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Abstract

The estimation of the extremal dependence structure is spoiled by the impact of the
bias, which increases with the number of observations used for the estimation. Already
known in the univariate setting, the bias correction procedure is studied in this paper
under the multivariate framework. New families of estimators of the stable tail depen-
dence function are obtained. They are asymptotically unbiased versions of the empirical
estimator introduced by Huang [1992]. Since the new estimators have a regular behaviour
with respect to the number of observations, it is possible to deduce aggregated versions so
that the choice of the threshold is substantially simplified. An extensive simulation study
is provided as well as an application on real data.

AMS 2010 subject classification: Primary 62G32, 62G05, 62G20. Secondary 60F05, 60G70.
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1 Introduction

Estimating extreme risks in a multivariate framework is highly connected with the estimation
of the extremal dependence structure. This structure can be described wia the stable tail
dependence function L, firstly introduced by Huang [1992]. For any arbitrary dimension d,
consider a multivariate vector (X M ..., X@) with continuous marginal cumulative distri-
bution functions (cdf) Fi,...,F;. The stable tail dependence function is defined for each
positive reals x1,...,xq as

tlim tP{1 — F(XW) <t7lzyor ...oor 1 — Fy(XD) <t7lay} = L(xy, ..., 2q) -
— 00

Assuming that such a limit exists and is non degenerate is equivalent to the classical assump-
tion of existence of a multivariate domain of attraction for the componentwise maxima (see



e.g. de Haan and Ferreira [2006, Chapter 7]). The previous limit can be rewritten as

1tlim tll—F{F7 A=t ), Fy (L=t ag)}] = L2, ..., 24) (1)
—00

where F' denotes the multivariate distribution function of the vector (X W X (d)). Con-
sider a sample of size n drawn from F' and an intermediate sequence, that is to say a sequence
k = k(n) tending to infinity as n — oo, with k/n — 0. Let us denote x = (z1,...,24) a
vector of the positive quadrant Ri and X ,gjgl the kth order statistics among n realisations

of the margins X). The empirical estimator of L(x) is then obtained from (1), replacing
F by its empirical version, ¢t by n/k, and Fj_l(l —t71z;) for j = 1,...,d by its empirical

counterpart Xﬁjf[m_lm] ,,» S0 that
71

or ... or x¥>x (2)

v—[kxz1]+1,n L*[kwd]+1,n}

. 1 «
Li(x) = > ]I{X}”EX,(”
i=1
See Huang [1992] for pioneer works on this estimator. Under suitable conditions, it can be
shown (see Section 2) that the estimator L(x) has the following asymptotic expansion

ﬁk(x) — L(x) = Zf/(EX)

where Z7, is a continuous centered Gaussian process, « is a function that tends to 0 at infinity,
and M is a continuous function. In particular vVk{L(x) — L(x)} can be approximated
in distribution by Zr(x), provided that vka(n/k) tends to 0 as n tends to infinity. This
condition imposes a slow rate of convergence of the estimator Ly, (x), so one would be interested
in relaxing this hypothesis. As a counterpart, as soon as vka(n/k) tends to a non null
constant A, an asymptotic bias appears and is explicitely given by AM (x). The aim of this
paper is to provide a procedure that reduces the asymptotic bias. The latter will be estimated
and then substracted to the empirical estimator. This kind of approach has been considered
in the univariate setting for the bias correction of the extreme value index with unknown sign
by Cai et al. [2013]. Refer also to Peng [1998], Gomes and Martins [2002] and Gomes et al.
[2008] for previous contributions on this problem. Note finally that the case of dependent
sequences has been recently studied by de Haan et al. [2013].

+a(n/k)M(x) 3)

The nonparametric estimation of the extremal dependence structure has been widely stud-
ied in the bivariate case, see for instance Huang [1992], Einmahl et al. [1997], Capéraa and
Fougeres [2000], Abdous and Ghoudi [2005], Guillotte et al. [2011] and Biicher et al. [2011].
Bias correction problems in the bivariate context received less attention than in the univariate
setting. To the best of our knowledge, it seems to be reduced to Beirlant et al. [2011] which
considers the estimation of bivariate joint tails, so differs slightly from our task.

As for the multivariate framework, de Haan and Resnick [1993] introduces the empirical
estimator. General approaches under parametric assumptions on the function L have been
developed e.g. by Coles and Tawn [1991], Joe et al. [1992], Einmahl et al. [2008] and Einmahl
et al. [2012]. Apparently, no procedure correcting the bias can be found in the literature for
dimension greater than two. The objective of this article is to fill this gap. Two families of
asymptotically unbiased estimators of the stable tail dependence function are proposed and
their theoretical behaviours are studied. A practical advantage of these new estimators is
that they can be aggregated, reducing that way the variability.



The paper is organized as follows: Section 2 contains hypotheses and first results. The bias
reduction procedure is described in Section 3, and the main theoretical results are presented
therein. The estimation of the second order parameter is postponed up to Section 4. Several
theoretical models are exhibited in Section 5, that satisfy the required assumptions. Section 6
illustrates the performance of the new estimators on both simulated and real data. The proofs
are relegated to Section 7.

2 Notation, assumptions and first results

Let X1 = (X{l),...,Xl(d)),...,Xn = (Xfll),...,X,(ld)) be independent and identically dis-
tributed multivariate random vectors with cumulative distribution function F' and continuous
marginal distribution functions Fj for j = 1,...,d. Suppose F' is in the domain of attraction
of an extreme value distribution G. We recall that it supposes the existence for j =1,...,d
of sequences agj ) > 0, bﬁf ) of real numbers and a distribution function G with nondegenerate
marginals such that

lim P(max{X\", ... X} <a®z; + b0, max{Xx? ... XD} <a@z,+5@) = G(x)

n—o0

for all points x where G is continuous. Denote by G; the jth marginal distribution function
of GG. It is possible to show that the domain of attraction condition can be expressed as the
condition (1) along with the convergence of the marginal distributions to the G;’s, and that

L(x) = —logG ({— log Gl}_l(:pl), ..., {—1log Gd}_l(md)) ) (4)

Let p be the measure defined by
u{A(x)} := L(x), (5)
where A(x) :={u € ]R‘i : there exists j such that u; > x;} for any vector x € Ri.

