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Abstract

Several approaches for calculating support loss in MEMS resonators
undergoing in-plane vibration are reviewed. In each of them, the sup-
port is approximated as a semi-infinite domain. The first approach is
analytical and models the support as a semi-infinite thin plate. This
is compared with two different finite element approaches that intro-
duce artificial boundaries to their finite domain. In order to absorb
outgoing waves and model the infinite support, a perfectly matched
layer method and the use of infinite elements are considered. Simple
test cases are studied and the results for the support losses predicted
by the different methods are compared. It is shown that each of the
methods yield similar trends. Using the developed analytical model, a
parametric study is performed on the support losses of a ring-based res-
onator. General strategies for improving the quality factor by reducing
support losses are provided.
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finite elements.
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1 Introduction

Damping is an important consideration in the design of resonant MEMS de-

vices as their performance can be highly sensitive to the presence of damp-

ing. A variety of loss mechanisms contribute to the damping in MEMS

resonators, and the required level of damping is application dependent. For

example, accelerometers require significant levels of damping to ensure the

vibrations are critically damped, whilst it is advantageous for vibrating rate

sensors to have low levels of damping. The latter forms the motivation for

the study performed here. By removing the air that surrounds the resonator,

the effects of fluid damping can be eliminated. Thermoelastic damping,

caused by the interaction between elastic strain and thermal effects, can be

reduced by using an appropriate geometric design for the resonator [1, 2].

Internal friction and surface loss are ever-present sources of energy loss in

micro-resonators [3–5] and can be reduced by surface treatment [6, 7]. Sup-

port losses account for the loss of energy from the resonator through the

supporting structure, and have been less widely studied compared to the

other loss mechanisms. This fundamental loss mechanism forms the main

focus of this study.

Practical MEMS resonators incorporate a resonator that is connected to

a supporting structure. Vibration of the resonator causes the supporting

structure to deform slightly, allowing some of the vibrational energy to flow

from the resonator to the surrounding material. This flow arises because

elastic deformations are created at the attachment point to the support,

which generate stress waves. Careful design of the resonator and its at-
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tachment to the support can reduce support loss by reducing motion of the

attachment point, thereby reducing the coupling between the resonator and

the surrounding material [8]. Such systems may involve a mounting mech-

anism which isolates shear and moment reactions from the support, or the

introduction of blocking masses to reduce the vibration transmitted to the

boundaries [9].

To predict support loss, the coupled resonator-support system must be

considered in order to understand the interaction and energy transmission

between them. It is generally straightforward to model the resonator in

isolation, without having to make too many assumptions, using classical

finite element analysis and/or modal analysis techniques. The admittance

that links velocity and applied forces at the attachment point provides a way

to characterise the influence of the resonator on the support when they are

modelled independently [10]. However, the disadvantage of this approach is

that the physical flexibility of the attachment area is not taken into account

properly in the resonator vibration. A simple and precise modelling of the

interaction between resonator and support can be difficult to obtain. A more

complete model that considers resonator and support together, such as for

instance the one presented by Park and Park [11, 12], is desirable, but the

associated complexity also greatly increases, and makes it difficult to perform

detailed modelling of the entire resonator-support system; so simplifications

are often made. For example, the support is often assumed to be semi-

infinite when calculating support losses [10–13], and this assumption will be

used in this paper.

The objective of the present paper is to review and compare different
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support loss models that assume the support is semi-infinite. One of these

models is used to perform a parametric study so as to gain improved under-

standing of the factors that influence support loss and develop strategies to

minimise support loss.

In Section 2, several support loss models available in the literature are

presented. For each model, convergence issues are analysed. A comparison

between the different support models is given in Section 3. In Section 4, one

of the models is used to calculate support loss for a ring-based resonator sup-

ported on folded-beam legs, and the influence of the leg design is considered

in order to gain insights into support loss characteristics.

2 Review of different support loss models

2.1 Analytical model

Based on the fundamental work of Miller and Pursey [14], who modelled

the radiation impedance of resonators on semi-infinite solids, closed-form

expressions have been derived for support losses in beam resonators [13].

These expressions follow on from work undertaken by Jimbo and Itao [15].

The physical arrangement of a MEMS resonator and its support can take

different forms. Typically the resonator and support are etched from the

same silicon wafer and it is reasonable to assume they lie in the same plane

and have the same thickness (denoted h in Figure 1) [13], particularly when

only in-plane vibrations are considered.

