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Abstract

We consider natural and general exponential families (Qm)m∈M on R
d parametrized by

the means. We study the submodels (Qθm1+(1−θ)m2
)θ∈[0,1] parametrized by a segment in the

means domain, mainly from the point of view of the Fisher information. Such a parametriza-
tion allows for a parsimonious model and is particularly useful in practical situations when
hesitating between two parameters m1 and m2. The most interesting examples are obtained
when R

d is a linear space of matrices, in particular for Gaussian and Wishart models.

1 Introduction

Fisher information is a key concept in mathematical statistics. Its importance stems from the
Cramér-Rao inequality which says that the variance of any unbiased estimator T (X1, . . .Xn) of
an unknown parameter θ, is bounded by the inverse of the Fisher information: Varθ(T )− (I(θ))−1

is semi-positive definite. Fisher information is therefore mainly used as a measure of how well a
parameter can be a estimated. This justifies the use of Fisher information in experimental design
for predicting the maximum precision an experiment can provide on model parameters. This
also justifies the important role Fisher information plays in estimation theory where it provides
bounds for confidence regions and also in Bayesian analysis where it provides a basis for nonin-
formative priors. Fisher information can be used to investigate the trade-off between parsimony
of parameters and precision of the estimation of the parameters [Andersson and Handel, 2006].

Besides its importance in statistical theory, Fisher information has different interpretations
that lead to some practical applications. For example, the interpretation of Fisher information
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as a measure of the state of disorder of a dynamic system leads to the use of Fisher information
in stochastic optimal control as a tuning tool to stabilise the performance of a dynamic system
[Ramirez et al., 2010]. Viewing Fisher information as a measure of information, leads to the state-
ment of a “minimum information principle” akin to the well-known maximum entropy principle for
determining the “maximally unpresumptive distribution” satisfying some predefined constraints
[Bercher and Vignat, 2009]. Gupta and Kundu [2006] describe the use of Fisher information in
model selection as a tool to discriminate between two models with otherwise very similar fit to
some data. The use of Fisher information however goes far beyond statistics; Frieden [2004] shows
that Fisher information is in fact a key concept in the unification of science in general, as it allows
a systematic approach to deriving Lagrangians.

The objective of this work is the study of the Fisher information for exponential models
(Pm)m∈M parametrized by a segment of means [m1, m2]. Exponential families of distributions have
been extensively studied [Brown, 1986; Barndorff-Nielsen, 1978; Letac, 1992; Letac and Casalis,
2000]. A parametrization of the family by a segment instead of the whole means domain allows
to obtain a parsimonious model when the mean domain is high-dimensional. The parametrization
of the mean parameter by a segment is particularly useful in practical situations when hesitating
between two equally convenient mean values m1 and m2. Such parametrization will also serve in
sequential data collection, when an updated estimate of a parameter largely differs from the pre-
vious estimate. An important practical example is a Gaussian model N(u, θC+D) in R

d with the
mean vector u known and the covariance matrix in a segment IC +D, where θ ∈ I = [a, b] ⊂ R.

From the Fisher information point of view, exponential families constitute an interesting and
important class of models. Their Fisher information coincides with the second derivative of the
cumulant generating function of the measure generating the family and they are the only models
for which the Cramér-Rao bound can always be attained [Brown, 1986; Letac, 1992].

The paper is organised as follows. In Section 2, basic definitions and results on Fisher informa-
tion and exponential families are recalled and extended to matrix-parametrized models. Section 3
contains new results on the Fisher information of exponential families parametrized by the domain
of the means and the sub-families parametrized by a segment of means [m1, m2]. In Section 4,
these results are applied to Gaussian and Wishart families of distributions. When m1 and m2 are
colinear, we construct efficient estimators for the segment parameter θ.

2 Preliminaries

In most expositions of the theory of exponential families and of the concept of Fisher information,
the parameter is considered to be a vector whereas cases abound in multivariate analysis where
the canonical parameter is a matrix. In this preliminary section we adapt the presentation of the
usual objects of exponential families (mean function, variance function and Fisher information)
to the case where the canonical parameter is a matrix.

We denote by R
k×m the space of real matrices with k rows and m columns and by A⊗B the

Kronecker product of two matrices. We use the usual notations AT for the transpose matrix and
〈A,B〉 = Tr(ATB) for the scalar product of two matrices. The operator Vec converts a k × m
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matrix A into a vector Vec(A) ∈ R
km by stacking the columns one underneath the other. The

Vec operator is commonly used in applications of the matrix differential calculus in statistics, cf.
[Magnus and Neudecker, 2007; Muirhead, 2005].

The following properties of the Kronecker product are used in this work [Magnus and Neudecker,
2007, p.32,35]. For non-singular squared matrices A, B we have (A⊗ B)−1 = A−1 ⊗B−1. For all
matrices A, B and C such that the product ABC is well defined

Vec(AB C) = (CT ⊗A) Vec(B). (1)

In this paper we use the following convention of the matrix differential calculus: if a function
f : Rk×p → R

n×m is differentiable then its derivative is a matrix f ′(x) ∈ R
nm×kp such that

Vec(df(x)(u)) = f ′(x) Vec(u), u ∈ R
k×p. (2)

The only exception we will make is the derivative of a function K : Rk×m → R, for which the
following convention is used: the derivative of K is not a row vector but the matrix K ′(x) ∈ R

k×m,
related to the differential of K by dK(x)(u) = 〈K ′(x), u〉 = Tr(K ′(x)Tu), for all u ∈ R

k×m. This
convention is needed to give sense to formula (5) for the mean of an exponential family.