Several conditions are now described. The first two have been introduced by de Haan and
Resnick [1993].

- the first order condition consists in assuming that the limit given in (1) exists, and is
uniform on any [0, 7]¢, for T > 0.

- the second order condition consists in assuming the existence of a positive function «,
such that a(t) — 0 as t — oo, and a non null function M such that for all x with
positive coordinates,

t—o00 (¢

lim 2}5) [E[L = F{FTN (1=t ), (1= )] — L(x)) = M(x),  (6)

uniformly on any [0, 7]%, for T > 0.



- the third order condition consists in assuming the existence of a positive function S,
such that §(t) — 0 as ¢ — oo, and a non null function N such that for all x with
positive coordinates,

o] t—F{F ' —tw),. o Bl (U=t ea)}l) - L(x) N
t1—>oo B(t) { a(t) M )} =N,
(7)

uniformly on any [0,7]%, for T > 0. It implicitly requires that N is not a multiple of
the function M, see Remark 2.

Remark 1. The function L defined by (1) and that appears in (6) and (7) is homogeneous
of order 1. We refer for instance to de Haan and Ferreira [2006, pages 213 and 236]. Most
of the estimators constructed in this paper use the homogeneity property. Note that pointwise

convergence in (1) entails uniform convergence on the square [0, T|%. See for instance de Haan
and Ferreira [2006, page 237].

Remark 2. If N =c- M for some constant c, the relation can be reformulated as

1 [t —F{F'Q -t a),..., B -t ~L

lim [ { 1 ( 1’1), ) T d ( .Td)}] (X) —M(X) _ 0’

t—o0 B(t) a(t)(1 + cB(t))

which we want to exclude. We refer to de Haan and Ferreira [2006, page 385] to see that the
same complication turns up in the one-dimensional case.

Remark 3. The functions M and N involved in the second and third order conditions satisfy
some usual properties, see e.g. de Haan and Resnick [1993]. More specifically, one can show
that there exists non positive reals p and p' such that « (resp. B) is a regularly varying
function of order p (resp. p'), i.e. a(tz)/o(t) — 2° and B(tz)/B(t) — 2 when t — oo, for
each positive z. Besides, the limit function M is homogeneous of order 1 — p, that is to say
M(rx) = r'=PM(x), for each positive r and x with positive coordinates. The limit function
N is homogeneous of order 1 — p — o/, so N(rx) = r'=P=F' N(x), for each positive r and x
with positive coordinates.

In this paper, we will handle two sets of assumptions. First consider

(A2) - the second order condition is satisfied, so that (6) holds;
- the coefficient of regular variation p of the function « defined in (6) is negative;

- the function M defined in (6) is continuous.

These hypotheses allow to get the asymptotic uniform behavior of Ly, the empirical esti-
mator of L defined by (2), as detailed in the following proposition.

Proposition 1. Let X;,...,X,, be independent multivariate random vectors in R® with com-
mon joint cumulative distribution function F' and continuous marginal distribution functions
Fj forj =1,...,d. Assume that the set of conditions (A2) hold. Suppose further that the
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first order partial derivatives of L (denoted by O;L for j = 1,...,d) exist and that O;L is
continuous on the set of points {x € R% : z; > 0}.

Consider Ly, the estimator of L defined by (2) where k is such that Vka(n/k) — co. Then
as n tends to infinity, we get

P

su —0.

p
0<wy,....zg<T

i (B~ 269} — M)

Under stronger assumptions, and for some choice of the intermediate sequence, the asymp-
totic distribution of the previous stochastic process can be obtained after multiplication by

the rate vka(n/k). For a positive T, let D([0, T]?%) be the space of real valued functions that
are right-continuous with left-limits. Now, introduce the conditions

(A3) - the third order condition is satisfied, so that (6) and (7) hold,;

- the coefficients of regular variation p and p’ of the functions « and 3 defined in (6)
and (7) are negative;
- the function M defined in (6) is differentiable and N defined in (7) is continuous.

Proposition 2. Let Xi,...,X,, be independent multivariate random vectors in R® with com-
mon joint cumulative distribution function F and continuous marginal distribution functions
F; forj =1,...,d. Assume that the set of conditions (A3) hold. Suppose further that the
first order partial derivatives of L (denoted by O L for j = 1,...,d) exist and that 0L is
continuous on the set of points {x € R% : z; > 0}.

Consider Ly, the estimator of L defined by (2) where k is such that Vka(n/k) — oo and
VEa(n/k)B(n/k) — 0. Then as n tends to infinity,

VL) = L(x) = a(DM(0) | % Z1(x) ®)
in D([0,T]%) for every T > 0 where
d
Zu(x) = Wi(x) = 3 Wi lwses) 5L () o)
j=1

The process Wi, above is a continuous centered Gaussian process with covariance structure
EWL(x)WL(y)] = p{R(x) N R(y)} - (10)
given in terms of the measure p defined by (5) and of
R(x) = {u € RY : there ewists j such that 0 < u; < x;} .

Remark 4. A difference between the previous result and Theorem 7.2.2 of de Haan and
Ferreira [2006] consists in the choice of the intermediate sequence that is larger here. In-
deed, we suppose |[Vka(n/k)| — co whereas they choose k(n) = o (n_zp/(l_zp)) which implies
VEka(n/k) — 0. Our choice requires the more informative second order condition (6). A non-
null asymptotic bias appears in our framework.

