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Abstract

The goal of this paper is to provide estimators of the tail index and

extreme quantiles of a heavy-tailed random variable when it is right-

truncated. The weak consistency and asymptotic normality of the es-

timators are established. The finite sample performance of our estimators

is illustrated on a simulation study and we showcase our estimators on a

real set of failure data. keywords: Asymptotic normality, consistency,

extreme quantile, heavy-tailed distribution,tail index. AMS Subject

Classifications: 62G05, 62G20, 62G30, 62G32.

1 Introduction

Studying extreme events is relevant in numerous fields of statistical applications.
One can think about hydrology, where one may want to estimate the maximum
level reached by seawater along a coast over a given period, or to study extreme
rainfall at a given location; in actuarial science, a pivotal problem for an insur-
ance firm is to estimate the probability that a claim so large that it represents
a threat to its solvency is filed. In this type of problem, the focus is not in the
estimation of “central” parameters of the random variable of interest, such as
its mean or median, but rather in the understanding of its behavior in its right
tail.
A particular relevant case is when the random variable of interest, Y , is heavy-
tailed, namely, when its survival function F can be written F (y) = y−1/γL(y)
for all y > 0; here, γ > 0 shall be referred to as the tail index and L is a slowly
varying function at infinity, meaning that it satisfies L(λy)/L(y) → 1 as y → ∞
for all λ > 0. In this case, γ clearly drives the tail behavior of F and its knowl-
edge is necessary if, for instance, we are interested in the estimation of extreme
quantiles of Y . The estimation of the tail index is thus one of the central topics
in extreme value theory, which is why this problem has been extensively studied
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in the literature. Recent overviews on univariate tail index estimation can be
found in the monographs of Beirlant et al. (2004) and de Haan and Ferreira
(2006).
A further challenge arises when facing incomplete data. An example of such
a situation is the estimation of (extreme) survival times based on a follow-up
study of patients suffering from a given illness. If at the time the data are col-
lected a patient is still alive, then his/her survival time is not available to the
researcher, although it is known that the patient survived until the end of the
study. This case is the archetypal example of right-censoring. Estimating the
tail index in this situation is much more difficult than when having complete
data, since information about the right tail of the variable of interest is missing.
In this setting, the estimation of the tail index and extreme quantiles has been
considered by Beirlant and Guillou (2001), Beirlant et al. (2007), Beirlant et al.
(2010), Einmahl et al. (2008), Gomes and Neves (2011) and Worms and Worms
(2014).
In this paper, we consider the case when the data are right-truncated. In this
framework, one observes the variable of interest if and only if it is less than or
equal to a truncation variable T . This situation is different from right-censoring
since nothing is known about Y in the case Y > T , which adds a further diffi-
culty to the analysis of the right tail of Y . Truncated data may be collected in
various cases, for instance when estimating incubation times for a given disease,
see Kalbfleisch and Lawless (1989, 1991) and Lagakos et al. (1988); when study-
ing the luminosity of astronomical objects such as quasars, see Jackson (1974)
and Lynden-Bell (1971); when accounting for reporting lags in insurance data,
also referred to as the incurred but not yet reported problem, see Herbst (1999),
Kaminsky (1987) and Lawless (1994); or when considering failure or warranty
data, see Hu and Lawless (1996a, 1996b) and the monographs by Meeker and
Escobar (1998) and Lawless (2002). To the best of our knowledge, the estima-
tion of the tail index and extreme quantiles in this context is, up to now, still
an open question.
The outline of this paper is as follows. In Section 2, we give a precise definition
of our model and define our estimators of the tail index and of the extreme
quantiles of a truncated random variable. Some asymptotic properties of our
estimators are stated in Section 3. The finite sample performance of the extreme
quantile estimator is studied in Section 4. A real set of brake failure data is
analyzed in Section 5. We offer some concluding remarks in Section 6. Proofs
of the main results are deferred to Section 7, while the preliminary results are
deferred to the Appendix. Proofs of the preliminary results can be found in a
supplementary material.

2 Framework

Let (Y1, T1), . . . , (Yn, Tn) be n independent copies of a random pair (Y, T ) ∈
[y0,∞) × [t0,∞), where Y and T are independent and y0, t0 ≥ 0 are the left
endpoints of Y and T . The right endpoints of Y and T are supposed to be
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infinite. The joint cumulative distribution function (cdf) of the random pair
(Y, T ) is then given for all (y, t) ∈ R

2 by H(y, t) := P(Y ≤ y, T ≤ t) =
F (y)G(t), where F and G are the cdfs of Y and T . The focus of this paper is
on extreme quantiles of Y and, as a first step, on the estimation of the cdf F .
Of course, because we only record the Yi and Ti such that Yi ≤ Ti, the classical
nonparametric estimator of F cannot be used. However, the conditional cdfs of
Y and T given Y ≤ T , respectively denoted by F ∗ and G∗, may be estimated
in a nonparametric way. Let N be the total (random) number of observed pairs
(Yi, Ti) such that Yi ≤ Ti and notice that N is a binomial random variable
with parameters n and p := P(Y ≤ T ). Such pairs shall be denoted in the
sequel as (Y ∗

i , T
∗
i ), 1 ≤ i ≤ N . It can be shown (see Lemma 1) that the

conditional distribution of {(Y ∗
i , T

∗
i ), i = 1, . . . , N} given N = m is equal to

the distribution of m independent copies of a random vector (Y ∗, T ∗) with cdf
H∗ given by H∗(y, t) = P(Y ≤ y, T ≤ t|Y ≤ T ). The standard estimators of
the conditional cdfs of Y and T are then

F̂ ∗
N (y) =

1

N

N∑

i=1

I{Y ∗

i
≤y} and Ĝ∗

N (t) =
1

N

N∑

i=1

I{T∗

i
≤t}.

Note now that, in order to estimate F , it is sufficient to estimate the function
ΛF := − logF . The following result, whose proof can be found in Woodroofe
(1985, p.166), shows that this quantity is in fact linked to F ∗ and G∗:

Proposition 1 Let C∗ := F ∗ −G∗. Then C∗(y) = p−1F (y)(1−G(y)) > 0 for
all y > y0, and

ΛF (y) =

∫ ∞

y

dF (z)

F (z)
=

∫ ∞

y

dF ∗(z)

C∗(z)
.

This result can be used to build an estimator of the function ΛF and conse-
quently of the cdf F : if y > y0, we may estimate ΛF (y) by

Λ̂F
N (y) =

1

N

N∑

i=1

I{Y ∗

i
>y}

Ĉ∗
N (Y ∗

i )

when N > 0 and 0 otherwise. The survival function F := 1 − F and its
associated quantile function α 7→ q(α) := inf{y ≥ y0 |F (y) ≤ α}, which is the

right-continuous inverse of F , are then estimated by F̂N (y) = exp(−Λ̂F
N (y)) and

q̂N (α) = inf{y ≥ y0 | F̂N (y) ≤ α}, where we let F̂N = 1− F̂N . The first aim of
this paper is to study the asymptotic behavior of the estimator q̂N (αn) where
αn → 0 as n → ∞. We shall tackle this problem in a framework of regular
variation: we write that a function Ψ ∈ RV1(a), a ∈ R, if Ψ is nonnegative
on (0,∞) and for all λ > 0, we have Ψ(λy)/Ψ(y) → λa as y → ∞. We thus
consider the following model:

(M) We have F ∈ RV1(−1/γF ) and G ∈ RV1(−1/γG), with 0 < γF ≤ γG.
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Model (M) is a standard extreme-value model adapted to right-truncated data;
see also Beirlant et al. (2007) and Einmahl et al. (2008) for closely related
models when there is right-censoring. The cdfs of Y and T are thus heavy-
tailed with respective tail indices γF and γG. The condition γF ≤ γG ensures
that we have at our disposal enough observations pertaining to the right tail
of Y . In this context, the quantile estimator q̂N (αn) is consistent if αn → 0
slowly enough, see Theorem 2. In order to remove the restriction on the rate
of convergence of αn, we note that under model (M), the quantile function q is
regularly varying at 0 (see Corollary 1.2.10 p.23 in de Haan and Ferreira 2006),
so that if βn < αn are two positive sequences tending to 0 such that βn/αn → 0
then q(βn) ≈ q(αn) (αn/βn)

γF when n is large. In order to derive an estimator
of an extreme quantile q(βn) from that, we first need to build an estimator of
γF . With this aim in mind, we remark that F ∗ and G∗ are heavy-tailed with
respective tail indices γF∗ := γF γG/(γF + γG) and γG (see Lemma 3) and we
introduce the Hill-type estimators (see Hill 1975)

γ̂N,F∗(kN ) =
1

kN

kN∑

i=1

log
Y ∗
N−i+1,N

Y ∗
N−kN ,N

and γ̂N,G(k
′
N ) =

1

k′N

k′

N∑

i=1

log
T ∗
N−i+1,N

T ∗
N−k′

N
,N

.

