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Abstract

To tackle the potentially hard task of defining the
reward function in a Markov Decision Process, we
propose a new approach, based on Value Iteration,
which interweaves the elicitation and optimization
phases. We assume that rewards whose numeric
values are unknown can only be ordered, and that a
tutor is present to help comparing sequences of re-
wards. We first show how the set of possible reward
functions for a given preference relation can be rep-
resented as a polytope. Then our algorithm, called
Interactive Value Iteration, searches for an optimal
policy while refining its knowledge about the pos-
sible reward functions, by querying a tutor when
necessary. We prove that the number of queries
needed before finding an optimal policy is upper-
bounded by a polynomial in the size of the problem,
and we present experimental results which demon-
strate that our approach is efficient in practice.

1 Introduction
Sequential decision-making is the general process of deciding
what action to take in some state, so as to optimise a criterion
in the long term. In the setting of Markov Decision Processes
(MDPs), actions have stochastic effects on the environment,
yielding numeric rewards and optimal decisions maximize an
expected sum of rewards. If an agent has to make decisions
in this setting, the reward function has to be specified by the
user (or more generally by the environment). The user may
have to do so when writing a model, as in the context of deci-
sion support, or when giving the agent some feedback about
its actions, as in the setting or reinforcement learning. It is
well-known however that the optimal policy for an MDP may
be very sensitive to the values actually chosen for the reward
function, and that eliciting the correct values (in that they in-
deed represent the user’s preferences) is a very difficult prob-
lem. We consider here a variant of the framework, namely
ordinal reward MDPs [Weng, 2011], in which rewards are
taken from a given, ordinal scale, which is cognitively much
simpler for the user to specify. The specification of optimal
policies is then induced by a preference relation on sequences
(or multisets) of such rewards.

As an example, consider an autonomous vacuum cleaner
which is taught what to do by a user. In the real-valued set-
ting, the user needs to specify a real value, say 50, for clean-
ing the living-room, one for cleaning the kitchen (say 30), and
one for cleaning the bedroom (say 20). From these values it
results that cleaning the living-room and the bedroom yields
a reward of 70, and hence is a better trajectory to follow than
cleaning twice the kitchen, which is worth 60. However, as-
signing a 40 reward to the kitchen would change this prefer-
ence. Contrastingly, in an ordinal setting, only the relative or-
der between rewards (which is the same in both cases above)
is initially specified, for instance: cleaning the living-room is
better than cleaning the kitchen, which is better than clean-
ing the bedroom. Since this is in general not enough to de-
termine an optimal policy, this qualitative scale is completed
with preferences on sequences or on multisets of rewards, for
instance: cleaning the bathroom twice and the bedroom once
is better than cleaning the kitchen and the bedroom.

In this paper, we address the problem of computing an op-
timal policy for an MDP with such ordinal information about
the reward function. We assume that the only information ini-
tially available is the ordinal reward for each state-action pair.
So as to gather enough information, we assume that there is
a tutor (e.g., the user, or any kind of oracle) who may answer
requests for comparing two sequences of rewards. The ob-
jective is to compute an optimal policy while asking as few
queries as possible.

Our main contribution is an interactive version of the well-
known value iteration scheme, in which the tutor is ques-
tioned only when necessary. We show that this algorithm
computes an (approximate) optimal policy using only a fi-
nite number of queries, which is moreover polynomial in the
size of the MDP. This could not be taken for granted since
in general, an infinite number of queries may be needed for
eliciting an arbitrary utility function. Finally, we report on
experiments which show that the number of queries issued in
pratice is actually quite small.

2 Related Work
The problem of computing optimal policies for MDPs with
rewards not strictly defined by real values has been mainly
addressed in the setting of robust optimisation [Regan and
Boutilier, 2011b]. In a series of papers [Regan and Boutilier,
2009a; 2009b; 2010; 2011a; 2011b], the authors consider im-



precise reward MDPs (IRMDPs), for which only a set of can-
didate reward functions is known. They show how to com-
pute policies which optimize minmax regret with respect to
all candidate functions, and discuss how this criterion can be
used to generate informative queries to ask the user about
the actual reward function. Iteratively issuing such queries
is shown to allow convergence to the optimal policy for this
function [Regan and Boutilier, 2011b]. Nevertheless, our
work departs from these on several aspects:
• we address the more direct problem of computing an op-

