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Proximal Operator of Quotient Functions with Application to a Feasibility Problem in Query Optimization

In this paper we determine the proximity functions of the sum and the maximum of componentwise (reciprocal) quotients of positive vectors. For the sum of quotients, denoted by Q 1 , the proximity function is just a componentwise shrinkage function which we call q-shrinkage. This is similar to the proximity function of the ℓ 1 -norm which is given by componentwise soft shrinkage. For the maximum of quotients Q ∞ , the proximal function can be computed by first order primal dual methods involving epigraphical projections.

The proximity functions of Q ν , ν = 1, ∞ are applied to solve convex problems of the form argmin x Q ν ( Ax b ) subject to x ≥ 0, 1 ⊤ x ≤ 1. Such problems are of interest in selectivity estimation for cost-based query optimizers in database management systems.

Introduction

This work is motivated by query optimization in database management systems (DBMSs) where the optimal query execution plan depends on the accurate estimation of the proportion of tuples, called selectivities, that satisfy the predicates in the query. Models for selectivity estimation as those in [START_REF] Markl | Consistent selectivity estimation via maximum entropy[END_REF] require the solution of a feasibility problem. More precisely, based on an under-determined linear system of equations Ax = b which has no nonnegative solution x ≥ 0 we are looking for a 'correct' right-hand side b such that a nonnegative solution exists. There exists a large amount of literature on feasibility problems, see [START_REF] Chinneck | Feasibility and Infeasibility in Optimization[END_REF][START_REF] Combettes | The convex feasibility problem in image recovery[END_REF] and the references therein. In particular we refer to the SMART algorithm connection with minimizing the Shannon entropy [START_REF] Byrne | Iterative image reconstruction algorithms based on cross-entropy minimization[END_REF][START_REF] Petra | B-SMART: Bregman-based firstorder algorithms for non-negative compressed sensing problems[END_REF]. However, our approach is different from the known ones with respect to the functional which has to be minimized. By the results in [START_REF] Moerkotte | Preventing bad plans by bounding the impact of cardinality estimation errors[END_REF] there is a strong evidence that in query optimization it is the (reciprocal) quotients of the components max{ bi b i , b i bi } which should be made small, not their differences. In this paper we are interested in the sum of such quotients denoted by Q 1 and their maximum Q ∞ .

Recently, first order primal dual methods were successfully applied in data processing, see, e.g., the overview papers [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] and the references therein. These methods are based on splitting methods known in optimization theory for a long time. In this paper we are interested in applying first order primal dual methods as an alternative to second order cone programming for solving problems involving the quotient functionals Q ν , ν = 1, ∞. Basically, these iterative algorithms decouple the problem into different proximation problems and the success of the method depends on the efficient solution of these proximation problems. Therefore, we examine the proximity function of our quotient functionals Q ν , ν = 1, ∞ first. We show that the proximity function of the sum of quotients, Q 1 , is a componentwise shrinkage function which we call q shrinkage. It is slightly more involved than the componentwise soft-shrinkage which is the proximity function of the ℓ 1 -norm since one has to solve a third order equation. The proximity function of the maximum of quotients Q ∞ can be computed by an alternating minimization method of multipliers which involves componentwise epigraphical projections. These componentwise steps can be computed in parallel.

We apply our findings to solve the feasibility problem described above and demonstrate the results obtained by different error measures by a numerical example.

The outline of this paper is as follows: In Section 2 we introduce the quotient distance between positive numbers and use it to define quotient functionals of vectors with positive components. In Section 3 we determine the proximity operator of the quotient functionals. We use our findings in Section 4 for solving feasibility problems appearing, e.g., in selectivity estimations which are necessary for query optimization in DBMSs. We describe the selectivity estimation problem, propose primal dual minimizaton algorithms and demonstrate the performance by a numerical example. Conclusions are drawn in Section 5.

Quotient Functions

The function q : (0, +∞) × (0, +∞) → [0, +∞) defined by q(x, y) := max(x, y) min(x, y) , can be considered as a 'distance function'. It is symmetric in its components and since q(x, y) -1 = |x -y| min(x, y) , it fulfills q(x, y) -1 = 0 if and only if x = y. Clearly, the quotient distance does not fulfill a triangle inequality. A relative of q(x, y), the so-called generalized relative distance, given for (x, y) ∈ R * × R * by |x -y| max(x, y) , has been used in [START_REF] Coutinho | Information theoretic text classification using the Ziv-Merhav method[END_REF][START_REF] Griesel | A linear Remes-type algorithm for relative error approximation[END_REF][START_REF] Metcalf | Error measures and their associated means[END_REF][START_REF] Ziv | Relative distance -an error measure in round-off error analysis[END_REF]. For a relation between the generalized relative error and the quotient distance we refer to [START_REF] Setzer | related to quotient functionals[END_REF]. Due to its zero-homogeneity q(λx, λy) = q(x, y), λ > 0 (1) the quotient distance is used as a contrast measure in image processing [START_REF] Palma-Amestoy | A perceptually inspired variational framework for color enhancement[END_REF].

