
HAL Id: hal-00942429
https://hal.science/hal-00942429v1

Submitted on 21 Mar 2014 (v1), last revised 17 Jun 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pruning based Service Selection Approach under QoS
and Temporal Constraints

Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Saïd Tazi, Mohamed Jmaiel

To cite this version:
Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Saïd Tazi, Mohamed Jmaiel. Pruning based Service
Selection Approach under QoS and Temporal Constraints. 21th IEEE International Conference on
Web Services, Jun 2014, Alaska, United States. 8p. �hal-00942429v1�

https://hal.science/hal-00942429v1
https://hal.archives-ouvertes.fr


Pruning based Service Selection Approach under QoS and Temporal Constraints

Ikbel Guidara1,2,3, Nawal Guermouche1,2

1CNRS, LAAS, 7 avenue du colonel Roche

F-31400 Toulouse, France
2Univ de Toulouse, UT1, INSA, LAAS

F-31400 Toulouse, France

{iguidara, nguermou}@laas.fr

Tarak Chaari3, Said Tazi1,2 and Mohamed Jmaiel3

3ReDCAD Laboratory, University of Sfax

National Engineering School of Sfax

B.P. 1173, 3038 Sfax, Tunisia

tarak.chaari@redcad.org, tazi@laas.fr

mohamed.jmaiel@enis.rnu.tn

Abstract—Dynamic selection of the best services to execute
abstract tasks of business processes is very important. Indeed,
it enables to cope with complex user’s requirements that
require the collaboration of several more elementary services.
However, with the increasing amount of candidate services of
each business task that offer different QoS (Quality of Service)
parameters, the selection of the optimal combination of services
becomes a very hard task. This problem is more complex
when dealing with temporal properties of business processes
associated with time-dependent QoS parameters that can change
according to temporal properties such as the execution time.
Unlike static QoS which have been deeply studied in the
existing service selection approaches, time-dependent QoS are
insufficiently taken into consideration. In this paper, we are
interested in the problem of service selection to satisfy a
given business process while considering temporal properties
associated to time-dependent QoS.

Keywords-Service selection; Time-dependent QoS; Pruning;
Multi-objective optimization; Business process;

I. INTRODUCTION

Service-Oriented Architecture (SOA) paradigm has been

a promising area which attracts attentions from research

and industry communities. This paradigm ensures flexible

systems by integrating loosely-coupled components often

offered as services to build complex applications. These

applications are usually specified as business processes

composed of a set of abstract tasks. To satisfy user end-to-

end QoS requirements while optimizing the overall utility,

concrete services have to be selected and instantiated for

each business process’s abstract task. Giving the growing

number of candidate services of each abstract task that can

offer different QoS values, the selection of the optimal com-

bination of services that fulfils users global QoS constraints

becomes a very complex and time consuming task.

Despite active research in the context of service selection

for abstract business processes, some issues still remain

unsettled so far. The first issue is that most of existing se-

lection approaches assume that services are always available

and that QoS values are static. However, services can have

temporal constraints related to their availabilities. Moreover,

within different time periods, QoS attributes of candidate

services can have different values [5], [11]. For instance,

the response time of a service during daytime can be higher

than night time due to access tendency. Thus, considering

permanent availability of services and assuming only static

QoS values is very restrictive to effectively represent ser-

vices and reflect the impact of time on the QoS attributes.

This issue makes the selection of the optimal solution more

complex since the selection of each service may influence

or be influenced by the selection of other services.

The second issue is that besides QoS properties, in real

world scenarios, several constraints have to be considered to

cater for not only users’ requirements and service provider

offers but also constraints specified at the business process

level (e.g., structural and temporal constraints). Current

selection approaches consider only structural constraints and

assume that temporal properties can be viewed as a kind

of QoS criteria without considering dependencies between

several tasks. Usually, temporal constraints are considered

when modeling and verifying business processes [7] and

neglected during the selection of the best service combi-

nation process. These constraints can be specified explicitly

by process designers or implicitly imposed by business rules

and laws [8]. Given for example a partner of electronics

manufacturing organization that requires in its business

process that the manufacturing of peripheral parts has to

finish no later than 15 time units after the starting of the

process and that its organization can receive orders only

at business hours. Considering temporal constraints when

selecting the best service combination is a vital task since

the violation of one or more temporal constraints may affect

the successful execution of business processes.