timal policy, without trying to compute robust policies
of any kind before having acquired enough information;
this weaker requirement allows our strategy to ask fewer
queries in the end,
• tackling this more direct problem makes the task compu-

tationally easier, in particular, we avoid the NP-complete
problem of computing the optimal policy under the cri-
terion of minimax regret [Xu and Mannor, 2009],
• we do not assume that the user has an actual reward func-

tion in mind, but rather that she has a preference over
multisets of (ordinal) rewards; doing so we require less
cognitive effort from the user, and in particular we do not
use bound queries of the form “is the utility for taking
action a in state s greater than b?” (for some b ∈ N).

In the present paper we use results from [Weng, 2011], in
particular an axiomatization of preferences over trajectories
for ordinal rewards. Algorithms for computing optimal poli-
cies of ordinal reward MDPs are also given there, but assum-
ing that the whole preference relation (on multiset of rewards)
is given as an input.

The problem of computing optimal decisions with respect
to imprecise utility functions has also been addressed in the
setting of one-stage (non-sequential) decision making, pre-
cisely for recommendation tasks [Viappiani and Boutilier,
2011]. In rough terms, it has been shown that the optimal
action (in this case, a set of recommendations) is also a (my-
opically) maximally informative query to ask the user. How-
ever, the approach does not translate to the sequential setting
which we consider here.

Finally, related problems have been addressed in the setting
of reinforcement learning (RL). In inverse RL [Ng and Rus-
sell, 2000], the agent observes a policy and its goal is to esti-
mate a reward function according to which this policy is op-
timal. Hence the reward function is somehow implicitely and
qualitatively specified via an optimal policy. More recently,
and closer to our setting, a formalization of preference-based
RL has been proposed [Fürnkranz et al., 2012]. There it is
assumed that the user (or the environment) can compare tra-
jectories in a qualitative fashion, and the agent builds on such
feedbacks for learning a near-optimal policy. The key differ-
ence between this work and ours are that
• we consider an offline setting, i.e., the queries the agent

can issue are not constrained by the process dynamics,
• the preference relation which we use on multisets of re-

wards is less general than the one used there.
Both points make our setting more specific, but again they
allow us to design a more efficient strategy.

3 Background
3.1 Markov Decision Process
A Markov Decision Process (MDP) [Puterman, 1994] is de-
fined byM = (S,A, p, r, γ) where S is a finite set of states,
A is a finite set of actions, p : S × A → P(S) is a transition
function with P(S) being the set of probability distributions
over states, r : S×A→ IR is a reward function and γ ∈ [0, 1[
is a discount factor.

A (stationary, deterministic) policy π : S → A associates
an action to each state. Such a policy is valuated by a value
function vπ : S → R defined as follows:

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) (1)

Then a preference relation is defined over policies as follows:

π % π′ ⇔ ∀s, vπ(s) ≥ vπ
′
(s)

A solution to an MDP is a policy, called optimal policy, that
ranks the highest with respect to %. Such a policy can be
found by solving Bellman equations.

v∗(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s, a, s′)v∗(s′) (2)

As can be seen, the preference relation % over policies is di-
rectly induced by the reward function r.

3.2 Ordinal Reward MDP
In this work, we do not assume that numerical rewards are
given, however, we assume that the rewards can be ordered.
We now present how such a setting can be handled.

As introduced in [Weng, 2011], an Ordinal Reward MDP
(ORMDP) is an MDP (S,A, p, r̂, γ) where the reward func-
tion r̂ : S × A → E takes its values in a qualitative, totally
ordered scale E = {r1 < r2 . . . < rk}.

As shown in [Weng, 2011], one can reformulate an OR-
MDP as a Vector Reward MDP (VMDP): (S,A, p, r, γ)

where r(s, a) is the vector in IRk whose i-th component is
1 for r̂(s, a) = ri, and 0 on the other components. Like in
standard MDPs, in such a VMDP we can define the value
function vπ of a policy π by:

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) (3)

where sums and products over vectors are componentwise.
This equation amounts to counting the number of ordinal

rewards obtained by applying a policy. Therefore, a value
function in a state can be interpreted as a multiset or bag of
elements of E.