For fixed b > 0, we generalize q(•, b) to the whole real axis by q(•, b) : R → [0, +∞] with

q(x, b) :=      x b if b ≤ x, b x if 0 < x < b, +∞ otherwise. (2)
The function q(•, b) is convex and continuous. Moreover, we have by (1) that q(x, b) = q(x/b, 1). We will write just q instead of q(•, 1). Note that for positive arguments the function log q(

•, b) = | log b -log(•)| is neither convex nor concave.
In the following, set

I N := {1, . . . , N }. For fixed b = (b k ) N k=1 ∈ (0, +∞) N we are interested in the quotient functionals Q 1 (•, b), Q ∞ (•, b) : R N → [0, +∞] defined by Q 1 (x, b) := N k=1 q(x k , b k ) and Q ∞ (x, b) := max k∈I N q(x k , b k ). ( 3 
)
We set

Q ν := Q ν (•, 1), ν ∈ {1, ∞}.
In the following, norms • are Euclidean norms.

Proximity Operator of Quotient Functionals

Let Γ 0 (R N ) denote the space of proper, convex and lower semi-continuous functions on R N mapping to R ∪ {+∞}. For a function ϕ ∈ Γ 0 (R N ) and γ > 0, the proximal function

prox γϕ : R N → R N is defined by prox γϕ (x) := argmin t∈R N ϕ(t) + 1 2γ x -t 2 .
An overview of applications of proximity functions is given in [START_REF] Parikh | Proximity algorithms[END_REF]. For example, the proximal function of the univariate function ϕ := |•| is given by the so-called soft shrinkage function with threshold γ, i.e.,

prox γ|•| (x) = soft γ (x) :=    x -γ if x > γ, 0 if x ∈ [-γ, γ], x + γ if x < -γ.
More general the following decomposition rule holds true.

Proposition 3.1. [9, Prop. 3.6] Let φ = ψ + γ| • |, where ψ ∈ Γ 0 (R) is differentiable at 0 with ψ ′ (0) = 0. Then prox φ = prox ψ • soft γ .
In the following we are interested in the proximal functions of

Q 1 (•, b) and Q ∞ (•, b). By (1) we have for ν ∈ {1, ∞} that prox γQν (•,b) (x) = argmin t∈R N Q ν (t, b) + 1 2γ x -t 2 = argmin t∈R N Q ν t b , 1 + 1 2γ x -t 2 = b argmin y∈R N Q ν (y, 1) + b 2 2γ x b -y 2 = b prox γ b 2 Qν x b . (4) 
Therefore it remains to consider for γ > 0 the proximal functions

prox γQν (x) = argmin t∈R N Q ν (t) + 1 2γ x -t 2 , ν ∈ {1, ∞}. (5) 
3.1 Proximity Operator of Q 1

For ν = 1 the minimizer of ( 5) can be computed componentwise, i.e.,

prox γQ 1 (x) = prox γq (x k ) N k=1 . (6) 
Therefore we only have to find

prox γq (x) = argmin t∈R q(t) + 1 2γ (x -t) 2 . ( 7 
)
The proximal function of γq is given in the following proposition.

Proposition 3.2. For every γ > 0 and x ∈ R, we have

prox γq (x) =      x -γ if x > 1 + γ, 1 if x ∈ [1 -γ, 1 + γ], ζ * ∈ (0, 1] if x < 1 -γ, ( 8 
)
where ζ * is the unique solution of ζ 3 -xζ 2 -γ = 0 in (0, 1).
Proof. To apply Proposition 3.1 we decompose q as

q(t) = 1 + φ(t -1), (9) 
where

φ := ψ + | • | and ψ(t) :=        0 if t ≥ 0, t + 1 1 + t -1 if t ∈ (-1, 0), +∞ otherwise.
The function ψ is in Γ 0 (R), it is differentiable at zero and ψ ′ (0) = 0. We want to find the proximal function of γψ, γ > 0. Clearly, we have for x ≥ 0 that prox γψ (x) = x. For x < 0 we obtain prox γψ (x) = argmin t∈(-1,0)

ψ(t) + 1 2γ (t -x) 2 .
The minimizer is the zero of the derivative of the objective function, i.e. has to fulfill

0 = 1 - 1 (1 + t) 2 + 1 γ (t -x), 0 = (1 + t) 3 -(x + 1 -γ)(1 + t) 2 -γ. (10) 
In summary we have

prox γψ (x) = x if x ≥ 0, t * otherwise,
where t * ∈ (-1, 0) is the solution of [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. By Proposition 3.1 we conclude that

prox γφ (x) = prox γψ • soft γ (11) =      x -γ if x > γ, 0 if x ∈ [-γ, γ], t * if x < -γ, (12) 
where t * is the solution of

(1 + t) 3 -(x + 1)(1 + t) 2 -γ = 0. (13) 
Finally, we obtain by (9) that prox γq (x) = argmin

t∈R 1 + φ(t -1) + 1 2γ (t -x) 2 = 1 + argmin y∈R φ(y) + 1 2γ (y -(x -1)) 2 = 1 + prox γφ (x -1) =      x -γ if x > 1 + γ, 1 if x ∈ [1 -γ, 1 + γ], 1 + t * if x < 1 -γ, ( 14 
)
where t * is the unique solution in (-1, 0) of

(1 + t) 3 -(1 + t) 2 x -γ = 0, see Remark 3.1. Setting ζ := 1 + t we obtain (8).
Remark 3.1. We ask for the positive zeros of the polynomial

P (t) = t 3 -xt 2 -γ, where x < 1 -γ, γ > 0. We have P ′ (t) = t(3t -2x), P ′′ (t) = 6t -2x
and P (0) = -γ < 0, P (1) = 1 -x -γ > 0. We distinguish two cases.