The third issue is that when dealing with temporal proper-

ties, adopting a global optimization approach [13], [2] is not

a practical solution and can lead to more scalability issues

because of the large number of constraints that should be

considered comparing to existing approaches. Furthermore,

although the decomposition of global constraints into local

ones [1], [10] is a promising solution when selecting services

based on static QoS values, this is not adequate to handle

the problem we focus on. Indeed, selecting the optimal

service of each task based only on local constraints without

considering the temporal constraints dependencies that can



exist between services does not guarantee that the global

collaboration of the selected services succeeds even though

a solution to the problem does exist. Consequently, a novel

approach that allows selecting the optimal solution that

satisfies all users constraints, while considering both time-

dependent QoS attributes and temporal constraints specified

at business and service levels and guaranteeing a good level

of the selection algorithm performance is still needed.

To adress these issues, in this paper we are interested in

the problem of service selection to implement an abstract

business process. We propose an hybrid approach that com-

bines the use of local thresholds with global optimization to

select the best solution in a reasonable time. At a first step,

and in order to deal with scalability issues, we propose a

service pruning process based on a set of computed local

thresholds to narrow the search space and eliminate non

adequate services prior to performing selection algorithm.

The main idea is to identify significant thresholds that

guarantee that the number of candidate services is large

enough so that it is possible to find the optimal solution (if it

exists), but also small enough to enhance the efficiency of the

selection process. The local thresholds are determined based

on both QoS and temporal constraints while ensuring that

only service combinations which are guaranteed to violate

one or more constraints are not considered in the selection

process. At a second step, and based on the results of the

pruning phase, we propose a selection algorithm that takes

into consideration both time-dependent QoS attributes and

temporal constraints and ensures the selection of the best

services combination. To evaluate the proposed approach,

we have conducted simulation experiments. The evaluation

results demonstrate the effectiveness of our pruning based

selection algorithm.

The rest of the paper is organized as follows. In the next

section, we give a motivating example followed by a formal

description of the service selection problem presented in the

section III. Section IV details our pruning approach based

on QoS and temporal constraints and section V presents our

selection algorithm. In section VI, we evaluate our approach

through experimental results. Finally, section VII illustrates

some existing works and section VIII concludes the paper.

II. GLOBAL OVERVIEW

To illustrate the related features of our approach, let us

consider a purchasing business process depicted in Figure 1,

which characterizes a user’s requirements.

This process has four abstract activities: first it starts by

receiving the order (A1), then the invoicing (A2) and the

manufacturing (A3) of the ordered product are executed

in parallel and finally it delivers the product (A4). Two

temporal dependencies are specified: TD1,4 indicates that

the time span between the end times of the reception and

the delivery activities is between 3 and 6 time units and

TD1,3 denotes that the time period between the end of the

Figure 1. An example of a business process with candidate services of
each business task

reception activity and the start of the manufacturing activity

is between 1 and 3 time units.

We suppose that three global constraints are associated

to the process: (1) the price must not exceed 70 euros, (2)

the duration of the execution must be lesser than 10 units

of time, and (3) the finish time of the process must not

exceed 11 PM (i.e., 23 units of time in our example). To

be implemented, each abstract activity has three concrete

candidate services. Some of these services offer different

QoS values according to their temporal properties related

to their availability. For example, when the service S11 is

available from 10 to 15 units of time, it offers a duration

of 5 time units and a cost of 20 euros. When it is available

from 18 to 24 units of time, it offers an execution duration

equals to 6 time units with a cost of 18 euros.

Let us now search the best service combination to imple-

ment the business process where we consider only static

QoS values. Thus, the best combination of services that

satisfies the user requirements is C = (S13, S21, S32, S42).

This combination can be selected based on the notion of

dominance [1], [3]. In other words, each selected service

chosen to implement an abstract activity offers the best QoS

(i.e., it dominates all the other candidate services).

As stated previously, QoS parameters can change accord-

ing to time. For example, the cost of the service S11 is equal

to 20 euros form 10 to 15 units of time and to 18 euros

from 18 to 24 units of time. Unfortunately, when considering

time-dependent QoS, the combination C is no more valid

even if the selected services are the best. Indeed, although

the task A2 should be executed after the task A1, the service

S21 is available in a time span before that of the service

S13 and thus these two services can not be parts of the

same solution. The combination C
′

= (S11, S22, S31, S43)

where availability intervals are respectively [10,15], [15,19],

[15,19] and [19,22] is a satisfactory solution.

Again, the combination C
′

can not be a satisfactory

solution if we deal with further constraints expressed in

the business process. Consider for example the temporal

dependency TD1,3. This constraint can not be satisfied by

the combination C
′

and thus, another service combination

should be selected such as C
′′

= (S11, S22, S33, S43) with



the following availability intervals [10,15], [15,19], [16,19]

and [19,22].

To summarize, in this section, we intuitively show that

considering time-dependent QoS attributes associated with

temporal constraints is not a trivial task and makes the

selection problem very complex. The existing selection

approaches can not be applied since most of them consider

only static QoS constraints. To overcome these limitations,

we present a time-aware selection approach. In the next

section, we present the different constraints we consider.

