
HAL Id: hal-00942323
https://hal.science/hal-00942323

Submitted on 5 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Device driver synthesis for embedded systems
Julien Tanguy, Jean-Luc Béchennec, Mikaël Briday, Sébastien Dubé, Olivier

Henri Roux

To cite this version:
Julien Tanguy, Jean-Luc Béchennec, Mikaël Briday, Sébastien Dubé, Olivier Henri Roux. Device driver
synthesis for embedded systems. 18th IEEE International Conference on Emerging Technologies &
Factory Automation, Sep 2013, Cagliari, Italy. �hal-00942323�

https://hal.science/hal-00942323
https://hal.archives-ouvertes.fr

Device driver synthesis for embedded systems∗

Julien Tanguy†,‡ Jean-Luc Béchennec‡ Mikaël Briday‡ Sébastien Dubé†

Olivier H. Roux‡

†See4sys,
Espace Performance La Fleuriaye, 44481 Carquefou CEDEX, France

‡LUNAM université, IRCCyN Lab, École Centrale de Nantes
1, rue de la Noë, 44 300 Nantes, France.

E-mail: {julien.tanguy, sebastien.dube}@see4sys.com
{jean-luc.bechennec, mikael.briday, olivier-h.roux}

@irccyn.ec-nantes.fr

Abstract

Currently the development of embedded software man-
aging hardware devices that fulfills industrial constraints
(safety, real time constraints) is a very complex task. To
allow an increased reusability between projects, generic
device drivers have been developed in order to be used in
a wide range of applications. Usually the level of gener-
icity of such drivers require a lot of configuration code,
which is often generated. However, a generic driver re-
quires a lot of configuration and need more computing
power and more memory needs than a specific driver. This
paper presents a more efficient methodology to solve this
issue based on a formal modeling of the device and the ap-
plication. Starting from this modeling, we use well-known
game theory techniques to solve the driver model synthe-
sis problem. The resulting model is then translated into
the actual driver embedded code with respect to an imple-
mentation model.

By isolating the model of the device, we allow
more reusability and interoperability between devices for
a given application, while generating an application-
specific driver.

1 Introduction

The development of device drivers in embedded sys-
tems is a critical and error-prone task. Because a device
driver is the interface between the hardware device and
the application or the operating system, the designers must
have a knowledge of all those three components in order
to develop efficient and safe drivers. The security aspect
is emphasized by the execution context of most drivers:
Being executed with supervisor privileges, any error in a

∗This work was partially funded by the ANR national research pro-
gram ImpRo (ANR-2010-BLAN-0317).

driver may have a serious impact on the integrity of the
entire system.

Another difficulty for designing device drivers is the
device datasheet. Although it is designed to help a driver
designer by explaining briefly how the device works, it
does not document all possible behaviors. For example, a
datasheet might specify that a device must be shut down in
order to change some configuration registers, but it does
not explain the outgoing of a configuration register change
while the device is running.

To improve driver correctness and quality, a number
of verification techniques [2, 7] has been developed. An
alternative to verification is to improve the development
process by synthesizing the driver from a formal specifi-
cation. The verification method ensures that the driver be-
haves correctly and can check protocol violations between
the application and the driver, while the synthesis ap-
proach ensures a correct-by-construction driver. However,
for configurability and inter-operability reasons, such gen-
erated drivers, still conform to the traditional model of a
driver consisting of multiple API endpoints, with minimal
state.

Our research targets real-time embedded systems with
hard timing constraints, mainly but not exclusively for
automotive systems. These systems have usually high
requirements in terms of functional safety, but on the
other hand they have few resources in terms of comput-
ing power and memory storage.

An example of such constraints is the reaction time of
an airbag controller, which has to be around a few mi-
croseconds.

Given these constraints, the automotive industry have
developed AUTOSAR, a configurable architecture [4]. It
defines a basic software architecture, consisting of several
generic modules which implements all possible features.

These modules are usually defined as i) a core of basic
functionalities which can do everything, ii) some configu-
ration code which selects or refines the previously defined

Core Model Cfg Model

Core Cfg+

bin Dead code

Figure 1. Current development methodol-
ogy

behaviors and wrapper code to encapsulate the module
functionalities in APIs — see figure 1. The configuration
code is usually generated at compile-time and compiled
along the core code, but the specification allows a post-
compilation configuration which is passed to the core code
by pointers.