In this section we consider probability models (Ps(dω))s∈S , S ⊂ R
k×m, on a measurable

space (Ω,A) such that there exists a σ-finite positive measure ν on (Ω,A) and a real function
(ω, s) 7→ lω(s) such that

Ps(dω) = elω(s)ν(dω)

and
∫

elω(s)ν(dω) = 1. These models encompass but are not reduced to exponential families of
distributions. We suppose that S is open and that the function s→ lω(s) is twice differentiable. We
impose on lω(s) classical regularity conditions, allowing double differentiation under the integral
sign in

∫

elω(s)ν(dω).
The score function l′ω(s) is the derivative with respect to s of the log-likelihood function lω(s).

It is a k×m matrix with zero mean. The extension of the definition of Fisher information matrix
from vector-parametrized models to matrix-parametrized models is straightforward.

Definition 2.1. The Fisher information matrix of the model (Ps(dω))s∈S, S ⊂ R
k×m on a mea-

surable space (Ω,A) is the km× km symmetric matrix

I(s) = Cov(l′ω(s)) =

∫

Ω

Vec(l′ω(s)) Vec(l
′
ω(s))

TPs(dω).

Similarly as for vector parametrized models, the Fisher information can be written as the
negative of the mean of the second derivative of the log-likelihood function.

Proposition 2.1. The Fisher information of the model (Ps(dω))s∈S, S ⊂ R
k×m equals

I(s) = −

∫

Ω

l′′ω(s)Ps(dω).
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Proof. As a probability distribution, Ps(dω) satifies

∫

Ω

Ps(dω) = 1 =⇒
d

ds

∫

Ω

Ps(dω) =

∫

Ω

d

ds
Ps(dω) =

∫

Ω

elω(s)l′ω(s)ν(dω) = 0Rk×m

=⇒
d

ds

∫

Ω

elω(s)l′ω(s)ν(dω) =

∫

Ω

d

ds

(

elω(s)l′ω(s)
)

ν(dω) = 0Rkm×km

=⇒

∫

Ω

(

elω(s) Vec(l′ω(s)) Vec(l
′
ω(s))

T + elω(s)l′′ω(s)
)

ν(dω) = 0Rkm×km

and the Proposition follows.

Consider a σ-finite measure space (Ω,A, ν), a finite-dimensional normed vector space E and a
measurable map T : Ω → E. Let µ be the image of the measure ν by T and let Sµ be the interior
of the domain of the moment generating function of µ, i.e. the set {s ∈ E :

∫

E
e〈s,x〉dµ(x) < ∞}.

We suppose that µ is a σ-finite measure on E and that Sµ 6= ∅. The cumulant generating function
of µ is defined as the logarithm of the moment generating function of µ:

kµ(s) = log

∫

E

e〈s,x〉µ(dx) = log

∫

Ω

e〈s,T (ω)〉ν(dω), s ∈ Sµ.

Definition 2.2. The general exponential family generated by the measure ν and the map T is
the family of probability distributions

{P (s, T, ν)(dω) = e〈s , T (ω)〉−kµ(s)ν(dω) : s ∈ Sµ}. (3)

The natural exponential family associated with the above general exponential family is the family
of probability distributions defined on the space E by

P (s, µ)(dx) = e〈s , x〉−kµ(s)µ(dx), s ∈ Sµ. (4)

Natural exponential families may be viewed as a special case of general exponential families
with Ω = E, T (ω) = ω and ν = µ. The following result is well-known for vector-valued and
matrix-valued exponential families [Letac and Casalis, 2000].

Proposition 2.2. 1. The set Sµ is convex. If µ is not concentrated on some affine hyperplane
of E, then kµ is a strictly convex function on Sµ.

2. The map s 7→ k′µ(s) is an analytic diffeomorphism from Sµ to its image M = k′µ(Sµ) ⊂ R
k×m

called the domain of the means of the family. In particular M is open.

The name ”domain of the means” for the set M is justified by formula (5) of the following
Proposition, well-known in the vector case.

Proposition 2.3. The mean and covariance of a random matrix X following the distribution
P (s, µ) belonging to the natural exponential family generated by a measure µ are given by

m(s) = Es(X) = k′µ(s) (5)

v(s) = Covs(Vec(X)) = k′′µ(s). (6)
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Proof. Formula (5) follows from

k′µ(s) =

∫

Sµ
xe〈s,x〉µ(dx)

∫

Sµ
e〈s,x〉µ(dx)

=

∫

Sµ

xe〈s,x〉−kµ(s)µ(dx) = Es(X).

Next, using (5), we obtain

k′′µ(s) =

∫

Sµ

d

ds

(

xe〈s,x〉−kµ(s)
)

µ(dx) =

∫

Sµ

Vec(x) Vec(x− k′µ(s))
T e〈s,x〉−kµ(s)µ(dx)

=

∫

Sµ

Vec(x−m(s)) Vec(x−m(s))T e〈s,x〉−kµ(s)µ(dx) = Covs(Vec(X)).

Remark 2.1. If W is a random matrix with a law P (s, T, ν) from the general exponential family,
then T (W ) = X in law and m(s) and v(s) are the mean and the covariance of T (W ).

Now we compute the Fisher information of the exponential families parametrized by the canon-
ical parameter s ∈ Sµ.

Proposition 2.4. The Fisher information for the parameter s of exponential families (3) and (4)
is given by

I(s) = k′′µ(s) = v(s). (7)

Proof. The log-likelihood is equal to lω(s) = 〈s , T (ω)〉−kµ(s), so l
′′
ω(s) = −k′′µ(s) does not depend

on ω. Formula (7) follows by Proposition 2.1.

