
HAL Id: hal-00942134
https://hal.science/hal-00942134v1

Preprint submitted on 4 Feb 2014 (v1), last revised 16 Sep 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating extreme quantiles under random truncation
Laurent Gardes, Gilles Stupfler

To cite this version:
Laurent Gardes, Gilles Stupfler. Estimating extreme quantiles under random truncation. 2014. �hal-
00942134v1�

https://hal.science/hal-00942134v1
https://hal.archives-ouvertes.fr


Estimating extreme quantiles under random truncation

Laurent Gardes(1) & Gilles Stupfler(2)

(1) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,
67084 Strasbourg Cedex, France

(2) Aix Marseille Université, CERGAM, EA 4225,

15-19 allée Claude Forbin, 13628 Aix-en-Provence Cedex 1, France

Abstract. The goal of this paper is to provide estimators of the tail index and extreme quantiles
of a heavy-tailed random variable when the data is right-truncated. The weak consistency and asymp-
totic normality of the estimators are established and we illustrate the finite sample performance of our
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1 Introduction

Studying extreme events is relevant in numerous fields of statistical applications. One can think about
hydrology, where one may want to estimate the maximum level reached by seawater along a coast over
a given period, or to study extreme rainfall at a given location; in actuarial science, a pivotal problem
for an insurance firm is to estimate the probability that a claim so large that it represents a threat to
its solvency is filed. In this type of problem, the focus is not in the estimation of “central” parameters
of the random variable of interest, such as its mean or median, but rather in the understanding of its
behavior in its right tail.
A particular relevant case is when the random variable of interest Y is heavy-tailed, namely, when its
survival function F can be written F (y) = y−1/γL(y) for all y > 0; here, γ > 0 shall be referred to as
the tail index and L is a slowly varying function at infinity, meaning that it satisfies L(λy)/L(λ)→ 1 as
λ→∞ for all y > 0. In this case, γ clearly drives the tail behavior of F and its knowledge is necessary
if, for instance, we are interested in the estimation of extreme quantiles of Y . The estimation of the
tail index is thus one of the central topics in extreme value theory, which is why this problem has been
extensively studied in the literature. Recent overviews on univariate tail index estimation can be found
in the monographs of Beirlant et al. [1] and de Haan and Ferreira [6].
A further challenge rises when facing incomplete data. An example of such a situation is the estimation
of (extreme) survival times based on a follow-up study of patients suffering from a given illness. If
at the time the data is collected a patient is still alive, then his survival time is not available to the
researcher, although it is known that the patient survived until the end of the study. This case is the
archetypal example of right-censoring. Estimating the tail index in this situation is much more difficult
than when having complete data, since information about the right tail of the variable of interest is
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missing. In this setting, the estimation of the tail index and extreme quantiles has been considered only
recently by Beirlant et al. [2] and Einmahl et al. [5].
In this paper, we consider the case when the data is right-truncated. In this framework, one observes
the variable of interest if and only if it is less than or equal to a truncation variable T . This situation is
different from right-censoring since nothing is known about Y in the case Y > T , which adds a further
difficulty to the analysis of the right tail of Y . Truncated data may be collected in various cases, for
instance when estimating incubation times for a given disease, see Lagakos et al. [15] and Kalbfleisch
and Lawless ([12], [13]); when studying the luminosity of astronomical objects such as quasars, see
Lynden-Bell [17] and Jackson [11]; when accounting for reporting lags in insurance data, also referred
to as the incurred but not yet reported problem, see Kaminsky [14], Lawless [16] and Herbst [7]; or
when considering warranty data, see Hu and Lawless ([9], [10]) and the monograph by Meeker and
Escobar [18]. To the best of our knowledge, the estimation of the tail index and extreme quantiles in
this context is, up to now, still an open question.
The outline of this paper is as follows. In Section 2, we give a precise definition of our model and
define our estimators of the tail index and the extreme quantile of a truncated random variable. Some
asymptotic properties of our estimators are stated in Section 3. The finite sample performance of the
extreme quantile estimator is studied in Section 4. Preliminary results and proofs of the main results
are deferred to Section 5, while proofs of the preliminary results are deferred to the Appendix.

2 Framework

Let (Y1, T1), . . . , (Yn, Tn) be n independent copies of a random pair (Y, T ) ∈ [y0,∞)× [t0,∞), where Y
and T are independent, y0 ≥ 0 and y0 ≤ t0 are the left endpoints of Y and T . The right endpoints of
Y and T are supposed to be infinite. The joint cumulative distribution function (cdf) of the random
pair (Y, T ) is then given for all (y, t) ∈ R2 by H(y, t) := P(Y ≤ y, T ≤ t) = F (y)G(t), where F and
G are the cdfs of Y and T . The focus of this paper is on extreme quantiles of Y and, as a first step,
on the estimation of the cdf F which is assumed to be continuous in what follows. Of course, because
we only happen to record the Yi and Ti such that Yi ≤ Ti, the classical nonparametric estimator of F
cannot be used. However, the conditional cdfs of Y and T given Y ≤ T , defined for all (y, t) ∈ R2 by

F ∗(y) = P(Y ≤ y|Y ≤ T ) =
1

p

∫ y

y0

G(z)dF (z) and G∗(t) = P(T ≤ t|Y ≤ T ) =
1

p

∫ t

t0

F (z)dG(z), (1)

where p := P(Y ≤ T ), may be estimated nonparametrically: let

N :=

n∑
i=1

I{Yi≤Ti}.

Notice that N is a binomial random variable with parameters n and p, which counts the (random)
number of observed pairs (Yi, Ti) such that Yi ≤ Ti. Such pairs shall be denoted in the sequel as (Y ∗i , T

∗
i ),

1 ≤ i ≤ N . It can be shown (see Lemma 2) that the conditional distribution of {(Y ∗i , T ∗i ), i = 1, . . . , N}
given N = q is equal to the distribution of q independent copies of a random vector (Y ∗, T ∗) with cdf
H∗ given by H∗(y, t) = P(Y ≤ y, T ≤ t|Y ≤ T ). The standard estimators of the conditional cdfs of
Y ∗ and T ∗ are then

F̂ ∗N (y) =
1

N

N∑
i=1

I{Y ∗i ≤y} and Ĝ
∗
N (t) =

1

N

N∑
i=1

I{T∗i ≤t}.

Note now that, to estimate F , it is enough to estimate the function ΛF defined by, for all y ≥ y0,

ΛF (y) = − logF (y) =

∫ ∞
y

dF (z)

F (z)
.
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The following result shows that this quantity is in fact linked to F ∗ and G∗:

Proposition 1. Let C∗ := F ∗ −G∗. Then for all z > y0, C∗(z) > 0 and for all y ≥ y0,

ΛF (y) =

∫ ∞
y

dF ∗(z)

C∗(z)
.

This result can be used to build an estimator of the function ΛF and consequently of the cdf F .
Remarking that C∗ shall be estimated by Ĉ∗N = F̂ ∗N − Ĝ∗N , we propose the following estimator for ΛF :
for all y > y0,

Λ̂FN (y) =
1

N

N∑
i=1

I{Y ∗i >y}
Ĉ∗N (Y ∗i )

.