This high level of configurability at every level in-
creases greatly the complexity of such systems; they usu-
ally require multiple modules and abstraction levels. It
can also result in a lot of dead code and if the configura-
tion is not perfectly tuned to the application demands un-
necessary behaviors make it into the code and may be ex-
ecuted. This comes at the cost of decreased performance
and greater memory footprint, in terms of stack size, ROM
and RAM usage. The consistency of the configuration
must also be checked in order to be sure that the driver
cannot behave in an unspecified way.

Even with consistency checks, there is no certain
method to ensure that all behaviors which make their way
to the final binary will be used by the application.

However, the automotive standards are quickly evolv-
ing and safety constaints are becoming more and more
strict.

Driven by the industrial need for more formalism and
verification, we have developed a synthesis approach
based on a formal modeling of the system. By using a for-
mal model approach, we can use well-developed model-
checking techniques to ensure safety constraints function-
naly on the model and on the generated code.

This methodology has the particularity of being a more
application specific approach than existing conventional
drivers, which reduces the number of abstraction layers
between the application and the driver, and generates the
sufficient and necessary behavior, producing a small code.

Related works Some work has already been done in
driver synthesis.

The Devil language [5] is a Domain Specific Language
(DSL) targeted at the description of basic communication
protocols with a device. Devil comes with tools to check
for consistency of such models. However, being a low-

Device model Cfg model+

Driver
model Code bin

Figure 2. Proposed development methodol-
ogy

level Domain-Specific Language, it focuses on the inter-
face between the device and the device driver. The latter
remains developed in a classical way.

Wang and Malik[10] propose another model which al-
lows to generate full drivers and to check some properties
in the model. While the approach is interesting, it tar-
gets UNIX-like systems, respecting the traditional driver
model for compatibility reasons.

The Termite tool [9] uses a generic approach to driver
synthesis, by specifying a driver in three different specifi-
cations:

• a device-class specification, which defines the mes-
sages used internally for a class of device drivers;

• a device specification, which defines the access pro-
tocol with the device;

• an OS specification, defining the communication
protocols between the driver and the Operating Sys-
tem.

These three separate specifications allows reusability and
exchangeability of devices and operating systems; their
specifications depending only on device-class one. How-
ever, Termite-generated drivers work only in the con-
text of a special framework, which simplifies the inter-
nal structure of the driver. For example, all events going
in and out of the driver (API calls, hardware interrupts,
etc.) are serialized and dealt with several handlers sequen-
tially. This serialization behaves nicely in the context of
UNIX drivers for desktop use, because these systems have
enough computing power to handle all events in a reason-
able time, but in the context of embedded systems, which
have a very limited computing power and memory, the ad-
ditional memory and computing cost cannot be afforded.

Our contribution We propose a new approach to device
driver synthesis using an untimed reachability game on a
formal model of the device, controlled by the application.
Such information is often unavailable until runtime, but
in the case of critical embedded systems it is known at
compile-time.

By introducing more information from the application,
it is possible to reduce the complexity of the exposed API,
thus reducing the number of errors that can be made. For
instance, instead of having to initialize an analog to digital

converter, setting up the conversions settings and starting
the conversion — which is a typical usage of a conven-
tional API — it is better to have a reduced semantic API
for sampling a speed value, or sending a temperature mes-
sage through the network. In this context, the driver would
perform such initializations and configuration automati-
cally, depending on the current objective.

This allows to generate more application-specific
drivers, and limits the need for abstraction layers, since
the driver API is exposed directly to the application.

Outline of the paper This paper is organized as fol-
lows: first we present the underlying modeling which
supports the methodology presented in section 3. The
methodology is explained on a simple example in sec-
tion 4. At last some concluding remarks and considera-
tions about future work are presented in section 5.

2 Definitions

This methodology relies on a model derived from La-
beled Transitions Systems (LTS), in which transitions can
have guards. In order to define this model formally, let us
define some common terms beforehand.

