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HCM PROPERTY AND THE HALF-CAUCHY DISTRIBUTION

PIERRE BOSCH

ABSTRACT. Let Z, be a positive a-stable random variable and Ty, = (Z,/Za)®, with indepen-
dents components in the quotient. It is known that T, is distributed as the positive branch of a
Cauchy random variable with drift. We show that the density of the power transformation T is
hyperbolically completely monotone in the sense of Thorin and Bondesson if and only if o < 1/2
and |8] > 1/(1 — «). This clarifies a conjecture of Bondesson (1992) on positive stable densities.

1. INTRODUCTION

A function f : (0,00) — (0, 00) is said to be hyperbolically completely monotone (HCM) if for
every u > 0, the function f(uv)f(u/v) is completely monotone (CM) as a function of the variable
w = v + v~ !, This class coincides with that of functions of the form

1 o TL(L+ ) ™
i=1

with a € R and ¢, ¢;,b; > 0, or pointwise limits thereof. A positive random variable X is called
HCM if it has a density which is HCM. The HCM class is closed with respect to multiplication
and division of independent random variables. Moreover, if X is HCM then X? is HCM for every
|| > 1. This class was introduced by O. Thorin and L. Bondesson and is closely connected to the
class of generalized gamma convolutions (GGC). We say that the distribution of a positive random
variable X is a GGC if its Laplace transform reads

(2) E (e ™) =exp <—a)\ — /OOO log (1 + 2) V(d:c))

for some a > 0 called the drift coefficient and some positive measure v called the Thorin measure,
which is such that

/01 |log(x)|v(dz) < oo and /100 2 w(dz) < oo.

The GGC class is a subclass of the positive self-decomposable (SD) distributions, and in particular
all GGC distributions are infinitely divisible (ID). In [4] Bondesson proved the inclusion HCM C
GGC, which allows to show the GGC property and hence the infinite divisibility of many positive
distributions whose Laplace transforms are not explicit enough. As a genuine example, in [17]
O. Thorin proves the infinite divisibility of powers of a gamma random variable at order ¢ with
|€] > 1. This is also an easy consequence to the fact that gamma densities are HCM. In fact
Thorin uses the HCM-idea in a primitive form in his paper.

Another link between the two above classes is that a random variable X is GGC if and only if
its Laplace transform is HCM. This characterization, which is also due to Bondesson, can be used
to show both GGC and HCM properties, and it will play some role in the proof of the main result
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2 PIERRE BOSCH

of this paper. We refer to the monograph [5] for an account on these topics, including the proof of
all above properties.
Let Z, be a positive a-stable random variable, « € (0, 1), normalized such that its Laplace
transform reads
. - \
E (e’)‘Z“) = exp (=A%) = exp (—M/ log (1 + —) xo‘ldaz> .
s 0 x
Observe that this Laplace tranform is of the form (2), so that all positive a-stable distributions
are GGC. In this paper we are concerned with the following

Conjecture (Bondesson). The density of Z, is HCM if and only if o < 1/2.

This problem is stated in [6], where the easy only if part is also obtained. If & = 1/n for some
integer n > 2, the HCM property for 7, is a direct consequence of the independent factorization
(see Example 5.6.2 in [5])

1 d
(3) Zl/}q, =n 71/71 X X fY(n—l)/n

where, here and throughout, v; denotes a gamma random variable with shape parameter ¢t and
explicit density

‘,L,tflefm

(t)
The if part of this conjecture is however still open when o # 1/n. In [16], it is shown that Z,
is hyperbolically monotone (viz. its density f is such that f(uv)f(u/v) is non-increasing in the
variable v + 1/v) if and only if o < 1/2. Proposition 4 of [11] shows that quotient Z,/Z, (with
independents components) has an HCM density if and only if @ < 1/2. We refer to the whole
article [11] for other partial results on Bondesson’s conjecture. Last, a positive answer to the if
part for o € (0,1/4] U [1/3,1/2] has been recently announced in [10].
In this paper we consider the random variable