Case 1. Let x ≤ 0. Then P is strictly convex and strictly monotone increasing on (0, 1). Consequently it has a unique zero t * in (0, 1).

Case 2. Let 0 < x < 1-γ. Then P is strictly convex and strictly monotone increasing on 2x 3 , 1 and P 2x 3 = -4 27 x 3 -γ < 0. Hence P has a unique zero t * in 2x 3 , 1 . Further we have for the three zeros z 1 = t * > 0, z 2 , z 3 of P that z 2 , z 3 are either conjugate complex or both of them are negative or positive since z 1 z 2 z 3 = γ. The later is not possible since z 1 z 2 + z 1 z 3 + z 2 z 3 = 0. Therefore P has exactly one non-negative, real-valued zero.

In summary the zero t * ∈ (0, 1) of the polynomial P can be computed by Newton's method with starting point t (0) = 1, where the convergence is monotone and quadratic by the convexity and strict monotonicity of P in (t * , 1), see [START_REF] Hanke-Bourgeois | Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens[END_REF]. Alternatively we could use Cardan's formula for computing the zero.

We call prox γq (x) q-shrinkage of x with threshold γ. The function is illustrated in Fig. 1.

Remark 3.2. (Proximity operator of q(•, b), for b > 0) By (4) we obtain prox γq(•,b) (x) =      x -γ b if x > b + γ b , b if x ∈ [b -γ b , b + γ b ], ζ * if x < b -γ b , where ζ * ∈ (0, b] is the unique positive solution of ζ 3 -xζ 2 -γb = 0. -4 -3 -2 -1 0 1 2 3 4 5 0 1 2 3 4 5 x prox γq (x) γ = 1 γ = 0.5 γ = 2
Figure 1: q-shrinkage with different thresholds γ.

Proximity Operator of Q ∞

Next we want to compute

prox γQ∞ (x) = argmin t∈R N Q ∞ (t) + 1 2γ x -t 2 .
We can treat this minimization problem as an epigraphical constraint minimization problem. Such problems were considered for example in [START_REF] Chierchia | Epigraphical projection and proximal tools for solving constrained convex optimization problems: Part i[END_REF][START_REF] Harizanov | Epigraphical projection for solving least squares anscombe transformed constrained optimization problems[END_REF]. Recall that the epigraph of a function ϕ : R N → R ∪ {+∞} is the set

epi ϕ := {(x, ξ) ∈ R N × R : ϕ(x) ≤ ξ}.
If ϕ ∈ Γ 0 (R N ), then epi ϕ is a non-empty, closed, convex set. Having this definition in mind, our minimization problem can be rewritten as

prox γQ∞ (x) = argmin t=(t k ) N k=1 ∈R N ,ξ∈R ξ + 1 2γ x -t 2 s.t. ((t k , ξ)) N k=1 ∈ (epi q) N . (15) 
Using the indicator function of a set Ω ⊂ R M , where M ∈ N * , defined by

ι Ω (x) := 0 if x ∈ Ω, +∞ otherwise ,
we see that (15) can be further rewritten as

prox γQ∞ (x) = argmin (t, ξ) ∈ R N+1 (s, η) ∈ R 2N ξ + 1 2γ x -t 2 + N k=1 ι epi q (s k , η k ) s.t. s = t, ξ1 N = η, (16) 
where 1 N denotes the vector consisting of N entries 1. This problem can be solved e.g. by an alternating direction method of multipiers (ADMM) algorithm [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite elements approximations[END_REF][START_REF] Glowinski | Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF] as follows:

Algorithm 1 ADMM for prox γQ∞ Initialization: µ > 0 s (0) η (0) ∈ R 2N and p (0) t p (0) ξ ∈ R 2N .
Iterations:

For r = 0, 1, . . .             1. t (r+1) ξ (r+1) = argmin (t,ξ)∈R N+1 ξ + 1 2γ x -t 2 + µ 2 t -s (r) + p (r) t 2 + ξ1 N -η (r) + p (r) ξ 2 , 2. s (r+1) η (r+1) = argmin (s,η)∈R 2N N k=1 ι epi q (s k , η k ) + µ 2 t (r+1) -s + p (r) t 2 + ξ (r+1) 1 N -η + p (r) ξ 2 , 3. p (r+1) t p (r+1) ξ = p (r) t p (r) ξ + t (r+1) ξ (r+1) 1 N - s (r+1) η (r+1) .
The sequence (t (r) , ξ (r) ) r∈N generated by the ADMM algorithm is ensured to converge to a solution of problem ( 16) by [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