Remark 5. The conditions on k, a and [ required in Proposition 2 are not too restrictive:
because of the regular variation of a and 3, they are implied by the choice k(n) = n*, with

2 2 /
m@(— P (p+7) >
1-2p" 1-2(p+/p)




3 Bias reduction procedure

As pointed out in Remark 4, a non-null asymptotic bias a(n/k)M(x) appears from Propo-
sition 2. The bias reduction procedure will consist in substracting the estimated asymptotic
bias obtained in Section 3.1. The key ingredient is the homogeneity of the functions L and
M mentioned in Remarks 1 and 3. This homogeneity will also provide other constructions to
get rid of the asymptotic bias.

3.1 Estimation of the asymptotic bias of Ly,

Equation (8) suggests a natural correction of Lj, as soon as an estimator of a(n/k)M (x) is
available. In order to take advantage of the homogeneity of L, let introduce a positive scale
parameter a which allows to contract or to dilate the observed points. Let denote

Lio(x) == a 'Ly(ax) , (11)
and
Apa(x) = Lia(x) — Li(x) . (12)
From (8) one gets

Vi {Lia() = L(x) — a()a *M(x) } % a7 Zy(ax) (13)

in D([0,T]%) for every T > 0. Equations (12) and Proposition 1 yield as n tends to infinity,
Bral®) Py om0 1)ar(x) | (14)

(%)

Fixing a such that a=® — 1 = 1, a natural estimator of the asymptotic bias of [A/k(x) is

thus Ay 5175 (x), where p is an estimator of p. Recall that the unknown parameter p is the
regular variation index of the function « involved in the second order condition. Let k, be
an intermediate sequence that represents the number of order statistics used in the estimator
p. Assume that k, > k where k = k(n) is the sequence used in Proposition 2. A first
asymptotically unbiased estimator of L(x) can be defined as

L1k, (%) := Lip(x) — Ay 5-1/6(x) - (15)

The asymptotic behavior of this estimator is provided in Theorem 3 and Remark 7. We
refer the reader to Section 4 for more details concerning the estimation of the second order
parameter p.

3.2 Estimation of the asymptotic bias of ZALIW

The previous construction can be easily generalized by correcting the estimator f)ha instead
of Lj. Indeed, from (13) one can see that the asymptotic bias of Ly ,(x) is a(%)a™"M(x).
Recall that when n tends to infinity, one has for any positive real b,
A p(x
e N G
a(f)



Thus, fixing b such that b= — 1 = a~" will help for canceling the asymptotic bias. It yields
the following asymptotically unbiased estimator of L

Liak, (%) 1= Lia(%) = Ay (g5 p1)-1/5(X) - (16)

Theorem 3. Assume that the conditions of Proposition 2 are fulfilled and consider the esti-
mator of L defined by (16). Let k, be an intermediate sequence such that \/kyc(n/k,)(p— p)
converges in distribution. Suppose also that k is such that k = o(k,), Vka(n/k) — oo and
VEa(n/k)B(n/k) — 0. Under these assumptions, as n tends to infinity,

VI L, () = L) | 5 Ya(x) (7)
in D([0,T)%) for every T > 0, where Y, is a continuous centered Gaussian process defined by
Yo (x) := Zp(x) — b~ Zp(bx) + a~ ' Z1 (ax)

with covariance
E[Y, (0 Ya(y)] = EZ0 (0 Z0(y)] (1 - 572 +.a72)"

Here b= (a=? +1)"1/7.

Remark 6. The assumption that \/k,a(n/k,)(p — p) converges in distribution will be recon-
sidered in Section 4.

Remark 7. Theorem & remains true when a = 1 and thus characterizes the asymptotic

behavior of the estimator given in (15). For this particular choice of a, the covariance reduces
to E|Z,(x) Z1(y))(2 — 21/20)2,

3.3 An alternative estimation of the asymptotic bias of ZAL,W

The procedure of bias reduction introduced in the previous section requires the estimation of
the second order parameter p. It is actually possible to avoid it, making use of combinations
of estimators of L. The asymptotic bias of Ly, 4(x) is a(F)a=PM(x), as already noted from
(13). Making use of (14), one gets as n tends to infinity

Akma(ax) P a P
_> R
Akma(ax) - aAkma(x) aP—1

for any intermediate sequence k, that satisfies \/k,a(n/k,) — oo. As a consequence, the

expression
A kp.a (CLX)

A, .alax) — aly, o(%)

Ak,a (X)

can be used as an estimator of the asymptotic bias of f)k’a(x). After simplifications, this leads
to a new family of asymptotically unbiased estimators of L(x) by substracting the estimated
bias from Ly, 4(x), namely

ﬁk(x)Akma(ax) — f)k(ax)Akma(x)
Ap, a(ax) — alp, o(x) ’

f/k,a,kp (X) = (18)

which is well defined for any real number a such that 0 < a < 1.



Theorem 4. Assume that the conditions of Proposition 2 are fulfilled and consider the esti-
mator of L defined by (18). Let k, be an intermediate sequence such that \/kyc(n/k,)(p— p)
converges in distribution. Suppose also that k is such that k = o(k,), Vka(n/k) — oo,
VE = O(\/kp(n/ky)) and VEa(n/k)B(n/k) — 0. Then, as n tends to infinity,

VE{ Lo, () = L)} 5 Valx) (19)

in D([0,T]%) for every T > 0, where Y, is a continuous centered Gaussian process with

covariance E[Y,(x)Ya(y)] given by
E[ZL(x)Zr(y)](a™” = 1) (@™ —a”/?).

Remark 8. The covariance function specified above is decreasing with respect to the param-
eter a for any fired value of p. This suggests at first glance to choose a close to 1 in order
to reduce the asymptotic variance of Y,, but this would give a degenerate form of (18). See
Section 6 for practical considerations for the choice of a.