Now comparing policies boils down to comparing vectors.
In the following, the preference relation over vectors will be
denoted % and vectors will be denoted N = (N1, . . . , Nk).

If E were a numerical scale, we would have:

Proposition 1 vπ(s) =
∑k
i=1 v

π
i (s)ri.



A natural dominance relation %D can be defined between
any two vectors N,N ′ ∈ IRk:

N %D N ′ ⇔ ∀i = 1, . . . , k,

i∑
j=1

Nj ≥
i∑

j=1

N ′j (4)

This relation has a natural interpretation. It states that for any
reward ri, the number of rewards better than ri is higher in
N than in N ′. This dominance is the first-order stochastic
dominance [Shaked and Shanthikumar, 1994] expressed in
our settting. It can also be viewed as Pareto dominance over
transformed vectors L(N) =

(
N1, N1 +N2, . . .,

∑k
j=1Nj

)
.

Although %D is a partial relation and may not be very dis-
criminating, we will use it for eliminating vectors correspond-
ing to policies that are dominated for every reward function.

It is shown in [Weng, 2011] that under natural axioms
about the preference relation % over vectors, there always
exists a numerical function ρ : E → R representing %:
∀N,N ′, N % N ′ ⇐⇒

∑k
i=1Niρ(ri) ≥

∑k
i=1N

′
iρ(ri).

Hence in the following we will assume that the optimal poli-
cies for the ORMDP to be solved are defined by such a func-
tion ρ. Precisely, to simplify the presentation we will see the
target ORMDP simply as an MDPM = (S,A, p, r, γ) with
r = ρ ◦ r̂. Nevertheless, keep in mind that the user does
not know the function ρ (or r), and is only able to compare
vectors and rewards in a qualitative manner.

4 Admissible Reward Functions
In this section, we present the structure of the set of all reward
functions representing the same preference relation over poli-
cies, in a given MDPM = (S,A, p, r, γ), as that induced by
r. This result will be exploited in our algorithm.

We first introduce two definitions. A reward function f :
S × A → R is called admissible for M if the preference
relation over policies induced by f coincides with that by r.
A reward function f is called weakly admissible for M if
optimal policies for f coincides with those for r. We present
below the structure of the set of (weakly) admissible reward
functions for a given MDP.

For a given MDP, R denotes the set of all admissible re-
ward functions. One can show that R is a polyhedral cone
[Boyd and Vandenberghe, 2004].

Proposition 2 For any two r and r′ inR, for any two positive
reals α, β, the reward function defined by αr + βr′ is also in
R (i.e., R is a cone). More specifically, R is a polyhedral
cone generated by a finite number of reward functions.

Proof Denote V πr the value function of a policy π with re-
spect to a reward function r. Let r and r′ both represent the
preference relation % over policies and let π, π′ be two poli-
cies such that π % π′. Equation 1 for π yields in vectorial
form αV πr +βV πr′ = αr+βr′+γTπ(αV πr +βV πr′ ), showing
that V παr+βr′ = αV πr +βV πr′ is the value function of π for re-
ward function αr+βr′. As V πr ≥ V π

′

r and V πr′ ≥ V π
′

r′ , a pos-
itive linear combination of them yields V παr+βr′ ≥ V π

′

αr+βr′ .
For the second part of the proposition, write all the inequal-

ities (with r as the unknown) induced by %. R is defined as

an intersection of half-spaces, showing that R is polyhedral.
As the number of inequalities is finite, R is generated by a
finite number of points. �

For a given MDP, R∗ denotes the set of all weakly admis-
sible reward functions. Similarly to Prop. 2, one gets:
Proposition 3 R∗ is a polyhedral cone generated by a finite
number of reward functions. Moreover,R ⊆ R∗.

As shown in [Weng, 2011], positive affine transformations
of rewards do not change preferences over policies. Using
this observation, one can set r1 = 0 and rk = 1 without loss
of generality. In the remaining of the paper, we will enforce
these two constraints. Then the last two propositions imply
that the set of (weakly) admissible reward functions respect-
ing these two constraints is a polytope.

While elicitation procedures would try to recover R, we
focus on R∗, as we are only interested in determining opti-
mal policies. Doing so we are able to gather enough informa-
tion for determining an optimal policy while asking far less
queries than would be needed for recoveringR.