III. CONSTRAINTS MODEL OF THE SELECTION

PROBLEM

Service selection problem we are interested in consists in

finding the adequate services so that constraints at business

and service level and global user constraints are satisfied.

Hereafter, we present the different constraints we consider.

A. Temporal Constraints

1) Business Level Constraints: A business process is

usually defined by a set of activities (or abstract tasks) A =
{A1, ..., An}. We denote by Pd(Ai) the set of predecessors

of the activity Ai. In addition, temporal constraints can be

associated to business processes. We distinguish between

intra and inter task temporal constraints [7].

- Intra-task temporal constraints relate to the start and

the finish time of each task. We denote by T C =
{TC1, ..., TCu} the set of intra-task temporal constraints. A

temporal constraint tci(TP, T ) ∈ T C is characterized by the

activity concerned by the temporal constraint (i.e., Ai ∈ A),

a type TP ∈ {must start on (MSO), must finish on (MFO),

start no earlier than (SNET), finish no earlier than (FNET),

start no later than (SNLT), finish no later than (FNLT)} and

a time point T . For example tci(SNET, T ) indicates that

the task Ai must start no earlier than the time point T .

- Inter-task temporal constraints specify temporal depen-

dencies between tasks that specify time lags between two di-

rectly or indirectly succeeding tasks to restrict the time span

between them. The set of inter-task temporal constraints

is denoted by T D = {TD1, ..., TDv}. Each temporal

dependency tdij(TP,D
min
ij , Dmax

ij ) ∈ T D is characterized

by a source and a destination tasks Ai ∈ A and Aj ∈ A,

a type TP ∈ {start-to-start (SS), start-to-end (SE), end-to-

start (ES), end-to-end (EE)} and a minimum and a maximum

duration between the source and the destination tasks (i.e.,

Ai and Aj) denoted by Dmin
ij and Dmax

ij respectively.

This paper assumes that business processes are well-

structured and that all temporal constraints are verified (i.e.,

there is no conflicts between them).

2) Service Level Constraints: Apart from constraints

specified at the business level, other constraints can also

be defined at service level. Each activity Ai of the busi-

ness process has a set Si of potential candidate services.

The potential services of an activity Ai are functionally

equivalent and can be distinguished by their QoS attributes.

Each QoS attribute q ∈ QS has either an increasing better

value direction (the quality is better when the attribute value

increases) or a decreasing better value direction (the quality

is better when the attribute value decreases). For the sake

of simplicity, henceforth we do not consider QoS attributes

with increasing value direction since they can be easily

transformed to decreasing value direction based attributes

by multiplying their values by -1.

As presented in Section II, services have temporal con-

straints related to their availabilities. Moreover, a service can

associate temporal constraints to QoS attributes (i.e., time-

dependent QoS). Each service Sij ∈ Si is characterized by

a set Tij of disjoint intervals during which it offers different

QoS values. To capture QoS variations related to these time-

dependent QoS, we introduce the notion of timed instance

of candidate services. Each timed instance is associated

to a time interval which specifies its start and end times.

We denote by Sijk the kth timed instance of the service

Sij corresponding to the time interval Tijk ∈ Tij . The

boundaries of each time span Tijk are denoted by tmin
ijk and

tmax
ijk . We denote by Q(Sijk, q) the value of the qth QoS

attribute offered by the service Sij at the time span Tijk.

In this paper, we do not consider any special scheme

for QoS values and we suppose that time-dependent QoS

models are defined by service providers. The specification of

these models can be achieved using existing QoS prediction

methods [5].

B. Global User Constraints and Utility Function

In order to select the best composite service CS (i.e.,

the best combination of services), the user specifies in his

request a set of global constraints on QoS attributes. Let

Q(q) denotes the global constraint value for the qth QoS

attribute of the composite service specified by the user (e.g.,

Q(cost) = 70 indicates that the cost of the required service

has to be less than 70 cost units). Note that since we consider

only quality attributes with decreasing value direction, only

upper bound QoS constraints are taken into account when

dealing with global user constraints. In addition, the user

may specify a weight for each QoS attribute q denoted by

Wq to represent its preferences, s.t.
∑

q∈QS Wq = 1.

The value of a particular QoS attribute q for the composite

service CS denoted by Q(CS, q) is computed by the aggre-

gation of the corresponding quality values of its components

services. The aggregation function Agg depends on the

considered quality attribute and the structure of the business

process. In our model we consider aggregation functions for

four categories of QoS attributes that are widely used in

the literature: Additive, Average, Multiplicative and Max-

Operator. Table I shows examples of these aggregation func-

tions. Thus, Q(CS, q) = AggAi∈A(Q(Ai, q)) with Q(Ai, q)
denotes the value of the quality attribute q of the component

service corresponding to the task Ai.