4 Estimation of the second order parameter p

Let give additional details on the estimation of the second-order parameter p. A possible
method could be to use on each margin some univariate inference techniques developed e.g.
by Gomes et al. [2002] or Ciuperca and Mercadier [2010]. Instead of this, the construction
described here makes use of the multivariate structure of the data. On this purpose, the
following proposition shows that a variable of interest is the ratio of two terms Ay, ,, defined
by (12).

Proposition 5. Assume that the conditions of Proposition 1 are fulfilled and fix positive real
numbers r and a € (0,1). Then, as n tends to infinity,

Ak,a(rx)

Ak,a(x)

L, P
sup —ri7? 0.
0<x1,..,xg<T

A first consequence of Proposition 5 is the derivation of a family of consistent estimators

of the parameter p
) 1 A o(r%)
=1- 1 : . 20
pk,a,r (X) log r Og { Akya (X) ( )

A second consequence of Proposition 5 is to derive several estimators of the parameter p
that are integrals. The family of estimators
Aja(x)

Pra(x) =2 — T Be o0 (21)

is consistent for p. We can also consider the following consistent estimator

Pr.s(X) = Jo Ara(x)da — [§ Aga(x) s* a*~! da (22)
* fol Apq(x)sa*~tda — fol A o(x)da ’

where s is a positive real number and x € [0,T]¢. Making use of the asymptotic expansion
given in Proposition 2, one can prove the following asymptotic properties.



Proposition 6. Assume that the conditions of Proposition 2 are fulfilled, and consider the
estimators of p defined by (20), (21) and (22). Then, as n tends to infinity,

Ve {prar(x) = p} =5 2,
Vea(D{pra(x) = p} =5 Zpa(x)
VEa()prs(x) = p} = Z,

3

ol

in D([0,T]%) for every T > 0, with

VA (x) = a”'Zy (ax) — Z1(x) B a7y, (rax) — Zp(rx)
pya,r(X) = (a=P —1)M(x)logr (a=P —1)M(x)rl=rlogr’

7 ) B0 Z000) — Zur0Yr 0tz (o) — Z1(x)
PO @ = DMX)/2-p)? (@ P = 1M(x)/(2-p)’

and where Z, 5(x) is given by

(—p+1)? [ fi{a " Zp(ax) — Zr(x)}da [ {a ' Zp(ax) — Zp(x)}sa* da
P

In Section 6, for simplicity, the estimator py o, will be used.

5 Theoretical examples

The aim of this section is to furnish several multivariate distributions that satisfy the third
order condition (7). For the sake of simplicity, expressions are displayed in the bivariate
setting. We start by focusing on heavy tailed margins. In this case, a first possible step is to
get the pointwise convergence is to obtain, for well chosen positive reals p and ¢, an expansion
of the form

(B(X > PxorY > tiy) = Ti(z,y) + a(t)Ta(z,y) + a(BETs(z, 1) + o(a(®)8())
with 77(1,1) > 0. One can then identify each term involved in (7) as follows
L(z,y) = Ti(a(x),b(y)), M(z,y) = To(a(x),b(y)), and N(z,y) = Ty(a(z), b(y)),

where
a(x) =« P{T1(1, +00)}?, b(x) =« T (+o0,1)}7.

Applying Resnick [1986, Corollary 5.18], one can check that in such a framework a form of
the bivariate extreme value distribution G is given by

G(z,y) = exp <_ %((ﬂlf zl/;) |




5.1 Powered norm densities

Following the idea of Resnick [1986, page 276 and 286], consider first a norm || - ||, and a cone
D of R?, that is to say a set such that if (z,y) € D, then (tz,ty) € D for every positive t.
Without loss of generality, suppose that (1,1) € D. Let (x,y) be a bivariate random vector
with probability density function given by

L C]-D(x7y)
I ) = Ay TP

where ¢ is a normalizing positive constant and where o and 5 are some positive real numbers
such that a3 > 2. Set Ap(z,y) := {(u,v) € D:u >z or v >y} and define p := (aff — 2)7 .
One can check that, for j =1,2,3,

‘ B ccj dudv
Titey) = //Am,y) [, o) T[oGD

where ¢; = 1, ca = —f and ¢35 = B(5 + 1)/2. The functions M and N are homogeneous with
order given through p = p' = —ap.

Let discuss some particular choices of the norm:

- For L'-norm and a = 1, the model coincides with the bivariate Pareto of type II
distribution, denoted by BPII(j3) in this paper, and referred to as MP®?)(I1)(0,1, 8 —2)
on page 604 of Kotz et al. [2000]. In this case, p=¢ = (8 —2)~!, and

L(z,y)=a+y— (zP+yP)~ /P,

The latter stable tail dependence function is known as the negative logistic model,
introduced by Joe [1990], see also [Beirlant et al., 2004, p. 307].

- When the Euclidean norm is chosen, one recovers the bivariate Cauchy distribution for
a =2, f=3/2and p=1. On the positive quadrant, that means for D = R2 | we have
c=2/m, Ti(u,v) = c(u=? 4+ v"2)? and a(x) = b(x) = ¢/x. On the whole plane, which
means that D = R?, we get ¢ = 1/(27), T1(u,v) = c{u ™+ v + (v 2+ v_2)1/2} and
a(x) = b(z) = 2¢/x. This can also be seen as a particular case of the following item.

- The Student distributions with Pearson correlation coefficient 6 arise choosing the norm
Iz, )T || = v 12 (2> — 202y + y?)'/2, for a positive real number v, a = 2, B = (v +2)/2
and p = v~ . In this case, the integral form of the function 77 can not be totally
simplified, and one classically writes the stable tail dependence function as

y (y/x)"" — 0 } x {(x/y)””—9 H
L - LA S L S/ QUL SN Sk Ve R Y I
(z.9) = (@ +9) [ery “{ iee VT eyt Ui VT
where F,11 is the distribution function of the univariate Student distribution with
v+ 1 degrees of freedom. This dependence structure is also obtained for some elliptical
models, see e.g. [Krajina, 2012, p. 1813] and next subsection.