5 Interactive Value Iteration
We first present the general idea of our algorithm, called In-
teractive Value Iteration. Section 5.1 explains the algorithm
in details. Section 5.2 provides an analysis and a discussion.

In order to find an (approximate) optimal policy for an OR-
MDP with an initially unknown preference relation over vec-
tors, we propose a variant of value iteration where the agent
may ask a tutor which of two reward sequences it prefers. An
example query is “r1 + r3 ≥ 2r2 ?”, meaning “is receiving
r1 and r3 at least as good as receiving twice r2?” As the
tutor answers queries, the set of candidate, weakly admissi-
ble reward functions shrinks. Specifically, given the repre-
sentation of % and E by a reward function r, a query is in-
terpreted as an inequality of the form

∑k
i=1 αiri ≥ 0. The

answer to such a query indicates whether
∑k
i=1 αiri ≥ 0 or∑k

i=1(−αi)ri ≥ 0 holds according to the relation %.
At the beginning of the process, the agent only knows the

order over rewards, e.g. r1 < r2 < . . . < rk. As underlined
above, one can always assume that r1 = 0 and rk = 1. This
initial knowledge can be represented as a polytope K(0) de-
fined by the following inequalities ∀i = 1, . . . , k − 1, ri+1 −
ri > 0. To avoid strict inequalities, we assume that we know
a positive lower bound η on the difference between two con-
secutive rewards, i.e., 0 < η ≤ mini=1,...,k−1

(
ri+1 − ri

)
.

The polytope K(0) can be seen as a set of inequalities. Let
r be the column vector (r1, . . . , rk)T ∈ IRk and 1k−1 be the
column vector (1, . . . , 1)T ∈ IRk−1. LetK(0) be a (k−1)×k
real matrix with ∀i = 1, . . . , k − 1, K(0)

i,i = −1, K(0)
i,i+1 = 1

and null everywhere else, i.e.,

K(0) =

 −1 1
−1 1

. . .
−1 1


Then the polytope K(0) is defined by:

K(0) × r ≥ η 1k−1 (5)



Algorithm 1 Interactive Value Iteration(S,A, p, r̂, γ, E, ε)
1: t← 0
2: compute r from r̂
3: K ← Init(E)
4: ∀s ∈ S, v0(s)← (0, . . . , 0)
5: repeat
6: t← t+ 1
7: for s ∈ S do
8: best← (0, . . . , 0)
9: for a ∈ A do

10: v ← r(s, a) + γ
∑
s′ p(s, a, s

′)vt−1(s
′)

11: (best,K)← getBest(best, v,K)
12: vt(s)← best

13: until ‖vt − vt−1‖ < ε
14: return vt

Assume the current knowledge about weakly admissible
reward functions is represented by K(t−1). When an answer
is given to a query, yielding an inequality

∑k
i=1 αiri ≥ 0, the

new knowledge is obtained by intersecting the half-space de-
fined by that inequality and the current polytope K(t−1) rep-
resented by matrixK(t−1). This can simply be represented by
adding the row vector (α1, . . . , αn) to matrix K(t−1). Hence
the updated knowledge is represented by the following in-
equalities, C(K(t−1)):

K(t) × r =
[

K(t−1)

α1 . . . αn

]
× r ≥ η

[
1k−1
0t−k+1

]
(6)

where 0t−k+1 is the column vector (0, . . . , 0) ∈ IRt−k+1.

5.1 IVI Algorithm
Using the previous ideas, we propose Algorithm 1, which
we call Interactive Value Iteration (IVI)1. It uses five
functions: Init, getBest (Algo. 2), ParetoDominates,
KDominates and query (Algo. 3), that we explain now.

Function Init(E) returns the set of inequalities (5), defin-
ing polytope K(0). Function ParetoDominates(v, v′) re-
turns true if v dominates v′ with respect to %D as defined in
(4). Function KDominates(v, v′,K) returns true if the cur-
rent knowledge, represented by K, about weakly admissible
reward functions implies that v is preferred to v′. This can be
checked by solving the following linear program:{

y = min . (v − v′).r
s.t. C(K) (7)

A nonnegative optimal value for the objective function im-
plies that for any possible reward function, v is preferred to
v′. Function getBest(v, v′,K) returns the best of the two
vectors v, v′. It first tries to compare them according to %D
(by calling ParetoDominates), which is the least computa-
tionally costly. If it cannot, it tries using knowledge K (by
calling KDominates) for deciding which vector is the best.