Z (07
T, — <_Q)
Za

where Z, | Z,. Tt is well-known (see [19] or Exercise 4.21 in [7]) that T, has an explicit density
which is that of a drifted Cauchy random variable conditioned to be positive, viz. it is given by

(4)

When « = 1/2, the above random variable is the half-Cauchy, whose infinite divisibility has been
obtained in [3]. This result has been refined into self-decomposability in [8]. On the other hand,
it is shown in [5] that T, has never a GGC distribution, and in particular does not have an
HCM density. Our main result shows that this property holds when taking sufficiently high power
transformations.

Theorem. The power transformation TS has a HCM density if and only if « < 1/2 and |3| >
1/(1—a).

Whereas the only if part of this theorem is a direct consequence of known analytical properties
of HCM functions, the if part is more involved and relies on Laplace inversion and a Pick function
characterization. This result shows that the explicit density of T is the pointwise limit of functions
of the type (1) as soon as @ < 1/2 and |B] > 1/(1 — «), but we could not find any constructive
argument for that.

sin(ma)
ma(x? + 2 cos(ma)x + 1)




HCM PROPERTY AND THE HALF-CAUCHY DISTRIBUTION 3

The main interest of our theorem is to propose a refined version of Bondesson’s conjecture, from
the point of view of power transformations. It is indeed natural to raise the further

Conjecture. The density of Z° is HCM if and only if « < 1/2 and |8| > o/(1 — a).

Observe that our result shows already the only if part. Some partial results for the if part are
also given in [11] where it is shown that Z? is SD when a < 1/2 and 8 < —a/(1 — a) — see
Proposition 1 in [11], and the whole Section 3 therein where the critical power exponent a/(1 — «)
appears naturally. In general, this conjecture on the power transformations of 7, seems hard to
solve, even when « is the reciprocal of an integer. In this paper we briefly handle the explicit case
a = 1/2 which is immediate, and the case & = 1/3 which relies on a certain product formula for
the modified Bessel function. This formula leads to another conjecture on the independent product
of two gamma random variables.

2. PROOF OF THE THEOREM

We first fix some notation and gather some known material on the CM and HCM properties. We
denote by Zv(x) = [;° e " v(d)) the Laplace transform of a o-finite measure v on [0, 00). If this
measure v is absolutely continuous with density g, we write Lg(z) = ZLv(z) = [;° e g(A)dA.
Recall that a function f : (0,00) — (0,00) is said completely monotone (CM) if it is smooth and
such that (—1)"f™ > 0 for all n > 0. By Bernstein’s theorem, a function f is CM if and only if
there exists a positive o-finite measure v on [0, 00) such that f = Zv — see e.g. chapter 1 in [15].
When f(07) = 1, a CM function f is hence the Laplace transform of some probability distribution

with non-negative support.

Proposition 1 ([5] p.69). Let f: (0,00) — [0,00) be an HCM function.
(1) Va € R, V|b| <1, x — 2%f(2?) is HCM.
(2) If f(0") > 0 then f is CM.

(3) f has an analytic continuation on C\ R_.

Proposition 2 ([5] p.69). A function g : (0,00) — (0,00) is HCM if and only if x — g(z®) is
HCM for all a € (0,1).

Proposition 3 ([5] Theorem 5.4.1). A probability distribution p is a GGC if and only if its Laplace
transform Zu is an HCM function.

Proposition 4 ([5] Theorem 3.1.3). Let p be a probability distribution and let ¢ = L. Then p
is a GGC if and only if ¢ has an analytic continuation to C\ R_ such that ¢ does not vanish on
C\R_ and

Im(z) >0 = Im(¢'(2)/¢(2)) > 0.