Here we let, givenN = m, kN = km and k′N = k′m, where km and k′m are integers
which belong to {1, . . . ,m − 1}, and Y ∗

1,N ≤ . . . ≤ Y ∗
N,N , T ∗

1,N ≤ . . . ≤ T ∗
N,N

are the order statistics deduced from the samples (Y ∗
i )1≤i≤N , (T ∗

i )1≤i≤N . It is
fairly easy to prove (see Lemma 9) that γ̂N,F∗(kN ) and γ̂N,G(k

′
N ) are consistent

estimators of γF∗ and γG under mild conditions. This leads us to introduce the
class of estimators

γ̂N,F (kN , k
′
N ) =

γ̂N,F∗(kN )γ̂N,G(k
′
N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
. (1)

Under some conditions on (km) and (k′m), the quantity γ̂N,F (kN , k
′
N ) is then

a consistent estimator of γF , see Theorem 3. This motivates the following
Weissman-type estimator (see Weissman 1978) for a quantile having arbitrary
order βn → 0:

q̂WN (βn |αn, kN , k
′
N ) = q̂N (αn) (αn/βn)

γ̂N,F (kN ,k′

N )
(2)

where αn → 0 converges slowly enough. The asymptotic properties of this
estimator are discussed in Theorem 4.

3 Main results

In this section, we examine the asymptotic properties of our estimators. In order

to establish the asymptotic normality of F̂N (yn), we introduce the following
additional condition: ∫ ∞

y0

dF (z)

G(z)
<∞. (3)
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This assumption is classical in the study of the estimator of the cdf of a truncated
random variable, see for instance Stute and Wang (2008) and Woodroofe (1985)
for related hypotheses when there is left-truncation. Note that under model
(M), it is a consequence of Lemma 2 with ϕ = 1/G and ψ = F that (3)
automatically holds if γF < γG. Besides, it is easy to check that (3) fails to hold
if γF > γG.

Theorem 1 Let yn → ∞. Assume that (M) and (3) hold, and that nv2(yn)
converges to infinity where

v(y) := F (y)

(∫ ∞

y

dF (z)

G(z)

)−1/2

.

Then

v(yn)
√
n

(
F̂N (yn)

F (yn)
− 1

)
=

{
ξn if γF < γG,

OP(1) if γF = γG,

where ξn is a random variable which is asymptotically standard Gaussian dis-
tributed.

We now establish the asymptotic normality of q̂N (αn).

Theorem 2 Let αn → 0. Assume that F is a differentiable function in a
neighborhood of infinity such that yF ′(y)/F (y) → 1/γF as y → ∞, that (M)
and (3) hold, and that nv2(q(αn)) → ∞. Then

v(q(αn))
√
n

(
q̂N (αn)

q(αn)
− 1

)
=

{
ζn if γF < γG,

OP(1) if γF = γG,

where ζn is a random variable which is asymptotically Gaussian centered with
variance γ2F .

Theorem 2 is a convergence result for the intermediate quantile estimator q̂N (αn),
provided nv2(q(αn)) → ∞, which ensures that αn → 0 slowly enough. To ex-
amine the asymptotic properties of the extreme quantile estimator (2), we start
by proving a couple of results on the tail index estimator γ̂N,F (kN , k

′
N ). Before

that, we introduce some notation: we will write Ψ ∈ RV2(a,∆) where a ∈ R and
∆ is a bounded measurable function having ultimately constant sign and con-
verging to 0 at infinity, such that |∆| is an ultimately monotonic and regularly
varying function, if there exists a positive constant c such that

Ψ(y) = cya exp

(∫ y

1

∆̃(z)

z
dz

)
with ∆̃(y) = ∆(y)(1 + o(1)) as y → ∞.

The following second-order condition is required:

(C) We have F ∈ RV2(−1/γF ,∆F ) and G ∈ RV2(−1/γG,∆G) where γF ,
γG > 0 and |∆F | ∈ RV1(ρF ), |∆G| ∈ RV1(ρG) with ρF , ρG ≤ 0.
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It can be shown (see Lemma 8) that if (C) holds, then provided ρF 6= ρG and
ρG 6= −1/γF , an analogue of condition (C) also holds for F ∗ and G∗.
Finally, let UF∗ , UG∗ be the left-continuous inverses of 1/F ∗ and 1/G∗. The
following result, in which we write s ∨ t and s ∧ t for the maximum and the
minimum of two real numbers s and t and ⌊·⌋ for the floor function, examines
the asymptotic properties of γ̂N,F (kN , k

′
N ).

Theorem 3 Let (kn), (k
′
n) be such that kn ∧ k′n → ∞ and (kn ∨ k′n)/n → 0.

Assume that (M) holds. Then we have γ̂N,F (kN , k
′
N )

P−→ γF . Suppose moreover
that (C) holds, that ρF 6= ρG and ρG 6= −1/γF , that kn∆

2
F∗(UF∗(n/kn)) ∨

k′n∆
2
G∗(UG∗(n/k′n)) → 0 and

sup
r,s∈In

∣∣∣∣
kr ∧ k′r
ks ∧ k′s

− 1

∣∣∣∣→ 0 where In = [np(1− n−1/4), np(1 + n−1/4)]. (4)

Then if either kn/k
′
n → 0 or k′n/kn → 0, we have

√
k⌊np⌋ ∧ k′⌊np⌋ (γ̂N,F (kN , k

′
N )− γF )

d−→ N
(
0, σ2

F

)
, (5)

where σ2
F is equal to γ2F (1 + γF /γG)

2 if kn/k
′
n → 0 and γ4F /γ

2
G if k′n/kn → 0.

In the case kn/k
′
n → 1, then we have

√
k⌊np⌋ (γ̂N,F (kN , k

′
N )− γF ) = OP(1). (6)

A careful examination of the proof reveals that contrary to Theorems 1 and 2,
Theorem 3 also holds when γF > γG. Before combining Theorems 2 and 3 to
obtain the rate of convergence of the estimator q̂WN (βn |αn, kN , k

′
N ), we state

three remarks about Theorem 3.

Remark 1 Note that without assuming condition (4) the rate of convergence in
Theorem 3 would be the random quantity

√
kN ∧ k′N , see the proof for further

details.

Remark 2 Conditions kn∆
2
F∗(UF∗(n/kn)) → 0 and k′n∆

2
G∗(UG∗(n/k′n)) → 0

are analogues of the condition classically used to prove the asymptotic normality
of the Hill estimator. They ensure that the bias of the estimator is negligible
with respect to its standard deviation.

Remark 3 Since in the case kn/k
′
n → 1 the correlation between γ̂N,F∗(kN )

and γ̂N,G(k
′
N ) is very difficult to evaluate, Theorem 3 only provides the rate

of convergence of γ̂N,F (kN , k
′
N ) − γF to zero. This case is interesting when

γF < γG, i.e. if the tail of T is larger than the tail of Y , because then the tail
of Y would not be too contaminated as a result of truncation. On the contrary,
in the case when the tail of Y is the heaviest (which we cannot consider for
the estimation of extreme quantiles), there would be higher confidence in the
estimation of γG than in that of γF∗ , which would lead us to take kn/k

′
n → 0.
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The final result of this section gives some asymptotic properties of the estimator
q̂WN (βn |αn, kN , k

′
N ):

Theorem 4 Let αn → 0, βn → 0, kn ∧ k′n → ∞ and (kn ∨ k′n)/n → 0. As-
sume that (M), (3) and (C) hold. Assume that ρF 6= ρG and ρG 6= −1/γF , that
βn/αn → 0, nv2(q(αn)) → ∞, nv2(q(αn))∆

2
F (q(αn)) → 0, kn∆

2
F∗(UF∗(n/kn))∨

k′n∆
2
G∗(UG∗(n/k′n)) → 0,

(k⌊np⌋ ∧ k′⌊np⌋)/nv2(q(αn)) → 1 and sup
r,s∈In

∣∣∣∣
kr ∧ k′r
ks ∧ k′s

− 1

∣∣∣∣→ 0.