1For simplicity, IVI is stated as returning an (approximate) opti-
mal vector value function. It could be slightly adapted to return the
associated (approximate) optimal policy.

Algorithm 2 getBest(v, v′,K)
1: if ParetoDominates(v, v′) then
2: return 〈v,K〉
3: if ParetoDominates(v′, v) then
4: return 〈v′,K〉
5: if KDominates(v, v′,K) then
6: return 〈v,K〉
7: if KDominates(v′, v,K) then
8: return 〈v′,K〉
9: 〈best,K〉 ← query(v, v′,K)

10: return 〈best,K〉

Algorithm 3 query(v, v′,K)
build query q for “v % v′”
if answer to q from tutor is yes then

return 〈v,K ∪ {(v − v′).r ≥ 0}〉
else

return 〈v′,K ∪ {(v′ − v).r ≥ 0}〉

Finally, it resorts to a query if it cannot decide with its cur-
rent information. Function query(v, v′,K) queries the tutor
to know whether v is preferred to v′ or not. The information
obtained from the answer is added to K.

5.2 Analysis of IVI
Numbers of queries The query step is a preference elic-
itation phase, which is well-studied in decision theory and
considered a hard problem. It is known that in the general
case, one may need an infinite number of queries for finding
an adequate preference representation [Krantz et al., 1971].
However, in the ORMDP setting, we can prove that a finite
number of queries is sufficient for IVI to find an optimal so-
lution; in fact, even a polynomial number (in the number of
states n, the number of actions m, and 1

1−γ ).
Standard value iteration normally yields an ε-optimal pol-

icy. When ε is set low enough (depending on γ and the num-
ber of bits needed to represent the numeric values of the prob-
lem), the ε-optimal policy is guaranteed to be optimal. It can
then be shown that an optimal policy can be computed in a
polynomial (in n, m and 1

1−γ ) number of steps [Littman et
al., 1995]. Let Tmax(n,m, γ) be such a polynomial upper-
bound on the number of iterations of value iteration for an
MDP (S,A, p, r̂). Based on this result, we can prove that IVI
only needs at most a polynomial number of queries for find-
ing an optimal policy.
Theorem 1 For an ORMDP M = (S,A, p, r̂, γ), the num-
ber of queries needed for IVI to converge is upperbounded by
n(m− 1)Tmax(n,m, γ).
Proof We just need to check that for one iteration of IVI,
the number of queries is upperbounded by n(m − 1). For
a given state s, in the worst case, ParetoDominates and
KDominates do not remove any vector and m − 1 queries
must be asked for finding the best vector/action in s. �

In the context of preference elicitation, such a bound is in
fact not so good. One does not want the tutor to answer so



many queries. However, the obtained bound is attained in the
worst case, when the current knowledge K never helps. In
practice, this should not happen. This is indeed suggested
by our experiments, which show that very few queries are
indeed needed in general. Besides, IVI could be extended so
that not every query is asked. In that case, vt(s) would store
a set of nondominated vectors and IVI could be modified in
a similar fashion as value iteration for multiobjective MDPs
[White, 1982]. An interesting research direction is to find
a compromise between the number of queries asked and the
size of the vt(s)’s. We leave this extension for future work.

Complexity of Queries Query q in Algorithm 3 can be
build such that it is presented in the simplest form possi-
ble. Assume we were to compare v = (v1, . . . , vk) and
v′ = (v′1, . . . , v

′
k). As they are discounted occurence num-

bers, they are all positive. Let c be the componentwise min of
the two vectors, i.e., ∀i = 1, . . . , k, ci = min(vi, v

′
i). Then,

comparing v and v′ is equivalent to comparing (v − c) and
(v′−c), which is a simpler query as k zeroes have been intro-
duced. Assuming that all parameters in the MDP are rational,
each component of v and v′ can be written as an irreducible
fraction. Let D be the least common multiple of the denom-
inators of those fractions. The query may be simplified even
more by comparing the integer vectorsD(v−c) andD(v′−c)
(if the components are not too large).