Let N be the set of natural numbers. For a finite set E,
we denote by 2E the set of all its subsets. Let γP be a
propositional logic over the predicates p ∈ P , e.g. of the
form

ϕ := p|¬ϕ|ϕ ∧ ϕ,where p ∈ P

For A ⊆ P , we define the semantics of such propositional
logic:

• A � p iff p ∈ A;
• A � ¬ϕ iff A 2 ϕ
• A � ϕ ∧ ψ iff A � ϕ and A � ψ

For g, g′ ∈ γP we say that g and g′ overlap if

∃A ⊆ P, such that A � g and A � g′

Definition 1 (Guarded labeled transition system) A
guarded labeled transition system (GLTS) is the tuple

(Q,Q0, A, P,E, l) ,where

• Q is a set of states;
• Q0 is a set of initial states;
• A is a set of actions;
• P is a set of atomic properties;
• E ⊆ Q×γP ×A×Q is the set of edges between the

states;
• l ⊆ Q× 2P is a labeling function.

Deriving the definition for standard Labeled Transition
Systems, we say that a GLTS (Q,Q0, A, P,E, l) is deter-
ministic if:

• |Q0| = 1. We denote it as q0.

• if (q, a, g′, q′) and (q, a, g′′, q′′) ∈ E, then g′, g′′ do
not overlap if q′ = q′′.

In the sequel we will only consider deterministic GLTS.
We also define an asynchronous product operation on

networks of GLTS. For the following definition, we con-
sider n GLTS Si =

(
Qi, qi0, Ai, Pi, Ei, li

)
, i ∈ J0, nK,

where ∀i, j ∈ J0, nK, i 6= j =⇒ Ai ∩ Aj = ∅. We
denote A•i = Ai ∪ {•}, where • /∈ Ai.

Definition 2 (Asynchronous product of GLTS) The
asynchronous product S = S0 × · · · × Sn of the n GLTS
is the GLTS (Q, q0, A, P,E, l) where:

• Q = Q0 × · · · ×Qn,
• q0 = (q00 , . . . , q

n
0),

• A = A0 ∪ · · · ∪An

• P = P0 ∪ · · · ∪ Pn

• ((q0, . . . , qn), a, g, (q′0, . . . , q
′
n)) ∈ E such that

∀i ∈ J0, nK,

{
g = gi and (qi, a, g, q

′
i) ∈ E if A ∈ Ai

qi = q′i otherwise.

• for q = (q0, . . . , qn) ∈ Q, l(q) = l0(q0)∪· · ·∪ln(qn)

Definition 3 (Semantics of a GLTS) The behavioral se-
mantics of a GTLS (Q, q0, A, P,E, l) is the LTS
(Q, q0, A,→), where ∀(q, a, g, q′) ∈ E, (q, a, q′) ∈→
⇐⇒ l(q) � g.

3 Methodology

The synthesized driver is derived from two separate
models: one of the device, which models the internal be-
havior of the device, and one of the application settings,
which models how the device will be used by the applica-
tion.

In order to synthesize such drivers, we propose the fol-
lowing workflow:

1. Model the hardware device, with some synchroniza-
tion primitives. This modeling does not require any
knowledge about the application, thus can be done
once for a particular device.

2. Model the application configurations, or modes of
operations the application needs the device to be in.

3. Define driver objectives;
4. Generate the configured device model and compute

strategies;
5. Translate abstract actions into actual code.

The application settings model is the representation of
how the device is used by the application. In this model,
several functional modes are defined, each mode repre-
senting a set of values of the configuration registers.

3.1 Modeling the components
Modeling the device The first step — the device model
— models only the device behavior at register level: writ-
ing to control and configuration registers, reading from
data and status registers, and sending interrupt to the
driver.

It is the only reusable model between different appli-
cations, and can be part of some sort of model database.
It is based only on the device datasheet. As part of the
synthesis methodology, a device modeling methodology
is proposed.

First, the set of all register fields is partitioned into
three sets, depending on the effects a register read/write
has on the device:

• the Control Fields. Writing in a control field has an
immediate effect on the device’s behavior.
• the Configuration Fields. Writing to a configuration

field has no immediate effect on the device, but alters
future behavior of the device. For example, an input
channel selection field, or a device mode fields are
considered part of the configuration space.
• the Data Fields, on which reading or writing to has

no effect.