- Other choices for the norm would lead to other distributions. Note that one can also
relax the symmetry condition, considering for instance the Mahalanobis pseudo-norm
defined by ||(z,y)T||?> = (z/0)? — 2p(z/o)(y/T) + (y/7)? for a real number p such that
|p| < 1 and some positive real numbers o and 7.
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5.2 Elliptical distributions

Consider the usual representation of the centered elliptical distribution (z,y)” = RAU, in
terms of a positive random variable R, a 2 x 2 matrix A such that ¥ = AAT” is of full rank,
and a bivariate random vector U independent of R, uniformly distributed on the unit circle
of the plane. Assume that R has a probability density function denoted by gr. One can then
express the bivariate probability density function of (x,y) as
1
= >t L
A sufficient condition to satisfy (7) is to assume that the distribution of R belongs to the Hall
and Welsh class, viz.
P(R>7)=cr /7 {1 + DyrP/Y 4 Dorlete)/y 4 O(r(p+m)/7)} ,

with positive real ¢, non null reals D; and Ds, and negative reals p and p;.

One can check that, for j =1,2,3,
B c // dudv
B 27T7|detA| {(uw):u>z or v>y} {(ua U)E_I<U7 U)T}1+1/(2’Y)+pj ’

where p1 = 0,p2 = —p/(27) and p3 = —(p + p1)/(27).

Tj(x,y)

Assuming for simplicity that 3 = (é f), the stable tail dependence function can be
written as
y (y/z)" -0 } x { (z/y)” — 6 H
L = —F /1 1 —F —/1 1 ,

which is the form already obtained for the Student distribution in Subsection 5.1 for v = 1/+.
See Demarta and McNeil [2005] for more details. Note finally that for a general matrix 3
and the special case gr(r) = ¢(1 4+ r*)~?, one recovers the Mahalanobis pseudo-norm already
mentioned in the previous subsection.

When dealing with margins that are not heavy tailed, the calculus are done directly
from (6). The last two examples of bivariate distributions have short and light tailed margins
respectively.

5.3 Archimax distributions

Consider the bivariate distribution function defined for each 0 < u,v <1 by
Fluv)= {1+ Ll =107 =1)} ", (23)

given in terms of a stable tail dependence function L. This distribution has standard uni-
form univariate margins and corresponds to a particular case of Archimax bivariate copulas
introduced in Capéraa et al. [2000], in which the function ¢(t) = t~! — 1 is the Clayton
Archimedean generator with index 1. Expanding the left-hand side term of (6) leads to

t{1-F(1- t7 e, 1 - t_ly)} = L(z,y) —t ' L%(z,y) + t 2L3(z,y) + 0 (t_2) ,
which allows to identify M = —L? and N = L3, so that p = p' = —1.
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5.4 Multivariate symmetric logistic distributions

Consider the bivariate distribution function defined for each z,y € R by

F(z,y) = exp {— (e‘x/r + e_y/T)r} , (24)

which corresponds to the multivariate extreme value distribution with Gumbel univariate
margins Fi(x) = Fy(x) = exp{—e "} and symmetric logistic stable tail dependence function

L(:L‘,y) _ (:L'l/r + yl/r)r ’
where 0 < r < 1. This distribution has been introduced in Tawn [1988], see e.g. [Beirlant

et al., 2004, p. 304]. Expanding ¢ [1 — F {Ffl(l —t7l2), Fy (1 - t71y)}] leads to

L(z,y) +t *M(z,y) + t 2N (z,y) + o (t_2) ,

M(e,y) = 5 (2" + ")) 7~ L y)P

1—r

(@22 4 2y L) P = ) (@ = ) L))

1 1
+ g{L(fﬂ,y)}3 -3 (2" + yy" " { L2, y) V"

N(z,y) :=

SRl IR

This allows to identify p = p' = —1.

6 Finite sample performances

The purpose of this section is to evaluate the performance of the estimators of L introduced
in Section 3. For simplicity, we will focus on dimension 2, and simulate samples from the
distributions presented in Section 5. Thanks to the homogeneity property, one can focus on
the estimation of t — L(1 —¢,t) for 0 <t < 1, which coincides with the Pickands dependence
function A (see e.g. [Beirlant et al., 2004, p. 267]). Focusing first on the estimation at ¢t = 1/2
leads to consider aggregated versions of our estimators. These new estimators will be both
compared in terms of L'-errors for L or associated level curves.

6.1 Estimators in practice

Let start with the estimation of L(1/2,1/2) for the bivariate Student distribution with 2
degrees of freedom. This model is a particular case of Sections 5.1 and 5.2. For one sample of
size 1000, Figure 1 gives, as functions of k, the estimation of L at point (1/2,1/2) by Ly, L
and Ly, respectively defined by (2), (16) and (18). For the last two estimators, the parameters
have been tuned as follows: a = 0.4, k, = 990 and p estimated using (20) with a = r = 0.4.
These values have been empirically selected based on intensive simulation, and will be kept
throughout the paper. One can check from Figure 1 that the empirical estimator Ly, behaves
fairly well in terms of bias for small values of k. Besides, the bias is corrected efficiently by
the two estimators Ly and L. Since the bias almost vanishes along the range of k, one can

12



Estimation of L(1/2,1/2) for the Student(2) model and n=1000

Estimations

0.6
|

0.5

0 200 400 600 800 1000

Figure 1: Estimation of L(1/2,1/2) for the bivariate Student(2) law based on a sample of size 1000.

think about reducing the variance through an aggregation in k& (via mean or median) of loLk
or L. This leads to consider the two following estimators

zagg = Median(ik, k=1, k),

f)agg .= Median(Ly, k=1, , kn) ,

where n is the sample size and k,, is an appropriate fraction of n. Their performances will be
compared to those of the family {ﬁk, k=1,...,n—1}. Because any stable tail dependence
function L satifies max(t,1—t) < L(1—t,t) < 1, the competitors have been corrected so that
they satisfy the same inequalities.