Then, if γF < γG and either kn/k
′
n → 0 or k′n/kn → 0, we have

v(q(αn))
√
n

log(αn/βn)

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)
− 1

)
d−→ N

(
0, σ2

F

)
. (7)

In the case kn/k
′
n → 1, or if γF = γG and either kn/k

′
n → 0 or k′n/kn → 0, we

have
v(q(αn))

√
n

log(αn/βn)

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)
− 1

)
= OP(1). (8)

4 Simulation study

To illustrate the behavior of our estimators, we shall use the following model:

∀y, t > 0, F (y) = (1 + y1/δ)−δ/γF and G(t) = (1 + t1/δ)−δ/γG ,

where δ > 0 and 0 < γF < γG. Note that in this situation, ρF = ρG = −1/δ.
Thus, the larger the value of δ, the smaller the values of |ρF | and |ρG| and the
slower γ̂N,F (kN , k

′
N ) converges to γF , see e.g. de Haan and Ferreira (2006, p.77)

for the related situation when there is no truncation. An important bias in the
estimation of q(βn) can then be expected to appear if δ is large. Moreover, the
truncation probability is given in our setting by 1− p with p = γG/(γF + γG).
In this simulation study, we examine the finite sample behavior of several es-
timators of the extreme quantile q(βn) for βn varying in (0, 0.15]. We first
consider the two estimators introduced in the present paper, namely q̂N (βn)

and q̂WN (βn|αn) = q̂N (αn) (αn/βn)
γ̂N,F (αn), where (αn) is a sequence in (0, 1)

and γ̂N,F (αn) is the estimator of the tail-index γF defined in (1) with kN =
k′N = ⌊Nαn⌋. In order to evaluate how important it is to take into account
the fact that the data are right-truncated, we also consider the naive estimators

q̂∗N (βn) = inf{y ≥ y0|F̂
∗

N (y) ≤ βn}, and its extrapolated version q̂W,∗
N (βn) =

q̂∗N (α∗
n) (α

∗
n/βn)

γ̂N,F∗ (α∗

n), where (α∗
n) is a sequence in (0, 1) and γ̂N,F∗(α∗

n) =
γ̂N,F∗(⌊Nα∗

n⌋). These last two estimators are computed using only the obser-
vations {Y ∗

i , i = 1, . . . , N}, ignoring the fact that these observations are in fact
truncated. Note finally that the Weissman-type estimators only depend on the
choice of the parameters αn or α∗

n.
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In this simulation study, we generate R = 1000 samples of size n = 200
from the distributions F and G with δ ∈ {1/3, 1}, for γF ∈ {1/4, 1/2, 1} and
p ∈ {0.7, 0.8, 0.9, 0.95}. In each case and for given αn, α

∗
n and βn, we obtain the

observations (q̂
(r)
N (βn), q̂

W,(r)
N (βn|αn), q̂

(r),∗
N (βn), q̂

W,(r),∗
N (βn|α∗

n)), r = 1, . . . , R of
the estimators. For each replication, αn and α∗

n are then taken as

α
(r)
opt := argmin

α∈(0.04,0.15]

∫ 0.15

0.04

log2

(
q̂
(r)
N (β)

q̂
W,(r)
N (β|α)

)
dβ,

and α
(r),∗
opt := argmin

α∈(0.04,0.15]

∫ 0.15

0.04

log2

(
q̂
(r),∗
N (β)

q̂
W,(r),∗
N (β|α)

)
dβ.

The idea behind these criteria is that for quantiles which are not too large, the

estimators q̂
(r)
N (resp. q̂

(r),∗
N ) and q̂

W,(r)
N (.|αn) (resp. q̂

W,(r),∗
N (.|α∗

n)) should be
close if αn (resp. α∗

n) is well chosen. Next, we compute the errors

E(q̌(r)) :=

∫ 0.15

0

log2
(
q̌(r)(β)

q(β)

)
dβ,

where q̌(r) is either q̂
(r)
N , q̂

(r),∗
N , q̂

W,(r)
N (.|α(r)

opt) or q̂
W,(r),∗
N (.|α(r),∗

opt ). The error
E is a measure of the overall performance of a quantile estimator when esti-
mating extreme quantiles. For θ = {0.1, 0.5, 0.9}, let r(θ) (resp. s(θ), r∗(θ)
and s∗(θ)) be the replication corresponding to the quantile of order θ of the

set {E(q̂
(r)
N ), r = 1, . . . , R} (resp. {E(q̂

W,(r)
N ), r = 1, . . . , R}, {E(q̂

(r),∗
N ), r =

1, . . . , R} and {E(q̂
W,(r),∗
N ), r = 1, . . . , R}). In each situation, the errors cor-

responding to these replications are given respectively in Tables 1, 2, 3 and 4.
It appears that the Weissman-type estimators perform better than the others,
which is not surprising since these estimators are specifically adapted to the
estimation of extreme quantiles. Besides, we can see that the smaller is the
probability p, the larger is the bias of the estimators. This was also expected
since in our setting, a smaller probability p means a greater number of obser-
vations missing in the right tail of Y . Note also that the importance to take
into account the fact that the data are right-truncated appears clearly for the
Weissman-type estimators when p is small. For large values of p, the naive es-
timators and the estimators proposed in this paper have similar performances.

5 Real data example

The dataset we work on here deals with the lifetime of automobile brake pads.
It was already considered by Lawless (2002, Example 2.4.2) and obtained in
the following way: in order to study the brake pad lifetime, a car manufacturer
selected a random sample of cars which were sold over the previous year. In
this situation, one way to obtain the brake pad lifetime is to conduct frequent
assessments of the brake pad until it is found to be so worn out that it re-
quires replacement, but this procedure is too time-consuming and difficult to
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implement. Instead, this lifetime was estimated by the manufacturer, based on
a measure of the brake pad thickness. For each car, the observed mileage M
and the estimated lifetime L were collected, and only the cars with a response
variable L larger than M , or equivalently cars whose brake pad thickness was
so large that the brake pads did not require immediate replacement, were kept.
The random variables L and M can reasonably be assumed to be independent.
At the end of this process, only N = 98 estimated lifetimes {L∗

i , i = 1, . . . , N}
and mileages {M∗

i , i = 1, . . . , N} remained in the sample. Note that since the
variable of interest is the brake pad lifetime, this is actually a randomly left-
truncated sample. In order to work within the framework of the present paper,
the following transformation is used: for i ∈ {1, . . . , N}, we define

Y ∗
i = (L∗

i −mN − εt)−1 and T ∗
i = (M∗

i −mN − ε)−1,

where mN = min{M∗
1 , . . . ,M

∗
N} and ε = 0.05. Thus, (Y ∗

1 , T
∗
1 ), . . . , (Y

∗
N , T

∗
N )

can be seen as randomly right-truncated observations from a random sample of
independent copies of a random pair (Y, T ), whose size n is unknown. We now
need to check that this random sample presents some evidence of heavy tails.
To this aim, using our Hill-type estimators, the estimations of the tail indices
γF∗ and γG (using the same notation as before) are represented on Figure 7 as
functions of kN ∈ {1, . . . , 90}. It appears clearly that the estimated values are
positive and, for intermediate values of kN , the estimations of γF∗ and γG seem
to be fairly stable. We thus are led to believe that there is indeed evidence of
heavy tails for this random sample.
We now estimate the extreme quantiles of Y using the Weissman-type estimator
q̂N (βn|αn), where αn is chosen as in the simulation study. The selected value of
αn for this dataset is 0.123, corresponding to kN = 12. The tail indices γF∗ , γF
and γG are respectively estimated to be 0.32, 0.60 and 0.69. In particular, the
estimate of γF is less than that of γG, which seems to indicate that condition
(M) is satisfied. On Figure 7, the estimated quantile q̂N (βn|αn) for βn ∈
(0, 0.15) and the one associated to the original data, namely q̃N (1 − βn|αn) =

(q̂N (βn|αn))
−1

+mN −ε are represented. In particular, we may see on the right
panel of Figure 7 that the brake pad lifetime is estimated to be less than 13 500
kilometers for only 1% of the cars.

6 Conclusion

In this paper, we introduced and studied an extreme quantile estimator for
randomly right-truncated data. This estimator is built upon an empirical high
quantile estimator and a tail index estimator which are both adapted for random
right-truncation. Our extreme quantile estimator has satisfying performances,
be them theoretical or practical.

Future work on our estimator includes obtaining the asymptotic normality of the
tail index estimator and the extreme quantile estimator when kn = k′n. This is
not only a stimulating theoretical problem but also an interesting practical one,

9



since we consider this case in our simulation study and data analysis. Another
question worthy of research would be to build and study extreme-value index
estimators and extreme quantile estimators when the distribution functions of
Y and T belong to an arbitrary max-domain of attraction (de Haan and Ferreira
2006). This would certainly be useful in practical applications, for instance when
trying to handle random samples whose underlying marginal distributions are
believed to be short-tailed.

7 Proofs of the main results

Proof of Theorem 1. As a preliminary step, note that when N > 0 (which is
true with arbitrarily large probability as n→ ∞, by Lemma 1), one has

Λ̂F
N (yn)− ΛF (yn)

F (yn)
= Sn,1 + Sn,2 + Sn,3 −

ΛF (yn)

F (yn)
I{Y ∗

N,N
≤yn}

where Sn,1 = I{Y ∗

N,N
>yn}

(
1

n

[
N∑

i=1

I{Y ∗

i
>yn}

pF (yn)C∗(Y ∗
i )

]
− ΛF (yn)

F (yn)

)
,

Sn,2 =

(
p

N
− 1

n

)( N∑

i=1

I{Y ∗

i
>yn}

pF (yn)C∗(Y ∗
i )

)
I{Y ∗

N,N
>yn}

and Sn,3 =
I{Y ∗

N,N
>yn}

NF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(
1

Ĉ∗
N (Y ∗

i )
− 1

C∗(Y ∗
i )

)
.