For each of the control actions, one or more abstract
actions is added to the alphabet A of the model. For ex-
ample, from a Power Down boolean register field, two
actions can be defined: PowerUp and PowerDown. These
are called the controllable actionsAC . The uncontrollable
actions AU of the device are also modeled, such as some
internal action or hardware interrupts.

For the configurations, a set of atomic properties P is
defined such that each atomic property corresponds to a
valuation of a register field. The properties are used as
guards in the device model, but are attached to states of
the application settings model.

Sometimes, the datasheet imposes constraints on the
changing of certain register fields in certain states, or it
simply does not make sense to allow the modification of
some registers while the device is busy. These restric-
tions are modeled by adding new properties to the states
in which changing a register field is allowed, and some
application settings model generation rules.

With all these guidelines, it is possible to produce a
device model which corresponds to the behavior described
in the device datasheet. The use of additional properties is
allowed, to mark particular states of the device.

In a nutshell, the device model exposes to the applica-
tion designer:

• a set of configuration properties Pcfg . These prop-
erties can be further grouped into sets of semanti-
cally related properties. For instance, a 1-bit inter-
rupt mask can be split into two properties interrupt
and polling.
• a set of synchronization rules, in the form of

(P sync, g), where P sync ⊂ P and g ∈ γP : if one

of the properties in Psync is used, then the corre-
sponding GLTS must add g as a guard for every of
its transitions. For instance, one might define a rule
(interruptSync, {interrupt, polling}).

• a set of additional informative properties Pinfo about
the state of the device, such as PowerDown, Idle,
Busy, Waiting, etc.

Modeling the application settings Once the model of
the device is defined, the application designer has to de-
fine how it will be used by the application. The ap-
plication settings are modeled by a global mode which
is split into several independent sub-modes. These sub-
modes can represent runtime behavior — e.g. Low-Power,
Sleep — or statically defined properties — e.g. Channel
groups in Analog-Digital Conversion, Types of frames in
CAN/LIN/SPI communication, etc.

Formally, the global modeM divided into several sub-
modes M = (m1, . . . ,mn). Each of these sub-modes
have a set of possible values: mi ∈ m1

i , . . . ,m
pi

i . Each
value mj

i of a sub-mode is mapped to a set of atomic
properties among those exposed by the device model, rep-
resenting the required configuration of the device in that
sub-mode.

Even though it is possible to split valuations of a reg-
ister field into several properties (for example, a 1-bit in-
terrupt mask can be split into two properties interrupt and
polling), there is an implicit restriction that only one of
these properties can tag a sub-mode. Adding both proper-
ties to a sub-mode would render the sub-mode inaccessi-
ble, because of the way deterministic GLTS are defined.

These sub-modes are independent in the sense that they
have no influence on each other, but they are linked by the
synchronization constraints of the device.

Once defined, each sub-mode mi is transformed into a
GLTS (Qmi , qmi

0 , Ami , Pmi , Emi , lmi) by the following
method:

1. each valuation mj
i of the sub-mode is mapped to a

state Qmi of the GLTS;
2. all properties tagging any sub-mode tags the corre-

sponding state;
3. a default reset state qmi

0 with no properties attached
to it is added;

4. the alphabet of actions Ami is derived from the state
names, e.g. toLowPower , toReset, etc.

5. the transitions from and to every state are generated
with respect to the synchronization rules by adding a
conjunction of all the required guards to every tran-
sition, i.e. for all synchronization rules (P sync

k , gk)
and all transitions (q1, a, g, q2) ∈ Emi ,

lmi(q1) ∪ P sync
k =⇒ ∃g′ such as g = g′ ∧ gk.

The initial reset state assumes that the state of the de-
vice is not known when the driver (re)starts. The fact that
it does not hold any property ensures that one of the first

actions taken by the driver is to configure the device into
a defined mode before doing any work.

The global mode GLTS M is obtained by computing
the asynchronous product of all sub-modes.

3.2 Driver generation
Once the model of the device and its configuration are

defined, well developed control and game theory tech-
niques [3, 8, 6] are used in order to generate the driver
model. Although the problem defined by the GLTS model
could be reduced to a shortest path problem in a graph,
this methodology uses a more generic, model-agnostic ap-
proach which can be easily extended to timed models by
simply changing the underlying modeling and game rules.
But first let us define the outline of a driver.