The last proposition is known as the Pick function characterization of GGC distributions, and
we refer to chapter 6 in [15] for more on this topic. We last recall for completeness the following
well-known formula — see e.g. chapter II, Theorem 7.4 in [18]:

Proposition 5 (Laplace inversion formula). Let f : {z € C/Re(z) > 0} — C be an analytic
function such that:

(1) f is real on (0,00).

(2) Ve > 0, t+— f(c+it) is integrable on R.
Then there exists an integrable function g : [0,00) — R such that f = ZLg. Moreover Yec > 0,

o =2 = [ R

2



4 PIERRE BOSCH

Let us consider now the function
1

(5) foa(z) = 22 + 2 cos(ma)zt + 1

with € (0,1) and ¢ > 0, and set f, = fa1-o. We see from a change of variable in the formula (4)
and Proposition 1 (1) that our theorem amounts to show that f,; is HCM if and only if o < 1/2
andt<1— .

2.1. Proof of the only if part. Proposition 1 (2) shows the necessity of the condition o < 1/2
because otherwise the function f,; would be locally increasing at 0" (this simple remark is useful
in the study of the GGC property, and will be further discussed in Section 3.2). To show the
necessity of t <1 — « it suffices to invoke Proposition 1 (3). More precisely, let

(6) P,(2) = 2> + 2cos(ma)z + 1.

This polynomial has two zeroes e*1=%7 5o that the function P,(z!) vanishes on C \ R_ if and
only if + > 1 — a, the two zeroes being then e*(1-7™/t Hence, far has an analytic continuation
on C\R_onlyift<1-—a.

2.2. Proof of the if part. By Proposition 1 (1), it is enough to prove that f, is HCM. Observe

first that 1

a — g
as o — 0, and that the limit is clearly an HCM density. Let us now look at two particular cases.

2.2.1. The case a = 1/2. We have
1
hiale) = 5

which is the prototype of an HCM function. Another way to handle this case is to use the identity
d 1
4’71/27

Z1/2

which entails that Tf/2 4 Y1/2/71/2 is HCM.

2.2.2. The case a = 1/3. One has
1
fiz(z) = 2B 23 1

However, we do not know how to prove the HCM property of this function neither directly, nor by
showing that fi/3 is the pointwise limit of functions of the type (1). On the other hand, it is clear
from the above considerations that this function is HCM as soon as /Z;,3 has an HCM density.
Using a change of variable and formula (2.8.31) in [20], this latter density is given by

2 2
‘K _c
g2 /3 (3\/330) ’

K,(z) = /0 cosh(ay)e™2shW) gy, a €eR,

is a modified Bessel function. On the other hand, the product formula (79) p. 98 in [9] tells that
for all « € (—1/2,1/2), x,y > 0, one has

where

K, (2)Ky(y) = 2 cos(ma) / Koo (24/y sinh(t)) e~ @+y) cosh® gy
0
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Hence, for all u,v > 0,

Ko (uv)Ky(u/v) = 2 cos(ma) /Oo Koo (2usinh(t)) e™"weosh® gy
0

CMinw=v+1/v

and since the CM class is closed under mixing — see chapter 1 in [15] — all in all this shows that
K,(uv)K,(u/v) is CM in the variable v 4+ 1/v, which by Proposition 1 (1) entails the required

HCM property for \/Z1 3.
Remark 1. (a) Recall that the factorization (3) reads
I

\/T/g 3/ 371/372/3°

More generally, the independent product /7,75 has density

4‘,L,t+sfl
L(#)I'(s)
for all s,¢ > 0. Hence, the above product formula for the modified Bessel function shows that ,/7;7s
is HCM (hence ID) whenever |t—s| < 1/2. In particular, the square root of the independent product

of two unit exponential random variable is infinitely divisible, a fact which seems unnoticed in the
literature. It is hence natural to raise the

K, 4(22)

Conjecture. For all s,t > 0, the independent product \/¥¢ys is HCM.

Recall that |/7; is not ID because of the superexponential tails of its distribution function - see
Theorem 26.1 in [14], and hence not HCM.