Lemma 4 entails that I{Y ∗

N,N
≤yn} is zero with arbitrarily large probability as

n→ ∞ and thus:

v(yn)
√
n

(
Λ̂F
N (yn)− ΛF (yn)

F (yn)

)
= v(yn)

√
n

3∑

j=1

Sn,j + oP(1).

Let us first focus on the term Sn,1 which we can rewrite as

Sn,1 =
I{Y ∗

N,N
>yn}

n

n∑

i=1

Wn,i where Wn,i :=
I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)
− ΛF (yn)

F (yn)
. (9)

It is easy to check that the Wn,i are independent, identically distributed and
centered random variables. From (9) we get

E(W 2
n,1) =

1

p2F
2
(yn)

E

(
I{Y >yn}I{Y≤T}

(C∗(Y ))2

)
−
(
ΛF (yn)

F (yn)

)2

. (10)

We now use the fact that since F is nondecreasing and F (yn) → 1, we have

ΛF (yn)

F (yn)
− 1 =

1

F (yn)

∫ ∞

yn

F (z)

F (z)
dF (z) = O(F (yn)) (11)

10



and by Proposition 1, C∗ = p−1FG so that

1

p2
E

(
I{Y >yn}I{Y≤T}

(C∗(Y ))2

)
=

∫ ∞

yn

dF (z)

G(z)F 2(z)
=

∫ ∞

yn

dF (z)

G(z)
(1 + o(1)). (12)

• In the case γF < γG, noting that dF (z) = −dF (z), we get from (10), (11),
(12) and (36) (see the Appendix):

E(W 2
n,1) =

γG
γG − γF

1

F (yn)G(yn)
(1 + o(1)). (13)

Furthermore, because γF < γG, one can pick δ > 0 such that (1+δ)/γG−1/γF <
0. Hölder’s inequality then gives

E[|Wn,1|2+δ] ≤ 21+δ

(
E

(
I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)

)2+δ

+ 1 + o(1)

)
,

where (11) was used. Besides, since F is nondecreasing and F (yn) → 1, we

obtain by Lemma 2 with ϕ = 1/G
1+δ

and ψ = F :

E

(
I{Yi>yn}I{Yi≤Ti}

pC∗(Yi)

)2+δ

=

∫ ∞

yn

dF (z)

G
1+δ

(z)F 2+δ(z)
= O

(
F (yn)

G
1+δ

(yn)

)
. (14)

It follows from (13), (14) and (36) that

n−δ/2 E[|Wn,1|2+δ]

[Var(Wn,1)]1+δ/2
= O

(
[nF (yn)G(yn)]

−δ
)
= O

(
[v(yn)

√
n]−δ

)
→ 0.

Since the Wn,i are independent, identically distributed and centered random
variables, Lyapunov’s central limit theorem (see e.g. Billingsley 1979, p.312)

entails
√
nSn,1/

√
Var(Wn,1)

d−→ N (0, 1). Using (13) and the convergence
I{Y ∗

N,N
>yn} → 1 leads to

v(yn)
√
nSn,1

d−→ N (0, 1) when γF < γG. (15)

• When γF = γG, we note that using condition (3), the second part of
Lemma 2 with ϕ = 1/G and ψ = F entails that the function v is regularly
varying with index −1/γF < 0. This yields

1

F
2
(yn)

∫ ∞

yn

dF (z)

G(z)
→ ∞. (16)

Consequently, from (10), (11) and (16), we get E(W 2
n,1) = O(1/v2(yn)), which

entails
v(yn)

√
nSn,1 = OP(1) when γF = γG. (17)

11



Let us now focus on the term Sn,2. From the previous results, it is clear that

1

n

N∑

i=1

I{Y ∗

i
>yn}

pF (yn)C∗(Y ∗
i )

I{Y ∗

N,N
>yn}

P−→ 1.

Since np/N = 1 + OP

(
n−1/2

)
from Lemma 1, one has, using Lemma 4, that

Sn,2 = OP

(
n−1/2

)
. Using the convergence v(yn) → 0 it is now obvious that

v(yn)
√
nSn,2 = oP(1). (18)

Let us now control Sn,3. Note that (see Woodroofe 1985, pp.172–173):

√
n sup

z∈R

∣∣∣F̂ ∗
N (z)− F ∗(z)

∣∣∣ = OP(1) and
√
n sup

z∈R

∣∣∣Ĝ∗
N (z)−G∗(z)

∣∣∣ = OP(1).

Therefore, it comes that

√
n sup

1≤i≤N

∣∣∣Ĉ∗
N (Y ∗

i )− C∗(Y ∗
i )
∣∣∣ I{Y ∗

i
>yn} = OP(1).

By Lemmas 1 and 5, we thus obtain:

v(yn)
√
nSn,3 = OP

(
v(yn)

nF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2
I{Y ∗

N,N
>yn}

)
. (19)

Since
N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2
=

n∑

i=1

I{Yi>yn}I{Yi≤Ti}

(C∗(Yi))2
,

it follows from (12) that

E

(
v(yn)

nF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2

)
= p2

√∫ ∞

yn

dF (z)

G(z)
(1 + o(1)) → 0, (20)

because the integral in the right-hand side converges to 0. Using (19) and (20)
entails

v(yn)
√
nSn,3 = OP

(
v(yn)

nF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2
I{Y ∗

N,N
≥yn}

)
= oP(1). (21)

Use finally (15), (17), (18) and (21) together to get

v(yn)
√
n

(
Λ̂F
N (yn)− ΛF (yn)

F (yn)

)
=

{
ξn if γF < γG,

OP(1) if γF = γG,

where ξn is a random variable which is asymptotically standard Gaussian dis-
tributed. Using the delta-method concludes the proof of Theorem 1.
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Proof of Theorem 2. We start by the case γF < γG and we define σn =
q(αn)/[v(q(αn))

√
n]. It is enough to show that Φn(z) := P(σ−1

n (q̂N (αn) −
q(αn)) ≤ z) → Φ(z), for every z ∈ R, where Φ is the cdf of a N (0, γ2F ) dis-
tribution. Let us introduce the sequence ϑn := γF v(q(αn))

√
n/αn. It is easy to

check that Φn(z) = P(Wn ≤ zn), where

Wn = ϑn

(
F̂N (q̃n)− F (q̃n)

)
and zn = ϑn(αn − F (q̃n)),

with q̃n = q(αn) + σnz. Let us first focus on the nonrandom term zn. Since
F is a differentiable function, there exists θn ∈ (0, 1) such that αn − F (q̃n) =
σnzF

′(q(αn) + θnσnz). Since σn/q(αn) → 0 as n→ ∞, we may use the conver-
gence yF ′(y)/F (y) → 1/γF to get F ′(q(αn)+ θnσnz) = γ−1

F αn/q(αn)(1+o(1)).
Hence the following equality holds:

zn = ϑnσnz
1

γF

αn

q(αn)
(1 + o(1)) = z(1 + o(1)). (22)

We now consider the random term Wn. One has

Wn =
ϑnF (q̃n)

v(q̃n)
√
n
Zn where Zn = v(q̃n)

√
n

(
F̂N (q̃n)

F (q̃n)
− 1

)
.