It has been proved theoretically [16] that, when the wavelength of the

propagating elastic wave in the support is much larger than the size of the
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Figure 1: Semi-infinite thin plate with excitation sources.

attachment region, the coupling between the vibration modes of a MEMS

resonator and the modes in its support is very weak. On this basis, a MEMS

resonator and its support can reasonably be analysed separately and the

stresses at the attachment region from the resonator can be considered as

excitation sources for the elastic wave propagation in the support. Shear

stress only was considered in [13]. However, in more complex resonators

such as the ring-based resonator studied in Section 4, the supporting legs

produce both shear and normal stresses simultaneously. Support excitation

from normal stress was studied in [17,18]. Over the source region (the width

of the clamped resonator), the following boundary conditions for the support

are used.

• For flexural vibrations: the shear stress is assumed uniform and the

normal stress is linearly dependant of the position along the width

(due to the bending moment). However, the energy loss due to the

bending moment has been proved to be negligible compared to that

due to shear stress [18].

5



• For longitudinal vibrations, the shear stress is zero and the normal

stress is uniform.

The support is modelled using the classical two-dimensional dynamic equa-

tions for a thin plate [19] subjected to the previous stress excitation sources.

The attachment of the resonator to the support is assumed to be rigid ini-

tially. In other words, the deformation of the support is not considered when

calculating the reactions between the resonator and support.

An analytical expression for the displacement at any point in the sup-

port is obtained by solving the governing equations of the thin-plate in the

wavenumber domain. For each different boundary condition, the mean dis-

placements (normal and tangential) along the source region, responsible for

the transmitted power, are derived in order to calculate the amount of energy

lost. The velocities induced by these displacements are used to determine the

mean power over a single cycle, denoted Π, transmitted from the resonator

to the support in each situation. This power is obtained by integrating the

product of resultant forces at the attachment with the associated velocity,

over one cycle of vibration, such that:

Π =
1

2
Re (Force · Velocity∗) , (2.1)

where Re denotes the real part, and ∗ the complex conjugate. The term

’Force’ represents either the normal force or the shear force, and the term

’Velocity’ is the associated velocity (normal or tangential direction) at the

attachment area induced by the application of the corresponding force. The

amount of energy lost per cycle ∆W from the support can be calculated
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explicitly as:

∆W =
2π

ω
Π, (2.2)

where ω is the frequency. The total energy lost is the sum of the energy lost

from shear force (∆Wshear) and normal force (∆Wnormal) sources. ∆Wshear

and ∆Wnormal are dependent on the Poisson’s ratio (ν), Young’s modulus

(E), thickness (h) of the support material, and the coupling shear force S

and tensile force T at the attachment point. From equations (2.1) and (2.2),

these energy losses can be expressed as [17,18]:

∆Wshear = α |S|2Ψs, (2.3)

∆Wnormal = α |T |2Ψn, (2.4)

where α = 4(1 + ν)/(Eh(1− ν)), and Ψn and Ψs are the imaginary parts of

integrals, function of ν only, which arise from the transformation of the dis-

placement expressions from the wavenumber domain back to the frequency

domain. For a Poisson’s ratio of 0.28, Ψn = 0.22153 and Ψs = 0.33503 [18].

The ratio of the maximum stored energy during a single cycle, denoted W ,

to the energy lost per cycle gives the Q-factor for the device, such that:

Q = 2π
W

∆Wshear +∆Wnormal

. (2.5)

The analytical approach has its limitations. The wavelength of propagat-

ing waves must be much larger than the thickness of the vibrating structure

for the two-dimensional theory to be valid. It is also unable to capture the

effects of wave reflections at discontinuities in the support, since the support
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is modelled as a perfect semi-infinite thin plate. Nevertheless, because the

support model is analytical and different stress sources can be considered,

calculating Q-factors for different resonators is straightforward because it

only requires the resonator model (and not the support model) to be mod-

ified. However, the main drawback is that the model is only valid under

the assumptions made and results are only available for a restricted range

of geometries.

In [13], the response characteristics of the resonant structure, needed to

calculate the Q-factor (total energy and reaction forces appearing in (2.3)

and (2.5)), were determined from analytical modal expansions. If the res-

onator geometry is complex such that modal expressions are not available,

a ray tracing method [20,21] can be used to obtain detailed insight into the

resonator motion and energy distribution, and this approach is employed in

Sections 3 and 4.

In order to simulate the response of a semi-infinite domain, computa-

tional methods are also available, such as the use of boundary dampers,

infinite elements, boundary integrals, or exact Dirichlet-to-Neumann bound-

ary conditions (see [22–25]). The Perfectly Matched Layer method and the

use of infinite elements are presented in the next sections.