Table I
EXAMPLES OF AGGREGATION FUNCTIONS

Attribute Sequential structure Parallel structure

Additive
∑

Ai∈A

Q(Ai, q)
∑

Ai∈A

Q(Ai, q)

Average
1

n

∑

Ai∈A

Q(Ai, q)
1

n

∑

Ai∈A

Q(Ai, q)

Multiplicative
∏

Ai∈A

Q(Ai, q)
∏

Ai∈A

Q(Ai, q)

Max-Operator
∑

Ai∈A

Q(Ai, q) maxAi∈A{Q(Ai, q)}

To evaluate the quality of the composite service based on

the user preferences, we define an utility function. This latter

is a normalized function whose values range over [0,1]. It

enables the aggregation of the quality values of the service

into a single value while considering user preferences in

order to select the best services. The utility of a composite

service CS is computed as:

U(CS) =
∑

q∈QS

Wq ∗
Q(q)max −Q(CS, q)

Q(q)max −Q(q)min
(1)

Where Q(q)max = AggAi∈A(Q(Ai, q)
max) and

Q(q)min = AggAi∈A(Q(Ai, q)
min) denote respectively

the minimum and maximum aggregated values of the

qth quality attribute of CS with Q(Ai, q)
max =

max{Q(Sijk, q), ∀Sij ∈ Si, ∀Tijk ∈ Ti,j} and

Q(Ai, q)
min = min{Q(Sijk, q), ∀Sij ∈ Si, ∀Tijk ∈ Ti,j}.

A solution to the selection problem is then a combination

of concrete services (each service implements one abstract

business task) that complies with business and service

constraints and satisfies all global user’s constraints while

optimizing the overall utility.

Intuitively, to select the best services, all candidate ser-

vices can be taken into account. However, this is impracti-

cable when the number of services and constraints (QoS

and temporal) increases since the time needed to solve

the service selection problem becomes exponential. For

instance, if we consider that there are 6 tasks in a business

process, 500 candidate services for each task and two timed

instances for each service, the number of possible combina-

tions of services is (2 ∗ 500)6. However, not all services are

potential candidates for the feasible solution. To overcome

this problem, we propose a pruning approach to reduce the

number of candidate services of each task and thus reducing

the number of possible uninteresting combination of services

which are not relevant to the selection problem so that the

optimal solution still be found.

IV. SERVICE PRUNING

The basic idea of our pruning approach is to avoid

discarding any candidate service that might be part of a

feasible solution. This is done by computing local thresh-

olds of each task while ensuring that these thresholds are

relaxed as much as possible. In our work, We propose two

search space reduction techniques: (1) QoS constraints based

pruning and (2) temporal constraints based pruning. In the

following, we detail how we measure thresholds using these

two techniques.

A. QoS Constraints based Pruning

The QoS based pruning strategy aims to compute QoS

thresholds for individual tasks for each QoS attribute q that

will serve as local upper bound constraints. In fact, if a

service has at least one QoS value that does not satisfy the

local thresholds, the selection of this service will violate the

global constraints and thus it can be pruned.

A local threshold QLT (Ai, q) for the qth attribute of the

task Ai depends on both the value required in the user global

constraint Q(q) and the minimum value of this QoS attribute

(i.e., Q(Ai, q)
min). The main idea is to compute for each

task its maximum value (i.e., the worst case) considering

the minimum quality values of all other tasks (i.e., their best

cases) such that the global constraint is satisfied. Computing

these thresholds needs to consider both the structure of the

business process and the distinctive characteristics for each

QoS attribute. We have defined a set of formulas to compute

local thresholds where we take account the categories of

quality attributes presented in Table I. For lack of space,

we present only the additive attributes QoS. The full set of

formulas and more details are given in an extended version

of this paper1. To measure the local threshold of an additive

attribute, we define the formula (2).

QLT (Ai, q) = Q(q)−
∑

Aj∈A,j 6=i

Q(Aj , q)
min, ∀Ai ∈ A (2)

For instance, given the example in the Figure 1 with

Q(cost) = 70. By applying the previous formula, we obtain

the following thresholds for each task: QLT (A1, cost) =
70 − (15 + 15 + 20) = 20, QLT (A2, cost) = 25,

QLT (A3, cost) = 25 and QLT (A4, cost) = 30. After

computing the cost thresholds of each task, the number

of candidate services is restricted. For example, all service

instances that have a cost greater than 20 cost units for the

first task will be eliminated (e.g., the service S12).

B. Temporal Constraints based Pruning

Although QoS constraints based pruning keeps for each

activity only candidate services that are likely to be a mem-

ber of the optimal solution, some uninteresting services still

need to be removed when taking into consideration temporal

constraints. Thus, two main issues have to be considered: (1)

the execution duration of each activity regarding the global

duration required by the user, and (2) the time spans (i.e.,

start and end times) of each activity with respect to the

required deadline.

