty is rather important. Fortunately this seems from
simulation studies to have only minor influence on the estimation of L.
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Estimation of  ρ for n=1000

Figure 9: Boxplot of 500 estimations of ρ given by (22) using samples of size 1000 drawn from six
models: (a) Student(2); (b) BPII(3); (c) Symmetric Logistic with s = 1/3; (d) Archi-
max model with logistic generator with s = 1/2; (e) Archimax model with mixed
generator. Red line indicates the true value of ρ = −1.

6.2 Second order function M

Recall that from (12) the asymptotic bias of L̂k,a(x) is given by α(n
k
)a−ρM(x). In order

to circumvent an estimation of the term α(n/k), a renormalisation is needed, focusing for
instance on the estimation of M(x)/M(1/2) where 1/2 = (1/2, . . . , 1/2). Thanks to (13),
this ratio can be consistently estimated by

∆̂k,a(x)

∆̂k,a(1/2)

as soon as k is a well chosen intermediate sequence. The asymptotic normality can also be
derived from analogous arguments to those used in the proof of Proposition 6. Details are
not presented here for the sake of simplicity.

Figure 10 summarizes the behaviour of the estimator of the curve t 7→ M(t, 1 −
t)/M(1/2, 1/2) through boxplots of the L1-error, defined as in (21). We observe from
this figure that the best estimation is reached for large values of k. This feature does not
depend on the degree of asymptotic dependence in the Symmetric logistic model, nor on
the strength of the bias of the original estimator L̂k detected on Figure 3. These graphs
confirm that the asymptotic bias is remarkably well estimated for large values of k. This
helps to understand why the bias subtraction is accurate for large or very large choices of
k, as also commented in Section 5.1.

Concluding comments

This paper deals with the estimation of the extremal dependence structure in a multi-
variate context. Focusing on the stdf, the empirical counterpart is the non parametric
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Figure 10: Boxplot of the L1-error of M(·)/M(1/2, 1/2)-curve.
First row: Bivariate logistic model with s = 0.1 (left) and with s = 0.5 (right).
Second row: Bivariate logistic model with s = 0.9 (left) and bivariate Archimax with
mixed generator (right).

reference. A common feature when modelling extreme events is the delicate choice of the
number of observations used in the estimation, and it spoils the good performance of this
estimator. The aim of this paper has been to correct the asymptotic bias of the empirical
estimator, so that the choice of the threshold becomes less sensitive. Two asymptotically
unbiased estimators have been proposed and studied, both theoretically and numerically.
The estimator defined in Section 3.2 proves to outperform the original estimator, whatever
the model considered. Its aggregated version defined in Section 5.1 appears as a worthy
candidate to estimate the stdf.
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7 Proofs

Proof of Proposition 1. Denote by U
(j)
i the uniform random variables U

(j)
i = 1− Fj(X(j)

i )
for j = 1, . . . , d. Introducing

Vk(x) =
1

k

n∑
i=1

1n
U

(1)
i ≤kx1/n or ... or U

(d)
i ≤kxd/n

o

allows to rewrite L̂k as the following

L̂k(x) = Vk

(n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
.

Write

L̂k(x)−L(x) = Vk

(n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
−n
k

[1−F{F−1
1 (1−U (1)

[kx1],n), . . . , F−1
d (1−U (d)

[kxd],n
)}]

+
n

k
[1− F{F−1

1 (1− U (1)
[kx1],n), . . . , F−1

d (1− U (d)
[kxd],n

)}]− L
(n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
+ L

(n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
− L(x) ,

and denote A1,k(x) (resp. A2,k(x) and A3,k(x)) the first line (resp. second and third lines)
of the right-hand side.
Applying de Haan and Ferreira [2006, Proposition 7.2.3] leads to

√
kA1,k(x)

d−→ WL(x) ,

in D([0, T ]d) for every T > 0 and for any intermediate sequence, where WL is a continuous
centered Gaussian process with covariance structure specified in Proposition 2. Due to the
Skorohod construction we can write

sup
0≤x1,...,xd≤T

∣∣∣√kA1,k(x)−WL(x)
∣∣∣→ 0 a.s. , (23)

which implies, since
√
kα(n/k)→∞,

sup
0≤x1,...,xd≤T

∣∣∣∣∣A1,k(x)

α
(
n
k

) ∣∣∣∣∣ = OP

(
1√

kα
(
n
k

)) .

Again for any intermediate sequence, the proof of de Haan and Ferreira [2006, Theorem
7.2.2] ensures the convergence for j = 1, . . . , d

sup
x∈[0,T ]

|
√
k
(n
k
U

(j)
[kx],n − x

)
+WL(xej)| → 0 a.s. , (24)

and finally

sup
0≤x1,...,xd≤T

∣∣∣∣∣√kA3,k(x) +
d∑
j=1

WL(xjej)∂jL(x)

∣∣∣∣∣→ 0 a.s. . (25)
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As previously, this yields

sup
0≤x1,...,xd≤T

∣∣∣∣∣A3,k(x)

α
(
n
k

) ∣∣∣∣∣ = O

(
1√

kα
(
n
k

)) .