2.2 Perfectly matched layer

The Perfectly Matched Layer (PML) technique was first introduced by Bé-

renger [26] for problems in electromagnetic wave propagation to model in-

finite boundaries. The general feature of the PML is the construction of a

layer exterior to the domain of interest that damps all the waves that enter
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it from the interior domain, independent of the angle of incidence and the

frequency. Waves passing through the layer are also further damped when

they are reflected back, so that most of the vibration and energy entering the

layer are absorbed. This layer is represented by a system of equations that

are not necessarily physically realisable. Their only purpose is to prevent re-

flections from the outer artificial boundary. Simple “sponge layers” [27] that

add dissipative terms to damp the outgoing waves were first used. However,

these methods were only moderately successful because reflections were also

created by gradients within the layer. To be effective, the layer must be

designed so that there is no impedance mismatch to reflect waves back from

the interface between the layer and the rest of the domain. The PML “per-

fectly matches” the impedance of the interior and exterior domains, and

there are therefore no spurious reflections at the interface.

Bindel and Govindjee [28] considered the PML method for support loss

calculation in MEMS resonators, and implemented the approach in a finite

element code called HiQLab [29]. When a PML is used to model infinite

boundaries in a finite element code, complex mass and stiffness matrices are

generated. As a consequence, complex eigenvalues ω are obtained for the

governing equations and the Q-factor can be calculated directly using [28]:

Q =
|ω|

2 Im(ω)
(2.6)

where ω is the natural frequency and Im denotes the imaginary part.

Bindel and Govindjee interpreted the PML as a complex-valued change

of coordinates which could be applied to any linear wave equation. The
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elements use complex stretching of the coordinate axes to introduce artifi-

cial damping to the wave. It is worth noting that the complex coordinate

stretching has as a prerequisite the analytic continuation of the equations

and their solutions. The coordinate transformation for a 1D case can be

expressed in the form:

x̃ = x− i

k

∫ x

0

σ(s) ds, (2.7)

where x̃ is the new coordinate, x is the “real” axial coordinate, i =
√
−1, and

k is the wavenumber. σ is a PML attenuation function that is used to reduce

the amplitude of the waves when they travel in both directions: on the way

to the outer boundary, and on their way back to the resonator. As a general

idea, when σ is chosen to be zero at the boundary with the finite medium,

the solution is the same for both media and hence the wave enters the PML

without any reflection at the boundary. When σ > 0, the wave decays in

the direction of travel. Figure 2 illustrates the case of a linear attenuation

function σ with end magnitude β(Lp −L), where L and Lp are respectively

the length of the finite region and the PML domain. Since waves decay so

rapidly in the PML region, a good approximation to the infinite domain is

obtained even if the condition of zero-displacement at the outer boundary

(in Lp) is enforced [28].

In order to correctly model a semi-infinite domain, the main objective

of the PML is to minimise the waves that are reflected back in the finite

domain. It should ideally absorb completely the outgoing waves and no

reflection should occur. However, due to the way in which the problem is
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Figure 2: Linear attenuation function used in the PML method for a one-
dimensional wave.

discretised, some energy is always reflected back. A precise analysis of these

reflections was presented by Bindel and Govindjee [28], and Koyama [30],

where the total reflection due to the PML is separated into: the end termina-

tion reflection, introduced by a finite termination of the PML; the interface

reflection, introduced by the discretised PML at the PML interface; and the

computed reflection, due to round-off errors in computing calculations.

The different parameters that have an effect on the Q-factor are:

• Geometrical parameters: the dimension of the PML region (Lp − L),

and the dimension of the “finite” support region (L) meshed using

standard finite elements;

• Meshing parameters: the number of elements in the PML region, and

the interpolation order of the elements in the PML (linear, quadratic,

cubic);

• PML function properties: the end value parameter β of the PML

absorbing function σ, and the polynomial order of the PML absorbing

function σ.
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The work reported in [28] and [30] provides guidelines for selecting PML

parameters in a rational way and these are used as the starting point for

the results presented later. Different parameter values are investigated to

ensure that converged results are obtained. All of the results presented

in Section 3 are obtained after the convergence study has been completed.

These results indicate that the PML method is time-consuming and that the

results obtained are not “exact” Q-values. For this reason, an alternative

finite element method with infinite elements was also investigated, and is

discussed next.

2.3 Infinite elements

Infinite boundaries can be modelled using the finite element method using

specific “infinite elements”. First- and second-order infinite elements based

on the work of Zienkiewicz et al. [31] for static response and of Lysmer and

Kuhlemeyer [32] for dynamic response are implemented in AbaqusTM to

model infinite boundaries. The energy is artificially attenuated and lost in

these elements. They are used to mesh the far-field region, in conjunction

with standard finite elements, which model the area around the resonator.