The minimizer in the first step can be computed separately for t and ξ. Setting the gradients of the corresponding functionals to zero we obtain

t (r+1) = 1 1 + γµ x + µγ(s (r) -p (r) t ) and ξ (r+1) = 1 N N k=1 (η (r) k -p (r) ξ,k ) - 1 µ .
The second proximity problem can be solved separately for k ∈ I N . For each component it requires the projection of (t

(r+1) k + p (r) t,k , ξ (r+1) + p (r)
ξ,k ) onto epi q. The projection onto epi q is considered in the next proposition: Proposition 3.3. The projection P epi q (u, ζ) of (u, ζ) ∈ R 2 onto the epigraph of q is given by

P epi q (u, ζ) :=        (u, ζ) if u > 0 ∧ max{u, 1 u } ≤ ζ, ( 1 2 (u + ζ), 1 2 (u + ζ)) if 2 -u < ζ < u, (1, 1) if ζ ≤ min{2 -u, u}, (t * , 1 t * ) if u < ζ ∧ ζ < 1 u if u > 0, ( 17 
)
where t * is the solution of the fourth order equation P (t) := t 4 -ut 3 + ζt -1 = 0 in (0, 1).

Proof. The points in the different areas

A 1 := {(u, ζ) : u > 0 ∧ max{u, 1 u } ≤ ζ}, A 2 := {(u, ζ) : 2 -u < ζ < u}, A 3 := {(u, ζ) : ζ ≤ min{2 -u, u}}, A 4 := {(u, ζ) : u < ζ ∧ ζ < 1 u if u > 0}, depicted in Fig. 2 are projected in different ways.
The points in A 1 are already in epi q and were therefore mapped to themselves. The points in the normal cone A 3 of epi q at (1, 1) are obviously projected to (1, 1). For (u, ζ) ∈ A 2 the orthogonal projection (t, θ) = P epi q (u, ζ) has to fulfill θ = t and

u ζ - t θ , 1 1 = 0, which results in t = 1 2 (u+ ζ).
Finally, the points in A 4 are projected onto the curve τ (t) := (t, 1/t), t ∈ (0, 1). This curve has the tangent vectors (1, -1/t 2 ). Thus, (t, θ) = P epi q (u, ζ) has to satisfy θ = 1/t and which leads to t 4 -ut 3 + ζt -1 = 0.

u -t ζ -1 t , 1 -1 t 2 = 0, 0 0.5 1 1.5 2 
For the zeros of the above polynomial see the next remark.

Remark 3.3. Consider P (t) = t 4 -ut 3 + ζt -1, where u < ζ and uζ < 1 if u > 0. We have P ′ (t) = 4t 3 -3ut 2 + ζ, P ′′ (t) = 6t (2t -u).
Let t 0 := max u 2 , 0 . Then P ′′ (t) > 0 for t ∈ (t 0 , 1) so that P is strictly convex and P ′ is strictly monotone increasing on (t 0 , 1). Further we conclude P (0) = -1 < 0 and P (1) = ζ -u > 0. According to the sign of u we distinguish the two cases.

Case 1. Let u ≤ 0. Then P (t 0 ) = P (0) < 0 and the convexity of P implies that P has exactly one zero t * in [0, 1] and is strictly monotone increasing on (t * , 1).

Case 2. Let 0 < u < ζ. Then uζ < 1 implies that u < 1 and thus u 2 ∈ (0, 1 2 ). Now P (t 0 ) = P ( u 2 ) = -u 4 16 + 1 2 ζu-1 -1 2 < 0 and it follows again that P has exactly one zero t * in u 2 , 1 and is strictly monotone increasing on (t * , 1). Straightforward computation shows that P is strictly concave on 0, u 2 and P ′ u 2 = -u 3 4 + ζ > 0, P ′ (0) > 0. Consequently P has no zero in 0, u 2 . In summary P has exactly one zero t * in (0, 1). Since P is convex and strictly increasing on [t * , 1], the iterates of Newton's algorithm with starting point t (0) = 1 converge monotonically to t * with quadratic convergence rate, see [START_REF] Hanke-Bourgeois | Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens[END_REF].

Finally, we want give also an analytic solution of P (t) = 0. Setting t = x + u 4 , we can convert this quartic equation into a depressed quartic equation, and we obtain

P (x) := P (x + u 4 ) = x 4 + αx 2 + βx + γ. ( 18 
)
Then we can apply Ferrari's method [START_REF] Tignol | Galois' Theory of Algebraic Equations[END_REF] or Lagrange's method [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF] to solve P (x) = 0 as shown in the following lemma.