Definition 2.3. Denote by ψ :M → Sµ, m 7→ ψ(m) = k′µ
−1(m) the inverse of the diffeomorphism

k′µ. The general exponential family, parametrized by the domain of the means M is given by the
family of distributions

Q(m, T, ν)(dω) = e〈ψ(m) , T (ω)〉−kµ(ψ(m))ν(dω), m ∈M. (8)

The natural exponential family, parametrized by the domain of the means M is the family of
probability distributions defined on the space E by

Q(m,µ)(dx) = e〈ψ(m) , x〉−kµ(ψ(m))µ(dx), m ∈M. (9)

The mean of the families (8) and (9) is equal to m. We denote the covariance of the families
(8) and (9) by V (m) and we have by (6)

V (m) = v(ψ(m)) = k′′(ψ(m)). (10)

The function V : m ∈M → V (m) is called the variance function of the exponential family.

We will compute the Fisher information of the exponential families (8) and (9) parametrized
by the mean m ∈ M in the next section. We will need the following formula giving the Fisher
information for a reparametrized model.
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Theorem 2.1. Consider a model (Ps(dω))s∈S and a reparametrization f : S̃ ⊂ R
k×p → S ⊂ R

n×m,
where f is a differentiable map. Let I(s) be the information matrix of (Ps(dω))s∈S. The Fisher
information matrix of the model (Qt(dω))t∈S̃ =

(

Pf(t)(dω)
)

t∈S̃
is

Ĩ(t) = f ′(t)T I(f(t))f ′(t). (11)

Proof. Let us denote hω(t) = lω(f(t)). We have Qt(dω) = ehω(t)ν(dω). For all t ∈ S̃ and u ∈ R
k×p,

dhω(t)(u) = dlω(f(t))(df(t)(u)) = 〈l′ω(f(t)), df(t)(u)〉 =

= Vec (l′ω(f(t)))
T
Vec (df(t)(u)) = Vec (l′ω(f(t)))

T
f ′(t) Vec (u) .

Thus, using the convention introduced after (2), Vec (h′ω(t))
T = Vec (l′ω(f(t)))

T f ′(t) and

Vec (h′ω(t)) Vec (h
′
ω(t))

T
= f ′(t)T Vec (l′ω(f(t)))Vec (l

′
ω(f(t)))

T
f ′(t).

Therefore, by Definition 2.1 we get Ĩ(t) = f ′(t)T I(f(t))f ′(t).

3 Fisher information of exponential families parametrized

by the mean

In this section we first compute the Fisher information of the exponential families (8) and (9)
parametrized by the mean. Next we consider the same problem for a submodel parametrized by
a segment of means. In order to avoid confusion, when the parameter of an exponential family is
the mean m we will denote the Fisher information by J(m).

Theorem 3.1. The Fisher information of the exponential families (8) and (9) parametrized by
the mean m ∈M equals

J(m) = V (m)−1 = ψ′(m), (12)

where V (m) is the variance function of the exponential family, given by (10).

Proof. We use Theorem 2.1 with f = ψ : M → Sµ. Since ψ(m) = k′µ
−1(m), we have ψ′(m) =

[k′′µ(ψ(m))]−1. Thus J(m) = [k′′µ(ψ(m))]−1k′′µ(ψ(m))[k′′µ(ψ(m))]−1 = [k′′µ(ψ(m))]−1 = V (m)−1.

Remark 3.1. Note a striking contrast in the formulas (7) and (12) for the Fisher information
of an exponential family parametrized either by the canonical parameter s ∈ Sµ or by the mean
m ∈M ; in the first case we have I(ψ(m)) = V (m), in the second J(m) = V (m)−1.

3.1 Fisher information of exponential families parametrized by a

segment of means

Consider a general exponential family {Q(m, T, ν)(dω) : m ∈ M} parametrized by the domain
of the means M . Let A 6= 0, B ∈ R

k×m be two matrices. Define Θ = {θ ∈ R : θA+B ∈M}. The
set Θ ⊂ R is open because M is open. Suppose that Θ 6= ∅. The parametrization by a segment of
means I ⊂ Θ consists in considering the submodel

{Q(θA +B, T, ν) : θ ∈ I}. (13)
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In statistical practice, the following situation will be concerned by such models. Let m1 ∈ M
and m2 ∈ M be two different estimations of the true mean m of an exponential family (8) or (9) .
When one hesitates between them as estimators, and when M is convex, it is natural to consider
the model

{Q(θm1 + (1− θ)m2, T, ν) : θ ∈ [0, 1]}.

Writing θm1 + (1− θ)m2 = θ(m1 −m2) +m2 we see that this is a special case of the model (13).
The following theorem gives the Fisher information of a general exponential family parametrized

by a segment of means. By analogy to the notation J(m), we denote this information by J(θ).

Theorem 3.2. The Fisher information of the model {Q(θA +B, T, ν) : θ ∈ I} equals

J(θ) = Vec(A)T V (θA +B)−1 Vec(A). (14)

Remark 3.2. This and the following results are also true for submodels {Q(θA + B, µ) : θ ∈ I}
of natural exponential families.

Proof. By Theorem 3.1, the Fisher information of the model {Q(m, T, ν) : m ∈ M} is J(m) =
V −1(m). We apply Theorem 2.1 to the reparametrization f : I→M, f(θ) = θA + B. We have
f ′(θ) = Vec(A). Then formula (11) gives (14).