1http://homepages.laas.fr/nguermou/ICWS14/ICWSExtendedVersion.pdf



1) Execution Duration: Computing local thresholds for

the execution duration attribute is a very hard task when

handling business processes where several structural and

temporal constraints and more specifically temporal depen-

dencies exist between tasks. This is explained by the fact that

some temporal dependencies may be overlapped or included

in each other. Additionally, temporal dependencies may have

different types and thus should be resolved differently. To

deal with this, we rely on a constraint optimization model

while considering structural and temporal constraints of

business process. The proposed model is applied for each

task Ai ∈ A to search for its maximum duration while

minimizing the durations of all other tasks. Therefore, the

objective function of our model can be expressed as follows:

minimize
∑

Aj∈A,j 6=i

Q(Aj , dur)−Q(Ai, dur) (3)

The duration of each task Q(Aj , dur) belongs to the

interval [Q(Aj , dur)
min, Q(Aj , dur)

max], ∀Aj ∈ A and it

is related to two main variables: its start time (st) and its

finish time (ft), thus:

ftj = stj +Q(Aj , dur), ∀Aj ∈ A (4)

The computation of local thresholds must ensure that

structural and temporal constraints are still satisfied. For

simplicity, only end-to-start temporal dependencies are con-

sidered since other dependencies can be defined by the same

manner. Therefore, we add the following set of constraints

to our model:

ftj ≤ stk, ∀Ak ∈ A, Aj ∈ Pd(Ak) (5)

ftj +Dmin
jk ≤ stk, ∀tdjk(ES,Dmin

jk , Dmax
jk ) ∈ T D (6)

stk ≤ ftj +Dmax
jk , ∀tdjk(ES,Dmin

jk , Dmax
jk ) ∈ T D (7)

We assume that the start and finish times of each task

should not exceed the global duration required by the user

(i.e., stj , ftj ∈ [0, Q(dur)], ∀Aj ∈ A). Then, the local

threshold of each task Ai is QLT (Ai, dur) = Q(Ai, dur).
2) Time Intervals: The selection of the best solution

when dealing with both time-dependent QoS and temporal

constraints of business tasks needs the specification of the

start and finish time of each service. Nevertheless, selecting

a wrong start time for one service can lead to several

wrong choices for start times of its successor services.

To avoid possible unnecessary combinations, we need to

reduce the number of start and finish times to consider.

To do so, we propose a constraint optimization model that

computes the minimum start time and the maximum finish

time of each business task so that all structural and temporal

constraints are fulfilled and the deadline of the entire process

is respected. To ensure that the local thresholds do not

exclude any candidate service that can be part of a feasible

solution, we consider four variables for each task: earliest

start time (est), latest start time (lst), earliest finish time

(eft) and latest finish time (lft). Our goal is to guarantee

that largest intervals will be computed (i.e., maximize the

distance between the lft (resp. lst) and the eft (resp. est) of

all tasks). Therefore, the objective function is as follows:

maximize
∑

Ai∈A

lfti −
∑

Ai∈A

efti (8)

Constraints (9) and (10) guarantee that the eft (resp. lft) of

each task is represented by the sum of its est (resp. lst) and

its duration.

efti = esti +Q(Ai, dur), ∀Ai ∈ A (9)

lfti = lsti +Q(Ai, dur), ∀Ai ∈ A (10)

The duration of each task Ai belongs to the inter-

val [Q(Ai, dur)
min, Q(Ai, dur)

max] and its start and fin-

ish times (i.e., esti, lsti, efti, lfti) belong to the interval

[mink∈Tijk
{tmin

ijk },maxk∈Tijk
{tmax

ijk }]. To guarantee that

the deadline is not violated, we add these constraints:

eftn ≤ deadline (11)

lftn ≤ deadline (12)

To deal with structural dependencies, we propose the

following constraints that garantee that for each activity

Aj , its earliest start (resp. latest start) time occurs after the

earliest finish (resp. latest finish) time of all its predecessor

tasks.

efti ≤ estj , ∀Aj ∈ A, Ai ∈ Pd(Aj) (13)

lfti ≤ lstj , ∀Aj ∈ A, Ai ∈ Pd(Aj) (14)

Furthermore, it is vital to check if temporal constraints are

satisfied when computing the large schedule of each task.