Lemma 3.1. The solutions of P (t) = 0 are (t 1 , t 2 , t 3 , t 4 ) ∈ C 4 such that for every i ∈ {1, 2, 3, 4},

t i = x i + u 4
, where (x 1 , x 2 , x 3 , x 4 ) ∈ C 4 are the solutions of P (x) = 0 given by

           x 1 = 1 2 √ z 1 + √ z 2 + √ z 3 , x 2 = 1 2 √ z 1 - √ z 2 - √ z 3 , x 3 = 1 2 - √ z 1 - √ z 2 + √ z 3 , x 4 = 1 2 - √ z 1 + √ z 2 - √ z 3 , (19) 
where (z 1 , z 2 , z 3 ) ∈ C 3 are solutions of the third order equation

R(z) := z 3 + 2αz 2 + (α 2 -4γ)z -β 2 = 0, (20) 
with

α := - 3u 2 8 , β := ζ - u 3 8 , γ := ζu 4 - 3u 4 
4 4 -1. The zeros of the third order polynomial R can be found using Cardan's method detailed in the appendix. The following proposition gives the epigraphical projection onto epi q(•, b), for b > 0: Proposition 3.4. The epigraphical projection at (u, ζ) ∈ R 2 onto epi q(•, b) for fixed b > 0 is given by 

P epiq(•,b) (u, ζ) :=            (u, ζ) if u > 0 ∧ max{ u b , b u } ≤ ζ, ( b 1+b 2 (bu + ζ), 1 1+b 2 (bu + ζ)) if 1 + b 2 -bu < ζ < u b , (b, 1) if ζ ≤ min{1 + b 2 -bu, 1 -b 2 + bu}, (t * , b t * ) if 1 -b 2 + bu < ζ ∧ ζ < b u if u > 0 , (21 
= α 1 u + β 1 , where (α 1 , β 1 ) ∈ R 2 , satisfies (u, ζ) -(t, θ), (1, -b/t 2 ) = 0 (t, θ) = (b, 1) ⇔ (u, ζ) -(b, 1), (1, -1/b) = 0 ⇔ u -b - 1 b (ζ -1) = 0 ⇔ bu -b 2 + 1 = ζ. Thus, p 1 (u) := bu + 1 -b 2 . ( 22 
)
Let u ∈ [b, +∞). The perpendicular of q 2 (u, b) at (b, 1), denoted by p 2 (u) satisfies, for

β 2 ∈ R, p 2 (u) = -bu + β 2 p 2 (b) = 1 ⇔ p 2 (u) = -bu + β 2 -b 2 + β 2 = 1 ⇔ p 2 (u) = -bu + 1 + b 2 . ( 23 
)
According to ( 22) and ( 23), the areas are given by

A 1 = {(u, ζ) ; u > 0 ∧ ζ ≥ max{u/b, b/u}}, A 2 = {(u, ζ) ; 1 + b 2 -bu < ζ < u/b}, A 3 = {(u, ζ) ; ζ ≤ min{1 -b 2 + bu, 1 + b 2 -bu}}, A 3 = {(u, ζ) ; ζ > 1 -b 2 + bu ∧ (ζ < b/u if u > 0)}.
The points in A 1 are already in epi q(•, b) and were therefore mapped to themselves. The points in the normal cone A 3 of epi q(•, b) at (b, 1) are obviously projected to (b, 1). For (u, ζ) ∈ A 2 the orthogonal projection (t, θ) = P epi q (u, ζ) has to fulfill θ = t/b and

u ζ - t θ , 1 1/b = 0, which results in t = b 1+b 2 (bu + ζ).
Finally, the points in A 4 are projected onto the curve τ (t) := (t, b/t), t ∈ (0, b). This curve has the tangent vectors (1, -b/t 2 ). Thus, (t, θ) = P epi q (u, ζ) has to satisfy θ = b/t and

u -t ζ -b t , 1 -b t 2 = 0, which leads to t 4 -ut 3 + ζbt -b 2 = 0.

A Feasibility Problem in Selectivity Estimation

The aim of this section is to solve for ν ∈ {1, ∞} the minimization problem

argmin x∈R N Q ν (Ax, b) subject to x ∈ △ (24) 
where A ∈ R M ×N and

△ := {x ∈ [0, +∞) N : N k=1 x k ≤ 1}.
Such problems arise, e.g., in the estimation of selectivities for cost-based query optimizers in DBMSs, see [START_REF] Markl | Consistent selectivity estimation via maximum entropy[END_REF][START_REF] Moerkotte | Preventing bad plans by bounding the impact of cardinality estimation errors[END_REF]. A brief sketch of the selectivity estimation task is given in the following subsection.

Selectivity Estimation in DBMSs

Selectivities indicate the proportion of tupels in a database that satisfy the predicates in a query. The accurate estimation of selectivities is crucial for the design of optimal query execution plans. However, in practice we have to live with inaccurate size estimations and a natural question is how these errors influence the query plan optimization. In [START_REF] Moerkotte | Preventing bad plans by bounding the impact of cardinality estimation errors[END_REF] the error propagation of wrong selectivity estimates though an accordingly optimized query was examined. It appears that the error propagation is multiplicative, see also [START_REF] Ioannidis | On the propagation of errors in the size of join results[END_REF]. Worstcase error bounds of the cost function of an optimal plan based on erroneous selectivities were proved in terms of the cost function of the optimal plan based on accurate selectivities and the quotient of the erroneous and the accurate selectivities. The results give strong evidence that the quotient error of selectivities should be considered superior to other error measures, in particular additive ones.