The survival function F and its associated quantile function α 7→ q(α) := inf{y ≥ y0 |F (y) ≤ α}, which
is the right-continuous inverse of F , are then estimated by:

F̂N (y) = exp
(
−Λ̂FN (y)

)
and q̂N (α) = inf

{
y ≥ y0 | F̂N (y) ≤ α

}
where we let F̂N = 1 − F̂N . The first aim of this paper is to study the asymptotic behavior of the
estimator q̂N (αn) where αn → 0 as n→∞. We shall tackle this problem in the following framework:

(M) The survival functions F and G are regularly varying functions at infinity with respective indices
−1/γF and −1/γG with 0 < γF ≤ γG. In other words, for all y, t > 0, as λ→∞:

F (λy)/F (λ)→ y−1/γF and G(λt)/G(λ)→ t−1/γG .

Model (M) is a standard extreme-value model adapted to right-truncated data; see also [2] and [5] for
closely related models when there is right-censoring. The cdfs of Y and T are thus heavy-tailed with
respective tail indices γF and γG. The condition γF ≤ γG ensures that we have at our disposal enough
observations pertaining to the right tail of Y . In this context, the extreme quantile q̂N (αn) is consistent
if αn → 0 slowly enough, see Theorem 2. To remove the restriction on the rate of convergence of αn,
we note that under model (M), the quantile function q is regularly varying at 0 (see Corollary 1.2.10
p.23 in [6]), so that if βn < αn are two positive sequences tending to 0 such that βn/αn → 0 then

q(βn) ≈ q(αn) (αn/βn)
γF . (2)

To derive an estimator of an extreme quantile q(βn) from (2), we first need to build an estimator of γF .
To this end, we introduce the class of estimators

γ̂N,F (kN , k
′
N ) =

γ̂N,F∗(kN )γ̂N,G(k′N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
(3)

where γ̂N,F∗(kN ) and γ̂N,G(k′N ) are the Hill-type estimators (see Hill [8])

γ̂N,F∗(kN ) =
1

kN

kN∑
i=1

log
Y ∗N−i+1,N

Y ∗N−kN ,N
and γ̂N,G(k′N ) =

1

k′N

k′N∑
i=1

log
T ∗N−i+1,N

T ∗N−k′N ,N
.

Here (kn) and (k′n) are sequences of integers which belong to {1, . . . , n−1} for each n and Y ∗1,N ≤ . . . ≤
Y ∗N,N , T ∗1,N ≤ . . . ≤ T ∗N,N are the order statistics deduced from the samples (Y ∗i )1≤i≤N , (T ∗i )1≤i≤N .
Remark that F ∗ and G∗ are heavy-tailed with respective tail indices γF∗ := γG/(γF + γG) and γG

(see Lemma 4). As a consequence, γ̂N,F∗(kN ) and γ̂N,G(k′N ) shall be consistent estimators of γF∗ and
γG under mild conditions, which makes γ̂N,F (kN , k

′
N ) a consistent estimator of γF , see Theorem 3.
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Using (2) motivates the following Weissman-type estimator (see Weissman [22]) for a quantile having
arbitrary order βn → 0:

q̂WN (βn |αn, kN , k′N ) = q̂N (αn) (αn/βn)
γ̂N,F (kN ,k

′
N ) (4)

where αn → 0 converges slowly enough.

3 Main results

In this section, we examine the asymptotic properties of our estimator. We start by noting that if (M)
holds and nF (yn)G(yn) → ∞ then P(Y ∗N,N ≤ yn) → 0, see Lemma 5 for a proof. As a consequence,

F̂N (yn) > 0 with arbitrarily large probability for n large enough. To establish the asymptotic normality
of F̂N (yn), we introduce the following additional condition:∫ ∞

y0

dF (z)

G(z)
<∞. (5)

This assumption is classical in the study of the estimator of the cdf of a truncated random variable,
see for instance Woodroofe [23] and Stute and Wang [21] for related hypotheses when there is left-
truncation. Note that under model (M), then (5) automatically holds if γF < γG, see Lemma 3.

Theorem 1. Let yn →∞. Assume that (M) and (5) hold, and that v(yn)
√
n→∞. Let

v(y) := F (y)

{∫ ∞
y

dF (z)

G(z)

}−1/2

.

Then

v(yn)
√
n

(
F̂N (yn)

F (yn)
− 1

)
=

ξn if γF < γG

OP(1) if γF = γG

where ξn is a random variable which is asymptotically standard Gaussian distributed.

We now establish the asymptotic normality of q̂N (αn).

Theorem 2. Let αn → 0. Assume that F is a derivable function in a neighborhood of infinity such
that yF ′(y)/F (y)→ 1/γF as y →∞, that (M) and (5) hold, and that v(q(αn))

√
n→∞. Then

v(q(αn))
√
n

(
q̂N (αn)

q(αn)
− 1

)
=

ζn if γF < γG

OP(1) if γF = γG

where ζn is a random variable which is asymptotically Gaussian centered with variance γ2
F .

Theorem 2 is a convergence result for the intermediate quantile estimator q̂N (αn), provided αn → 0

slowly enough. To examine the asymptotic properties of the extreme quantile estimator (4), we start
by proving a couple of results on the tail index estimator γ̂N,F (kN , k

′
N ). To this end, we introduce a

second-order condition on F and G:

(C) The survival functions F and G are derivable functions which satisfy the equations

F ′(y) =

[
1

γF
−∆F (y)

]
F (y)

y
and G′(t) =

[
1

γG
−∆G(t)

]
G(t)

t
, (6)

where ∆F , ∆G are bounded measurable functions having ultimately constant sign and converging
to 0 at infinity, such that |∆F |, |∆G| are ultimately monotonic regularly varying functions at
infinity, with respective indices ρF /γF ≤ 0, ρG/γG ≤ 0.
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From (6), we deduce that F ′ and G′ are regularly varying functions with indices −1 − 1/γF and
−1 − 1/γG, respectively. Furthermore, if UF , UG are the left-continuous inverses of 1/F and 1/G,
condition (C) entails that UF and UG are derivable functions with

U ′F (α) = [γF + ∆UF
(α)]

UF (α)

α
and U ′G(β) = [γG + ∆UG

(β)]
UG(β)

β
,

where ∆UF
, ∆UG

are measurable functions tending to 0 at infinity, such that |∆F |, |∆G| are regularly
varying functions at infinity, with respective indices ρF ≤ 0 and ρG ≤ 0 (see the proof of Lemma 10).
We now recall the notation s ∨ t for the maximum of two real numbers s and t, we set

RF∗(y) = |∆F (y)| ∨ |∆G(y)| and RG∗(t) = |F (t)| ∨ |∆G(t)|

and we let UF∗ , UG∗ be the left-continuous inverses of 1/F ∗ and 1/G∗. The following result examines
the asymptotic properties of γ̂N,F (kN , k

′
N ) to γF , where s ∧ t denotes the minimum of s and t.