Note that from model (M), F (q̃n) = αn(1+o(1)). Moreover, it is a consequence
of Lemma 2 that the function v is regularly varying, so that v(q̃n) = v(q(αn))(1+
o(1)). Consequently ϑnF (q̃n) = γF v(q̃n)

√
n(1 + o(1)). Apply then Theorem 1

with yn = q̃n to obtain that Zn
d−→ N (0, 1) and thus Wn

d−→ N (0, γ2F ), which
concludes the proof in the case γF < γG.
Now, if γF = γG, we start by showing that if (εn) is an arbitrary nonrandom pos-
itive sequence tending to 0 at infinity such that εnv(q(αn))

√
n = εnq(αn)/σn →

∞, we have

εnσ
−1
n |q̂N (αn)− q(αn)| P−→ 0. (23)

Pick then an arbitrary z > 0. We shall show that ϕn(z) := P(εnσ
−1
n |q̂N (αn) −

q(αn)| > z) → 0. With ϑn as above, it is easy to check that ϕn(z) = P(Wn,+ >
zn,+) + P(Wn,− < zn,−), where

Wn,± = ϑn

(
F̂N (q̃n)− F (q̃n)

)
and zn,± = ϑn(αn − F (q̃n)),

where we redefine q̃n := q(αn) ± ε−1
n σnz. Let us first focus on the nonrandom

term zn,±. Mimicking the arguments leading to (22) in the proof of the first
part of Theorem 2, we get that

zn,± = ±ϑnε−1
n σnz

1

γF

αn

q(αn)
(1 + o(1)) = ±ε−1

n z(1 + o(1)). (24)

We now consider the random term Wn,±. One has

Wn,± =
ϑnF (q̃n)

v(q̃n)
√
n
Zn,± where Zn,± = v(q̃n)

√
n

(
F̂N (q̃n)

F (q̃n)
− 1

)
.
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Since F and v are regularly varying, we have F (q̃n) = αn(1+o(1)) and v(q̃n) =
v(q(αn))(1 + o(1)) which leads to ϑnF (q̃n) = γF v(q̃n)

√
n(1 + o(1)). On the

other hand, the second part of Theorem 1 implies that εnZn,± = oP(1), so that
using (24) we obtain for n large enough

ϕn(z) ≤ P(εnZn,+ > z/2) + P(εnZn,− < −z/2) → 0

and the proof of (23) is complete. Note now that if (εn) is an arbitrary non-

random positive sequence, we have εn ≤ ε′n := εn ∨ (v(q(αn))
√
n)

−1/2
with

ε′nv(q(αn))
√
n→ ∞. It can thus easily be seen that in fact (23) holds for every

positive sequence (εn); applying Lemma 6 completes the proof of Theorem 2.

Proof of Theorem 3. Use Lemma 1 to get P(N ∈ In) → 1, where In is defined
in equation (4). The consistency statement is thus an immediate consequence
of Lemmas 3 and 9.

To prove (5) and (6), write

γ̂n,F (kN , k
′
N )− γF =

γ̂N,F∗(kN )γ̂N,G(k
′
N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
− γF∗γG
γG − γF∗

.

Since γ̂N,F∗(kN )
P−→ γF∗ and γ̂N,G(k

′
N )

P−→ γG, it is straightforward to obtain
the equality

γ̂n,F (kN , k
′
N )− γF =

(
1 +

γF
γG

)2

(γ̂N,F∗(kN )− γF∗)− γ2F
γ2G

(γ̂N,G(k
′
N )− γG)

+ oP(γ̂N,F∗(kN )− γF∗) + oP(γ̂N,G(k
′
N )− γG).

Applying Lemma 8 proves that F ∗ and G∗ satisfy the conditions of Lemma 9.
Using then Lemma 9 twice concludes the proof.

Proof of Theorem 4. From condition (C), note that we may write

∀y > 0, F (y) = y−1/γFLF (y) with LF (y) = cF exp

(∫ y

1

∆̃F (v)

v
dv

)

where cF is a positive constant and ∆̃F is asymptotically equivalent to ∆F .
Further, since q is the (generalized) inverse function of F , it satisfies the equation

∀α ∈ (0, 1), q(α) = α−γFLγF

F (q(α)). (25)

Note that since |∆̃F | is asymptotically equivalent to the ultimately monotonic
function |∆F |, one has for n large enough

εn :=
1

log(αn/βn)

∣∣∣∣log
(
LF (q(βn))

LF (q(αn))

)∣∣∣∣ ≤ 2
|∆F (q(αn))|
log(αn/βn)

log

(
q(βn)

q(αn)

)
.

By (25) we obtain for n large enough εn ≤ 2γF |∆F (q(αn))|(1+εn), which entails

εn ≤ 2γF |∆F (q(αn))|
1− 2γF |∆F (q(αn))|

= O(|∆F (q(αn))|) .
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Using once again (25), we get

log

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)

)
= log

(
q̂N (αn)

q(αn)

)
+ (γ̂N,F (kN , k

′
N )− γF ) log

(
αn

βn

)

+ O(|∆F (q(αn))|) . (26)

To prove (7), remark that since log(αn/βn) → ∞, applying Theorems 2 and 3
together with Slutsky’s lemma yields, if either kn/k

′
n → 0 or k′n/kn → 0 with

γF < γG:

v(q(αn))
√
n

log(αn/βn)
log

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)

)
d−→ N (0, σ2

F ).

Using the delta-method ends the proof of (7). To prove (8) if kn/k
′
n → 1 or

γF = γG, use (26), Theorems 2 and 3 to get

v(q(αn))
√
n

log(αn/βn)
log

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)

)
= OP(1).

Applying the mean-value theorem to the exponential function ends the proof of
Theorem 4.
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Appendix - Preliminary results

The first result gives an equivalent of the random variable N and the conditional
distribution of (Y ∗

1 , T
∗
1 ), . . . , (Y

∗
N , T

∗
N ) given N .

Lemma 1 We have N/np = 1 +OP(n
−1/2). Furthermore, the conditional dis-

tribution of (Y ∗
1 , T

∗
1 ), . . . , (Y

∗
N , T

∗
N ) given N = m > 0 is equal to the distribution

of m independent copies of a random vector (Y ∗, T ∗) with cdf H∗.

Proof of Lemma 1. The first part of the result is a straightforward conse-
quence of Chebyshev’s inequality. Let now (Ai)i≥1 be arbitrary Borel subsets
of [y0,∞)× [t0,∞). If m ≥ 1,

P((Y ∗
1 , T

∗
1 ) ∈ A1, . . . , (Y

∗
N , T

∗
N ) ∈ AN , N = m)

=

(
n

m

)
P((Yi, Ti) ∈ Ai, Yi ≤ Ti, Yj > Tj , i = 1, . . .m, j = m+ 1, . . . , n)

=



(
n

m

) m∏

i=1

P(Yi ≤ Ti)

n∏

j=m+1

P(Yj > Tj)




m∏

i=1

P((Yi, Ti) ∈ Ai|Yi ≤ Ti)

= P(N = m)

m∏

i=1

P((Y ∗, T ∗) ∈ Ai),

which concludes the proof.

Lemma 2 Let ϕ ∈ RV1(α) and ψ ∈ RV1(−β) with α ∈ R and β > 0. Assume
that ψ is right-continuous and nonincreasing on some interval [A,∞), A ≥ 0.
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• If α < β then the function ϕ is integrable with respect to ψ on a neighbor-
hood of infinity and

∫ ∞

y

ϕ(z)dψ(z) = − β

β − α
ϕ(y)ψ(y)(1 + o(1)) as y → ∞.

• If α = β and
∫∞

A
ϕ(z)dψ(z) < ∞ then y 7→ −

∫∞

y
ϕ(z)dψ(z) is slowly

varying at infinity and

− 1

ϕ(y)ψ(y)

∫ ∞

y

ϕ(z)dψ(z) → ∞ as y → ∞.

Proof of Lemma 2. We start by the case α < β. Let 2δ = β − α > 0, take
y ≥ A so large that y−α−δϕ(y) ≤ 1 and write for Y > y:

∫ Y

y

ϕ(z)dψ(z)

ϕ(y)ψ(y)
=

∫ Y

y

[
z−α−δϕ(z)

y−α−δϕ(y)
−
(
z

y

)−δ
]
zα+δdψ(z)

yα+δψ(y)
+

∫ Y

y

zαdψ(z)

yαψ(y)
.

(27)
Let now

S(y) = sup
λ≥1

∣∣∣∣
(λy)−α−δϕ(λy)

y−α−δϕ(y)
− λ−δ

∣∣∣∣ .

A uniform convergence result for the function y 7→ y−α−δϕ(y) (see e.g. Theorem
1.5.2 in Bingham et al., 1987) entails that S(y) converges to 0 as y → ∞.
Furthermore, since ψ is nonincreasing,

∣∣∣∣∣

∫ Y

y

[
z−α−δϕ(z)

y−α−δϕ(y)
−
(
z

y

)−δ
]
zα+δdψ(z)

∣∣∣∣∣ ≤ −S(y)
∫ Y

y

zα+δdψ(z). (28)

Besides, Theorem 1.6.5 in Bingham et al. (1987) entails for all θ < β

∫ ∞

y

zθdψ(z) = − β

β − θ
yθψ(y)(1 + o(1)) as y → ∞. (29)

Using (29) with θ = α+ δ thus entails that the expression on the left-hand side
of (28) has a finite limit as Y → ∞ and we may write
∣∣∣∣∣

∫ ∞

y

[
z−α−δϕ(z)

y−α−δϕ(y)
−
(
z

y

)−δ
]
zα+δdψ(z)

∣∣∣∣∣ = o(yα+δψ(y)) as y → ∞. (30)

Combining (27), (29) with θ = α and (30) concludes the proof of the first
statement.