The infinite elements provide a theoretically non-reflective boundary to

the model by using special shape functions that eliminate artificial wave

reflections from the truncated domain of the model. Regular shape functions

are used to model the displacement variables u while growing shape functions

are used for position variables r [33].

A one-dimensional case is presented next and illustrated in Figure 3.

The infinite element contains three nodes, whose nodes are identified by
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Figure 3: Nodal variable position for a one-dimensional infinite element in
AbaqusTM.

si = −1, 0 and 1 (i = 1, 2, 3). ri and ui respectively represent the distance

from the “pole” that corresponds to the source of propagating waves, and

the displacement of node i. The particular chosen shape function such that:

r =
−2s

1− s
r1 +

1 + s

1− s
r2, (2.8)

and the following standard quadratic interpolation for the displacement:

u =
1

2
s(s− 1)u1 + (1− s2)u2 (2.9)

give

at s = −1 : r = r1 and u = u1,

at s = 0 : r = r2 and u = u2,

at s = 1 : r → ∞ and u → 0.

Hence the position coordinate approaches infinity, and the displacement of

the propagating wave decreases to zero at the outer edge of the infinite

element.
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The infinite element is shown to work well for static and dynamic anal-

yses [33]. In any case, it is assumed that the response adjacent to the

boundary of the infinite elements is of sufficiently small amplitude that the

medium responds in a linear elastic fashion. The infinite elements have to

be placed sufficiently “far” from the pole. They also have to be arranged

such that the dominant direction of wave propagation is orthogonal to the

boundary, which means that the outer boundary must be semi-circular.

The fundamental in-plane mode of a simple cantilever beam is studied

in AbaqusTM to check convergence using infinite elements. The beam is

meshed using classical two-dimensional quadratic plane stress elements. The

support is divided in two different sections: a bounded domain of length R,

meshed with standard finite elements, and an infinite domain, meshed using

the infinite elements described previously. The beam width is meshed using

4 elements, and the element size in the support gradually increases to fill the

entire bounded domain. The outer ends of the infinite elements are placed at

an approximate distance 2R from the pole (origin of the propagating waves

– the beam attachment point).

The support is supposed to be infinite and a change in the bounded

domain length R should theoretically not influence the results for the natural

frequency and Q-factor. For different values of R, a steady state analysis

is performed in the vicinity of the expected first natural frequency. The Q-

factor is then calculated from the resulting amplitude-frequency curve and

defined as:

Q =
ω0

∆ω
, (2.10)
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Figure 4: Convergence analysis. Q-factor function of R/λ calculated for
different mesh densities.

where ω0 is the natural frequency of interest and ∆ω is the half-power band-

width at −3 dB of the maximum amplitude. This is the common method

used to measure Q-factors.

It is found that the calculated Q-factor is actually a function of R, and

it is expected that this dependency is also a function of the transverse wave-

length λ of the propagating shear waves in the support. The results are il-

lustrated in Figure 4, which shows the calculated Q-factor for different mesh

refinements and different values of R. With a very coarse mesh, the Q-value

quickly diverges as R increases. This is probably due to the difference in

size between the bounded domain and the resonator itself. It is important

to notice that, for example, when R/λ ≈ 10, the bounded domain is actually

3000 times larger than the beam width. It is understandable that a coarse

mesh struggles to correctly model the energy propagation and dissipation
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arising from a relatively small resonator. With a fine mesh, the Q-value

first shows a maximum around R/λ ≈ 1.75, then seems to stabilise between

3 < R/λ < 5, and finally oscillates for R/λ > 6. This simple convergence

test demonstrates the complexity of calculating Q. Here Q is highly de-

pendent on the mesh density and on the support dimensions. However this

study shows that a range of approximate values of Q can still be obtained

using the infinite elements. From the analysis of Figure 4 and especially the

results obtained with the finest mesh, it seems sensible to use as a maxi-

mum Q-value, the value obtained when R/λ ≈ 1.75 and as an appropriate

minimum Q-value, the value obtained when R/λ ≈ 4. These two particular

values of R/λ have been used in the studies presented in Section 3.

3 Comparison of the models

The objective is to compare and validate the different support models for

any resonator design. The following applications consider a wide range of

possible resonator-support characteristics, in which support losses occur ei-

ther from shear stress excitation, normal stress excitation, or a combination

of those. Due to the complexity of creating meshes in the HiQLab program,

the difficulty to obtain a rapid converged result, and the computing cost

of using finite elements methods, the methods presented in Section 2 are

applied to simple test cases only.