Theorem 3. Let (kn), (k′n) be such that kn, k′n → ∞ and kn/n, k′n/n → 0. Assume that (M) holds.
Then we have γ̂N,F (kN , k

′
N )

P−→ γF . Suppose moreover that (C) holds, that ρF /γF 6= ρG/γG and
(ρF /γF ) ∨ (ρG/γG) 6= −1/γF , and that knR2

F∗(UF∗(n/kn)) ∨ k′nR2
G∗(UG∗(n/k

′
n)) → 0. Then if either

kn/k
′
n → 0 or k′n/kn → 0, it holds that√

kN ∧ k′N (γ̂N,F (kN , k
′
N )− γF )

d−→ N
(
0, σ2

F

)
,

where σ2
F is equal to pγ2

F [1 + γF /γG]3 if kn/k′n → 0 and pγ4
F /γ

2
G if k′n/kn → 0. In the case kn/k′n → 1,

then we have √
kN (γ̂N,F (kN , k

′
N )− γF ) = OP(1).

Note that the rate of convergence in Theorem 3 is the random quantity
√
kN ∧ k′N ; taking into account

that N/np = 1 + oP(n−1/4) (see Lemma 2), it follows that under the additional mild condition

sup
q,r∈In

∣∣∣∣kq ∧ k′qkr ∧ k′r
− 1

∣∣∣∣→ 0 as n→∞ where In = [np(1− n−1/4), np(1 + n−1/4)]

this rate becomes the nonrandom sequence
√
kbnpc ∧ k′bnpc, where b·c denotes the floor function. Note

also that under condition (C), Lemma 9 entails that there exist functions ∆F∗ , ∆G∗ which converge
to 0 at infinity such that

(F ∗)′(y) =

[
1

γF∗
−∆F∗(y)

]
F ∗(y)

y
and (G∗)′(t) =

[
1

γG∗
−∆G∗(t)

]
G∗(t)

t
.

Condition knR
2
F∗(UF∗(n/kn)) ∨ k′nR2

G∗(UG∗(n/k
′
n)) → 0 implies (see Lemma 9) the convergences

kn∆2
F∗(UF∗(n/kn)) → 0 and k′n∆2

G∗(UG∗(n/k
′
n)) → 0 which are analogues of the condition classically

used to prove the asymptotic normality of Hill estimator. They ensure that the bias of the estimator is
negligible with respect to its standard deviation. The final result of this section gives some asymptotic
properties of the estimator q̂WN (βn |αn, kN , k′N ):

Theorem 4. Let αn → 0, βn → 0, kn ∧ k′n → ∞ and (kn/n ∨ k′n/n) → 0. Assume that (M), (5)
and (C) hold. Assume that ρF /γF 6= ρG/γG and (ρF /γF ) ∨ (ρG/γG) 6= −1/γF , that βn/αn → 0,
v(q(αn))

√
n→∞, nv2(q(αn))∆2

F (q(αn))→ 0, knR2
F∗(UF∗(n/kn)) ∨ k′nR2

G∗(UG∗(n/k
′
n))→ 0,

(kbnpc ∧ k′bnpc)/nv
2(q(αn))→ 1 and sup

q,r∈In

∣∣∣∣kq ∧ k′qkr ∧ k′r
− 1

∣∣∣∣→ 0.
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Then, if γF < γG and either kn/k′n → 0 or k′n/kn → 0, it holds that

v(q(αn))
√
n

log(αn/βn)

(
q̂WN (βn |αn, kN , k′N )

q(βn)
− 1

)
d−→ N

(
0, σ2

F

)
.

In the case kn/k′n → 1, or if γF = γG and either kn/k′n → 0 or k′n/kn → 0, it holds that

v(q(αn))
√
n

log(αn/βn)

(
q̂WN (βn |αn, kN , k′N )

q(βn)
− 1

)
= OP(1).

4 Simulation study

In this section, we examine the finite sample behavior of q̂N and q̂WN . We shall use the following model:

∀y, t > 0, F (y) = (1 + y1/δ)−δ/γF and G(t) = (1 + t1/δ)−δ/γG ,

where δ > 0 and 0 < γF < γG. Note that is this situation, the truncation probability is 1 − p, with p
given by p = γG/(γF + γG). Besides, remark that for α ∈ (0, 1),

q̂N (α) =

N−1∑
i=1

Y ∗i,N I{α∈[Θi+1,Θi)} + Y ∗N,N I{α<ΘN},

where for i = 1, . . . , N ,

Θi = 1− exp

− 1

N

N∑
j=i

1

Ĉ∗N (Y ∗j,n)

 .

Thus, the estimator q̂N is fairly easy to compute. The estimator q̂WN is given for βn → 0 by

q̂WN (βn|αn) = q̂N (αn) (αn/βn)
γ̂n,F (αn)

,

where (αn) is a sequence in (0, 1) and γ̂n,F (αn) is the estimator of the tail-index γF defined in (3) with
kn = k′n = bnαnc. Thus, the estimator q̂WN only depends on the choice of the parameter αn. The aim of
this section is to compare the performances of the estimators q̂N and q̂WN for different values of γF and
of the probability p. To this end, we generate R = 1000 samples of size n = 200 from the distributions
F and G with δ ∈ {1/3, 1}, γF ∈ {1/4, 1/2, 1} and p ∈ {0.7, 0.8, 0.9, 0.95}. In each case and for a
given αn, we obtain R observations of the estimators q̂N and q̂WN denoted by q̂(r)

N and q̂W,(r)N (.|αn) for
r = 1, . . . , R. For each replication, the parameter αn is taken as

α
(r)
opt := arg min

α∈(0,0.15]

∫ 0.15

0.07

log2

(
q̂

(r)
N (β)

q̂
W,(r)
N (β|α)

)
dβ

The idea behind this choice is that for quantiles which are not too large, the estimators q̂(r)
N and

q̂
W,(r)
N (.|αn) should be close if αn is well chosen. Next, we compute the errors

E(q̃(r)) :=

∫ 0.15

0

log2

(
q̃(r)(β)

q(β)

)
dβ,

where q̃(r) is either q̂(r)
N or q̂W,(r)N (.|α(r)

opt). The error E is a measure of the overall performance of a
quantile estimator when estimating extreme quantiles. For θ = {0.1, 0.5, 0.9}, let r(θ) (resp. s(θ))
be the replication corresponding to the quantile of order θ of the set {E(q̂

(r)
N ), r = 1, . . . , N} (resp.

{E(q̂
W,(r)
N ), r = 1, . . . , N}). In Tables 1 and 2, the values of E(q̂(r(θ))) and E(q̂W,(s(θ))(.|α(s(θ))

opt ) are
given in each situation. It appears that the estimator q̂WN performs better that q̂N , which is no surprise
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since the estimator q̂WN is a Weissman-type estimator specifically adapted to the estimation of extreme
quantiles. Besides, we can see that the smaller is the probability p, the larger the bias of the estimators.
This was expected since a smaller probability p means a greater number of observations missing in the
right tail of Y . Finally, a comparison between Tables 1 and 2 shows that, contrary to the Weissman-
type estimator, the empirical quantile estimator is not strongly impacted by the value of δ. This can
be explained by the fact that the estimation of γF gets worse when γF increases.

5 Proofs

5.1 Preliminary results

The first result is a representation of Λ̂FN (yn)− ΛF (yn), which is the key to the proof of Theorem 1.