The selectivity estimation problem reads as follows: Let P n denote the power set of I n := {1, . . . , n}. Assume that we are given a set {p i : i ∈ I n } of simple predicates. According to [START_REF] Markl | Consistent selectivity estimation via maximum entropy[END_REF] we model the selectivities of conjunctive predicates as a probability distribution. For this purpose we represent the conjunctive predicates in full disjunctive normal form (DNF). For example in case n = 3, the predicates p 1 and p 1 ∧ p 2 have the DNFs

p 1 = (p 1 ∧ ¬p 2 ∧ ¬p 3 ) ∨ (p 1 ∧ p 2 ∧ ¬p 3 ) ∨ (p 1 ∧ ¬p 2 ∧ p 3 ) ∨ (p 1 ∧ p 2 ∧ p 3 ), p 1 ∧ p 2 = (p 1 ∧ p 2 ∧ ¬p 3 ) ∨ (p 1 ∧ p 2 ∧ p 3 ).
We identify the sets of P n with the binary strings β ∈ {0, 1} n , where β i = 1 if and only if i ∈ I n belongs to the set. Then β := 0 n corresponds to the empty set and β := 1 n to the full set I n . Let P := {0, 1} n \{0 n }. Accordingly, we index the selectivities s β of conjunctive predicates by binary labels β ∈ {0, 1} n , where β i = 1 if and only if predicate p i is in the conjunction. Finally, the selectivities x β of the clauses v in the DNFs are indexed by binary strings β ∈ {0, 1} n , where

β i = 1 if p i ∈ v and β i = 0 if ¬p i ∈ v.
Using this notation we obtain in the above example

s 100 = x 100 + x 110 + x 101 + x 111 , s 110 = x 110 + x 111 .
Clearly, we have

s 0n = β∈{0,1} n x β = 1
and x 0n appears only as a summand in s β for β = 0 n . The values x β can be interpreted as probabilities of the appearance of the corresponding clause. Of course only a small part of selectivities s β , β ∈ J ⊂ P, #J ≪ 2 n , of conjunctive predicates can be stored via multivariate statistics in a DBMS. Let b := (s β ) β∈J , x := (x β ) β∈P and

A := (a β,β ′ ) β∈J ,β ′ ∈P , a β,β ′ := 1 if β i = 1 ⇒ β ′ i = 1 ∀ i ∈ I n , 0 otherwise.
Then, if all s β , β ∈ J were known accurately, the x β would satisfy Ax = b. In [START_REF] Markl | Consistent selectivity estimation via maximum entropy[END_REF] the authors propose to estimate x β , β ∈ P (and consequently all selectivities) by maximizing the entropy max

x β∈{0,1} n -x β log x β subject to Ax = b, x ≥ 0, β∈{0,1} n x β = 1. (25) 
If this convex optimization problem is feasible it can be solved by several methods, e.g., via a Newton method applied to the dual problem, see [15, p. 222-223]. An iterative scaling method was proposed in [START_REF] Markl | Consistent selectivity estimation via maximum entropy[END_REF]. However, in practice, inaccuracies in the stored selectivities s β make (25) infeasible, i.e., Ax = b has no solution x ≥ 0. Penalizing the error between Ax and b by adding a further term to the entropy would require us to determine a penalizing parameter. Therefore we deal with the feasibility problem separately and seek a feasible x first. By the reasons described at the beginning of this subsection, we are looking for a small quotient error between Ax and b, i.e., we consider [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF]. The result can subsequently be used to solve [START_REF] Lobo | Applications of second order cone programming[END_REF] which is not addressed in this paper.

Solution of the Feasibility Problem

One possible approach to solve problem ( 24) is via second order cone programming (SOCP) as proposed, e.g., in [START_REF] Setzer | related to quotient functionals[END_REF]. For details on SOCP we refer, e.g., to [START_REF] Lobo | Applications of second order cone programming[END_REF]. In the following, we show how the problem can be tackled by first order primal dual algorithms. These iterative algorithms have the advantage that certain steps in each iteration as the q thresholding or the epigraphical projections can be computed in parallel. In particular, the Q 1 approach appears to be rather fast.

We rewrite the problem [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF] as

argmin x∈R N ,y∈R M Q ν (y, b) + ι △ (x) subject to Ax = y. (26) 
The above optimization problem can be solved by various primal-dual algorithms [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF][START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF].