The following Lemma is useful for the derivation of an alternative formula for the Fisher infor-
mation of an exponential family parametrized by a segment of means and verifying an additional
condition (15). We will see in Section 4 that this condition holds for Gaussian and Wishart models.

Lemma 3.1. Assume that for all m ∈M ,

〈m, ψ(m)〉 = C, (15)

for some constant C ∈ R. Then, for all u ∈M ,

〈m, dψ(m)(u)〉 = −〈u , ψ(m)〉. (16)

Proof. By (15) the differential of the function g :M → R, m 7→ 〈m, ψ(m)〉 is zero. Therefore, for
all m, u ∈ M

dg(m)(u) = 〈m, dψ(m)(u)〉+ 〈u , ψ(m)〉 = 0

and (16) follows.

Corollary 3.1. Let {Q(θA + B, T, ν)(dω) : θ ∈ I} be an exponential model parametrized by a
segment of means. If the condition (15) holds then the Fisher information of the model equals

J(θ) = −
d2

dθ2
[kµ(ψ(θA +B))] . (17)

7



Proof. Let h(θ) = kµ(ψ(θA+B)) and f(θ) = θA +B. We want to compute h′′(θ). If θ, u ∈ R,

dh(θ)(u) = dkµ(ψ(f(θ)))
(

dψ(f(θ))(df(θ)(u))
)

= 〈k′µ(ψ(f(θ))) , dψ(f(θ))(df(θ)(u))〉

= 〈f(θ) , dψ(f(θ))(df(θ)(u))〉

= −〈df(θ)(u) , ψ(f(θ))〉

= −u〈A , ψ(f(θ))〉,

where we used successively: the convention on k′µ introduced after (2), the equality k′µ◦ψ(m) = m,
Lemma 3.1 and the formula df(θ)(u) = uA. Thus we have h′(θ) = −〈A , ψ(f(θ))〉. Now, starting
as in the computation of h′(θ) and using (2), we get

h′′(θ) = −〈A , dψ(f(θ))(A)〉 = −Vec(A)T Vec(dψ(f(θ))(A)) = −Vec(A)Tψ′(θA +B) Vec(A).

We conclude using (12) and Theorem 3.2.

4 Applications

In this section, we apply the results from preceding sections to the study of some important
exponential families parametrized by a segment of means.

We denote by Sd the vector space of d × d symmetric matrices and by S+
d the open cone of

positive definite matrices.

4.1 Exponential families of Gaussian distributions

Let us recall the construction of the multivariate Gaussian model {N(u,Σ); Σ ∈ S+
d } as a general

exponential family. We consider Ω = R
d equiped with a normalised Lebesgue measure ν(dω) =

dω/(2π)d/2, the space E = Sd and the map

T : Rd → Sd, T (ω) = −
1

2
(ω − u)(ω − u)T .

The image measure µ on E is concentrated on the opposite of the cone of semi-positive definite
matrices of rank one. For s ∈ Sd, the moment generating function of µ equals

∫

Ω

e〈s,T (ω)〉ν(dω) =
1

(2π)d/2

∫

Rd

e−
1
2
Tr(s(ω−u)(ω−u)T )dω = (det s)−1/2

when s ∈ S+
d and it is infinite otherwise. Thus Sµ = S+

d and the cumulant function is

kµ(s) = −
1

2
log det(s), s ∈ Sµ = S+

d .

The general exponential family is therefore

P (s, T, ν)(dω) =
1

(2π)d/2
e〈s ,−

1
2
(ω−u)(ω−u)T 〉+ 1

2
log det(s)dω =

(det s)1/2

(2π)d/2
e−

1
2
(ω−u)T s(ω−u)dω, (18)
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which is the family of Gaussian distributionsN(u, s−1) on R
d with a fixed mean u ∈ R

d, parametrized
by s = Σ−1, the inverse of the covariance matrix Σ supposed to be invertible.

The derivative of the function X ∈ R
d×d→ detX is the cofactor matrix X♯ which equals

(detX)(X−1)T when X is inversible. It follows that

m(s) = k′µ(s) = −
1

2
s−1, s ∈ S+

d .

This can be also deduced from Remark 2.1; if W is a random vector with law N(u, s−1), then

m(s) = k′µ(s) = ET (W ) = E(−
1

2
(W − u)(W − u)T ) = −

1

2
CovW ∈ −S+

d .

The means domain is M = −S+
d and the inverse mean map is ψ(m) = −1

2
m−1. The Gaussian

general exponential family parametrized by m in the means domain M = −S+
d is therefore the

family
Q(m, T, ν) = N(u,−2m). (19)

Up to a trivial affine change of parameter Σ = −2m, this parametrization by the covariance
parameter is more natural than the parametrization of the family (N(u, s−1))s∈S+

d
by the canonical

parameter s.
In order to compute the variance function, recall that XX−1 = Id implies that dX−1 =

−X−1dX X−1 and (X−1)′ = −X−1 ⊗ X−1. Thus k′′µ(s) = 1
2
s−1 ⊗ s−1 and formula (10) implies

that
V (m) = 2m⊗m. (20)

By Proposition 2.4, the Fisher information of the family (N(u, s−1))s∈S+
d
is I(s) = 1

2
s−1 ⊗ s−1.

By Theorem 3.1 and formula (20), the Fisher information of the model (N(u,−2m))m∈−S+
d

equals J(m) = 1
2
m−1 ⊗m−1.

Corollary 4.1. The Fisher information matrix of the Gaussian model (N(u,Σ))Σ∈S+
d
is

J(Σ) =
1

2
Σ−1 ⊗ Σ−1.