Remark 9. If Kn, satisfies the condition imposed on k, in Theorem 3 and 4, then the aggre-
gated estimators Lagg and Lagg would inherit the asymptotic properties of the Lk and L.

Remark 10. In the following simulation study, k, is arbitrarily fized to n—1. Such a choice
is open to criticism since it does not satisfy the theoretical assumptions mentioned in the
previous remark. But it is motivated here by the fact that the bias happened to be efficiently
corrected even for very large values of k, as already illustrated on Figure 1. Note however that
such a choice would not be systematically the right one. In presence of more complexr models
such as mixtures, Ky, should not exceed the size of the subpopulation with heaviest tail.

Classical criteria of quality of an estimator  of 0 are the absolute bias (ABias) and the

13



mean square error (MSE) defined by

ABias — 1% 09 _ g,
N =1

MSE = - zNz(é“) —0)?
N <

.
Il
—

where N is the number of replicates of the experiment and 6@ is the estimate from the
ith sample. Figure 2 plots these criteria in the estimation of L(1/2,1/2) for the bivariate
Student(2) model when n = 1000 and N = 200. Figure 2 exhibits the strong dependence of

Absolute Bias of L(1/2,1/2) for the Student(2) model and n=1000 MSE of L(1/2,1/2) for the Student(2) model and n=1000

0.20

0.020

A
Lk
e Dy
Ly

0.15
|
0.015

Absolute Bias
0.10
MSE
0.010

0.05

0.005

0.00
|
0.000
1

(a) (b)

Figure 2: (a) ABias (b) MSE for the estimation of L(1/2,1/2) in the bivariate Student(2) model when
n = 1000 as a function of k.

the behaviour of Ly, in terms of k, as well as the efficiency of the bias correction procedures.
The estimator Ly, given by (16) outperforms the estimator Ly defined by (18), no matter the
value of k. Moreover, the ABias and MSE curves associated to Lk almost reach the minimum
of those of L. Finally, the aggregated version Lagg answers surprisingly well to the estimation
problem of the stable tail dependence function L. First, its performances are similar to the
best reachable from the original estimator Ly. Second, it gets rid of the delicate choice of a
threshold k& (or would at least simplify this choice, see Remark 10). These comparisons have
also be done for five other models obtained from Section 5. The results are very similar to
the ones obtained for the bivariate Student(2) distribution and are therefore not presented.
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6.2 Comparisons in terms of L'-error for L

The comparisons are now handled not only at a single point but for the whole function using

an L!-error defined as follows
T
1 A t t t t
— > |L(1-% ) -L(1- %% 25
T+1t:1 < T’T> < T’T>‘ (25)

where T is the size of the subdivision of [0, 1]. Figure 3 gives the boxplots based on N = 100
realisations of Lagg, Lage and {Ly,k = 1,...,n — 1} for T' = 30 in the case of six bivariate
models:

e First row: Cauchy and Student(2) models;
e Second row: BPII(3) model and symmetric logistic model with r = 1/3;

e Third row: Archimax model with logistic generator L(z,y) = (2% + y*)'/? and mixed
generator L(z,y) = (2% + v + zy)/(z + ).

As already observed in Figure 2, the estimator lolagg is again very competitive compared to
the best element of { Ly, k = 1,...,n—1} no matter the choice of model. Recall that the value

of k leading to the best L; depends crucially on the model, and is consequently unknown in
practice, which invites any users to apply this new procedure.
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L1-error of L for the Cauchy model when n=1000 L1-error of L for the Student(2) model when n=1000
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L1-error of L for the BPII(3) model when n=1000 L1-error of L for the Symmetric logistic model when n=1000
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L1-error of L for the Logistic(2)-Archimax model when n=1000 L1-error of L for the Mixed(1)-Archimax model when n=1000
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Figure 3: Boxplot of the L!-error of function L for the estimators f/agg, Eagg and {f/k, k=1,...,n—1}.
First row: bivariate Cauchy model (left) and bivariate Student(2) model (right).
Second row: bivariate BPII(3) model (left) and bivariate symmetric logistic model (right).
Third row: bivariate Archimax model with logistic (left) and mixed generator (right).
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6.3 (-curves

Another nice representation of a function of several variables is through its level sets. In the
case of the function L, it consists in looking at sets of the form {(z,y) € R%, L(z,y) < ¢} for
any positive real c. From homogeneity property, it is characterized by

Q :={(z,y) e R, L(z,y) <1}.

Following de Haan and Ferreira [2006, page 245], the boundary of this set can be written as

oQ = {(b(@) cos 6, b(0) sin 9) D b(0) = I 1

(cos@,sinf)

,Oe[o,w/Q]}.

The estimation of 0@ is naturally obtained by replacing L by any estimator, and this is
done here for the estimators f)agg,iagg and {f)k,k = 1,...,n — 1}. Figure 4 exhibits the
bias phenomenon (as k increases) induced by the empirical estimator Ly, in the estimation of
the Q-curve. The bias factor on Ly is illustrated with & = 50,k = 100 and k = 800. The
correction of the bias with Io/agg is effective, whereas Eagg suffers of some lack of regularity
and a large variability.

Estimation of the Q-curve for the Student(2) model when n=1000

1.0

0.8
1

0.6

0.4

0.2

0.0

Figure 4: Estimation of the @-curve for the bivariate Student(2) law based on a sample of size 1000.

As done in the previous section, the comparison of the different estimators is provided in
terms of a global criterium based on the L'-norm, given by

l; t b t 7t . t

— | =b| = cos [ — sin | — .