For ν = 1 we apply the primal-dual hybrid gradient method with an extrapolation of the dual variable (PDHGMp) from [START_REF] Burger | First order algorithms in variational image processing[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Esser | A general framework for a class of fist order primaldual algorithms for convex optimization in imaging science[END_REF][START_REF] Palma-Amestoy | A perceptually inspired variational framework for color enhancement[END_REF] to solve [START_REF] Markl | Consistent selectivity estimation via maximum entropy[END_REF], see appendix:

Algorithm 2 PDHGMp for (26) Initialization: µ > 0. σ > 0 with µσ < 1/ A 2 2 , θ ∈ (0, 1] x (0) , p (0) = p(0) . Iterations: For r = 0, 1, . . .         1. x (r+1) = argmin x∈R N ι △ (x) + 1 2µ x -x (r) -µσA ⊤ p(r) 2 2. y (r+1) = prox Q 1 (•,b)/σ (p (r) + Ax (r+1) )
3. p (r+1) = p (r) + Ax (r+1) -y (r+1) 4. p(r+1) = p (r+1) + θ(p (r+1) -p (r) )

The sequence (x (r) , y (r) ) r∈N generated by Algorithm 2 is ensured to converge to a solution of problem (26) by [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], see also [START_REF] Burger | First order algorithms in variational image processing[END_REF]Theorem 6.4].

The first step is just a projection of x (r) -µσA ⊤ p(r) onto △. The second step requires the solution of a proximity problem for Q 1 (•, b) which can be done by applying componentwise the q-shrinkage described in Remark 3.2.

For ν = ∞ we reformulate problem (26) as argmin

(x,ξ)∈R N+1 ,(y,η)∈R 2M ξ + M k=1 ι epi q(•,b k ) (y k , η k ) + ι △ (x) s.t. Ax = y, ξ1 M = η (27) 
and apply the PDHGMp algorithm again:

Algorithm 3 PDHGMp for [START_REF] Metcalf | Error measures and their associated means[END_REF] Initialization: µ > 0. σ > 0 with µσ < min(1/ A 2 2 , 1/M ), θ ∈ (0, 1] x (0) , p (0) = p(0) . Iterations:

For r = 0, 1, . . .                   1.
x (r+1) ξ (r+1) = argmin

(x,ξ)∈R N+1 ξ + ι △ (x) + 1 2µ x ξ - x (r) ξ (r) -µσ A ⊤ p(r) x 1 ⊤ M p(r) ξ 2 2. y (r+1) η (r+1) = argmin (y,η)∈R 2M M k=1 ι epi q(•,b k ) (y k , η k ) + σ 2 y -(p (r) x + Ax (r+1) ) η -(p (r) ξ + 1 M ξ (r+1) ) 2 3. p (r+1) x p (r+1) ξ = p (r)
x + Ax (r+1) -y (r+1) p (r)

ξ + 1 M ξ (r+1) -η (r+1)

p(r+1)

x p(r+1)

ξ = p (r+1) x + θ(p (r+1) x -p (r) x ) p (r+1) ξ + θ(p (r+1) ξ -p (r) ξ )
In the first step we have to compute the projection of x (r) -µσA ⊤ p(r)

x onto the probability simplex and ξ (r+1) = ξ (r) -µσ1 ⊤ M p(r) ξ -µ. The second step requires just the componentwise epigraphical projection of the tuple ((p 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1

(r) x + Ax (r+1) ) k , (p (r) ξ + 1 M ξ (r+1) ) k ) onto the epigraph of q(•, b k ), k = 1, . . . , M ,
                  x 001 x 010 x 011 x 100 x 101 x 110 x 111           =         0.2114 0.6331 0.6312 0.5182 0.9337 0.0035         =         s 001 s 010 s 100 s 011 s 101 s 110        
which has no solution x ≥ 0. Note that the last component of the vector b on the right-hand side differs from the other ones by a magnitude of order. We solve problem [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF] for ν = 1 by Algorithm 2 and for ν = ∞ by Algorithm 3, with stopping criterion Ax -y ∞ < ǫ and the parameters in Table 1, where s = 1/ A 2 and A ∈ R m×n . Note that we have chosen the parameters in Algorithm 2 slightly larger than µσ A 2 2 < 1 to get a faster convergence although the convergence has not been proved theoretically for such parameters. Step 2 of Algorithm 3 is computed using Newton's algorithm, which is faster than computing an analytic solution while providing a high precision.

For comparison we solve the following feasibility problems with the additive errors

argmin x∈R N Ax -b p subject to x ∈ △ (28) 
for p ∈ {1, 2} by linear and quadratic programming routines from MOSEK [START_REF]The MOSEK Optimization Toolbox[END_REF], respectively.

Having the solutions x of the four problems we compute the vectors b := Ax. Note that x itself is not of interest here because it will be optimized later, e.g., in the database application by entropy minimization. The errors Q ∞ ( b, b) for the four vectors b read as follows:

method (24) for ν = ∞ (24) for ν = 1 (28) for p = 1 (28 with ν = ∞ provides of course the minimal value Q ∞ ( b, b) since the method was designed to minimize this error. However, model [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF] with ν = 1 produces only a slightly larger error Q ∞ ( b, b). Since this method, which does not require epigraphical projections, is faster, it may be a good alternative choice. Finally, both methods (28) lead to considerably higher errors Q ∞ ( b, b). From the tests we have done so far it cannot be deduced that one of this methods gives a smaller quotient error than the other one. We emphasize again that we are only interested in the Q ∞ error since this error influences the design of query execution plans.