Proof. Using Theorem 2.1 and a reparametrization Σ = −2m we obtain J̃(Σ) = 1
2
Σ−1 ⊗ Σ−1 =

J(Σ).

Let us now consider Gaussian models parametrized by a segment of covariances.

Corollary 4.2. Let C and D be two symmetric matrices and let I ⊂ R be a non-empty segment
such that I ⊂ Θ = {θ ∈ R : θC + D ∈ S+

d }. The Fisher information of the Gaussian model
{N(u, θC +D), θ ∈ I} is

J(θ) =
1

2
Tr
(

C(θC +D)−1C(θC +D)−1
)

.
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Proof. We use Corollary 4.1 and Theorem 2.1 with f(θ) = θC +D. It follows that

J(θ) = Vec(C)TJ(θC +D) Vec(C) =
1

2
Vec(C)T

(

(θC +D)−1 ⊗ (θC +D)−1
)

Vec(C).

Applying (1) we get

J(θ) =
1

2
Vec(C)T Vec

(

(θC +D)−1C(θC +D)−1
)

=
1

2
Tr
(

C(θC +D)−1C(θC +D)−1
)

.

On the other hand we have the following alternative formula for the information J(θ).

Corollary 4.3. The Fisher information of the Gaussian model {N(u, θC +D), θ ∈ I} is

J(θ) = −
1

2

d2

dθ2
(log det(θC +D)). (21)

Proof. Observe that the condition (15) holds for the Gaussian exponential families Q(m, t, ν):

〈m, ψ(m)〉 = −
1

2
Tr(mm−1) = −

d

2
.

The model N(u, θC + D) = N(u,−2m) = Q(m, T, ν) with m = θA + B ∈ M = −S+
d where

A = −C
2
and B = −D

2
. We apply Corollary 3.1 and the fact that

kµ(ψ(θA+B)) = −
1

2
log det(θC +D).

Formula (21) follows.

Now we characterize the information J(θ) in terms of the eigenvalues of the matrixD−1/2CD−1/2.

Theorem 4.1. Let C and D be two symmetric matrices and let I ⊂ R be a segment such that
IC +D ⊂ S+

d . Let a1, . . . , ad be the eigenvalues of the matrix D−1/2CD−1/2.
The Fisher information of the Gaussian model {N(u, θC +D), θ ∈ I} equals

J(θ) =
1

2

d
∑

j=1

(

aj
1 + ajθ

)2

. (22)

Proof. The idea of the proof is to use formula (21). Let P (λ) be the characteristic polynomial of
the matrix D−1/2CD−1/2. We have

P (λ) = det(D−1/2CD−1/2 − λIn) = det(D−1C − λIn) = (detD)−1 det(C − λD).

On the other hand P (λ) =
∏n

j=1(aj − λ). It follows that

det(θC +D) = detD × θdP (−1/θ) = detD

d
∏

j=1

(θaj + 1).
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The last formula allows to compute easily d2

dθ2
(log det(θC +D)). First we see that

d

dθ
(log det(θC +D)) =

d
dθ
det(θC +D)

det(θC +D)
=

d
∑

j=1

aj
θaj + 1

.

One more derivation and formula (21) lead to (22).

We finish by computing the Fisher information of two Gaussian models in R
d, parametrized

by an explicitely given segment of covariances. First, let A be a circulant matrix with the first
row e2 + ed = (0, 1, 0, . . . , 0, 1). Then for a segment I ⊂ R containing 0 and θ ∈ I

θA + Id =



















1 θ 0 . . . 0 θ
θ 1 θ 0 . . . 0
0 θ 1 θ 0 . . .

. . .
. . .

. . .

0 . . . 0 θ 1 θ
θ 0 . . . 0 θ 1



















∈ S+
d . (23)

Corollary 4.4. The Fisher information of the model (N(0, θA + Id))θ∈I is given by

J(θ) =
1

2

d−1
∑

j=0

(

2 cos(2πj
d
)

1 + 2θ cos(2πj
d
)

)2

. (24)

Proof. Let A be a circulant matrix with the first row (r0, r1, . . . , rd−1). It is well known (see e.g.
[Gray, 2006]) and easy to check that if ǫ is a d-th root of unity, ǫd = 1, then a =

∑d−1
l=0 rlǫ

l is an
eigenvalue of A with an eigenvector (1, ǫ, ǫ2, . . . , ǫd−1).

Therefore if ǫj = e
2πji
d , j = 0, . . . , d− 1 are the d distinct d-th roots of unity, then the matrix

A has d distinct eigenvalues aj =
∑d−1

l=0 rlǫ
l
j . In our particular case,

aj = e
2πji
d + e

2(d−1)πji

d = 2 cos

(

2πj

d

)

.

Formula (24) follows from Theorem 4.1.

Now, let us consider a tridiagonal matrix C such that

θC + Id =



















1 θ 0 0 0 . . .
θ 1 θ 0 0 . . .
0 θ 1 θ 0 . . .

. . .
. . .

. . .
. . .

0 . . . 0 θ 1 θ
0 . . . 0 0 θ 1



















. (25)

As in the preceding case, there exists a segment I ⊂ R such that θC + Id ∈ S+
d for θ ∈ I.
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Corollary 4.5. The Fisher information of the model (N(0, θC + Id))θ∈I is given by

J(θ) =
1

2

d
∑

j=1

(

2 cos
(

j
d+1

π
)

1 + 2θ cos
(

j
d+1

π
)

)2

. (26)

Proof. We will apply Theorem 4.1 with C and D = Id. Expanding ψd(λ) = det (C − λId) along
the first row, we get ψd(λ) = −λψd−1(λ)−M1,2. Expanding the minor M1,2 along its first column
gives M1,2 = ψd−2(λ) and

ψd(λ) = −λψd−1(λ)− ψd−2(λ), d ≥ 3.