We turn to the case α = β. Pick an arbitrary µ > 1; since ψ is nonincreasing
on [A,∞), we have for y ≥ A:

−
∫ ∞

y

ϕ(z)dψ(z)

ϕ(y)ψ(y)
≥ −

∫ µy

y

ϕ(z)dψ(z)

ϕ(y)ψ(y)
. (31)
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To control the expression on the right-hand side of (31), write
∫ µy

y

ϕ(z)dψ(z)

ϕ(y)ψ(y)
=

∫ µy

y

[
ϕ(z)

ϕ(y)
−
(
z

y

)α]
dψ(z)

ψ(y)
+

∫ µy

y

zαdψ(z)

yαψ(y)
. (32)

Once again, since ψ is nonincreasing,
∣∣∣∣
∫ µy

y

[
ϕ(z)

ϕ(y)
−
(
z

y

)α]
dψ(z)

ψ(y)

∣∣∣∣ ≤ sup
1≤λ≤µ

∣∣∣∣
ϕ(λy)

ϕ(y)
− λα

∣∣∣∣
∣∣∣∣1−

ψ(µy)

ψ(y)

∣∣∣∣ .

A uniform convergence result for the function ϕ on compact sets (see e.g. The-
orem 1.5.2 in Bingham et al. 1987) and the convergence ψ(µy)/ψ(y) → µ−β as
y → ∞ entail

∣∣∣∣
∫ µy

y

[
ϕ(z)

ϕ(y)
−
(
z

y

)α]
dψ(z)

ψ(y)

∣∣∣∣→ 0 as y → ∞. (33)

Further, an integration by parts yields

−
∫ µy

y

zαdψ(z)

yαψ(y)
=

(
1− (µy)αψ(µy)

yαψ(y)

)
+ α

∫ µy

y

[
zαψ(z)

yαψ(y)
− 1

]
dz

z
+ α logµ.

Since y 7→ yαψ(y) is slowly varying at infinity, Theorem 1.5.2 in Bingham et al.
(1987) gives

−
∫ µy

y

zαdψ(z)

yαψ(y)
→ α logµ as y → ∞. (34)

Combine then (31), (32), (33) and (34) to get for y large enough

−
∫ ∞

y

ϕ(z)dψ(z)

ϕ(y)ψ(y)
≥ −

∫ µy

y

ϕ(z)dψ(z)

ϕ(y)ψ(y)
= α logµ(1 + o(1)) (35)

which, since µ > 1 is arbitrary, proves that the left-hand side of this inequality
tends to infinity as y → ∞. We conclude the proof by noting that from (35),
for all λ > 0,
∫ ∞

λy

ϕ(z)dψ(z)

∫ ∞

y

ϕ(z)dψ(z)

− 1 = −

∫ λy

y

ϕ(z)dψ(z)

∫ ∞

y

ϕ(z)dψ(z)

= − ϕ(y)ψ(y)∫ ∞

y

ϕ(z)dψ(z)

α log(λ)(1 + o(1))

converges to 0 as y → ∞, which is what we wanted to prove.

If
∫∞

y0
dF (z)/G(z) <∞, using Lemma 2 with ϕ = 1/G and ψ = F entails

√
F (y)G(y)

v(y)
→
{√

γG/(γG − γF ) if γF < γG

∞ if γF = γG
as y → ∞, (36)

where as in Theorem 1,

v(y) := F (y)

(∫ ∞

y

dF (z)

G(z)

)−1/2

.
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Lemma 3 Assume that F ∈ RV1(−1/γF ), G ∈ RV1(−1/γG) where γF , γG >
0. Then as y, t→ ∞:

F ∗(y)

F (y)G(y)
→ 1

p

γG
γF + γG

and
G∗(t)

G(t)
→ 1

p
.

Proof of Lemma 3. Pick y, t > 0 and recall from (37) that

F ∗(y) =
1

p

∫ ∞

y

G(z)dF (z) and G∗(t) =
1

p

∫ ∞

t

F (z)dG(z). (37)

Noting that F (z) → 1 as z → ∞ and dF (z) = −dF (z), the result is then a
straightforward consequence of Lemma 2 with ϕ = G and ψ = F .

Lemma 4 For all y ≥ y0, P(Y ∗
N,N ≤ y) =

(
1− pF

∗
(y)
)n

. Consequently, if

(M) holds, yn → ∞ and nv2(yn) → ∞ then P(Y ∗
N,N ≤ yn) → 0.

Proof of Lemma 4. From Lemma 1, given N = m, the random variables
Y ∗
1 , . . . , Y

∗
m are independent and identically distributed with cdf F ∗. Therefore

for all y ≥ y0, conditioning on N gives

P(Y ∗
N,N ≤ y) =

n∑

m=0

(
n

m

)
[pF ∗(y)]m(1− p)n−m

which yields the first part of the result. Lemma 3 now entails

n log(1−pF ∗
(yn)) = −pnF ∗

(yn)(1+o(1)) = − γG
γF + γG

nF (yn)G(yn)(1+o(1)).

Use then (36) to obtain that nF (yn)G(yn) → ∞; consequently, P(Y ∗
N,N ≤ yn) →

0, which concludes the proof.

Lemma 5 If yn → ∞ then

sup
1≤i≤N
Y ∗

i >yn

C∗(Y ∗
i )

Ĉ∗
N (Y ∗

i )
= OP(1).

Proof of Lemma 5. We closely follow the proof of Lemma 1.2 in Stute [26].
For 0 < s, t ≤ 1 and λ ≥ 1, set

Hn(s, t) =
1

n

n∑

i=1

I{Ui≤s, Vi≤t}

where (U1, V1), . . . , (Un, Vn) is a sample of independent copies of a random pair
(U, V ) which is uniformly distributed on the unit square. We shall prove that
for every 0 < a, b ≤ 1 and every µ ∈ (0, 1)

P


 sup

a≤s≤1
b≤t≤1

−Hn(s, t)

st
≥ −µ


 ≤ exp (−nab h(µ) + 1) (38)
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where h(z) = 1 + z(log z − 1). To this end, we follow the steps of Lemma 1.1
in Stute [26], whose proof is itself similar to the proof of inequality (5) p.415 in
Shorack and Wellner [25]. For an arbitrary t ∈ [0, 1] let Ft be the σ-algebra

Ft = σ ({Vi ≤ t′}, 1 ≤ i ≤ n, t ≤ t′ ≤ 1, U1, . . . , Un) .

Then (see e.g. Proposition 3.6.2 in Shorack and Wellner [25]) for every s ∈ [a, 1]
the process (

−Hn(s, t)

st
, Ft

)

b≤t≤1

is a reverse martingale. Since the image of a martingale by a convex function is
a submartingale, it follows that for every r > 0 the process

(
sup

a≤s≤1
exp

(
−rHn(s, t)

st

)
, Ft

)

b≤t≤1

is a nonnegative reverse submartingale. Doob’s maximal inequality for such
processes and the fact that the exponential function is increasing then entail

P


 sup

a≤s≤1
b≤t≤1

−Hn(s, t)

st
≥ −µ


 ≤ exp(rµ)E

[
sup

a≤s≤1
exp

(
−rHn(s, b)

sb

)]
. (39)

We shall now control the expectation on the right-hand side by another martin-
gale argument: for an arbitrary s ∈ [0, 1] let Gs be the σ-algebra

Gs = σ ({Ui ≤ s′}, 1 ≤ i ≤ n, s ≤ s′ ≤ 1, V1, . . . , Vn) .

The same ideas used above show that for every q > 1 and r > 0 the process
(
exp

(
−r
q

Hn(s, b)

sb

)
, Gs

)

a≤s≤1

is a nonnegative reverse submartingale. Doob’s maximal inequality for q−th
moments of a submartingale yields

E

(
sup

a≤s≤1
exp

(
−rHn(s, b)

sb

))
≤
[

q

q − 1

]q
E

(
exp

(
−rHn(a, b)

ab

))
.

Let q → ∞ and recall (39) to get, for every r > 0,

P


 sup

a≤s≤1
b≤t≤1

−Hn(s, t)

st
≥ −µ


 ≤ exp(rµ+ 1)E

(
exp

(
−rHn(a, b)

ab

))
.

Finally, since the expectation on the right-hand side above can be seen as the
moment generating function of a binomial random variable at −r/nab,

E

(
exp

(
−rHn(a, b)

ab

))
= (1− ab+ ab exp(−r/nab))n

≤ exp (−nab(1− exp(−r/nab)))
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with the classical inequality (1 − x/n)n ≤ e−x valid for every x > 0. Putting
r = −nab logµ gives (38).