Lemma 1. It holds that[
Λ̂FN (yn)− ΛF (yn)

F (yn)

]
= Sn,1 + Sn,2 + Sn,3 −

ΛF (yn)

F (yn)
I{Y ∗N,N≤yn}

where

Sn,1 =
1

n

n∑
i=1

( I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)
− ΛF (yn)

F (yn)

)
I{Y ∗N,N>yn}

Sn,2 =

(
p

N
− 1

n

)( n∑
i=1

I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)

)
I{Y ∗N,N>yn}

and Sn,3 =
1

NF (yn)

N∑
i=1

I{Y ∗i >yn}

{
1

Ĉ∗N (Y ∗i )
− 1

C∗(Y ∗i )

}
I{Y ∗N,N>yn}.

The second result gives an equivalent of the random variable N and the conditional distribution of
(Y ∗1 , T

∗
1 ), . . . , (Y ∗N , T

∗
N ) given N .

Lemma 2. It holds that (
np

1− p

)1/2(
N

np
− 1

)
d−→ N (0, 1).

Furthermore, the conditional distribution of (Y ∗1 , T
∗
1 ), . . . , (Y ∗N , T

∗
N ) given N = q > 0 is equal to the

distribution of q independent copies of a random vector (Y ∗, T ∗) with cdf H∗.

Lemma 3 is dedicated to the study of a kind of integrals that appear frequently in the proof of Theorem 1.
For related results, see Proposition 1.5.9b and Theorem 1.6.5 in Bingham et al. [4].

Lemma 3. Let ϕ and ψ be two regularly varying functions at infinity with respective indices α ∈ R and
−β < 0. Assume that ψ is right-continuous and nonincreasing on some interval [A,∞), A ≥ 0.

• If α < β, the function ϕ is integrable with respect to ψ on a neighborhood of infinity and∫ ∞
y

ϕ(z)dψ(z) = − β

β − α
ϕ(y)ψ(y)(1 + o(1)) as y →∞.

• If α = β and
∫∞
A
ϕ(z)dψ(z) <∞ then y 7→

∫∞
y
ϕ(z)dψ(z) is slowly varying at infinity and

− 1

ϕ(y)ψ(y)

∫ ∞
y

ϕ(z)dψ(z)→∞ as y →∞.
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Lemma 4 shows that the survival functions F ∗ and G∗ are regularly varying at infinity.

Lemma 4. Assume that (M) holds. Let F ∗ := 1 − F ∗ and G∗ := 1 − G∗ be the survival functions
related to the cdfs F ∗ and G∗, respectively. Then as y, t→∞:

F ∗(y)

F (y)G(y)
→ 1

p

γG
γF + γG

and
G∗(t)

G(t)
→ 1

p
.

Lemma 5 essentially implies that under the conditions of Theorem 1, the quantity Λ̂FN (yn) is nonzero
with probability tending to one.

Lemma 5. For all y ≥ y0, P(Y ∗N,N ≤ y) =
(

1− pF ∗(y)
)n

. Consequently, if (M) holds, yn →∞ and

nF (yn)G(yn)→∞ then P(Y ∗N,N ≤ yn)→ 0.

Lemma 6 below is similar to Lemma 1.2 in Stute [20].

Lemma 6. For every λ such that λp > 1, it holds that

P

 sup
1≤i≤N
Y ∗i >yn

C∗(Y ∗i )

Ĉ∗N (Y ∗i )
≥ λ

 ≤ exp(−(1− e−1)λpF (yn) + 2).

Especially, if yn →∞ then

sup
1≤i≤N
Y ∗i >yn

C∗(Y ∗i )

Ĉ∗N (Y ∗i )
= OP(1).

Lemma 7 is the last step in the proof of the second part of Theorem 2.

Lemma 7. Let (Xn) be a sequence of positive real-valued random variables such that for every positive
nonrandom sequence (δn) converging to 0, the random sequence (δnXn) converges to 0 in probability.
Then Xn = OP(1).

Lemma 8 is a second-order result on regularly varying functions which we shall use several times.

Lemma 8. Let ψ be a regularly varying function at infinity with index −α < 0 that may be written

∀y > 0,
ψ(y)

y−α
= c exp

(∫ y

1

∆(z)

z
dz

)
where c is a positive constant and ∆ is a measurable function converging to 0 at infinity, having ulti-
mately constant sign and such that |∆| is regularly varying with index ρ ≤ 0. Then it holds that

1

ψ(y)

∫ ∞
y

ψ(z)

z
dz =

1

α
+

1

α(α− ρ)
∆(y)(1 + o(1)) as y →∞.

Lemma 9 examines the second-order properties of the regularly varying survival functions F ∗ and G∗.

Lemma 9. Assume that (M) and (C) hold. If ρF /γF 6= ρG/γG then, letting ρFG/γF∗ = (ρF /γF ) ∨
(ρG/γG) one has, as y →∞

y
d

dy
logF ∗(y) = − 1

γF∗
−∆F (y)

ρF (γF + γG)

γF + (1− ρF )γG
(1 + o(1)) + [∆F (y) + ∆G(y)]

1

1− ρFG
(1 + o(1))

and as t→∞

t
d

dt
logG∗(t) = − 1

γG
+ F (t)

1

γF + γG
(1 + o(1)) + ∆G(t)(1 + o(1)).
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Especially, if ρFG/γF∗ 6= −1/γF , there exist positive constants cF∗ , cG∗ and bounded measurable func-
tions ∆F∗ , ∆G∗ such that |∆F∗ |, |∆G∗ | converge to 0 and are regularly varying which satisfy, for y,
t > 0:

F ∗(y) = y−1/γ∗F

[
cF∗ exp

(∫ y

1

∆F∗(v)

v
dv

)]
and G∗(t) = t−1/γG

[
cG∗ exp

(∫ t

1

∆G∗(v)

v
dv

)]
.

Lemma 10 is a key result in the analysis of the asymptotic properties of γ̂N .

Lemma 10. Let γ > 0 and Z be a random variable whose survival function H is regularly varying with
index −1/γ < 0. Assume that

• N := N(n) is a sequence of integer-valued random variables such that there exists a positive
sequence (un) of integers tending to infinity with N/un

P−→∞;

• γ̂N (kN ) is a random variable such that the distribution of γ̂N (kN ) given N = q is that of

γ̃q(kq) =
1

kq

kq∑
i=1

log
Zq−i+1,q

Zq−kq,q

where Z1,q ≤ · · · ≤ Zq,q are the order statistics related to a sample of independent and identically
distributed copies Z1, . . . , Zq of Z.

Then for every sequence (kn) such that kn →∞ and kn/n→ 0, it holds that γ̂N (kN )
P−→ γ. If moreover

H may be written

∀t > 0, H(t) = t−1/γ

[
cH exp

(∫ t

1

∆(v)

v
dv

)]
with cH a positive constant and ∆ a bounded measurable function such that |∆| converges to 0 and is
regularly varying at infinity, then provided kn → ∞, kn/n → 0 and

√
kn∆ ◦ U(n/kn) → 0 where U is

the left-continuous inverse of 1/H, it holds that
√
kN (γ̂N (kN )− γ)

d−→ N
(
0, γ2

)
.

5.2 Proofs of the main results

Proof of Proposition 1. The proof can be found in [23]; we reproduce it here for the sake of
completeness. Pick z ≥ 0 and note that, given {Y ≤ T}, {T ≤ z} ⊂ {Y ≤ z}. Therefore, for all z > y0,

C∗(z) = F ∗(z)−G∗(z) = P(Y ≤ z, T > z|Y ≤ T ) = p−1F (z)G(z) > 0. (7)

Moreover, equation (1) entails dF ∗(y) = p−1G(y)dF (y) for all y ≥ y0. Using (7) then concludes the
proof of Proposition 1.