A cantilever beam vibrating in its fundamental mode is studied first.

Resonator and support are made in silicon, from the same wafer, and have

identical material properties. For a fixed beam width, the calculated Q-
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Figure 5: Cantilever beam case. Q-factor calculated using the three different
methods as a function of the length/width ratio.

factor is plotted as a function of the length/width ratio of the beam in

Figure 5. This graph compares the results obtained using the PML method

in HiQLab, infinite elements in AbaqusTM, and the analytical model. In

the analytical model, only shear stresses are considered at the resonator-

support interface (normal stresses are neglected – see Section 2.1). The

energy stored and clamped forces in the resonator are obtained using modal

expressions. All curves show the same trend, and the results display a

cubic character when the beam is made longer and/or thinner (as explained

by Hao et al. in [13]). Even though the infinite element method gives

a “range” of correct Q-values, it is shown that they are all in reasonable

agreement. A possible explanation of the discrepancies is the different way

the attachment is modelled. A rigid attachment assumption is considered in
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the analytical model, whereas the coupled resonator-support system, with

high stress concentration in the attachment area, is modelled in the finite

element approaches.

It is important to note that for more complex-shaped resonators, the

attachment resonator-support may undergo flexural and longitudinal vibra-

tions simultaneously, opposed to the simple flexural vibration of a beam

resonator. For instance in a xylophone bar resonator, complex relations be-

tween the geometry and Q, arising from modal tuning of the component,

have been found [34] using a PML method. In the analytical model pre-

sented in Section 2.1, the coupled flexural-longitudinal vibration provides a

complication as the support model uses two different expressions for shear

and normal stress sources. To validate the model when flexural and lon-

gitudinal vibrations occur simultaneously, another test case is studied. It

consists of a two-beam system, where the beams are at right angles to each

other. The first beam is attached to the infinite support, whereas the second

beam (called beam ‘2’) is free. The Q-factor corresponding to the first mode

of vibration is studied.

For a fixed beams width, the length of beam ‘2’ is varied. The ray

tracing method [20] is used to calculate the natural frequency of the first

mode, its corresponding strain energy, and shear and normal forces at the

clamped boundary. The energy loss caused by the shear force and that

caused by the normal force are calculated separately using (2.3) and (2.4),

and then added up to obtain the overall energy loss. The objective was

to take account of a wide range of resonator-support configurations that

includes several complex-shaped resonator characteristics. For instance, in
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Figure 6: Two-beam case. Q-factor calculated using the different methods
as a function of the length/width ratio of beam ‘2’. The system studied is
shown in the inset. Schematic representations of the mode shapes, for the
shortest and longest beam ‘2’ considered, are also illustrated.

the nominal design of the ring-based resonator studied in Section 4, the

energy lost due to shear force is approximately 4 times larger than the

one due to normal force, for the modes of interest. From the range of

length/width ratio considered in the present test case, the ratio of energy

lost due to shear force over the energy lost due to normal force varies between

7000 for short beam ‘2’ and 0.3 for long beam ‘2’ [18]; showing that this test

case can represent a wide range of features.

The Q-factor calculated with the different methods, when the length of

beam ‘2’ is varied, is presented in Figure 6. For the infinite element method,

the maximum Q-value, obtained when R/λ ≈ 1.75, has been used. Again,
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all the curves show a similar trend. However, it appears in this case, which is

not true for the simple cantilever beam study, that the relative Q-difference

increases when the length/width ratio of beam ‘2’ is higher. In the high

length/width range, normal forces are predominant at the attachment point.

Thus, a possible explanation is that the analytical support model does not

properly quantify the loss occurring when normal stresses are predominant.

An alternative explanation could be that the ray tracing method struggles

to correctly model the beam corner when it is subjected to high stresses.

The thin beam theory used in the ray tracing does not consider high stress

concentrations at the corner, as only the centreline is modelled, and the

complexity of a real corner could not be properly modelled.

However, a simple study has ruled out the hypothesis of inaccurate mod-

elling by the ray tracing method. The same system has been modelled in

AbaqusTM using quadratic elements. A modal analysis in AbaqusTM gives

the modal strain energy of the entire system and the forces at the clamped

boundary for the first mode of vibration. These clamped forces and strain

energy are inputted into the analytical model of the support presented in

Section 2.1, and the Q-factor is calculated. These results are illustrated in

Figure 6. This study represents a combination between the analytical model

of the support and a finite element analysis of the vibrating structure. The

excellent agreement achieved indicates that the ray tracing method correctly

models the vibrations, and that the difference between analytical and PML

methods is only due to the support model.