We can now prove our result. Note that Ĉ∗
N (Y ∗

i ) ≥ 1/N ≥ 1/n so that





sup
1≤i≤N
Y ∗

i >yn

C∗(Y ∗
i )

Ĉ∗
N (Y ∗

i )
≥ λ





⊂





sup
t≥yn

t:C∗(t)≥λ/n

n

N

C∗(t)

Ĉ∗
N (t)

≥ λ





⊂





sup
t≥yn

t:C∗(t)≥λ/n

−N
n

Ĉ∗
N (t)

pC∗(t)
≥ − 1

λp




. (40)

Remarking that t 7→ G((−t)−) := lim
s↑−t
s<−t

G(s) is the cdf of −T , we find that

N

n
Ĉ∗

N (t) =
1

n

n∑

i=1

I{Yi≤t≤Ti} =
1

n

n∑

i=1

I{Yi≤t,−Ti≤−t} (41)

=
1

n

n∑

i=1

I{Ui≤F (t), Vi≤G(t−)} (42)

where for each n, (U1, V1), . . . , (Un, Vn) is a sample of independent copies of a
random pair (U, V ) which is uniformly distributed on the unit square. Finally,
recall that pC∗(t) = F (t)G(t) to obtain

C∗(t) ≥ λ/n⇒ G(t−) ≥ G(t) ≥ λp/n. (43)

Use now (40) together with (41) and (43) to get





sup
1≤i≤N
Y ∗

i >yn

C∗(Y ∗
i )

Ĉ∗
N (Y ∗

i )
≥ λ





⊂





sup
t:F (yn)≤F (t)≤1

t:λp/n≤G(t−)≤1

−Hn(F (t), G(t
−))

F (t)G(t−)
≥ − 1

λp




.

Noting that log(x)/x ≤ e−1 for all x > 1, inequality (38) now yields, for every
λ > 0 such that λp > 1:

P


 sup

1≤i≤N
Y ∗

i >yn

C∗(Y ∗
i )

Ĉ∗
N (Y ∗

i )
≥ λ


 ≤ exp((−λp+ log(λp) + 1)F (yn) + 1) = O(exp(−cλ))

where c is a positive constant, of which the result follows.

Lemma 6 Let (Xn) be a sequence of positive real-valued random variables such
that for every positive nonrandom sequence (δn) converging to 0, the random
sequence (δnXn) converges to 0 in probability. Then Xn = OP(1).
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Proof of Lemma 6. Assume that the sequence (Xn) is not stochastically
bounded, that is:

∃ε > 0, ∀M > 0, ∃m ∈ N, P(|Xm| > M) ≥ ε.

This entails that there exists a sequence of integers (mk), which we may choose
to be increasing, such that ∀k ∈ N\{0}, P(|Xmk

| > k) ≥ ε. Let then (δn) be the
sequence defined as δn = 1/k if mk ≤ n < mk+1. The sequence (δn) converges
to 0, and we have ∀k ∈ N \ {0}, P(|δmk

Xmk
| > 1) ≥ ε which shows that (δnXn)

does not converge in probability to 0: Lemma 6 is proven.

For an arbitrary Borel measurable function ψ such that ψ(y) 6= 0 for y large
enough and such that z 7→ ψ(z)/z is integrable in a neighborhood of infinity,
we define

I(ψ, y) =
1

ψ(y)

∫ ∞

y

ψ(z)

z
dz.

Lemma 7 Let ψ ∈ RV2(−α,∆) with α > 0 and |∆| ∈ RV1(ρ). Then we have

I(ψ, y) =
1

α
+

1

α(α− ρ)
∆(y)(1 + o(1)) as y → ∞.

Proof of Lemma 7. Start by using the change of variables z = yu to obtain

I(ψ, y)− 1

α
=

∫ ∞

1

ϕy(u)
du

uα+1
with ϕy(u) = exp

(∫ yu

y

∆̃(v)

v
dv

)
− 1 (44)

where ∆̃ is asymptotically equivalent to ∆. Since we are only interested in the
behavior of ∆̃ at infinity, we may assume without loss of generality that ∆̃ has
constant sign. Using the change of variables v = yw, a uniform convergence
result for the regularly varying function |∆̃| (see Theorem 1.5.2 in Bingham et
al. 1987) yields for all u ≥ 1:

ϕy(u) = ∆̃(y)Dρ(u)(1 + o(1)) as y → ∞ with Dρ(u) =

∫ u

1

vρ−1dv. (45)

Furthermore, Theorem 1.5.6 in Bingham et al. (1987) entails that there exists
y1 > 0 such that

∀w ≥ 1, ∀y ≥ y1,

∣∣∣∣∣
∆̃(yw)

∆̃(y)

∣∣∣∣∣ ≤ 2wρ+α/4.

It is then clear that for y ≥ y1:

∀u ≥ 1,
1

|∆̃(y)|

∣∣∣∣∣

∫ yu

y

∆̃(v)

v
dv

∣∣∣∣∣ ≤ 2Dρ+α/4(u).
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Choose now y1 so large that for every y ≥ y1, |∆̃(y)| < α/2. The inequality
|et − 1| ≤ |t|e|t|, valid for every t ∈ R, entails

∀u ≥ 1, u−α−1 sup
y≥y1

∣∣∣∣∣
ϕy(u)

∆̃(y)

∣∣∣∣∣ ≤ 2u−1−α/2Dρ+α/4(u). (46)

Because the right-hand side of this inequality defines an integrable function on
[1, ∞), we may combine (44), (45), (46) and apply the dominated convergence
theorem to obtain

I(ψ, y) =
1

α
+ ∆̃(y)

∫ ∞

1

u−αDρ(u)
du

u
(1 + o(1)) as y → ∞.

Since ∆̃ is asymptotically equivalent to ∆, the result is then a straightforward
consequence of this equality.

Lemma 8 Assume that (C) holds. Let ρF∗ = ρF ∨ ρG and define for all y,
t > 0:

∆F∗(y) =

(
1

1− γF∗ρF∗

− γF ρF
1− γF∗ρF

)
∆F (y) +

∆G(y)

1− γF∗ρF∗

and ∆G∗(t) =
F (t)

γF + γG
+∆G(t).

If ρF 6= ρG and ρG 6= −1/γF then, defining ρG∗ = (−1/γF ) ∨ ρG, we have
|∆F∗ | ∈ RV1(ρF∗), |∆G∗ | ∈ RV1(ρG∗) and F ∗ ∈ RV2(−1/γF∗ ,∆F∗), G∗ ∈
RV2(−1/γG,∆G∗).

Proof of Lemma 8. Since |∆F | ∈ RV1(ρF ), |∆G| ∈ RV1(ρG) and F ∈
RV1(−1/γF ), it is clear that |∆F∗ | ∈ RV1(ρF∗) and |∆G∗ | ∈ RV1(ρG∗) under
the conditions of the result. To prove that F ∗ and G∗ satisfy the desired second-
order condition, we first remark that condition (C) entails that F and G are
differentiable. Furthermore, we obtain from (37) that

y
d

dy
logF ∗(y) = −yF

′(y)G(y)

pF ∗(y)
and t

d

dt
logG∗(t) = − tF (t)G

′(t)

pG∗(t)
.

We start by controlling F ∗(y). Using (C) leads to

pF ∗(y)

yF ′(y)G(y)
=
I(FG, y)− γF ∆̃F (y)I(∆̃FFG, y)

1− γF ∆̃F (y)

where ∆̃F is asymptotically equivalent to ∆F . The condition ρF 6= ρG entails
that the function ∆F + ∆G has ultimately constant sign and |∆F + ∆G| is
asymptotically equivalent to an ultimately monotonic regularly varying func-
tion with index ρF∗ , and thus FG satisfies the second-order condition (C).
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Furthermore, note that since ∆̃F has asymptotically constant sign, we have
I(∆̃FFG, y) = I(|∆̃F |FG, y) when y is large enough. Applying Lemma 7 to the

function FG, Theorem 0.6.(a) in Resnick (2007) to the function |∆̃F |FG and
using a Taylor expansion, we obtain after some algebra:

y
d

dy
logF ∗(y) = − 1

γF∗

+∆F∗(y)(1 + o(1)) as y → ∞.

An integration completes the proof of the statement on F ∗. We now turn to
the statement on G∗. Define Ψ : z 7→ zG′(z) and use (C) to obtain that
Ψ ∈ RV1(−1/γG). Using again (C) entails

pG∗(t)

tF (t)G′(t)
=
F (t)

F (t)
(I(Ψ, t)− I(GΨ, t)) +

I(G, t)− γG∆̃G(t)I(∆̃GG, t)

1− γG∆̃G(t)

where ∆̃G is asymptotically equivalent to ∆G. Moreover, we have I(∆̃GG, t) =

I(|∆̃G|G, t) when t is large enough, because ∆̃G has asymptotically constant
sign. Apply then Theorem 0.6.(a) in Resnick (2007) to the functions Ψ, FΨ

and |∆̃G|G, Lemma 7 to the function G and use a Taylor expansion to get after
some computations:

t
d

dt
logG∗(t) = − 1

γG
+∆G∗(t)(1 + o(1)) as t→ ∞.