Besides, when a query q requires to compare too many re-
wards at the same time, such as “do you prefer getting twice
r4, once r3 and twice r1, or once r4, twice r3 and twice r2?”,
it would be interesting to investigate the possibility of break-
ing down q into several simpler queries, with less rewards
to compare. In the example, we may ask for instance first
whether the user prefers 2r4 + r3 + 2r1 to r4 + 4r3. In case
the answer is affirmative, we already know the answer to the
initial query (because of r3 > r2), and otherwise we can re-
fine the query. We leave this for a future deeper investigation.

Unknown Order over Rewards Our approach can easily
be adapted to the case where even the order over rewards is
initially only partially known, or not known at all. In the latter
case, the inequalities defining K(0) would be ∀i = 1, . . . , k,
0 ≤ ri ≤ 1. In the former case, starting from the previ-
ous inequalities, one would only need to add all inequalities
encoding the known partial order. In IVI, queries would be is-
sued for comparing two rewards ri, rj that cannot be ordered
yet, only if necessary. Note that if such a query is asked, a
special treatment is needed. For instance, an answer stating
ri > rj translates to ri − rj ≥ η instead of ri − rj ≥ 0.

Finally, the approach could also be extended to the case
where the number of ordinal rewards are not known in ad-
vance. We leave this extension for future work.

Size of K We finish this section on a side note. Adding an
inequality to K in Function query may render some previous
inequalities redundant. One can test whether an inequality
αT×r ≥ d is redundant for a system of inequalitiesK×r ≥ b
by solving the following linear program:

min .αT × r s.t.K × r ≥ b (8)
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Figure 1: Results as a function of n with m = 5, k = 10.
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Figure 2: Results as a function of m with n = 50, k = 10.

The inequality is redundant if and only if the resulting opti-
mal value is not lower than d. Each previous inequality of K
may be tested for redundancy so as to keep the size of the rep-
resentation of the agent’s knowledge minimal. This however
comes at the cost of solving |K| LPs each time an inequality
is added, where |K| is the number of inequalities in K.

6 Experimental Results
We tested our approach on three different domains: random
MDPs, Autonomic Computing and Coach domains. Algo-
rithm IVI was coded in R using Gurobi 5.0 as an LP solver
and all experiments were run on a PC (Intel Core 2 CPU
2.66Ghz) with 4GB of RAM. The discount factor γ was set to
0.95 and the Bellman error ε was set to 1e− 3. The numeric
results are averaged over 20 runs.
Random MDPs We first tried IVI on random MDPs with
no special structure. A random MDP is characterized by pa-
rameters n,m, k denoting the number of states, actions, and
steps in the reward scale. Each pair (s, a) is assumed to have
log2(n) possible successors. Besides, we made some exper-
iments on “grid world” MDPs, but we do not present the re-
sults obtained as they are similar to those with random MDPs.
We computed two measures to assess our method: the num-
ber of queries before convergence of IVI and the query length,
which is the number of different ordinal rewards in a multi-
set intervening in a query. We provide those two measures
as a function of the number of states (Fig. 1), the number of
actions (Fig. 2) and the size of the ordinal scale E (Fig. 3).
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Figure 3: Results as a function of k with n = 50, m = 5

The figures clearly show that though our theoretical bound
on the number of queries is large, in practice this number re-
mains very small and scales nicely with respect to all three
parameters. For instance, Figure 1 shows that the mean num-
ber is less than 30 for 500 states, 5 actions and 10 steps on
the reward scale. Importantly also, the size of queries, which
to some extent measures the cognitive effort required from
the user, remains acceptable, and again scales nicely with the
size of the scale (Figure 3). For instance, with 15 steps, which
already allows for a very fine-grained specification of prefer-
ences, the mean length is 5, meaning that queries look like
“Would you prefer getting 3r1 + 2r3 + r10 or 5r4 + r9?”.
Anyway, in future work we will consider means of further
reducing the complexity of queries, as discussed in Section 5.