In conclusion, Figures 5 and 6 indicate that the three different sup-

port models give the same range of Q-values and same trends when the
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Figure 7: Photograph of a ring-based rate sensor on its silicon wafer (cour-
tesy AIS), and schematic representation of the resonator.

length/width ratio is changed. As this study illustrates support losses when

the energy loss due to shear force is dominant, and when the energy loss

due to normal force is dominant, this validates the analytical model even for

complex-shaped resonator, and shows that it can be used with confidence

to obtain trends of Q-values. The next section uses this model to study the

influence of the leg design on the Q-factor of ring-based resonators.

4 Influence of leg design on the Q-factor of a ring-

based resonator

4.1 Nominal study

The method referred to as the Analytical Model in Section 2 is used here

to calculate the Q-factors of a ring-based resonator developed by Atlantic

Inertial Systems (AIS). Figure 7 shows a photograph of this complex-shaped

resonator on its silicon wafer and a schematic representation of the nomi-

nal device. The resonator is composed of a thin ring and eight identical

uniformly-spaced legs in the form of folded beams.
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(a) 2θ mode (b) 3θ mode

Figure 8: 2θ and 3θ mode shapes of the ring-based resonator with nominal
dimensions.

Damping predictions
Measurements [35]

Support loss Thermo. [35] Total

2θ mode 147 600 11 731 10 867 9 455
3θ mode 80 660 17 783 14 571 12 434

Table 1: Q-factors predictions and measurements for the 2θ and 3θ modes.

The process employed to calculate Q can be summarised as follows.

Firstly, assume that the resonator is clamped and use the ray tracing ap-

proach [20, 21] to calculate its natural frequencies and associated mode

shapes. Then, from the mode shape, calculate the total energy stored W

and the forces T and S at the clamped end. Use (2.3) and (2.4) to obtain

the energy loss due to the forces S and T , and then use (2.5) to calculate

the Q-factor.

The nominal dimensions and material properties of the ring-based res-

onator are identical to those given in [20,21]. The Q-factors for the so-called

2θ and 3θ modes, whose mode shapes are illustrated in Figure 8, are calcu-

lated using the analytical method and are given in Table 1.
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These results are compared with Wong’s experimental Q-factor measure-

ments and theoretical predictions [35] for thermoelastic damping (denoted

“Thermo.” in Table 1) in similar resonators. The predicted total Q-factor

is also shown for comparison in Table 1 and is defined as the inverse of the

total energy loss (QTotal =
[
∑

1/Qi

]

−1
). The measured overall Q-factors

consider all damping mechanisms. The comparison of the simulated and

measured Q-factors gives confidence in the support loss model developed

and used here. Indeed, it is interesting to note that the total energy loss

predicted (inverse of the Q-factor) considering support loss and thermoelas-

tic damping is only slightly smaller than the energy loss measured exper-

imentally. It may be possible to obtain improved agreement by including

damping contributions arising from surface losses and air damping in the

computational model.

In applications, the excited and sensed modes are usually the 2θ mode

and its orthogonal companion. Only results relating to the 2θ modes are

presented in the following sections as they are of primary interest.

4.2 Change of leg geometry

In this section, the geometry of the leg is modified. The beam lengths and

angles between the beams that make up the leg are changed. The beams

are numbered as follows: beam ‘1’ (length L1) is attached to the ring, beam

‘2’ connects beams ‘1’ and ‘3’, and beam ‘3’ (length L3) is clamped to the

support. The beam numbering is illustrated in Figure 7. In the parametric

study performed, the geometry is constrained such that:
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• Beam ‘1’ and beam ‘3’ are oriented radially (i.e. their centrelines pass

through the centre of the ring).

• The total angle subtended by the leg, angle between beam ‘1’ and

beam ‘3’, is equal to 40◦. This ensures that the ring contains eight

legs with a 5◦ angular separation between each.

• The point of attachment to the support is a fixed point. This means

that the distance between the clamped end and the centre of the ring

is constant. The reason for this is that the modifications to the leg

designs are not intended to change the dimension of the silicon wafer

on which the resonators are etched nor their position on the wafer.

L1 and L3 are varied independently over a range defining the shortest and

longest beam configurations in the allocated space (between the ring and the

support). When one of these lengths varies, the other parameters (e.g. an-

gles between them) vary accordingly by following the constraints mentioned

above. For each value of the couple (L1, L3), the Q-factor is calculated

following the procedure described in Section 4.1.

Results for the Q-factors are presented in Figure 9, where it can be seen

that leg designs with a longer beam ‘1’ generally have a larger Q-factor.