An integration completes the proof.

Lemma 9 Let γ > 0 and Z be a random variable whose survival function Ψ
belongs to RV1(−1/γ). Assume that:

• N := N(n) is a sequence of integer-valued random variables such that
there exists a positive sequence (un) of integers tending to infinity with

N/un
P−→ ∞;

• γ̂N (kN ) is a random variable such that the distribution of γ̂N (kN ) given
N = m is that of

γ̃m(km) =
1

km

km∑

i=1

log
Zm−i+1,m

Zm−km,m

where Z1,m ≤ · · · ≤ Zm,m are the order statistics related to a sample of
independent and identically distributed copies Z1, . . . , Zm of Z.

Then for every sequence (kn) such that kn → ∞ and kn/n → 0, we have

γ̂N (kN )
P−→ γ. Assume further that Ψ ∈ RV2(−1/γ,∆); then if kn → ∞,

kn/n → 0 and kn∆
2(U(n/kn)) → 0 where U is the left-continuous inverse of

1/Ψ, the random variable
√
kN (γ̂N (kN )− γ) is asymptotically Gaussian cen-

tered with variance γ2.
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Proof of Lemma 9. Note that if In = [un,∞) then P(N ∈ In) → 1. To
prove the consistency statement, we write for all t > 0, P(|γ̂N (kN ) − γ| > t) =
r1,n + r2,n with

r1,n = P(|γ̂N (kN )− γ| > t, N /∈ In)

and r2,n =
∑

m∈In

P(|γ̂N (kN )− γ| > t|N = m)P(N = m).

It is clear that r1,n ≤ P(N /∈ In) → 0. Besides

r2,n ≤ sup
m∈In

P(|γ̃m(km)− γ| > t) → 0

since γ̃n(kn)
P−→ γ, see Theorem 3.2.2 p.70 in de Haan and Ferreira (2006), so

that the estimator is indeed consistent. To show the asymptotic normality of
γ̂N (kN ), we let ϕ be the cdf of a centered Gaussian distribution with variance
γ2 and we write for all t ∈ R, P(

√
kN (γ̂N (kN )−γ) ≤ t)−ϕ(t) = r3,n+r4,n with

r3,n = P(
√
kN (γ̂N (kN )− γ) ≤ t, N /∈ In)− ϕ(t)P(N /∈ In)

and r4,n =
∑

m∈In

(
P(
√
kN (γ̂N (kN )− γ) ≤ t|N = m)− ϕ(t)

)
P(N = m).

Again, clearly |r3,n| ≤ 2P(N /∈ In) → 0. Moreover

|r4,n| ≤ sup
m∈In

∣∣∣P(
√
km(γ̃m(km)− γ) ≤ t)− ϕ(t)

∣∣∣

so that it is enough to show that γ̃n(kn) converges in distribution to a centered
Gaussian distribution with variance γ2. To this end first note that since Ψ is
continuous, we have for all y > 1 that (1/Ψ)(U(y)) = y and thus

∀y > 1, log y = − log c+
1

γ
logU(y)−

∫ U(y)

1

∆̃(v)

v
dv

with c > 0 and ∆̃ asymptotically equivalent to ∆. Differentiating and carrying
out some computations, we get

U ′(y)

U(y)
=
γ

y
+

∆ ◦ U(y)

y
with ∆(y) =

γ2∆̃

1− γ∆̃
.

As a consequence

∀y > 1, U(y) = yγ
(
c exp

[∫ y

1

δ(v)

v
dv

])

where c > 0 and δ = ∆ ◦ U . Since (Z1, . . . , Zn) has the same distribution as
(U(X1), . . . , U(Xn)) where (X1, . . . , Xn) is a sample of independent copies of
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standard Pareto random variables, we may then write γ̃n(kn)
d
= Sn,1 + Sn,2

with

Sn,1 =
γ

kn

kn∑

i=1

log
Xn−i+1,n

Xn−kn,n
and Sn,2 =

1

kn

kn∑

i=1

∫ Xn−i+1,n

Xn−kn,n

δ(v)

v
dv.

Rényi’s representation and Paul Lévy’s central limit theorem entail

√
kn(Sn,1 − γ)

d
= γ

√
kn

(
1

kn

kn∑

i=1

log(Xi)− 1

)
d−→ N (0, γ2).

Moreover, since (n/kn)Xn−kn,n
P−→ 1 (see Corollary 2.2.2 p.41 in de Haan and

Ferreira 2006) and |δ| is asymptotically equivalent to the regularly varying and
ultimately nonincreasing function |δ| := γ2|∆ ◦U |, we get with arbitrarily large
probability

√
kn|Sn,2| ≤

√
kn|δ(Xn−kn,n)|Sn,1(1 + oP(1)) = OP(

√
kn|δ(n/kn)|) P−→ 0

as n→ ∞. Using Slutsky’s lemma completes the proof of Lemma 9.

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.08 0.10 0.16 0.07 0.08 0.12 0.06 0.07 0.10 0.05 0.06 0.08
γF = 1/2 0.31 0.38 0.60 0.26 0.31 0.45 0.23 0.27 0.36 0.21 0.25 0.32
γF = 1 1.22 1.53 2.27 1.05 1.28 1.82 0.91 1.08 1.49 0.85 0.99 1.29

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.11 0.17 0.36 0.09 0.12 0.25 0.07 0.1 0.16 0.07 0.09 0.13
γF = 1/2 0.34 0.46 0.85 0.28 0.36 0.55 0.24 0.29 0.43 0.22 0.27 0.37
γF = 1 1.22 1.55 2.46 1.05 1.29 1.9 0.92 1.09 1.46 0.86 1.01 1.33

Table 1: Errors associated with the estimator q̂
(r(θ))
N for δ = 1/3 (top) and δ = 1

(bottom).
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p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.004 0.03 0.22 0.003 0.02 0.10 0.002 0.01 0.06 0.002 0.01 0.04
γF = 1/2 0.01 0.10 0.50 0.007 0.05 0.27 0.004 0.03 0.16 0.004 0.03 0.12
γF = 1 0.04 0.39 1.71 0.03 0.25 1.15 0.02 0.13 0.61 0.01 0.09 0.39

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.05 0.22 2.84 0.04 0.17 1.00 0.03 0.12 0.49 0.03 0.10 0.30
γF = 1/2 0.04 0.24 2.43 0.03 0.14 0.85 0.02 0.09 0.42 0.02 0.07 0.27
γF = 1 0.05 0.46 2.65 0.03 0.25 1.42 0.02 0.15 0.66 0.02 0.11 0.53

Table 2: Errors associated with the estimator q̂
W,(s(θ))
N (.|α(s(θ))

opt ) for δ = 1/3
(top) and δ = 1 (bottom).

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.10 0.15 0.21 0.07 0.10 0.14 0.05 0.07 0.10 0.05 0.06 0.08
γF = 1/2 0.36 0.51 0.69 0.26 0.36 0.51 0.21 0.27 0.37 0.20 0.24 0.32
γF = 1 1.43 1.97 2.64 1.00 1.42 1.95 0.85 1.06 1.48 0.80 0.98 1.31

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.19 0.33 0.53 0.10 0.18 0.31 0.07 0.1 0.18 0.06 0.08 0.13
γF = 1/2 0.46 0.71 1.03 0.29 0.45 0.69 0.23 0.30 0.46 0.21 0.26 0.38
γF = 1 1.43 2.13 2.91 1.06 1.48 2.09 0.86 1.10 1.53 0.81 0.99 1.33

Table 3: Errors associated with the estimator q̂
(r∗(θ)),∗
N for δ = 1/3 (top) and

δ = 1 (bottom).
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p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.04 0.08 0.14 0.01 0.04 0.08 0.003 0.01 0.04 0.002 0.01 0.03
γF = 1/2 0.12 0.28 0.49 0.04 0.14 0.29 0.007 0.04 0.15 0.004 0.03 0.10
γF = 1 0.5 1.11 1.90 0.12 0.52 1.14 0.03 0.18 0.61 0.01 0.12 0.45

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.14 0.26 0.44 0.06 0.14 0.25 0.03 0.08 0.16 0.02 0.06 0.14
γF = 1/2 0.22 0.42 0.75 0.07 0.20 0.41 0.02 0.08 0.21 0.02 0.06 0.16
γF = 1 0.47 1.16 2.04 0.16 0.53 1.15 0.03 0.21 0.60 0.02 0.12 0.43

Table 4: Errors associated with the estimator q̂
W,(s∗(θ)),∗
N (.|α(s∗(θ)),∗

opt ) for δ = 1/3
(top) and δ = 1 (bottom).
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Figure 1: Hill estimators of γG (full line) and γF∗ (dashed line) as functions of
kN .
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Figure 2: Estimated quantiles for the transformed data (left) and the original
data (right).
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