2T 2T 2T 2T
Figure 5 displays the boxplot of this measure, based on N = 100 realisations and for T" = 30
under the six bivariate models given in the previous section. The estimation of the Q-curve

based on the original estimator Lj is strongly sensitive to the choice of k: the bias (resp.
the variability) is an increasing (resp. decreasing) function of k. The performances of L,ge

1
T—i—lt:O
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L1-error of Q for the Cauchy model when n=1000 L1-error of Q for the Student(2) model when n=1000
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L1-error of Q for the Logistic(2)-Archimax model when n=1000 L1-error of Q for the Mixed(1)-Archimax model when n=1000

0.022 0.024
1 1
0.022 0.024
1 1

0.020
1
0.020
1

0.018
1
B Ty

0.018

1
——— -
—

0.016
1
0.016
1

0.014
1
0.014
1

0.012
1
0.012
1

0.010
1
0.010
1

a\ _\ T T T TTTTTTO T T T TTT TTTTTITTTTITITTTITIToTITT a\ _\ T T T T T T T T ITO T TTTITTT TTTTTTITITTIT
Lagg Lagg 1 100 200 300 400 500 600 700 800 900 Lagg Lagg 1 100 200 300 400 500 600 700 800 900

A A
L L

Figure 5: Boxplot of the L'-error of Q-curve for the estimators iagg, ﬂagg and {f/k, k=1,...,n—1}.
First row: bivariate Cauchy model (left) and bivariate Student(2) model (right).
Second row: bivariate BPII(3) model (left) and bivariate symmetric logistic model (right).
Third row: bivariate Archimax model with logistic (left) and mixed generator (right).
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and Eagg are similar to that of the best ﬁk, which is unknown in practice. These features
corroborate the conclusions drawn in Section 6.2.

To close this section, let us illustrate the ()-curve estimation on the data set of de Haan
and Ferreira [2006, page 207]. As explained therein, wave height (HmO) and still water level
(SWL) have been recorded during 828 storm events on the Dutch coast. The analogous of
Figure 7.2 from de Haan and Ferreira [2006] is reported in Figure 6. Even if the two curves
are not so close, the conclusion remains the same: the estimated boundary is concave, which
indicates that the high values of the two variables are dependent.

Q-curve for Neptune data

1.0

0.8

SwWL
0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

HmO

Figure 6: Estimated Q-curve for Neptune data set

Concluding comments

This paper deals with the estimation of the extremal dependence structure in a multivariate
context. Focusing on the stable tail dependence function, the empirical counterpart is the non
parametric reference. A common feature when modelling extreme events is the delicate choice
of the number of observations used in the estimation, and it spoils the good performance of
this estimator. The aim of this paper has been to correct the asymptotic bias of the empirical
estimator, so that the choice of the threshold becomes less sensitive. Two asymptotically
unbiased estimators have been proposed and studied, both theoretically and numerically.
The estimator defined in Section 3.2 proves to outperform the original estimator, whatever
the model considered. Its aggregated version defined in Section 6.1 appears as a worthy
candidate to estimate the stable tail dependence function, even if it doesn’t completely solve
the problem of the threshold choice as pointed out in Remark 10.
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7 Proofs

Proof of Proposition 1. Denote by Ui(j ) the uniform random variables Ui(j J—1-F i (Xi(j)) for
j=1,...,d. Introducing

1
Vk(X) - % Z ]I{Ui(l)gkxl/n or ... or de)gkzd/n}
=1

allows to rewrite Ly, as the following

[ — () N rr(d)
Li() = Vie (TUf e+ 2 Ui n) -
Write
2 v (M no(d) n IR 1@
Li(x)—L(x) = V,, (EU[MI]’”,...,EU[kxd]m)—E[1—F{F1 A-U e B0 Y
L P P 1y @ (" n.(d
+ L= P A= UR) ), B = U ) L(kU[,m]’n,...,kU[kzd],n)

)

+L<k [kwl]yn,...,%U(d) )—L(x),

[k:cd],n

and denote A; i (x) (resp. Agr(x) and Agy(x)) the first line (resp. second and third lines) of
the right-hand side.

Applying de Haan and Ferreira [2006, Proposition 7.2.3] we get that for any intermediate
sequence

\/%Al,k(x) i> WL(X) s

in D([0,T]%) for every T" > 0 where Wy, is a continuous centered Gaussian process with
covariance structure specified in (10). Due to the Skorohod construction we can write

sup ‘\/EAM(X) — WL(X)’ —0 as., (26)

0<z1,...,.2g<T
which implies, since vka(n/k) — oo,

A _ ( 1 )
o) | \Vhka(p)

Again for any intermediate sequence, the proof of de Haan and Ferreira [2006, Theorem 7.2.2]
ensures the convergence for j =1,...,d

sup
0<z1,...,.zq<T

sup |[VE (EU[%} o a:) + Wr(zej)| =0 as., (27)
z€[0,T k ’
and finally
d
sup  |VEAsp(x) + > Wr(ze,)0,L(x)| =0 as. . (28)

0<a1 .z <T =

20



As previously, this yields

Az k(%)

<>‘O<m>>

Since the intermediate sequence satisfies |v/ka (%) | = 00, it thus remains to prove that

sup
0<x1,..,xg<T

AQ&(X)
a(%)

- M(x)‘ —0 as..
0§1‘1 ..... l‘dST

The second order condition that holds uniformly on [0, 7] in (6) yields

Az 1 (x)

N nrr(d)
— M (FUR e RO N 50 e
OSMS’_‘}MST a(2) % lkz1]n L lkzg)n a.s
Then the result follows from
_ () nrr(d) )
e S |MGO =M (UL FU) | 2 O s
that is obtained combining (27) and the continuity of the function M. O

Proof of Proposition 2. We use the notation introduced in the proof of Proposition 1. Thanks
to the Skorohod construction, we can start from (26). Combined with (28), it is sufficient to
prove the convergence

n

sup ‘\/E {Ag,k(x) - a(k

0<z1,...,.xq<T

)M(X)H —0 as..