If at the same time, beam ‘3’ is shortened, then the largest Q is obtained,

resulting in a significant improvement in performance. For this particular

design, the Q-factor is approximately 3 times larger than the value for the

nominal design. The associated mode shape is presented in Figure 10(a).

It can be seen clearly from the mode shape that the ring contributes in

an important way to the overall energy of the resonator, maximising the
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Figure 9: Q-factors of the 2θ mode for different values of L1 and L3.

(a) (b)

Figure 10: Deformed shape of the 2θ mode for a long beam ‘1’ and a short
beam ‘3’ (a), and for a short beam ‘1’ and a short beam ‘3’ (b)

energy stored. Also, the leg is made more flexible when beam ‘1’ is longer,

i.e. the clamped end has less influence on the ring vibration. These two

reasons explain the larger Q-value obtained. At the same time, the natural
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frequencies do not change much for the variations considered. A difference

of approximately 350Hz is found, which is small compared to the nominal

frequency of operation (≈ 14 kHz). It is important to control the associated

change in frequency because a large variation will modify the thermoelastic

loss [35].

From Figure 9, it can be seen that the design with a short beam ‘1’ and

a short beam ‘3’, whose mode shape is illustrated in Figure 10(b), is clearly

inefficient compared to the nominal design. The Q-factor in this case is

approximately 100 times smaller than the nominal one and the 2θ frequency

is greatly increased. In this case the resonator frequency almost matches

one of the leg natural frequencies considered separately. For this particular

design, the legs are as straight as possible within the applied constraints,

and have a large influence on the ring vibration. The leg flexibility is greatly

reduced and the contribution of the legs to the overall resonator deformation

is increased. From the mode shape, it is clear that the ring deformation is

less important compared to the legs in beam portion ‘2’, because the leg

vibrates at a frequency close to one of its own natural frequencies. This

indicates that most of the energy is contained within the legs, increasing the

support losses and reducing the Q-factor.

Looking directly at the energetic transmission and reflection coefficients

at the different corners of the legs could give some general ideas and guide-

lines about which angles are to be used or avoided to minimise the energy

propagating away through the legs. Wu and Lundberg [36] presented quanti-

tative results on these transmission coefficients and they generally confirmed

the fact that large angles facilitate the direct transmission of waves of the
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same type, whereas acute angles would tend to increase the reflection of

waves. Even though their work neither takes account of the transmission

and creation of evanescent terms after the discontinuity, nor takes account of

the infinite reflection-transmission process that occurs between the corners,

it still indicates that the angles present in the leg when beam ’1’ and beam

’3’ are short are inefficient for energy transmission. Another general guide-

line to minimise support losses would be to avoid designs where the natural

frequency of the resonator coincides (or is in the near vicinity of) one of the

leg natural frequencies, as this facilitates vibrational energy transmission.

4.3 Change of leg width

In this section, the geometry of the leg is maintained at the nominal design.

However, the in-plane width of the leg is modified. The nominal leg and

ring widths are equal to 61µm and 121µm respectively. Here, the leg width

takes values between 30µm and 105µm.

Results for the natural frequencies and the associated Q-factors as a

function of leg width are shown in Figure 11. From this graph, it can be

seen that the 2θ frequency increases when the leg width increases, whilst

the Q-factor decreases when the leg width increases. This is mainly because

thin legs are more flexible in bending and constrain the ring less. This

ensures that the vibration of the ring is closer to that of a ring without

support, maximising the energy stored. In contrast, wide legs have a strong

influence on the ring vibration and restrain its amplitude. From Figure 11,

the Q-factor trend as a function of the leg width b can be approximated to

Q ≈ 1/b4. This means that when the width of the leg is half the nominal
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Figure 11: 2θ frequencies (Hz) and the associated Q-factors function of the
leg width.

value, the Q-factor is approximately 16 times larger than the nominal Q-

factor. This relationship between Q and b can be compared to that obtained

for other designs: Q ∝ 1/b3 for a simple cantilever beam resonator [13] and

Q ∝ 1/b6 for a disk resonator supported on a single straight beam [37].

The Q-factor here, where the legs stay relatively flexible for any width, is

therefore more sensitive to a change of width than for a cantilever beam,

in which the internal stored energy in the resonator increases at the same

time as the energy propagating away; but less than for a disk resonator, in

which a larger supporting beam clearly increases its stiffness, and has more

influence on the disk vibration.