The next two problems are structured MDPs. However,
we translated them to “flat” MDPs and did not exploit the
structure (see the conclusion).
Autonomic Computing We tried our method on the Au-
tonomic Computing domain [Boutilier et al., 2003] in order
to compare our approach with that proposed in [Regan and
Boutilier, 2009b]. We briefly recall this domain (see [Re-
gan and Boutilier, 2009b] for more details). In this prob-
lem, we are given kκ application server elements on which
N available resource units are to be assigned. A feasible allo-
cation is an integral vector n = (n1, . . . , nκ) ∈ [0, N ]κ with∑k
i=1 ni ≤ N . The clients’ demand is modeled as an integral

vector d = (d1, . . . , dκ) representing κ levels of demands in
{1, . . . , D}. A state of the MDP is a vector (n,d) defining
the current allocation and clients’ demand. An action is a
new allocation m = (m1, . . . ,mk). Rewards are defined by
r(n,d,m) = u(n,d)−c(n,d,m) where u(n,d) is a sum of
non-decreasing utility functions u(ni, di) and c(n,d,m) is a
sum of the costs for removing a resource unit from a server.
An action deterministically sets the next allocation, while un-
certainty about demands is stochastic and exogenous.

[Regan and Boutilier, 2009b] tried their method on in-
stances where k = 2,N = 3 andD = 3, defining MDPs with
90 states and 10 actions. Their method needs 200 queries be-
fore minmax regret vanishes. On similar instances, IVI asks
about 100 queries on average, with length less than 12.
Coach We also tackled the Coach domain [Boger et al.,
2006] so as to compare IVI to the method proposed in [Regan
and Boutilier, 2011b], to which we refer the reader for a more

detailed presentation. In this problem, the agent provides as-
sistance to a person with dementia accomplishing a daily-
life activity (e.g. handwashing) which is decomposed into
T = {0, 1, . . . , l} steps. An action a ∈ A = {0, 1, . . . ,m} in
the MDP describes the level of intrusiveness of the prompt
the agent provides, i.e., 0 represents no prompt, m − 1
represents the most intrusive prompt and m means a care-
giver has been called. A state in the MDP is described as
(t, d, f) where t ∈ T is the current step the person is at,
d ∈ D = {0, 1, . . . , 4, 5+} is the delay (time stayed in the
current step) and f ∈ A is the previous prompt. At each step
t < l, the probability that the person succeeds and moves to
the next step t+ 1 is increasing with a, while it is decreasing
with d. Rewards are defined by r(t, d, f, a) = rgoal(t) +
rprogress(d) + rdelay(d) + rprompt(a) where rgoal(t) is a
large reward if the final step is reached and 0 otherwise,
rprogress(d) is a small reward when making progress (i.e.,
d = 0) and 0 otherwise, rdelay(d) is an increasing cost func-
tion and rprompt(a) is an increasing cost function whose val-
ues are greater than those of rdelay.

We ran IVI on instances of the same size (l = 14 and m =
6) as in [Regan and Boutilier, 2011b]. Our approach requires
on average 46.5 queries before IVI converges and the queries
have an average length of less than 6. This is slightly better
than the method in [Regan and Boutilier, 2011b] which needs
around 60 queries for finding an approximate solution.

7 Conclusion
We have presented an approach for computing optimal poli-
cies for an MDP in which rewards are specified on an ordinal
scale, and a user may be queried about her qualitative prefer-
ences among multisets of such rewards. Our approach inter-
leaves a Value Iteration scheme and queries, which are asked
only if needed. We have shown that the number of queries
needed to identify the optimal policy is finite, despite this is
not the case in general for eliciting an arbitrary utility func-
tion. Besides, we have shown that this number is polynomial
in the size of the MDP. This bound is rather loose, but our
experiments show that few queries are needed in practice.

Our results together with other approaches [Weng, 2011;
Regan and Boutilier, 2011b; Fürnkranz et al., 2012] show the
feasibility of decision-making with only qualitative informa-
tion (or feedback) about the rewards. As a short-term future
work, we plan to extend our approach to other algorithms, es-
pecially in the family of policy iteration and Q-learning. We
also leave a more precise analysis of the number of queries
needed for future work. Finally, we plan to extend our ap-
proach to structured MDPs [Boutilier et al., 1999]. We be-
lieve that it will naturally take advantage of the structure.

Our ultimate goal is to propose an approach to decision-
making, especially in a reinforcement learning setting, in
which the feedbacks required from the user are as natural and
cognitively simple as possible. The present work takes a first
step in that direction by using purely qualitative feedbacks.
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