(b) The above considerations show that our conjecture stated at the end of the introduction is
true at least for @ = 1/2 and o = 1/3. By (3), its validity for a = 1/n with n > 4 amounts to the
fact that

(Yign X+ X Ynenym) 7Y
has an HCM density. More generally, we believe that the latter should be true for all independent
products of the type (v, X -+ x 7,,)"/™ with ¢1,...,t, > 0. The computations connected to this

latter problem seem however quite challenging.

(c) The above remark (a) shows that the independent product of two half-Cauchy random

variables
v/ Y1/271/2
T x Ty 4 YIRRE
v/ Y1/271/2

is HCM. This fact is less trivial than the HCM property for T12/2-

2.2.3. Let us now outline the proof of the if part. We will first show that the function f, is CM.
Since f,(0) = 1, the function f, is then the Laplace transform of some probability distribution

Lo We then show that the latter is a GGC by applying the Pick criterion of Proposition 4 on f,.
This will show that f, is HCM by Proposition 3.

Proposition 6. The function f, is CM for all o < 1/2.
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Proof. The cases @« = 0 and a = 1/2 are clear from the above, and we suppose henceforth a €
(0,1/2). Since the pointwise limit of CM functions remains CM — see e.g. chapter 1 in [15], it is

enough to show that
1

fo—ae(®) = x2(—a=¢) 4+ 2 cos(ma)xl—o—c + 1
is CM for all € sufficiently small. Fix ¢ > 0 small enough and set f = f, 1_4—e for simplicity. For
all ¢, X > 0 we integrate the analytic function e** f(z) along the following contour €.

A
C 4 B =c+1iT

avle
Q

I A=c—1iT

FIGURE 1. The contour ¢
On the one hand, |f(z)] < |2|720727%) as |z| — oo and f(z) — 1 as z — 0. We deduce that
M f(2)dz — 0.

/[BC}u[CD}uE?Gu[HI]uuA]
On the other hand

1 A 1 [ 1
2 2 f()d _>_/ I : —Azq
2 /[DE}U[GH]G f(z) Z xJo m |:Pa (x1a€62(1a€)7r):| € &z
and 1
—/ N f(2)dz —s L)
2im J|AB)

where #~1 denotes the inverse Laplace transform — see Proposition 5. By Cauchy’s theorem, this
finally entails

L) = —%/OOO Im{ ! } e dy

P, (xl—a—aei(l—a—a)n)
where P, is defined by (6). To prove that f is CM it suffices to show that .Z~! f is a non negative
function, which is equivalent to

1 foc 1
VA >0, —/ Im{ }e’\xdazgo.
0

T P, (:L,l—a—eei(l—a—a)n)

Observe that

1 _ 2Im(2)(cos(ra) + Re(z))
(7 - REE
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so that the sign of Im [1/Pa (xl_a_aei(l_a_e)”)] is negative on (0, zg) and positive on (xq,c0) for
some xg > 0. The following lemma is elementary and its proof is left to the reader.

Lemma. Let h: (0,00) — R an integrable function and suppose there exists xy > 0 such that h is
negative on (0, x¢) and positive on (zg,00). Then

/ h(z)dzr <0 = WA >0, / h(z)e > dz < 0.
0 0
Thus, by the lemma, it remains to show that

oo 1
/0 Im {Pa (‘Tlasei(lae)w)} dx < 0.

Reasoning on the contour exactly as above, we have

0 1 1
I - dr = ——/ dz — 3
/0 o {Pa (561_0‘_56’(1_0‘_5)”)} v 2 Re(z)ch(z) z c—400 0

Since the left part does not depend on ¢ > 0, this shows that it must equal 0, which finishes the
proof of Proposition 6.