In order to better understand the effect of the width change on the

resonator vibration characteristics, it is interesting to consider the energy

distribution within the resonator as a function of the leg width. Figure 12
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(a)

(b)

Figure 12: Kinetic energy (a) and strain energy (b) percentages in the dif-
ferent portions of the ring-based resonator, for the 2θ mode, as a function
of the leg width.

shows how the kinetic and strain energies are distributed (as percentages)

between the different parts of the structure as the leg width is changed. The

legs are divided into three beam portions, numbered from the ring to the

support, as explained in Section 4.2. The energy corresponding to a specific

portion of a leg is combined with the energies for the same portion of all

other legs.

From Figure 12(a), it is clear that the ring moves less when the leg is
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wider. One can see that the kinetic energy, which is mainly present within

the ring for very thin legs is shifted to the legs themselves when the leg

width is increased. The kinetic energy percentage of beam ‘3’ remains close

to zero, as expected because beam ‘3’ is “clamped” at its end. The fact that

the percentage of kinetic energy contained within the ring decreases when

the leg width increases shows that the total energy stored decreases.

It can be seen in Figure 12(b), that the strain energy of the ring decreases

when the leg width increases. The ring does not deform as much as for the

case when the leg width is very thin. The strain energies in the leg portions

increase, which can be explained because they have a larger width and also

show a greater deformation. It is interesting to look at the energy of the

third beam portion. As this increases, it is expected that the forces at the

clamped end will also increase, meaning an increase in the amount of energy

lost. This explains the Q-factor decrease shown in Figure 11.

5 Conclusion and discussion

Different models for the analysis of support loss, which all assume the sup-

port to be semi-infinite, have been compared. It has been found that they

give Q-values in the same range of magnitude and exhibit similar trends

when a parameter is varied. This has been shown for simple and for more

complex resonator vibrations. However, the results obtained for the Q-factor

show that the analytical model tends to overestimate Q, or underestimate

the quantity of energy lost. The most plausible reason for this is the rigid

attachment assumption. This assumption over-evaluates the stored energy
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(and therefore the associated Q-factor) as the vibrational energy is con-

strained to stay within the resonator and is thus artificially increased. In

contrast, the PML and the infinite element methods model the resonator and

support together. The support therefore presents a non-zero flexibility when

analysing the resonator vibration. Consequently the energy stored within

the resonator is smaller. It is also very difficult to predict and to model the

real effect of the attachment on the resonator. Even a finite element analysis

makes approximations in this region of high stress concentration.

It is worth noting that the semi-infinite support assumption is usually

not realistic for practical MEMS devices. This is because the supporting

structure to which the resonator is attached, often has dimensions of a

similar order to the dimensions of the resonator itself. Furthermore, the

supporting structure is often bonded rigidly to other materials (e.g. glass),

which may also be attached to a metal base. Hence the support structure

is finite in extent, with external boundaries that would in practice reflect

some energy back into the resonator, reducing the likelihood that all energy

propagating away from the resonator is lost. As the support typically has

finite extent, its own end boundaries may also have an important effect on

the motion of the resonator-support attachment point. In addition, internal

structural damping will be present and attenuate waves propagating into

the support. These factors are not taken into account in the semi-infinite

model. In general, MEMS resonators have Q-factors that have high values

which are sensitive to external factors. This characteristic helps to explain

why the models presented yielded numerical values significantly different

from experimental measurements. Despite this, it is expected that the value
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of the theoretical models is to predict the influence of different parameters

on the Q-factor, so that resonators can be designed to have lower levels of

damping.

The presented analytical method was applied to a practical ring-based

resonator. In comparison to thermoelastic damping, support loss of the

nominal design was found to be negligible. However, recent research on

thermoelastic damping [38] indicates the possibility of designing resonators

with reduced levels of thermoelastic damping, increasing the importance

of support losses in resonator applications. In addition, other resonator

designs, such as bulk-mode resonators [39, 40], have been shown to have

very high Q-factors that are support loss limited.

A parametric study was performed to gain a better understanding of the

factors that influence support loss for a ring-based resonator supported on

legs. The main findings relating to resonator and support design were that

thin, flexible legs produced a significant increase inQ-factor for the operating

modes, whilst the Q-factor decreased if the leg frequencies coincided with

the ring frequencies. In order to minimise the support loss, it is necessary

to consider both the clamping force and energy contained in the resonator

simultaneously.

Essential future work includes validation of the presented models for sim-

ple and complex-shaped resonators with experimental results. To increase

the Q-factors, the use of blocking masses that reduce the transmission of

vibration to the attachment points (suggested in [9]) is an interesting area

of possible future research. Support loss models for out-of-plane vibrations

are also essential for the next generation of multi-axis resonators [41].
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