Proof of Theorem 1. As a preliminary step, use Lemma 1 to write

v(yn)
√
n

[
Λ̂FN (yn)− ΛF (yn)

F (yn)

]
= v(yn)

√
nSn,1 + v(yn)

√
nSn,2 + v(yn)

√
nSn,3

− v(yn)
√
n

ΛF (yn)

F (yn)
I{Y ∗N,N≤yn}.

Since by Lemma 3,
√
nF (yn)G(yn) =

√
γG/(γG − γF )v(yn)

√
n(1 + o(1))→∞, Lemma 5 entails:

v(yn)
√
n

[
Λ̂FN (yn)− ΛF (yn)

F (yn)

]
= v(yn)

√
nSn,1 + v(yn)

√
nSn,2 + v(yn)

√
nSn,3 + oP(1).
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Let us first focus on the term Sn,1 which we can rewrite as

Sn,1 =
I{Y ∗N,N>yn}

n

n∑
i=1

Wn,i where Wn,i :=
I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)
− ΛF (yn)

F (yn)
, i = 1, . . . , n. (8)

It is easy to check that theWn,i are independent, identically distributed and centered random variables.
From (8) we get

E(W 2
n,1) =

1

p2F
2
(yn)

E
( I{Y >yn}I{Y≤T}

(C∗(Y ))2

)
−
(

ΛF (yn)

F (yn)

)2

. (9)

We start by writing

ΛF (yn)− F (yn) =

∫ ∞
yn

F (z)

F (z)
dF (z) ≤ F

2
(yn)

F (yn)
.

Hence
ΛF (yn)

F (yn)
= 1 + O(F (yn)) = 1 + o(1). (10)

Besides
1

p2
E
( I{Y >yn}I{Y≤T}

(C∗(Y ))2

)
=

∫ ∞
yn

dF (z)

G(z)F 2(z)
.

Since F is nondecreasing and F (yn)→ 1, we obtain

1

p2
E
( I{Y >yn}I{Y≤T}

(C∗(Y ))2

)
=

∫ ∞
yn

dF (z)

G(z)
(1 + o(1)). (11)

Noting that dF (z) = −dF (z) and applying Lemma 3, we get:

1

p2F
2
(yn)

E
( I{Y >yn}I{Y≤T}

(C∗(Y ))2

)
=

1

F
2
(yn)

∫ ∞
yn

dF (z)

G(z)
(1 + o(1))→∞. (12)

Thus we get from (9), (10) and (12) that

E(W 2
n,1) =

1

F
2
(yn)

∫ ∞
yn

dF (z)

G(z)
(1 + o(1)). (13)

Since the Wn,i are independent, identically distributed and centered random variables, we shall be able
to use Lyapunov’s central limit theorem (see e.g. Billingsley [3], p.312) provided it holds that for some
δ > 0

∃δ > 0, n−δ/2
E|Wn,1|2+δ

[Var(Wn,1)]1+δ/2
→ 0.

Because γF < γG, one can pick δ > 0 such that (1 + δ)/γG − 1/γF < 0. Hölder’s inequality then gives

|Wn,1|2+δ ≤ 21+δ

[( I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)

)2+δ

+

(
ΛF (yn)

F (yn)

)2+δ
]
.

Recall (10) to get

E|Wn,1|2+δ ≤ 21+δ

[
E
( I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)

)2+δ

+ 1 + o(1)

]
.

Besides

E
( I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)

)2+δ

=
1

F
2+δ

(yn)

∫ ∞
yn

dF (z)

G
1+δ

(z)F 2+δ(z)
.
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Since F is nondecreasing and F (yn)→ 1, we obtain∫ ∞
yn

dF (z)

G
1+δ

(z)F 2+δ(z)
=

∫ ∞
yn

dF (z)

G
1+δ

(z)
(1 + o(1)).

Applying Lemma 3, we obtain∫ ∞
yn

dF (z)

G
1+δ

(z)
=

γG
γG − (1 + δ)γF

F (yn)

G
1+δ

(yn)
(1 + o(1)).

From this we deduce that

E|Wn,1|2+δ = O

([
1

F (yn)G(yn)

]1+δ
)
. (14)

Since from (13) and Lemma 3 we have

Var(Wn,1) = E(W 2
n,1) =

γG
γG − γF

1

F (yn)G(yn)
(1 + o(1)), (15)

it follows from (14) and (15) that

n−δ/2
E|Wn,1|2+δ

[Var(Wn,1)]1+δ/2
= O

([
1

nF (yn)G(yn)

]δ/2)
→ 0.

Lyapunov’s theorem now entails
√
nSn,1/

√
Var(Wn,1)

d−→ N (0, 1). Using (13) leads to

v(yn)
√
nSn,1

d−→ N (0, 1). (16)

Let us now focus on the term Sn,2. From the previous results, it is now clear that

1

n

n∑
i=1

I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)
I{Y ∗N,N>yn}

P−→ 1.

Since np/N = 1 + OP
(
n−1/2

)
from Lemma 2, one has, using Lemma 5, that Sn,2 = OP

(
n−1/2

)
. Using

the convergence v(yn)→ 0 it is now obvious that

Sn,2 = oP
(
[v(yn)

√
n]−1

)
. (17)

Let us now control Sn,3. Note that (see [23], pp.172–173):

√
n sup
z∈R

∣∣∣F̂ ∗N (z)− F ∗(z)
∣∣∣ = OP(1) and

√
n sup
z∈R

∣∣∣Ĝ∗N (z)−G∗(z)
∣∣∣ = OP(1).

Therefore √
n sup

1≤i≤N

∣∣∣Ĉ∗N (Y ∗i )− C∗(Y ∗i )
∣∣∣ I{Y ∗i >yn} = OP(1).

Hence the equality

Sn,3 = OP

(
n−1/2

NF (yn)

N∑
i=1

I{Y ∗i >yn}
Ĉ∗N (Y ∗i )C∗(Y ∗i )

I{Y ∗N,N>yn}

)
.

Apply Lemmas 2 and 6 to obtain

√
nSn,3 = OP

(
1

nF (yn)

N∑
i=1

I{Y ∗i >yn}
(C∗(Y ∗i ))2

I{Y ∗N,N>yn}

)
.
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Since
N∑
i=1

I{Y ∗i >yn}
(C∗(Y ∗i ))2

=

n∑
i=1

I{Yi>yn}I{Yi≤Ti}

(C∗(Yi))2
,

it follows from (11) that

E

(
1

nF (yn)

N∑
i=1

I{Y ∗i >yn}
(C∗(Y ∗i ))2

)
=

p2

F (yn)

∫ ∞
yn

dF (z)

G(z)
(1 + o(1)).

Especially

E

(
v(yn)

{
1

nF (yn)

N∑
i=1

I{Y ∗i >yn}
(C∗(Y ∗i ))2

})
= p2

√∫ ∞
yn

dF (z)

G(z)
(1 + o(1)).

Since the integral in the right-hand side converges to 0, this yields

v(yn)

{
1

nF (yn)

N∑
i=1

I{Y ∗i >yn}
(C∗(Y ∗i ))2

}
= oP(1).