Anatomy of the driver In this model, a driver consists
of an arena Ga a set of objectives O. An objective repre-
sents a set of atomic properties which the configured de-
vice is to satisfy, for instance the power down or idle state,
a busy state while converting a certain analog input, or the
end of the sending of a given frame over the network.

For each objective, the driver has a strategy, i.e. a se-
quence of actions to take in order to get from the current
state to an objective state. For this model it is sufficient
to consider only memoryless strategies, i.e. strategies in
which the actions to take are dictated only by the current
state, and not the sequence of states which led to the cur-
rent one. These strategies are computed with respect to
the model of the configured system which represents the
possible behaviors of the device and any mode change in
the application settings.

At any point in time, the driver has only one active ob-
jective, and is taking actions to fulfill this objective. When
it is reached, the driver does not take any action until the
objective is changed.

More formally, given a model D of the device, we
want to generate a controller C — the driver — such that
the system D|C composed of the device controlled by the
driver satisfies a given property ϕ, expressed by the LTL
property for all paths:

ϕ = �A,with A ⊆ P.

Problem 4 (Control problem) Given D and ϕ, is there
any driver (or controller) C such that D|C � ϕ?

Generating the game arena and the game The model
of all possible behaviors of the configured device — in-
cluding changing sub modes — is called the arena Ga. It
is obtained from the semantics of the asynchronous prod-
uct Πasync of the device model D and the driver modes
M. The product Πasync is computed as described in def-
inition 2.

Taking the semantics of this product, we obtain the fol-
lowing LTS:

(Qa, qa0 , Aa,→a) .

The game arena is derived from this LTS by partition-
ning the alphabet Aa of actions in AC

a and AU
a . The

alphabet of controllable actions groups the controllable
actions of the device and all the sub-mode change ac-
tions: AC

a = AC
D ∪ AM. The alpbabet of uncontrollable

actions is the uncontrollable actions of the device only:
AU

a = AU
D.

Assuming the initial device model is correctly defined,
taking the semantics of the product ensures that any non-
specified behavior is not accessible.

The problem reduces to an untimed two-player safety
game between the driver, performing controllable actions
of the device and all sub modes switches, and the de-
vice performing its uncontrollable actions. There are sev-
eral algorithms to compute a strategy which resolves this
game.

One of the most used is the algorithm defined in [6],
with the controllable predecessor method.

Intuitively, this method computes iteratively the set of
states for which a strategy exists — these are called win-
ning states — starting from the set of goal states. At each
iteration, the algorithm adds to the set of winning states all
its controllable predecessors.

A controllable predecessor of a set S of states is a state
for which there exists at least a controllable action ac ∈
AC to S and all uncontrollable actions au ∈ AU also lead
to S.

More formally, the controllable predecessor set π(S)
of S ⊆ Q is defined as follows:

∀q ∈ Q \ S, q ∈ π(S) if and only if{
∃q′ ∈ S, a ∈ AC s.t. (q, a, q′) ∈→
∀q′′ ∈ Q,∀b ∈ AU s.t. (q, b, q′′) ∈→, q′′ ∈ S.

(1)

When computing the controllable predecessors, the al-
gorithm deduces a strategy to execute in order to reach the
goal states.

This algorithm ends when it has reached a fixpoint,
i.e. when it cannot add any new state to the winning states.
The remaining states which could not be added are the
loosing states. In these state there is no action to take in
order to go to a winning state, whatever the device does.

More formally, the algorithm is as follows:

Win0← Goal i← 1
repeat

Wini = Wini−1 ∪ π(Wini−1)
i← i+ 1

until Wini = Wini+1;

Algorithm 1 (Computing the winning states)

Future work will lift part of the constraints, allowing
the driver to wait for an uncontrollable action because
it will happen eventually, whereas the current hypothesis
allows the device to withhold the interrupt and lock the
driver indefinitely.

From the computation it is possible to derive a mem-
oryless strategy for each objective: each state is either a
goal state — the driver has nothing to do —, a losing state
— the driver cannot do anything and may fail into some
error recovery mode — or the driver has a controllable
action to take in order to reach one of the goal states.

4 Example

In this section, we will apply the methodology to a sim-
ple example. Let us consider a simple and generic Ana-
log to Digital Converter. This device is part of almost all
micro-controllers, and its role is to sample analog signals
and convert them into digital values. Usually, a single
ADC has several input channels. It can sample and con-
vert its inputs either sequentially or in parallel.