We set ϕd(λ) = (−1)dψd(2λ) and we obtain

ϕd(λ) = 2λϕd−1(λ)− ϕd−2(λ), d ≥ 3

with initial conditions ϕ1(λ) = 2λ, ϕ2(λ) = 4λ2 − 1. Therefore ϕd is a Tchebyshev polynomial of

the second kind [Mason and Handscomb, 2003] and it satisfies ϕd(cosx) =
sin(d+1)x

sinx
, d ≥ 1.

We have, for all λ ∈ [−2, 2],

ψd(λ) = 0 ⇐⇒ ϕd

(

λ

2

)

= 0 =⇒
sin(d+ 1)x

sin x
= 0, x = arccos

λ

2
.

Therefore λj = 2 cos
(

j
d+1

π
)

, 1 ≤ j ≤ d, are d distinct eigenvalues of the matrix C.

4.2 Exponential families of Wishart distributions

Let E = Sd be the space of symmetric real matrices of order d. The Riesz measures µp on the

cone S+
d are unbounded positive measures such that their Laplace transform equals for t ∈ S+

d

Lµp(t) =

∫

S+
d

e−〈t,x〉dµp(x) = (det t)−p.

By the celebrated Gindikin theorem, such measures exist if and only if p belongs to the Gindikin

set Λd = {1
2
, . . . , d−1

2
} ∪

(

d−1
2
,∞
)

. They are supported by the cone S+
d if and only if p > d−1

2

and they are absolutely continuous in that case, with a density Γd(p)
−1(det x)p−

d+1
2 , x ∈ S+

d ,
Γd(p) = Γ(p)Γ(p − 1

2
) . . .Γ(p − d−1

2
). Otherwise, when p ∈ {1

2
, . . . , d−1

2
}, the measures µp are

singular and concentrated on semipositive symmetric matrices of rank 2p.

The family of Wishart distributions W (p; s) on S+
d is defined as the natural exponential family

generated by the Riesz measure µp. According to (4), it means that p ∈ Λd, s ∈ Sµp = −S+
d and

W (p; s)(dx) =
e〈s , x〉

Lµp(−s)
µp(dx) = e〈s , x〉(det(−s))pµp(dx) = e〈s , x〉−kµp(s)µp(dx),

with kµp(s) = −p log det(−s). It follows that LW (p; s)(t) = det(Id+(−s)−1t)−p and that µp(dx) =
eTrxW (p;−Id).
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Wishart distributions are multivariate analogs of the gamma distributions λpΓ(p)−1e−λxxp−1dx
on R

+( p > 0, λ > 0), considered with a canonical parameter s = −λ < 0. Similarly as in dimen-
sion 1, the Wishart distributions are often parametrized by a scale parameter σ = (−s)−1 ∈ S+

d

and then the notation γ(p; σ) = W (p; (−σ)−1) is used, cf. [Letac and Massam, 2008]. The study
of Wishart distributions is motivated by their importance as estimators of the covariance matrix
of a Gaussian model in R

d.

Let us apply our results on the Fisher information to a natural exponential family of Wishart
distributions {W (p; s) : s ∈ −S+

d }. The mean equals m(s) = k′µp(s) = p(−s)−1 ∈ M = S+
d and

the inverse mean map ψ : S+
d →−S+

d is ψ(m) = −pm−1.
Thus the Wishart family Q(m,µp) parametrized by the domain of means is, up to a trivial

reparametrization m→ 1
p
m, the family parametrized by its scale parameter:

Q(m,µp) =W (p;−pm−1) = γ(p;
1

p
m), m ∈ S+

d . (27)

As v(s) = k′′µp(s) = p(s−1 ⊗ s−1), it follows that the variance function is

V (m) =
1

p
(m⊗m). (28)

By Proposition 2.4, the Fisher information of the model {W (p; s) : s ∈ −S+
d } is I(s) =

ps−1 ⊗ s−1. By Theorem 3.1 the Fisher information of the model {Q(m,µp), m ∈M} is J(m) =
pm−1 ⊗m−1.

Consequently, using Theorem 2.1 and a reparametrization m→ 1
p
m = σ we see that the the

Fisher information matrix of the Wishart model {γ(p; σ) : σ ∈ S+
d } parametrized by a scale

parameter σ equals J(σ) = pσ−1 ⊗ σ−1.

Theorem 4.2. Let I = (a, b) ⊂ R and C,D ∈ Sd such that IC+D ⊂ S+
d . The Fisher information

J(θ) of the Wishart model {γ(p; θC +D) : θ ∈ I} verifies the formulas

J(θ) = pTr
(

C(θC +D)−1
)2

(29)

J(θ) = −p
d2

dθ2
(log det(θC +D))

J(θ) = p
d
∑

j=1

(

aj
1 + ajθ

)2

(30)

where a1, . . . , ad are the eigenvalues of the matrix D−1/2CD−1/2.

Proof. The proofs are similar to the proofs of the analogous results for exponential Gaussian
families in the previous subsection. The condition (15) holds true: 〈m, ψ(m)〉 = −pd, the model
{γ(p; θC + D) : θ ∈ I} is equal to the model {Q(θpC + pD, µp) : θ ∈ I} parametrized by the
means and we have kµ(ψ(θpC + pD)) = p log det(θC +D).