We then obtain

v(yn)
√
nSn,3 = OP

(
v(yn)

{
1

nF (yn)

N∑
i=1

I{Y ∗i >yn}
(C∗(Y ∗i ))2

}
I{Y ∗N,N≥yn}

)
= oP(1). (18)

Use finally (16), (17) and (18) together to get

v(yn)
√
n

[
Λ̂FN (yn)− ΛF (yn)

F (yn)

]
d−→ N (0, 1).

Using the delta-method completes the proof of the first part of Theorem 1.

We now turn to the proof of the second part of the result. We shall show that

v(yn)
√
n

[
Λ̂FN (yn)− ΛF (yn)

F (yn)

]
= OP(1).

The desired statement is then a consequence of this equality and of the mean value theorem applied to
the exponential function. Since by Lemma 3

√
nF (yn)G(yn) = v(yn)

√
n


√
F (yn)G(yn)

v(yn)

 (1 + o(1))→∞

we can start with the same decomposition as in the proof of Theorem 1:

v(yn)
√
n

[
Λ̂FN (yn)− ΛF (yn)

F (yn)

]
= v(yn)

√
nSn,1 + v(yn)

√
nSn,2 + v(yn)

√
nSn,3 + oP(1).

To prove that Sn,1 = OP((v(yn)
√
n)−1), it is sufficient to show that

Var

(
1

n

n∑
i=1

Wn,i

)
=

1

n
E(W 2

n,1) = O((v(yn)
√
n)−2).

Using condition (5), Lemma 3 entails that the function v is regularly varying with index −1/γF < 0.
This yields

F
2
(yn)

{∫ ∞
yn

dF (z)

G(z)

}−1

→ 0.
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Apply now (9), (10) and (11) to obtain

1

n
E(W 2

n,1) = O
(
(v(yn)

√
n)−2

)
→ 0.

Now, mimicking the end of the proof of the first part of the result, we easily get that v(yn)
√
nSn,2 = oP(1)

and v(yn)
√
nSn,3 = oP(1), which concludes the proof of Theorem 1.

Proof of Theorem 2. Let σn = q(αn)/[v(q(αn))
√
n]. We shall prove that for every z ∈ R,

Φn(z) := P(σ−1
n (q̂N (αn)− q(αn)) ≤ z)→ Φ(z),

where Φ is the cdf of a N (0, γ2
F ) distribution. Let us introduce the sequence ϑn := γF v(q(αn))

√
n/αn.

It is easy to check that Φn(z) = P(Wn ≤ zn), where

Wn = ϑn

(
F̂N (q(αn) + σnz)− F (q(αn) + σnz)

)
and zn = ϑn(αn − F (q(αn) + σnz)).

Let us first focus on the nonrandom term zn. Since F is a derivable function, there exists θn ∈ (0, 1)

such that αn − F (q(αn) + σnz) = σnzF
′(q(αn) + θnσnz). Since σn/q(αn) → 0 as n goes to infinity,

we may use the convergence yF (y)/F ′(y)→ 1/γF to get F ′(q(αn) + θnσnz) = γ−1
F αn/q(αn)(1 + o(1)).

Hence the equality

zn = ϑnσnz
1

γF

αn
q(αn)

(1 + o(1)) = z(1 + o(1)). (19)

We now consider the random term Wn. One has

Wn =
ϑnF (q(αn) + σnz)

v(q(αn) + σnz)
√
n
Zn,

where

Zn = v(q(αn) + σnz)
√
n

(
F̂N (q(αn) + σnz)

F (q(αn) + σnz)
− 1

)
.

Note that from model (M), F (q(αn) + σnz) = αn(1 + o(1)). Moreover, it is a consequence of Lemma 3
that the function v is regularly varying, so that v(q(αn) + σnz) = v(q(αn))(1 + o(1)). Consequently

ϑnF (q(αn) + σnz)

v(q(αn) + σnz)
√
n

= γF (1 + o(1)).

Apply then Theorem 1 to obtain that Zn
d−→ N (0, 1), which concludes the proof of the first statement.

To prove the second one, we start by showing that if (εn) is an arbitrary nonrandom positive sequence
tending to 0 at infinity such that εnv(q(αn))

√
n = εnq(αn)/σn →∞, we have

εnσ
−1
n |q̂N (αn)− q(αn)| P−→ 0. (20)

Pick then an arbitrary z > 0. We shall show that ϕn(z) := P(εnσ
−1
n |q̂N (αn)− q(αn)| > z)→ 0.. With

ϑn as above, it is easy to check that ϕn(z) = P(Wn,+ > zn,+) + P(Wn,− < zn,−), where

Wn,± = ϑn

(
F̂N (q(αn)± ε−1

n σnz)− F (q(αn)± ε−1
n σnz)

)
and zn,± = ϑn(αn − F (q(αn)± ε−1

n σnz)).

Let us first focus on the nonrandom term zn,±. Mimicking the arguments leading to (19) in the proof
of the first part of Theorem 2, we get that

zn,± = ±ϑnε−1
n σnz

1

γF

αn
q(αn)

(1 + o(1)) = ±ε−1
n z(1 + o(1)). (21)

13



We now consider the random term Wn,±. One has

Wn,± =
ϑnF (q(αn)± ε−1

n σnz)

v(q(αn)± ε−1
n σnz)

√
n
Zn,±,

where

Zn,± = v(q(αn)± ε−1
n σnz)

√
n

(
F̂N (q(αn)± ε−1

n σnz)

F (q(αn)± ε−1
n σnz)

− 1

)
.

Since F and v are regularly varying, we have F (q(αn)±ε−1
n σnz) = αn(1+o(1)) and v(q(αn)±ε−1

n σnz) =

v(q(αn))(1 + o(1)). Hence the equality

ϑnF (q(αn)± ε−1
n σnz)

v(q(αn)± ε−1
n σnz)

√
n

= γF (1 + o(1)).

On the other hand, the second part of Theorem 1 implies that εnZn,± = oP(1), so that using (21) we
obtain for n large enough

ϕn(z) = P(Wn,+ > zn,+) + P(Wn,− < zn,−) ≤ P(εnZn,+ > z/2) + P(εnZn,− < −z/2)→ 0

and the proof of (20) is complete. Note now that if (εn) is an arbitrary nonrandom positive sequence,
because of the inequality εn ≤ εn ∨ {v(q(αn))

√
n}−1/2 it can easily be seen that in fact (20) holds for

every positive sequence (εn); applying Lemma 7 completes the proof of Theorem 2.

Proof of Theorem 3. Recall the notation In = N∩ [(1−n−1/4)np, (1+n−1/4)np] and use Lemma 2 to
get P(N ∈ In)→ 1. The consistency statement is thus an immediate consequence of Lemmas 4 and 10.

To prove the second and third statement, write

γ̂n,F (kN , k
′
N )− γF =

γ̂N,F∗(kN )γ̂N,G(k′N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
− γF∗γG
γG − γF∗

.