The example ADC has the following features:

• two different clock modes, one half speed and one
full-speed;
• a power-down mode, only in which the clock config-

uration can be changed;
• multiple input channels, converted sequentially in a

conversion chain;
• the conversion of each of the channels can be enabled

or disabled, while the device is idle or shutdown;
• two conversion modes: oneshot, in which only one

conversion chain is performed, and continuous, in
which conversion chains are performed indefinitely
until the user stops the conversion (the last chain still
ends the normal way)
• the device triggers an End Of Conversion (eoc) in-

terrupt at the end of each channel conversion, and an
End of Chain (ech) interrupt at the end of a chain.

Modeling the device For this high-level model, the
granularity is set at chain conversion level, so all the single
channel conversions are abstracted.

From the specification, the following alphabet of ac-
tions is derived: abort, ech, sleep, start, stop and wakeup.

From the register description, the following properties
are defined:

• Clock configuration: clkFull and clkHalf, for the two
values of the speed, and clkCfg for the synchroniza-
tion constraints.
• Conversion configuration: Os, and Cont, for the

oneshot/continuous setting, and convCfg for the syn-
chronization constraints.

• Informative properties: Idle, poweroff and busy.

The device model is straightforward, as presented in
figure 3.

Modeling the configuration Once the driver model is
defined, we can define the application configuration, or
the driver modes. For this example, the application usage
is as follows:

0 <clkCfg, convCfg, poweroff>

1 <Idle, convCfg>

Half xor Full/wakeup sleep

2 <Busy>

Os and not Cont/start 3 <Busy>

Cont and not Os/start

ech abort

abort

stop

ech

Figure 3. Model of the device. Controllable
actions are represented with solid lines, and the un-
controllable actions are represented in dashed lines.

• The driver shall perform conversions fast, so only the
clkFull setting will be used.

• The driver will convert two groups of signals: one is
to be monitored continuously, with the Cont setting,
while the other corresponds to on demand conver-
sions, using the Os setting.

These modes are then translated into GLTS, following the
method defined in 3. For the example, the general driver
modes is divided into two sub-modes: the conversion sub-
mode and the clock sub-mode. Here only the conversion
sub-mode is detailed.

First three states are defined: reset, G1 and G2. G1 is
tagged with clkfull and Os, while G2 is tagged with clk-
full and Cont. Since these states involve the conversion
properties, all the transitions must have convSync in their
guard.

The resulting automaton is presented figure 4. Note
that all these transitions will be controllable for the driver,
since they represent changes of its internal mode.

Defining driver objectives For this example, the appli-
cation needs to perform two types of conversions: one for
the group G1 and one for the group G2. We will also con-
sider a low-power mode of the driver, where the device is
switched off. These two conversion groups and the low-
power are then translated into three driver objectives:

1. Go to a state labeled by poweroff
2. Go to a state labeled by G1 and busy
3. Go to a state labeled by G2 and busy

Generating the arena and computing strategies Once
all the components of the configured system are defined in
terms of GLTS, the arena of the game is generated. First,

0 convSync / toNoG

1 <isOs, g1>

convSync / toG1

2 <isScan, g2>

convSync / toG2

convSync / toNoG

convSync / toG1

convSync / toG2

convSync / toNoG

convSync / toG1

convSync / toG2

Figure 4. Conversion sub-mode GLTS. This
GLTS is generated with 3 modes: One Shot mode
(1), Continuous mode (2) and the default reset
mode.

all the models are composed into an asynchronous prod-
uct.

The semantics of the product is shown figure 5. In
any of the states the driver can take the controllable ac-
tions, represented with solid lines, and the uncontrollable
actions are represented in dashed lines.

This product model is then processed with the driver
objectives in order to generate adequate strategies. The
computed strategies for all the objectives are presented in
table 1.

These strategies are similar, except for one loosing
state for the first two objectives. This is due to the un-
timed nature and the worst-case hypothesis of the game.
In this context, a strategy wins if the driver can force a
behavior whatever the device does. But here the untimed
strategy does not work because the zeno behavior where
the device does the ech action infinitely often prevents the
driver to act. This behavior is obviously unrealistic: in re-
ality, the ech interrupt has a minimum period, so the driver
has time to cancel an ongoing conversion, or the related
interrupt can be masked.