Corollary 4.6. Let σ1, σ2 ∈ S+
d and let I be the open interval containing θ such that σθ =

θσ1 + (1 − θ)σ2 ∈ S+
d . The Fisher information of the model {γ(p; σθ) : θ ∈ I} is equal to

J(θ) = pTr
(

(

(σ1 − σ2) σ
−1
t

)2
)

.

13



Proof. We write θσ1 + (1− θ)σ2 = θ(σ1 − σ2) + σ2 and we apply formula (29).

Using (30) we obtain the following corollary, analogous to Corollaries 4.4 and 4.5.

Corollary 4.7. 1. Consider the model {γ(p; θA+ Id) : θ ∈ I} with θA+ Id as in (23). Then its

Fisher information equals J(θ) = p
∑d−1

j=0

(

2 cos( 2πj
d

)

1+2θ cos( 2πj
d

)

)2

.

2. Consider the model {γ(p; θC+Id) : θ ∈ I} with θC+Id as in (25). Then its Fisher information

equals J(θ) = p
∑d

j=1

(

2 cos( j
d+1

π)
1+2θ cos( j

d+1
π)

)2

.

Remark 4.1. Let P (s, µ) be the natural exponential family corresponding to the Gaussian gen-
eral exponential family (18). If W has the law N(u, s−1) given by (18), then T (W ) has the law
P (s, µ). On the other hand it is well known that −T (W ) = 1

2
(W − u)(W − u)T has the Wishart

law γ(1
2
; 2s−1). This explains why the formulas for the Fisher information are the same for the

Gaussian family and for the Wishart family with p = 1
2
.

Exponential families of noncentral Wishart distributions. Let us finish the section on the
Wishart models by considering the non-central case. The main reference is [Letac and Massam,
2008].

Let p ∈ Λd, a ∈ S+
d and σ ∈ S+

d . The noncentral Wishart distribution γ(p, a; σ) is defined by
its Laplace transform

L γ(p, a; σ)(t) =

∫

S+
d

e−Tr(tx)γ(p, a; σ)(dx) = det(Id + σt)−pe−Tr(t(Id+σ t)−1σaσ),

for all t ∈ S+
d . When p ≥ d−1

2
, then non-central Wishart laws exist for all a ∈ S+

d ; when
p ∈ {1

2
, . . . , d−2

2
} then amust be of rank at most 2p [Letac and Massam, 2011]. When p = n

2
, n ∈ N,

the non-central Wishart distributions are constructed in the following way from n independent
d-dimensional Gaussian vectors Y1, . . . , Yn. Let Yj ∼ N(mj , Σ) and let M be the d × n matrix
[m1, . . . , mn]. Then, the d × d matrix W = Y1Y

T
1 + . . . + YnY

T
n has the noncentral Wishart

distribution γ(p, a; σ) with p = n
2
, σ = 2Σ and σaσ = MMT . Such Wishart distributions are

studied in [Muirhead, 2005].
The non-central Wishart distributions may be constructed as a natural exponential family

{W (p, a; s) : s ∈ −S+
d } generated by the positive measure µ = µa,p(dx) = eTr(a+x)γ(p, a; Id)(dx).

Its moment generating function is given for s ∈ −S+
d by

∫

S+
d

eTr(sx)µa,p(dx) = det(−s)−peTr(a(−s)
−1).

We have W (p, a; s) = γ(p, a; (−s)−1). Like for central Wishart families, Sµ = −S+
d . The cumulant

generating function is
kµ(s) = −p log det(−s) + Tr(a(−s)−1).

As before, we denote σ = (−s)−1. We see that the mean equals

m(s) = k′µ(s) = p(−s)−1 + (−s)−1a(−s)−1 = pσ + σaσ (31)
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and the covariance

v(s) = k′′µ(s) = pσ ⊗ σ + (σaσ)⊗ σ + σ ⊗ (σaσ) = −pσ ⊗ σ +m⊗ σ + σ ⊗m. (32)

When the matrix a is non-singular, the inverse mean map ψ(m) = s is such that

(−s)−1 = σ = −
p

2
a−1 + a−1/2

(

a1/2ma1/2 +
p2

4
Id

)1/2

a−1/2. (33)

For other cases see [Letac and Massam, 2008, Prop.4.5]. In order to write the variance function
V (m) = v(ψ(m)) we compose the last expression from (32) and the formula (33).

For a model {W (p, a;ψ(θA + B)) : θ ∈ I} parametrized by a segment of means, the Fisher
information J(θ) is obtained from the expression of V (m) and Theorem 3.2.

Example. Suppose that a = Id, A = αId and B = βId, α, β > 0. The Fisher information on θ is

J(θ) = α2d
(

(p2 + 2θα+ 2β)(θα + β + p2

4
)1/2 − 2p(θα + β)− p3

2

)−1

.

4.3 Estimation of the mean in exponential families parametrized by a

segment of means

Consider a sample X1, . . . , Xn of a random variable X from a natural exponential family Q(m,µ)
parametrized by the domain of means M , where the parameter m = EX is unknown and M is
open. The following qualities of the sample mean X̄n as an estimator of m seem to be known; for
the sake of completeness we provide a short proof of properties which are less evident.

Proposition 4.1. The sample mean X̄n is an unbiased, consistent and efficient estimator of the
parameter m. It is also a maximum likelihood estimator of m.