) for p = 2 Q ∞ ( b,
µ σ θ ǫ Initialisation It Algorithm 2 s/2 8s 1 10 -5 x (0) = 1 n 1 n , p (0) = 1 m 161 Algorithm 3 s/2 2s 1 10 -4 x (0) = 1 n 1 n , p (0) 
x = p 

(0) ξ = 1 m 160

Conclusions

We have determined the proximity operator of the sum and the maximum of componenwise quotient errors of positive vectors. These proximity operators may be applied in the solution of various tasks. As an example we have considered a feasibility problem appearing in the selectivity estimation for query optimization. Here we have a strong evidence that quotient distances are more relevant than additive error measures. We have proposed first order primal dual methods to solve the relevant problem and have underlined our findings by a numerical toy example. In connection with query optimization in DBMSs we are working on a GPU implementation of certain steps of the primal dual algorithms and on the solution of problem [START_REF] Lobo | Applications of second order cone programming[END_REF]. We intend to give a comprehensive comparison of several methods, in particular in terms of the execution time. We have found that such a comparison is indeed a task on its own which is beyond the scope of the present paper, which explains the basic mathematical ideas.

In the future, we intend to apply quotient distances to problems appearing in image processing as for example illumination corrections based on the so-called retinex model. This model assumes that an image is given by the componentwise product of the illumination and the reflection in the scene, see [START_REF] Gonzalez | Digital Image Processing[END_REF].

Appendix

General PDHGMp Algorithm

For f 1 ∈ Γ 0 (R N ), f 2 ∈ Γ 0 (R M ) and C ∈ R M ×N the solution of argmin x,y f 1 (x) + f 2 (y) subject to Cx = y can be computed by the PDHGMp supposed that a saddle point of the Lagrangian L(x, y, p) := f 1 (x) + f 2 (y) + p, Cx -y exists, see [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF].

Algorithm 4 PDHGMp

Initialization: µ > 0. σ > 0 with µσ < 1/ C 2 , θ ∈ (0, 1] x (0) , p (0) = p(0) .

Iterations:

For r = 0, 1, . . .

         1.
x (r+1) = argmin 3. p (r+1) = p (r) + Cx (r+1) -y (r+1) 4. p(r+1) = p (r+1) + θ(p (r+1) -p (r) )

The sequence (x (r) , p (r) ) r∈N generated by Algorithm 4 converges to a saddle point of the Lagrangian [3, Thm. 6.4].

Cardan's Formula for Solving (20)

We show how the Cardan formula can be applied for finding the zeros of the third order polynomial R in [START_REF] Hanke-Bourgeois | Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens[END_REF]: After a change of variable, we have

R(y) = R(y - 2α 3 ) = y 3 + py + q, (29) 
where p = α 2 1 -8α 3 -4γ, q = -β 2 + 8α 3 γ -α 36 .

Solutions of equation [START_REF] Palma-Amestoy | A perceptually inspired variational framework for color enhancement[END_REF] denoted by (y 1 , y 2 , y 3 ) ∈ C 3 depend on the sign of the discriminant ∆ = -4p 3 + 27q 2 . Then, we have the following cases:

(i) If ∆ > 0, then the equation has 3 distinct real roots given, for every i ∈ {1, 2, 3}, by

y i = 2 -p 3 cos 1 3 arccos -q 2 
27 -p 3 + 2(i -1)π 3 .

(ii) If ∆ = 0, then two cases are possible: if p = q = 0 then the equation ( 29) admits 0 as a multiple root, otherwise, the equation has a multiple root and all its roots are real and equal to y 1 = 2 (-q/2) 1/3 and y 2 = y 3 = -(-q/2) 1/3 .

(iii) If ∆ < 0, then the equation has one real root and two nonreal complex conjugate roots given by y 1 = a + b, y 2 = ja + jb, y 3 = j 2 a + j2 b, where a = 1 2 (-q + -∆/27)

1/3
, b = 1 2 (-q --∆/27)

1/3
, and j = e i 2π/3 .

Figure 2 :

 2 Figure 2: Areas for the epigraphical projection onto epi q .

  ) where t * is the solution of the fourth order equation P (t) := t 4 -ut 3 + ζbt -b 2 = 0 in (0, b). Proof. Let b > 0. Similar to the proof of Proposition 3.3, we consider the four areas A 1 , A 2 , A 3 and A 4 . To this end, we need to find the perpendicular of u ∈ (0, b] → q 1 (u, b) := b/u and u ∈ [b, +∞) → q 2 (u, b) := u/b at (b, 1). Let u ∈ (0, b]. The perpendicular of q 1 (u, b) at (b, 1), denoted by p 1 (u) :

  which can be realized by Proposition 3.4.

Example 4 . 1 .

 41 We use the notation from Subsection 4.1 and consider the linear system of equations

x∈R N f 1

 1 (x) + 1 2µ x -x (r) -µσC ⊤ p(r) 2 2. y (r+1) = argmin y∈R M f 2 (y) + σ 2 y -(p (r) + Cx (r+1) ) 2

Table 1 :

 1 Parameters used for Example 4.1