To deal with Intra-task temporal constraints, we propose

constraints from (15) to (18). For simplicity, we only con-

sider the temporal constraints (MSO, MFO and SNET). For

example, the constraint (15) ensures that for each constraint

of the form Must Start On T, the earliest start time and the

latest start time are equal to the time point T.

esti = lsti = T, ∀tci(MSO, T ) ∈ T C (15)

efti = lfti = T, ∀tci(MFO,T ) ∈ T C (16)

esti ≥ T, ∀tci(SNET, T ) ∈ T C (17)

lsti ≥ T, ∀tci(SNET, T ) ∈ T C (18)

To deal with Inter-task temporal constraints (i.e., tem-

poral dependencies), we propose the following constraints

considering only end-to-start temporal dependencies.

efti +Dmin
ij ≤ estj , ∀tdij(ES,Dmin

ij , Dmax
ij ) ∈ T D (19)

estj ≤ efti+Dmax
ij , ∀tdij(ES,Dmin

ij , Dmax
ij ) ∈ T D (20)

lfti +Dmin
ij ≤ lstj , ∀tdij(ES,Dmin

ij , Dmax
ij ) ∈ T D (21)



lstj ≤ lfti +Dmax
ij , ∀tdij(ES,Dmin

ij , Dmax
ij ) ∈ T D (22)

A solution of the optimization problem is then a set of

the largest possible time intervals of all tasks. For instance,

given the example presented in Figure 1, the largest time

slots of all tasks when considering all imposed constraints

and with a deadline equals to 23 are respectively: [8,16],

[10,20], [11,20] and [14,23]. Based on these intervals some

service instances have to be pruned (e.g., S112 and S131)

or some restrictions have to be performed to their intervals

(e.g., S222).

C. Pruning Algorithm

After explaining how to compute the local thresholds of

each task based on QoS and temporal constraints, in this

section, we present our pruning algorithm. The pruning steps

are given by the Algrithm 1.

The proposed algorithm takes as inputs the set of all

available services of each task and returns the set of services

which are likely to be candidate of the optimal solution

(i.e., they do not violate any of the local thresholds of their

corresponding task). The steps we follow in Algorithm 1

can be specified as follows. First, we prune services based

on QoS thresholds (line 5 to 7) and then based on time

spans (line 8 to 19). If a local threshold is violated, it is

not worth to check the fulfilment of other thresholds and

the service should be removed from the set of available

services. If all QoS thresholds are verified, we compare the

time span of each timed service instance with the interval of

its corresponding task. If the intersection between these two

intervals is empty or it does not cover the duration of the

service instance, this instance should be eliminated (line 8 to

14). Otherwise, the time span of the service instance should

be restricted to the span of its task (line 16 to 19). Finally,

if at least one task does not have any candidate service, we

conclude that the selection problem has no feasible solutions

(lines 20 and 21).

V. SERVICE SELECTION

Once the pruning process is fulfilled and the relevant

candidate services are identified, we proceed to the selection

of the best service combination. To do so, we model the

selection problem as a constraint optimization problem.

When dealing with time-dependent QoS values, determining

the start and end times of each service Sij is a crucial, since

by delaying the execution of a service, some QoS attributes

can be modified. Thus, in the optimization phase, two types

of decision variables are taken into account. The first one

is to select a concrete service for each atomic task and the

second one is to determine a valid starting time for each

selected service in order to match the global constraints.

To give a more flexible solution, we search for the service

combination that has the best utility function while speci-

fying the largest execution time interval of each selected

service rather than selecting a single starting time point.

Hence, for each service in addition to its QoS values, four

temporal values are specified: est, eft, lst and lft. These

values will be useful at execution time to monitor the

execution of services and predict the impact of one or more

violations on the execution plan. The proposed model selects

exactly one atomic service of each abstract task with the

corresponding earliest and latest start and finish times while

optimizing the overall utility and satisfying all constraints.

The objective function of our optimization model is as

follows:

maximize
∑

q∈QS

Wq ∗Fu(q)+(
∑

Ai∈A

lfti−
∑

Ai∈A

efti) (23)

With: Fu(q) =
Q(q)max −Q(q, CS)

Q(q)max −Q(q)min

Such that for each q ∈ QS:

Q(CS, q) = AggAi∈A(
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗Q(Sijk, q))

(24)

We note that in this step, only preselected services af-

ter the pruning step are considered. Thus, the minimum

and maximum values of each attribute (i.e., Q(q)min and

Q(q)max) have to be recomputed to consider only pre-

selected services of each task with Q(Ai, q) belongs to

the interval [Q(Ai, q)
min, Q(Ai, q)

max], ∀Ai ∈ A and

∀q ∈ QS . To guarantee that only one service will be selected

for each task we define the following formula:
∑

Sij∈Si

∑

Tijk∈Tij

aijk = 1, ∀Ai ∈ A, aijk ∈ {0, 1} (25)

Since all global constraints have to be satisfied when se-

lecting the optimal solution, we add the following constraint:

Q(CS, q) ≤ Q(q), ∀q ∈ QS (26)

Moreover, we should ensure that the end and start times

of each task belong to the time span of the same selected



service instance. For this, for each task Ai ∈ A we propose

the following constraints:
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗ tmin
ijk ≤ esti (27)

esti ≤
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗ (tmax
ijk −Q(Sijk, dur)) (28)

∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗ tmin
ijk ≤ lsti (29)

lsti ≤
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗ (tmax
ijk −Q(Sijk, dur)) (30)

The start and finish times of each task Ai

(i.e., esti, lsti, efti, lfti) belong to the interval

[mink∈Tijk
{tmin

ijk },maxk∈Tijk
{tmax

ijk }]. To specify the

relation between the start and finish times of each task Ai,

the two following constraints are specified:

efti = esti +
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗Q(Sijk, dur) (31)

lfti = lsti +
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗Q(Sijk, dur) (32)

Finally, to check the satisfaction of structural and temporal

constraints, we use constraints from (13) to (22). Note that

it is not worth to check that the deadline will be fullfilled

since we consider time intervals of preselected services that

belong to the time spans of the corresponding tasks.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results of the

pruning based service selection approach we propose. For

this purpose, the time-dependent QoS attributes of all can-

didate services and all constraints were randomly chosen.

The QoS attributes for each service instance were generated

for a time horizon with 150 time points and distributed in the

range between 1 and 100. The computation time of each se-

lection algorithm was averaged over 50 randomly generated

problem instances. Experiments have been performed on a

laptop with a 32 bit Intel Core 2.20 GHz CPU and 4GB

RAM and Windows 7 as operating system. To implement

our approach, we used the constraint solver Choco2. To

evaluate the effectiveness of the proposed approach, we

compare the computation time obtained in two cases: when

no pruning procedure is applied and when applying both

QoS and temporal constraints based pruning approach.

First, experiments were conducted in relation to the num-

ber of candidate service instances per task that varies from

100 to 700 with 5 business tasks. Here, each service instance

is associated with 3 QoS values and 2 temporal constraints.

The results provided in Figure 2(a) indicate that applying

both pruning techniques significantly outperforms the basic

2http://www.emn.fr/z-info/choco-solver/

Figure 2. Evaluation of the pruning based selection approach

algorithm. In fact, by increasing the number of candidate

services, the computation time of our approach increases

very slowly compared to the basic one.

Figure 2(b) shows the computation time of the selection

algorithms when the number of constraints varies between

5 and 10 and the number of tasks is fixed to 5 with 400

candidate service instances for each task. As before, while

the computation time of the basic algorithm significantly

increases due to the fact of the increased number of optimal

instances that should be compared, our algorithm increases

very slowly and leads to better performance even when the

number of constraints is very high. This is an expected

behavior since by considering several QoS and temporal con-

straints, the number of feasible solutions decreases. Hence,

more services are likely to violate one or more constraints

and thus they should be pruned.

In all the test cases, the results show a significant gain

in performance when applying the pruning approach which

scales better than the traditionally algorithm where all can-

didate services are considered. The accuracy of the new

algorithm is more obvious with complex selection problems

where the number of candidate services, tasks and con-

straints is very high. This is due to the fact that the number of

eliminated services significantly increases when the number

of candidate services, tasks and constraints increases.

VII. RELATED WORK

QoS based service selection problem has attracted re-

searchers’ attention in multiple domains. To solve this

problem, some works adopt exhaustive methods to find the

best assignment of services to abstract tasks. In [13], Zeng

et al. adopt mixed linear programming techniques to select

the optimal services for the composition and achieve global

optimization of QoS attributes. This work has been extended

in Ardagna et al. [2] to include local constraints and loop

peeling to deal with composition structures with cycles. To

solve the scalability issues, some researchers have adopted

approximate methods and proposed heuristics to find a near-

to-optimal solution more efficiently than exact solutions.

Yu et al. [12] introduce two alternative models for the

QoS-based service composition problem: the combinatorial

model and the graph model. Based on these models, authors

proposed heuristic algorithms to achieve better performance.

In [4], Canfora et al. model and resolve the service selection



problem based on genetic algorithms. These approaches,

however, do not provide strategies to reduce the search space

before selection and do not cater for temporal properties.