Since the intermediate sequence satisfies
√
kα
(
n
k

)
→∞, it thus remains to prove that

sup
0≤x1,...,xd≤T

∣∣∣∣A2,k(x)

α(n
k
)
−M(x)

∣∣∣∣→ 0 a.s. .

The second order condition that holds uniformly on [0, T ]d in (6) yields

sup
0≤x1,...,xd≤T

∣∣∣∣A2,k(x)

α(n
k
)
−M

(n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)∣∣∣∣→ 0 a.s. .

Then the result follows from

sup
0≤x1,...,xd≤T

∣∣∣M(x)−M
(n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)∣∣∣→ 0 a.s. ,

that is obtained combining (24) and the continuity of the function M .

Proof of Proposition 2. We use the notation introduced in the proof of Proposition 1.
Thanks to the Skorohod construction, we can start from (23). Combined with (25), it
is sufficient to prove the convergence

sup
0≤x1,...,xd≤T

∣∣∣√k {A2,k(x)− α(
n

k
)M(x)

}∣∣∣→ 0 a.s. .

Note that the third order condition, the uniformity on [0, T ]d of the convergence in (7) and
the continuity of N yield

A2,k(x) = α(
n

k
)M

(n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
+OP

(
α(
n

k
)β(

n

k
)
)
.

Thanks to (24) and to the existence of the first-order partial derivatives ∂jM (j = 1, . . . , d)
of the function M , we have that

sup
0≤x1,...,xd≤T

∣∣∣∣∣√k {M (n
k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
−M(x)

}
+

d∑
j=1

WL(xjej)∂jM(x)

∣∣∣∣∣
converges to 0 in probability, as n tends to infinity. This implies that

sup
0≤x1,...,xd≤T

∣∣∣√k {A2,k(x)− α(
n

k
)M(x)

}∣∣∣ = OP

(
|
√
kα(

n

k
)β(

n

k
) + α(

n

k
)|
)
,

that completes the proof thanks to the choice of the intermediate sequence.
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Proof of Theorem 3. Recall that b = (a−ρ + 1)−1/ρ and denote b̂ = (a−ρ̂ + 1)−1/ρ̂. Write

L̊k,a,kρ − L = {L̂k,a − L}+ {L̂k − L} − {L̂k,b̂ − L} , (26)

which equals, thanks to (12) and under Skorohod’s construction,

α
(n
k

)
(a−ρ + 1)M(x) +

1√
k

(
a−1ZL(ax) + ZL(x)

)
− α

(n
k

)
b̂−ρM(x)− b−1

√
k
ZL(bx) + o

(
1√
k

)
= α

(n
k

) (
(a−ρ + 1)− b−ρ

)
M(x) +

1√
k
Y̊a(x) + α

(n
k

)(
b−ρ − b̂−ρ

)
M(x) + o

(
1√
k

)
= α

(n
k

) (
(a−ρ + 1)− b−ρ

)
M(x) +

1√
k
Y̊a(x) + α

(n
k

)
OP

(
1√

kρα(n/kρ)

)
+ o

(
1√
k

)
.

The first term is zero. Since both k = o(kρ) and α is regularly varying with negative index,

the one but last term can be put into the term o
(

1√
k

)
. Finally, the covariance function

follows from the equality in law as processes between ZL(ax) and
√
aZL(x).

The proofs of Theorem 4 and Proposition 6 are based on the following auxiliary result.

Lemma 7. Assume that the conditions of Proposition 2 are fulfilled. Then for any positive
real r, one has as n tends to infinity,

√
kα(

n

k
)

{
∆̂k,a(rx)

α(n
k
)
− (a−ρ − 1)r1−ρM(x)

}
d−→ a−1ZL (rax)− ZL(rx) ,

in D([0, T ]d) for every T > 0.

Proof of Lemma 7. Making use of the homogeneity of the function L, write

∆̂k,a(rx) = {L̂k,a(rx)− L(rx)} − {L̂k(rx)− L(rx)} .

Using the Skorohod construction, it follows from equations (8) and (12) that

sup
0≤x1,...,xd≤T/r

∣∣∣∣∣√kα(
n

k
)

{
∆̂k,a(rx)

α(n
k
)
− (a−ρ − 1)r1−ρM(x)

}
− a−1ZL (rax) + ZL(rx)

∣∣∣∣∣
tends to 0 almost surely, as n tends to infinity.

Proof of Theorem 4. Note that

L̂k(x)
∆̂kρ,a(ax)

α(n/kρ)
− L̂k(ax)

∆̂kρ,a(x)

α(n/kρ)
= L̂k(x)

(
∆̂kρ,a(ax)

α(n/kρ)
− a

∆̂kρ,a(x)

α(n/kρ)

)
− a

∆̂kρ,a(x)∆̂k,a(x)

α(n/kρ)
.