0

Remark 2. (a) By a well-known criterion — see again chapter 1 in [15], the function f,; is CM for
all « < 1/2,t € [0,1 — ). When ¢ < 1/2, this property follows also from the immediate fact that
fa,t is the reciprocal of a Bernstein function, hence the Laplace transform of the potential measure
of some subordinator — see chapter 1 in [15] for details and terminology. On the other hand, the
function z + 2207 4+ 2 cos(ra)z!~® + 1 is not Bernstein for a < 1/2, so that the CM property
of f, cannot follow from this argument.

(b) One could ask if f, is also a Stieltjes transform viz. the double Laplace transform of a
positive measure, when o < 1/2. The answer is however negative. Indeed, the Stieltjes inversion
formula — see chapter VIII Theorem 7.a in [18] — would entail

m(dx) = 1 lim Im [f,(—x + ig)] dz.

T e—0*

and we can check that the right-hand side is not non-negative. Another way to see this is to use
again the fact that 1/f, is not a Bernstein function, hence not a complete Bernstein function — see
chapter 6 in [15].

(c¢) The Kanter factorization — see Corollary 4.1 in [12] — reads
Z-o/0-e) L [y,
where L ~ Exp(1) and Y, is some independent random variable. This entails that
V0= L L x Y, x Z;%/07)
has a density which is CM, in other words that the function

ZE*Q

220=9) 4 2 cos(ma)xl— + 1

X —

is CM. However, when o < 1/2 this fact is weaker than Proposition 6, which we do need in its full
extent in order to apply the Pick criterion on Laplace transform of probability measures.



8 PIERRE BOSCH

We can now finish the proof of the if part of the theorem. Fix o € (0,1/2). By Proposition 2,
we need to show that f(z) = fa1-a—c(x) is HCM for € > 0 small enough. Fixing ¢ > 0, we saw
during the proof of Proposition 6 that f has an analytic continuation which does not vanish on
C\ R_. By Proposition 4 and Proposition 6, we hence need to check that

Im(z) >0 = Im(f'(2)/f(2)) > 0.

The function h = Im(f’/f) is defined on {z € C/Im(z) > 0} and is an harmonic function as
the imaginary part of the analytic function f’/f. Besides, h can be extended continuously to
H = {2z € C/Im(z) > 0} and vanishes on (0,00). Last, it is clear that h(z) — 0 as |z| = o0
uniformly on H. Hence, setting

m = inf h(z),

zeH

we see that m € (—o0,0]. We will now prove that m = 0, which will finish the proof. On Figure
2 we give two plots of the function h along the lines {Im(z) = 1} and {Im(z) = 0.1} for a = 1/5
and € = 1/10.

-—-a=1/5, e=1/10, Im(z) =1

— a=1/5 ¢=1/10, Im(z) =0.1

FIGURE 2. Plot of h along lines Im(z) = ¢

It is useless to check that h(z) > 0 for all z such that Im(z) > 0. Applying the minimum

principle to the harmonic function h : HH — R, the latter property follows as soon as h(—xz) > 0
for all x > 0. First, we compute, for all z € H,

l—a—e
h(z) = —2(1 —a—¢)Im (Z—(OH-E) z + cos(mav) ) .

22(-a=¢) 4 9 cos(ma)zl—o¢ + 1
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Hence, setting = —p"/(1=2=9)¢e'™ for some p > 0 we find
h(—z)=—-A-Im [e—i(OH-E)ﬂ' <pei(1—a—6)7r + COS(WQ)) <p26—i2(1—a—6)7r +9 COS(WO[)pG_i(l_a_E)W n 1)}

= —Acos(ma) sin ((« ) |—p? M_
= —Acos(ra) sin(a+ <)) | + 2“2 ST,y

~ cos((a +5)7T)>2 1 (cos((a +5)7T)>2

cos(ma) cos(ma)

= Acos(ma) sin ((a + €)7) (p

>0
with
2(1 —a— 8>p—(oz-i—5)/(1—oz—5)
= >
|p26i2(1—o¢—5)7r +92 Cos(ﬂ-a)pei(l—a—e)ﬂ + ]_|2 -
This completes the proof.