Future improvements of this work will consider timed
models of the device, which are more complex to analyze
and to compute strategies for.

5 Conclusion

We have developed a generic methodology and sup-
porting models for device driver synthesis. It is de-
signed specifically for embedded real-time systems, with
low complexity and small memory footprint, and can be
adapted to more complex models.

It relies on a particularity of such systems, which are
to be completely defined at compile-time. It is possible to
reduce the amount of generated code by performing opti-
misations at the model level — cutting unreachable states
when applying the possible strategies — thus producing
only necessary and sufficient code.

State Objective 1 Objective 2 Objective 3
0 Win Take toClkFull Take toClkFull
1 Win Take wakeup Take wakeup
2 Take sleep Take toG1 Take toG2
3 Win Take toClkFull Take toClkFull
4 Win Take wakeup Take wakeup
5 Take sleep Take start Take toG2
6 Take abort Win Take abort
7 Win Take toClkFull Take toClkFull
8 Win Take wakeup Take wakeup
9 Take sleep Take toG2 Take start

10 Take abort Take abort Win
11 Loose Loose Win
Table 1. Computed strategies on the arena

Future development Future developments of this
methodology will include more complex elements into the
model. We will include the management of shared data
variables and buffers, allowing the definition of safety ob-
jectives such as ”This buffer shall not overflow”.

In order to manipulate finer models, we need to add
time to these models, like in [1]. Along with the notion of
time, it is possible to express the notion of urgency, adding
a whole range of available behaviors to the driver.

At last we will build a complete prototype being able to
generate a device driver code from a model. Performance
will be evaluated on an actual platform and compared to
device drivers developed in a traditional way.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. The-
oretical Computer Science, 126(2):183–235, 1994.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. ACM SIGOPS
Operating Systems Review, 40(4):73–85, 2006.

[3] A. Church. Logic, arithmetic and automata. In Pro-
ceedings of the international congress of mathematicians,
pages 23–35, 1962.

[4] F. Kirschke-Biller. Autosar – A worldwide standard cur-
rent developments, roll-out and outlook. www.autosar.org,
2011.

[5] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An idl for hardware programming. In
Proceedings of the 4th conference on Symposium on Oper-
ating System Design & Implementation, volume 4, pages
2–2. USENIX Association, 2000.

[6] A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller
synthesis for timed automata. In Proc. System Structure
and Control. Elsevier. Citeseer, 1998.

[7] H. Post and W. Küchlin. Integrated static analysis for linux
device driver verification. In Integrated Formal Methods,
pages 518–537. Springer, 2007.

[8] P. J. Ramadge and W. M. Wonham. The control of dis-
crete event systems. Proceedings of the IEEE, 77(1):81–
98, 1989.

0 <poweroff> toClkResettoGReset

1 <poweroff, full>

toClkFull

3 <poweroff, g1>

toG1

7 <poweroff, g2>

toG2

toClkReset

toClkFulltoGReset

2 <idle, full>

wakeup

4 <poweroff, g1, full>

toG1

8 <poweroff, g2, full>

toG2

sleep

toGReset

5 <idle, g1, full>

toG1

9 <idle, g2, full>

toG2toGReset

toClkResettoG1

toClkFull

toG2

toGReset

toClkReset

toClkFulltoG1

wakeup

toG2

toGReset

sleep

toG1

6 <busy, g1, full>

start

toG2

ech abort

toGReset

toG1

toClkResettoG2

toClkFull

toGReset

toG1

toClkReset

toClkFulltoG2

wakeup

toGReset

toG1

sleep

toG2

11 <busy, g2, full>

start

10 <busy, g2, full>

echabort

abort

stop

ech

Figure 5. Generated model of the arena

[9] L. Ryzhyk. On the Construction of Reliable Device
Drivers. PhD thesis, University of New South Wales,
2009.

[10] S. Wang, S. Malik, and R. A. Bergamaschi. Modeling and
integration of peripheral devices in embedded systems. In
Proceedings of the conference on Design, Automation and
Test in Europe, volume 1, pages 136–141. IEEE Computer
Society, 2003.