29



Under a Skorohod construction, Lemma 7 allows to write the expansions of the terms
∆̂k,a(x), ∆̂kρ,a(x) and ∆̂kρ,a(ax), which implies on the one hand

∆̂kρ,a(ax)

α(n/kρ)
− a

∆̂kρ,a(x)

α(n/kρ)
= a(a−ρ − 1)2M(x)

+
1√

kρα(n/kρ)

{
a−1ZL(a2x)− 2ZL(ax) + aZL(x)

}
+ o

(
1√

kρα(n/kρ)

)
, (27)

and

∆̂kρ,a(x)∆̂k,a(x)

α(n/kρ)
= α(n/k)(a−ρ − 1)2M2(x) + (a−ρ − 1)M(x)

a−1ZL(ax)− ZL(x)√
k

+OP

(
α(n/k)√
kρα(n/kρ)

+
1√

k
√
kρα(n/kρ)

)
+ o

(
1√
k

)
. (28)

on the other hand, both uniformly for x ∈ [ε, T ]d. Combining (27) and (28) with equa-
tion (8), one gets

L̂k(x)
∆̂kρ,a(ax)

α(n/kρ)
− L̂k(ax)

∆̂kρ,a(x)

α(n/kρ)

= a(a−ρ − 1)2M(x)L(x) +
1√
k
M(x)(a−ρ − 1)

(
a1−ρZL(x)− ZL(ax)

)
+

1√
kρα(n/kρ)

L(x)
{
a−1ZL(a2x)− 2ZL(ax) + aZL(x)

}
+ o

(
1√
k

)
+ o

(
1√

kρα(n/kρ)

)
.

Since the last expression and equation (27) are respectively the numerator and denom-
inator of L̃k,kρ,a(x), one obtains after simplifications

√
k(L̃k,kρ,a(x)− L(x)) =

a−ρZL(x)− a−1ZL(ax)

a−ρ − 1
+ o

( √
k√

kρα(n/kρ)

)
+ o(1) ,

since M doesn’t vanish by assumption. The choice of the sequences k and kρ allows to

conclude since
√
k = O

(√
kρα(n/kρ)

)
.

Proof of Proposition 5. Applying Lemma 7, we have

sup
ε≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(x)

α
(
n
k

) − (a−ρ − 1)M(x)

∣∣∣∣∣ P−→ 0 . (29)

As a consequence,

sup
ε≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)

∆̂k,a(x)
− r1−ρ

∣∣∣∣∣ = sup
ε≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)/α(n/k)

∆̂k,a(x)/α(n/k)
− r1−ρ

∣∣∣∣∣
= OP

(
sup

ε≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)

α(n/k)
− r1−ρ ∆̂k,a(x)

α(n/k)

∣∣∣∣∣
)
,
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since (a−ρ − 1)M(x) 6= 0 by assumption. Writing∣∣∣∣∣∆̂k,a(rx)

α(n/k)
− r1−ρ ∆̂k,a(x)

α(n/k)

∣∣∣∣∣ ≤
∣∣∣∣∣∆̂k,a(rx)

α(n/k)
− r1−ρ(a−ρ − 1)M(x)

∣∣∣∣∣
+

∣∣∣∣∣r1−ρ(a−ρ − 1)M(x)− r1−ρ ∆̂k,a(x)

α(n/k)

∣∣∣∣∣
and using twice equation (29) leads to the conclusion.

Proof of Proposition 6. Define Qk,a,r(x) :=
∆̂k,a(rx)

∆̂k,a(x)
. Lemma 7 used twice yields

√
kα(

n

k
)(Qk,a,r(x)− r1−ρ)

d−→ −r1−ρ log rẐρ,a,r(x) , (30)

where Ẑρ,a,r(x) is defined in the Proposition 6. Since ρ̂k,a,r(x) = 1 − log(Qk,a,r(x))/ log r,
the result follows straightforwardly from (30) and the Delta method.

Acknowledgements

This research has been partially supported by the Agence Nationale de la Recherche
through the AST&RISK project (ANR-08-BLAN-0314-01), and by FCT/PTDC/MAT/112770/2009
(Portugal).

We wish to thank Armelle Guillou for pointing out a deficiency in the original version
of the paper, as well as several misprints. We thank the referees for very helpful comments.

References

B. Abdous and K. Ghoudi. Non-parametric estimators of multivariate extreme dependence functions. J.
Nonparametr. Stat., 17(8):915–935, 2005.

J. Beirlant, Y. Goegebeur, J. L. Teugels, and J. Segers. Statistics of extremes. Wiley Series in Probability
and Statistics. John Wiley & Sons Ltd., Chichester, 2004.

J. Beirlant, G. Dierckx, and A. Guillou. Bias-reduced estimators for bivariate tail modelling. Insurance
Math. Econom., 49(1):18–26, 2011. ISSN 0167-6687. doi: 10.1016/j.insmatheco.2011.01.010. URL
http://dx.doi.org/10.1016/j.insmatheco.2011.01.010.

J. T. Bruun and J. A. Tawn. Comparison of approaches for estimating the probability of coastal flooding.
Applied Statistics, 1998.
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