It is then straightforward to obtain the equality

γ̂n,F (kN , k
′
N )− γF =

1

γG − γF∗

[
γ̂N,F∗(kN )γ̂N,G(k′N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
+ γG

]
(γ̂N,F∗(kN )− γF∗)

+
γ̂N,F∗(kN )

γG − γF∗

[
1− γ̂N,G(k′N )

γ̂N,G(k′N )− γ̂N,F∗(kN )

]
(γ̂N,G(k′N )− γG) (22)

Since γ̂N,F∗(kN )
P−→ γF∗ and γ̂N,G(k′N )

P−→ γG, one has

1

γG − γF∗

[
γ̂N,F∗(kN )γ̂N,G(k′N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
+ γG

]
=

(
1 +

γF
γG

)2

+ oP(γ̂N,F∗(kN )− γF∗) + oP(γ̂N,G(k′N )− γG)

and

γ̂N,F∗(kN )

γG − γF∗

[
1− γ̂N,G(k′N )

γ̂N,G(k′N )− γ̂N,F∗(kN )

]
= −

(
1 +

γF
γG

)2{
γF

γF + γG

}2

+ oP(γ̂N,F∗(kN )− γF∗) + oP(γ̂N,G(k′N )− γG).

Plugging these last two equalities into (22) we get

γ̂n,F (kN , k
′
N )− γF =

(
1 +

γF
γG

)2 [
γ̂N,F∗(kN )− γF∗ − γ2

F /(γF + γG)2(γ̂N,G(k′N )− γG)
]

+ oP(γ̂N,F∗(kN )− γF∗) + oP(γ̂N,G(k′N )− γG).

The result now follows from applying Lemmas 9 and 10.
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Proof of Theorem 4. From condition (C), note that we may write

∀y > 0, F (y) = y−1/γFLF (y) with LF (y) = cF exp

(∫ y

1

∆F (v)

v
dv

)
where cF is a positive constant. Especially, the function LF is a normalized slowly varying function,
see [4]. Further, since q is the inverse function of F , it satisfies the equation

∀α ∈ (0, 1), q(α) = α−γFLγFF (q(α)). (23)

Use now (23) to write

log

(
q̂WN (βn |αn, kN , k′N )

q(βn)

)
= log

(
q̂N (αn)

q(αn)

)
+ (γ̂N,F (kN , k

′
N )− γF ) log(αn/βn)

− γF log

(
LF (q(βn))

LF (q(αn))

)
. (24)

Note that since |∆F | is ultimately monotonic, one has for n large enough∣∣∣∣log

(
LF (q(βn))

LF (q(αn))

)∣∣∣∣ =

∣∣∣∣∣
∫ q(βn)

q(αn)

∆F (t)

t
dt

∣∣∣∣∣ ≤ |∆F (q(αn))| log

(
q(βn)

q(αn)

)
.

Using again (23) and letting

εn :=
1

log(αn/βn)

∣∣∣∣log

(
LF (q(βn))

LF (q(αn))

)∣∣∣∣
we obtain for n large enough εn ≤ γF |∆F (q(αn))|(1 + εn) which entails

εn ≤
γF |∆F (q(αn))|

1− γF |∆F (q(αn))|
= O (|∆F (q(αn))|) .

Recalling (24) we get

log

(
q̂WN (βn |αn, kN , k′N )

q(βn)

)
= log

(
q̂N (αn)

q(αn)

)
+ (γ̂N,F (kN , k

′
N )− γF ) log(αn/βn)

+ O (|∆F (q(αn))|) .

Therefore, since log(αn/βn)→∞, applying Theorems 2 and 3 together with Slutsky’s lemma yields

v(q(αn))
√
n

log(αn/βn)
log

(
q̂WN (βn |αn, kN , k′N )

q(βn)

)
d−→ N (0, σ2

F )

if either kn/k′n → 0 or k′n/kn → 0, and

v(q(αn))
√
n

log(αn/βn)
log

(
q̂WN (βn |αn, kN , k′N )

q(βn)

)
= OP(1)

otherwise. Using the delta-method ends the proof of the first statement.
To prove the second statement, recall from the proof of the first statement that

log

(
q̂WN (βn |αn, kN , k′N )

q(βn)

)
= log

(
q̂N (αn)

q(αn)

)
+ (γ̂N,F (kN , k

′
N )− γF ) log(αn/βn)

+ O (|∆F (q(αn))|) .

and use Theorems 2 and 3 to get

v(q(αn))
√
n

log(αn/βn)
log

(
q̂WN (βn |αn, kN , k′N )

q(βn)

)
= OP(1).

Using the delta-method ends the proof of Theorem 4.
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Appendix - Proofs of preliminary results

Proof of Lemma 1. The proof of this result is straightforward and is thus omitted.

Proof of Lemma 2. The first part of the result is a straightforward consequence of Paul Lévy’s central
limit theorem. Let now (Ai)i≥1 be arbitrary Borel subsets of [y0,∞)× [t0,∞). If q ≥ 1,

P((Y ∗1 , T
∗
1 ) ∈ A1, . . . , (Y

∗
N , T

∗
N ) ∈ AN , N = q)

=

(
n

q

)
P((Yi, Ti) ∈ Ai, Yi ≤ Ti, Yj > Tj , i = 1, . . . q, j = q + 1, . . . , n)

=

(n
q

) q∏
i=1

P(Yi ≤ Ti)
n∏

j=q+1

P(Yj > Tj)

 q∏
i=1

P((Yi, Ti) ∈ Ai|Yi ≤ Ti)

= P(N = q)

q∏
i=1

P((Y ∗, T ∗) ∈ Ai),

which concludes the proof.

Proof of Lemma 3. We start by the case α < β. Let 2δ = β − α > 0, take y so large that
y−α−δϕ(y) ≤ 1 and write for Y > y:∫ Y

y

ϕ(z)dψ(z) = y−α−δϕ(y)

[∫ Y

y

[
z−α−δϕ(z)

y−α−δϕ(y)
−
(
z

y

)−δ]
zα+δdψ(z) + yδ

∫ Y

y

zαdψ(z)

]
. (25)

Clearly, since ψ is nonincreasing,∣∣∣∣∣
∫ Y

y

[
z−α−δϕ(z)

y−α−δϕ(y)
−
(
z

y

)−δ]
zα+δdψ(z)

∣∣∣∣∣ ≤ − sup
λ≥1

∣∣∣∣ (λy)−α−δϕ(λy)

y−α−δϕ(y)
− λ−δ

∣∣∣∣ ∫ Y

y

zα+δdψ(z). (26)

A uniform convergence result for the function y 7→ y−α−δϕ(y) (see e.g. Theorem 1.5.2 in [4]) entails

sup
λ≥1

∣∣∣∣ (λy)−α−δϕ(λy)

y−α−δϕ(y)
− λ−δ

∣∣∣∣→ 0 as y →∞.

Besides, Theorem 1.6.5 in [4] entails for all θ < β∫ ∞
y

zθdψ(z) = − β

β − θ
yθψ(y)(1 + o(1)) as y →∞. (27)

Consequently, the expression on the left-hand side of (26) has a finite limit as Y → ∞ and we may
write ∣∣∣∣∣

∫ ∞
y

[
z−α−δϕ(z)

y−α−δϕ(y)
−
(
z

y

)−δ]
zα+δdψ(z)

∣∣∣∣∣ = o(yα+δψ(y)) as y →∞. (28)
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A use of (27) entails ∫ ∞
y

zαdψ(z) = − β

β − α
yαψ(y)(1 + o(1)) as y →∞. (29)

Collecting (25), (28) and (29) concludes the proof of the first statement.