Proof. By Theorem 3.1 we have CovX = V (m) = J(m)−1, so the Cramér-Rao bound is attained
by X . Consequently, the sample mean X̄n is an efficient estimator of m. It follows from (9) that
the sample mean X̄n is a maximum likelihood estimator of m. One can also first show by (4)
that the maximum likelihood estimator of s is ŝ = k′−1

µ (X) = ψ(X) and next use the functional
invariance of the maximum likelihood estimator [Casella and Berger, 2002, Theorem 7.2.10].

Remark 4.2. For general exponential families Q(m, T, ν) parametrized by an open domain of
means M , all these properties remain valid for m̂ = T (X)n as an estimator of m = ET (X).

Consider an exponential family Q(θA+B, µ) parametrized by a segment of means IA+B ⊂M
with A 6= 0, B ∈ E and θ ∈ I, a segment in R. We will now discuss estimators of the real parameter
θ when we know that the mean EX = m ∈ IA+B.

The segment IA + B ⊂ M is of dimension one and has an empty interior. That’s why the
efficiency and maximum likelihood properties of the estimator m̂ = X̄n are not automatically
inherited by natural estimators of the real parameter θ. Determining a maximum likelihood es-
timator for θ seems impossible explicitly. This is the ”price to pay” for the parsimony of the
segment model parametrized by m ∈ IA + B. On the other hand, the efficiency of estimators of
θ may be studied thanks to Theorem 3.2 and its corollaries.
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Knowing that
m = θA+B (34)

for a value θ ∈ I, we have many possibilities of writing down a solution θ of equation (34). If
A 6= 0 then the solution θ is unique (Aθ + B = Aθ′ + B implies θ = θ′ when A 6= 0.) For any C
such that 〈A , C〉 6= 0 we have

θ =
〈m−B , C〉

〈A , C〉
.

We define an estimator θ̂C of the parameter θ by

θ̂C =
〈X̄n −B , C〉

〈A , C〉

All the estimators θ̂C are unbiased and consistent. The natural question is whether they are
efficient. The variance of θ̂C may be computed using the variance function V (m) of the exponential
family:

Var θ̂C =
1

〈A,C〉2
Var〈X̄n, C〉 =

Vec(C)TV (θA +B) Vec(C)

n〈A,C〉2
. (35)

On the other hand, the Cramér-Rao bound is equal by Theorem 3.2 to

1

nJ(θ)
=

1

nVec(A)T V (θA+B)−1 Vec(A)
. (36)

When the space E is a squared matrix space R
d×d and the matrix A is invertible, we can take

C = A−1 and consider the estimator

θ̂A−1 =
〈X̄n − B,A−1〉

d
.

The following theorem shows that for Gaussian and central Wishart exponential families and for
linearly dependent A and B the estimator θ̂A−1 is efficient as an estimator of the mean m (with
Xi replaced by T (Xi) = −1

2
(Xi − u)(Xi − u)T in the Gaussian case). In conclusion, we obtain

efficient estimators for Gaussian models parametrized by a covariance segment parameter and for
Wishart models parametrized by a scale segment parameter.

Theorem 4.3. 1. Let I ⊂ R
+ be a non-empty segment. Let c ≥ 0, A ∈ S+

d and B = cA.
(1a) Consider an n-sample (X1, . . . , Xn) from a Gaussian family Q(m, T, ν) defined by (19), where
m = θA +B, θ ∈ I. Then

θ̂A−1 =
〈T (X)n − B,A−1〉

d

is an unbiased efficient estimator of the parameter θ.
(1b) Consider an n-sample (X1, . . . , Xn) from a Wishart model Q(m,µp) defined by (27), where
m = θA +B, θ ∈ I. Then

θ̂A−1 =
〈X̄n − B,A−1〉

d
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is an unbiased efficient estimator of the parameter θ.
2. Let c ≥ 0, C ∈ S+

d and D = cC.
(2a) Consider an n-sample (X1, . . . , Xn) from a Gaussian model {N(u, θC+D), θ ∈ I} parametrized
by a segment of covariances. An unbiased efficient estimator of θ is given by

θ̂ =
1

d
〈
1

n

n
∑

i=1

(Xi − u)(Xi − u)T −D,C−1〉.

(2b) Consider an n-sample (X1, . . . , Xn) from a Wishart model {γ(p, θC+D), θ ∈ I} parametrized
by a segment of scale parameters. Un unbiased efficient estimator of θ is given by

θ̂ =
〈1
p
X̄n −D,C−1〉

d
.

Proof. For the first part of the Theorem, we give the proof in the Wishart case. The proof in the
Gaussian case is identical, with p = 1

2
, cf. Remark 4.1. By formulas (35) and (28)

Var θ̂A−1 =
1

pd2n
Tr((Aθ +B)A−1(Aθ +B)A−1) =

(θ + c)2

pdn

On the other hand, by (36) and (28)

1

nJ(θ)
=

1

npTr(A(Aθ +B)−1A(Aθ +B)−1)
=

1

np(θ + c)−2d
.

Thus Var θ̂ = 1
nJ(θ)

and the estimator θ̂A−1 is efficient.

The second part of the Theorem follows by necessary reparametrizations. For (2a), using (19),
we write θC +D = −2m with m = θA +B, where A = −C

2
and B = −D

2
. The part (2b) follows

similarly from (27).

Remark 4.3. It is an open question whether θ̂A−1 may be efficient for independent A and B. Let
n = 1. The equality Var θ̂ = 1

J(θ)
holds if and only if, writing Dθ = (Aθ+B)A−1(Aθ+B)A−1, the

equality 1
d2
Tr(Dθ) =

1
Tr(D−1

θ
)
holds for all θ ∈ I.
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