Remark 3. (a) Writing

Jai(uv) fa(u/v) = 1

u4t + 02u2t + 1 + c(ut + u3t)wt + u2tw2t

with w, = v®* 4+ v~ for all @ > 0 and using the fact that w +— w, is a Berstein function when
a € [0,1] — see page 183 in [4], we see that the right-hand side is CM in w for all o, ¢t < 1/2. But
again, this argument does not work for t =1 — a.

(b) The random variable defined as the independent product
M, £ Z, x LV

was introduced in [13] under the denomination Mittag-Leffler random variable. In [1] Corollary 3
and [11] Corollary 6 it is proved that M, is HCM if and only if o < 1/2. In [11] Corollary 6 it is
also shown that M, is not hyperbolically monotone if a > 1/2. As for our Theorem, it is natural
to conjecture that M? is HCM if and only if « < 1/2 and |B] > a/(1 — ).

(¢) Our result entails that the function z — log(z* + 2 cos(wa)z’ + 1) is a Thorin-Bernstein
in the sense of chapter 8 in [15] if and only if @ € [0,1/2] and t € [0,1 — ). In other words, the
function

2% + 2 cos(ra)zt + 1
2221 + cos(ma)xt—1

is complete Bernstein function if and only if @ € [0,1/2] and ¢t € [0,1 — a].

3. FURTHER REMARKS

3.1. Complete monotonicity of f,;. Set a < 1/2. We know by Proposition 6 that the function
fa is CM for all ¢t < 1 — . Besides, this last constant 1 — « is optimal for the HCM property
of fu+ by our main result. Last, it is clear - see again chapter 1 in [15] - that there exists some
to > 1—asuch that f,; is CM if and only if ¢ < ¢, and it is a natural question whether ¢, =1 —«
or not. The next proposition entails that £, < 1.

Proposition 7. The function f,1 is not CM for any o € (0,1).
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Proof. Computing the residues of the function z — €**f,, 1 (2) around the rectangle ABCT of Figure

1 entails that
1 o SIn(AD)

Az
- N dy —
20T /Re(z):c ¢ f a <z) . ¢ b

with a = cos(ra) and b = sin(ra). Therefore, (2im)" [go()=. €°9(2)dz does not have a non-
negative sign for all A > 0. U

The author believes that the critical index t, should belong to the open interval (1 — «, 1), but
he is currently unable to prove that, neither to conjecture an explicit formula for ¢,. Observe that
Proposition 6 shows that 71/~ is a gamma mixture with shape parameter 1 — . In other words
we have the independent factorization

T Ay,

where Y, is some positive random variable. More generally, it is easy to see that f, is CM if and
only if T'/* is a gamma mixture with shape parameter ¢, which means that the function

F(1-2)T(1+2)I()
F(1—2)D(1+2)T(t+s)
is the Mellin transform of some probability distribution. However, it is not easy to prove directly
this latter property.

S >

3.2. GGC property for T?. From the considerations on pp. 49-51 in [5], we observe that
TP is a GGC = fa1/8is CM

for all B > 0. In particular, the drifted half-Cauchy T, is not a GGC because f,; is not CM,
which was already mentioned above. This also entails that 77 is not a GGC for any value of 3
when o € (1/2,1), since then f, /5 is locally increasing in a neighbourhood of 0. However, when
a < 1/2 it does not seem easy to characterize the GGC property for T7. We believe that there
exists some constant 3, = 1/t, such that for all 3 > 0 the random variable T is GGC if and only
if B > B,. In general, the following conjecture from Bondesson [2], which would at least entail the

existence of [, :
X isa GGC = X%is a GGC Vo > 1,

is still open.

Acknowledgements. The author is grateful to his PhD adviser Thomas Simon for his help during
the preparation of this paper. He is also grateful to Lennart Bondesson for the interest he took in
this work and some useful comments.
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