Note that the third order condition, the uniformity on [0, 7]% of the convergence in (7) and
the continuity of N yield

n n n n

_ (1) n.(d
Ag() = a(IM (ZURL o UG )+ 0p (a(2)8(2)) -

Thanks to (27) and to the existence of the first-order partial derivatives 01 M and 02 M of the
function M, we have that

sup \/E{M (ﬁU(l) 2@ ) - M(x)} + Zd:WL(a:jej)é?jM(x)

kx 7”’ ' 1. kx ,n
0<@1,eswa<T ko k2] ki lkwd] P

converges to 0 in probability, as n tends to infinity. This implies that

n

k

n

sup Vi {A24(x) = a(IM () }| = 0z (VEa(D)B() +al(P)]) |

0<z1,...,2q<T

that completes the proof thanks to the choice of the intermediate sequence. O
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Proof of Theorem 3. Recall that b= (o= +1)~Y/? and denote b = (a=? + 1)~/?. Write
Liak, — L ={Lka— L} +{Lr— L} —{L,; — L}, (29)

which equals, thanks to (13) and under Skorohod’s construction,

-1

o (1) @4 DMO) + o (0 Zufax) + 200) (1) 22160~ 200 + o ()

—a(Z)((ap—i—l)—bP)M(X)-i-\}E?a(x)"‘a( ) (677 = b7) M) + ( k)

= () oo vt o ()0 (i) o (Gr)-

The first term is zero. Since both k = o(k,) and « is regularly varying with negative index,
the one but last term can be put into the term o (ﬁ) Finally, the covariance function

follows from the equality in law as processes between Z (ax) and v/aZp(x). O

The proofs of Theorem 4 and Proposition 6 are based on the following auxiliary result.

Lemma 7. Assume that the conditions of Proposition 2 are fulfilled. Then for any positive
real T, one has as n tends to infinity,

n, [ Apq(rx) _ _ d
Vka() {a(’;) G pM(x)} S a7 Z; (rax) — Zy(rx)

in D([0,T]%) for every T > 0.

Proof of Lemma 7. Making use of the homogeneity of the function L, write
Apa(rx) = {I:k@(rx, ry) — L(rz,ry)} — {ﬁk(rx) — L(rx)} .
Using the Skorohod construction, it follows from equations (8) and (13) that, as n tends to

infinity,

sup
0<z1,....2g<T/7

n 7Ak,a(rx)_ a P —Dr' PM(x)$ —a! rax rX
Via(p) { LR — (@~ 1M ) | a7 2 )+ Zu(rx)

tends to 0 almost surely. O

Proof of Theorem /4. Note that

R Akma(ax) R Ak,,,a(X) s Akma(ax) Ak,,,a(X) Akma(x)Ak,a(x)
L)y~ ) Sy = ) ( - ) a(nfky)

a

a(n/kp) a(n/kp) a(n/kp)
Under a Skorohod construction, Lemma 7 allows to write the expansions of the terms Ay, 4(x),
Ap,.a(x) and Ay, 4(ax), which implies on the one hand

Akp’a(ax) B aAkp’a(x) — ala—P — 2 X
a(nfky) ok, ~ @ T M)
1

-1 1
+ m {a™'Z(a*x) — 2Z(ax) + aZL(x)} + 0 (W) , (30)
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and

A, a(%) A q(x) o o < 0t — N a1 Zp(ax) — Zp(x)
a(nfh,) = ke 1)2M?(x) + (a — 1)M (x) o
a(n/k) 1 1
no (mawkp) ! ﬂmam/m) i (@) | (3

on the other hand, both uniformly for x € [0,7]%. Combining (30) and (31) with equation
(8), one gets

~ Akp’a(ax) ~ Akma(x)

P oy S )
=a(a™" —1)2M (x)L(x) + \}EM(X)(CL_” -1) (al_pZL(x) — Z1(ax))
+ ;L(x) {a_lZL(a2x) —2Zp(ax) + aZL(x)}

VEpa(n/ky)
+o0 (1> +o __
vk VEoa(n/ky) )

SNince the last expression and equation (30) are respectively the numerator and denominator
of L k,.a(X), one obtains after simplifications

~ a x)—a! ax
VE(Li gy a(%) = L(x)) = K a)P —1 o) |, (ﬂc\v/(i/k )) +o(l).
P P

The choice of the sequences k£ and k, allows to conclude since VE=0 (\ [kpa(n/ kp)). O

Proof of Proposition 5. Applying Lemma 7, we have

Ak@(x)

a (%)

5o. (32)

sup —(a™? = 1)M(x)

0<a1,eeszq<T

As a consequence,

Ak o (rx)

Bra(r)/an/k) .,
Ak,a (X)

Apa(x)/a(n/k)
Aj o(rx) 1—p A o(x)

an/k) | aln/k)

_pl=p

sup
0<z1,...,2q<T

= sup
0<z1,...,.xg<T

=Op < sup

0<z1,...,.2q<T

since (a™” — 1)M (x) # 0 by assumption. Writing

Aj o(rx) - Aj (%) Aj o(rx) by .
a/B) " am/k)| S| atm) " @ DM
+ |7 P(a™P = 1) M (x) —r17F if;/(:))

and using twice equation (32) leads to the conclusion.
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Proof of Proposition 6. Let denote by @}, 4, the quotient

o Ajo(rx)
Qka,r(X) := Do)
Lemma 7 used twice allows to write
VEQ()(Qrar(x) = 177) & =1 P logrZa, (x) (33)

where Zp’a,,‘(x) is defined in the Proposition 6. Since pj (%) =1 —1og(Qk q,r(x))/logr, the
result follows straightforwardly from (33) and the Delta method. The last two convergences
are obtained by similar arguments. O
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