To reduce the computational time of service selection

algorithms, an alternative proposal is to narrow the search

space. Some works reduce services based only on functional

properties [9] and thus they cannot be applied in QoS aware

service selection problems. Other proposals have applied the

decomposition techniques to decompose global constraints

into local ones and then, reduce the number of candidate

services. For instance, Alrifai et al. [1] use a mixed integer

programming model to compute local constraints based on

QoS levels. After that, a local selection strategy is applied to

select the best service for each task. As a step forward, Qi et

al. [10] suggest a local optimization method to further reduce

the number of candidate services based on QoS levels and

enumeration. Although the proposed solutions scale better

when dealing with large problems, they rely on greedy

pruning methods when computing local constraints that can

affect the ability to find an optimal solution. Additionally,

these works are not able to handle time-dependent QoS

attributes associated with temporal constraints. Barakat et

al. [3] apply two space reduction techniques to reduce the

number of candidate services and the number of alternative

abstract plans. Authors use the notion of dominance to select

representative services for each task. The proposed solution

does not allow the computing of local thresholds of each task

based on QoS constraints. Moreover, it cannot be applied

when dealing with time-dependent QoS attributes.

Temporal properties have been considered by some works

when selecting the best service composition [6]. Zhang et al.

[14] take into consideration the dynamic aspect of QoS at-

tributes to compose services in multi-domain environments.

To deal with time-dependent QoS values, Wagner et al. [11]

define a multi-objective optimization based approach that

selects the best combination of services while specifying

the start and finish time of each service according to the

QoS values at each time period. Nevertheless, this work does

not consider temporal constraints at the business level and

no pruning approach has been applied. In [8], Liang et al.

propose a penalty-based genetic algorithm to select services

under temporal constraints. Authors assume that QoS values

do not depend on the time of the execution and only upper

bound constraints between activities are considered.

VIII. CONCLUSION

In this paper, we have tackled the problem of service

selection for business processes. Unlike existing works,

we cater for time-dependent QoS attributes associated with

temporal constraints. This is an important step towards the

consideration of complex business models and service offers

in practical applications. The selection approach we propose

relies on two pruning mechanisms: QoS constraints and

temporal constraints based pruning. These mechanisms are

defined upon a set of formulas and constraint optimization

algorithms that allows computing local thresholds for each

QoS attribute as well as start and end times of each task.

Based on these thresholds, the aim of the pruning phase is

to reduce the number of candidate services to be considered

while ensuring that the optimal solution still be found.

To evaluate the effectiveness of the proposed approach, an

optimization algorithm has been applied based on constraint

optimization programming to select the best combination of

services. Experimental results show a significant improve-

ment in performance especially in terms of computational

time through applying our pruning techniques prior to the

selection process. In the current approach, only structural

and temporal dependencies are considered between services.

As a future work, we aim to consider further possible

correlations between quality attributes and more complex

time-based QoS change cycles and patterns when pruning

unadequate services. We also plan to evaluate our approach

based on real world scenarios and to study the complexity

of the proposed pruning and selection algorithms.

REFERENCES

[1] M. Alrifai and T. Risse. Combining global optimization with
local selection for efficient qos-aware service composition. In
WWW, pages 881–890, 2009.

[2] D. Ardagna and B. Pernici. Adaptive service composition in
flexible processes. IEEE Trans. Software Eng., 33:369–384,
2007.

[3] L. Barakat, S. Miles, I. Poernomo, and M. Luck. Efficient
multi-granularity service composition. In ICWS, pages 227–
234, 2011.

[4] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An
approach for qos-aware service composition based on genetic
algorithms. In GECCO, pages 1069–1075, 2005.

[5] L. Chen, J. Yang, and L. Zhang. Time based qos modeling
and prediction for web services. In ICSOC, pages 532–540,
2011.

[6] N. Guermouche and C. Godart. Compoisition of web services
based on timed mediation. International Journal of Newt-
Generation Computing (IJNGC’14), 2014.

[7] A. Lanz, J. Kolb, and M. Reichert. Enabling personalized
process schedules with time-aware process views. In CAiSE
Workshops, pages 205–216, 2013.

[8] H. Liang, Y. Du, and S. Li. An improved genetic algorithm
for service selection under temporal constraints in cloud
computing. In WISE (2), pages 309–318, 2013.

[9] Z. J. Oster, G. R. Santhanam, and S. Basu. Identifying optimal
composite services by decomposing the service composition
problem. In ICWS, pages 267–274, 2011.

[10] L. Qi, Y. Tang, W. Dou, and J. Chen. Combining local
optimization and enumeration for qos-aware web service
composition. In ICWS, pages 34–41, 2010.

[11] F. Wagner, A. Klein, B. Klöpper, F. Ishikawa, and S. Honiden.
Multi-objective service composition with time- and input-
dependent qos. In ICWS, pages 234–241, 2012.

[12] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web
services selection with end-to-end qos constraints. TWEB,
1(1), 2007.

[13] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware for
web services composition. IEEE Trans. Software Eng.,
30(5):311–327, 2004.

[14] T. Zhang, J. Ma, C. Sun, Q. Li, and N. Xi. Service compo-
sition in multi-domain environment under time constraint. In
ICWS, pages 227–234, 2013.