We turn to the case α = β. Pick M ∈ R and µ > 0 such that α logµ ≥ 2M . Since ψ is nonincreasing,

− 1

ϕ(y)ψ(y)

∫ ∞
y

ϕ(z)dψ(z) ≥ − 1

ϕ(y)ψ(y)

∫ µy

y

ϕ(z)dψ(z). (30)

The expression on the right-hand side of (30) can be rewritten as

− 1

ϕ(y)ψ(y)

∫ µy

y

ϕ(z)dψ(z) = − 1

ψ(y)

[∫ µy

y

[
ϕ(z)

ϕ(y)
−
(
z

y

)α]
dψ(z) + y−α

∫ µy

y

zαdψ(z)

]
. (31)

Once again, since ψ is nonincreasing,

1

ψ(y)

∣∣∣∣∫ µy

y

[
ϕ(z)

ϕ(y)
−
(
z

y

)α]
dψ(z)

∣∣∣∣ ≤ sup
1≤λ≤µ

∣∣∣∣ϕ(λy)

ϕ(y)
− λα

∣∣∣∣ ∣∣∣∣1− ψ(µy)

ψ(y)

∣∣∣∣ .
A uniform convergence result for the function ϕ on compact sets (see e.g. Theorem 1.5.2 in [4]) and
the convergence ψ(µy)/ψ(y)→ µ−β as y →∞ entail

1

ψ(y)

∣∣∣∣∫ µy

y

[
ϕ(z)

ϕ(y)
−
(
z

y

)α]
dψ(z)

∣∣∣∣→ 0 as y →∞. (32)

Further, an integration by parts yields

− y
−α

ψ(y)

∫ µy

y

zαdψ(z) =

[
1− (µy)αψ(µy)

yαψ(y)

]
+ α

∫ µy

y

[
zαψ(z)

yαψ(y)
− 1

]
dz

z
+ α logµ.

Since y 7→ yαψ(y) is slowly varying at infinity, Theorem 1.5.2 in [4] therefore gives

− y
−α

ψ(y)

∫ µy

y

zαdψ(z)→ α logµ as y →∞. (33)

Collect then (30), (31), (32) and (33) to get for y large enough

− 1

ϕ(y)ψ(y)

∫ ∞
y

ϕ(z)dψ(z) ≥ − 1

ϕ(y)ψ(y)

∫ µy

y

ϕ(z)dψ(z) = α log(µ)(1 + o(1)) ≥ 1

2
α logµ ≥M (34)

which proves that the left-hand side of this inequality tends to infinity as y → ∞. We conclude the
proof by noting that from (34), for all λ > 0,∫ ∞

λy

ϕ(z)dψ(z)∫ ∞
y

ϕ(z)dψ(z)

− 1 = −

∫ λy

y

ϕ(z)dψ(z)∫ ∞
y

ϕ(z)dψ(z)

= − ϕ(y)ψ(y)∫ ∞
y

ϕ(z)dψ(z)

α log(λ)(1 + o(1))→ 0 as y →∞

which is what we wanted to show.

Proof of Lemma 4. Pick y, t > 0 and recall from (1) that

F ∗(y) =
1

p

∫ ∞
y

G(z)dF (z) and G∗(t) =
1

p

∫ ∞
t

F (z)dG(z).

Note first that F (t)→ 1 as t→∞; besides, since dF (z) = −dF (z), applying Lemma 3 entails

F ∗(y) =
1

p

γG
γF + γG

F (y)G(y)(1 + o(1)) and G∗(t) =
1

p
G(t)(1 + o(1))

as y, t→∞, which is Lemma 4.
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Proof of Lemma 5. Given N = q, the random variables Y ∗1 , . . . , Y ∗q are independent and identically
distributed with cdf F ∗. Therefore for all y ≥ y0,

P(Y ∗N,N ≤ y) = P(N = 0) +

n∑
q=1

P(Y ∗N,N ≤ y|N = q)P(N = q) =

n∑
q=0

Cqn[pF ∗(y)]q(1− p)n−q

which yields the first part of the result. Use now Lemma 4 to obtain

n log(1− pF ∗(yn)) = −pnF ∗(yn)(1 + o(1)) = − γG
γF + γG

nF (yn)G(yn)(1 + o(1)).

Especially, P(Y ∗N,N ≤ yn)→ 0, which concludes the proof.

Proof of Lemma 6. Pick λ such that λp > 1. A proof similar to that of Lemma 1.2 in [20] yields

P

 sup
1≤i≤N
Y ∗i >yn

C∗(Y ∗i )

Ĉ∗N (Y ∗i )
≥ λ

 ≤ exp((−λp+ log(λp) + 1)F (yn) + 1). (35)

Moreover, since log(x)/x ≤ e−1 for all x > 1,

(−λp+ log(λp) + 1)F (yn) + 1 = λp

[
−1 +

log(λp)

λp

]
+ F (yn) + 1 ≤ λp[−1 + e−1] + 2. (36)

Collecting (35) and (36) completes the proof.

Proof of Lemma 7. Assume that the sequence (Xn) is not stochastically bounded, that is:

∃ε > 0, ∀M > 0, ∃q ∈ N, P(|Xq| > M) > ε.

This entails that there exists a sequence of integers (qk), which we may choose to be increasing, such
that ∀k ∈ N\{0}, P(|Xqk | > k) > ε. Let then (δn) be the sequence defined as δn = 1/k if qk ≤ n < qk+1.
The sequence (δn) converges to 0, and it holds that ∀k ∈ N \ {0}, P(|δqkXqk | > 1) > ε which shows
that (δnXn) does not converge in probability to 0: Lemma 7 is proven.

Proof of Lemma 8. Start by using the change of variables z = yu to obtain

1

ψ(y)

∫ ∞
y

ψ(z)

z
dz − 1

α
=

∫ ∞
1

u−α
[
exp

(∫ yu

y

∆(v)

v
dv

)
− 1

]
du

u
(37)

where for every y > 0, ϕy : (1,∞)→ R is the function defined by

∀u ≥ 1, ϕy(u) = exp

(∫ yu

y

∆(v)

v
dv

)
− 1.

Since we are only interested in the behavior of ∆ at infinity, we may assume without loss of generality
that ∆ has constant sign. Define for all u ≥ 1,

Dρ(u) =

∫ u

1

tρ−1dt.

Since ∫ yu

y

∆(v)

v
dv = ∆(y)

∫ u

1

∆(yw)

∆(y)

dw

w

a uniform convergence result (see Theorem 1.5.2 in [4]) yields

∀u ≥ 1, ϕy(u) = ∆(y)Dρ(u)(1 + o(1)) as y →∞. (38)
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Further, Theorem 1.5.6 in [4] entails that there exists y1 > 0 such that

∀w ≥ 1, ∀y ≥ y1,

∣∣∣∣∆(yw)

∆(y)

∣∣∣∣ ≤ 2wρ+α/4

and we may choose y1 so large that for every y ≥ y1, |∆(y)| < α/2. It is then clear that for y ≥ y1:

∀u ≥ 1,
1

∆(y)

∣∣∣∣∫ yu

y

∆(v)

v
dv

∣∣∣∣ ≤ 2Dρ+α/4(u).

The inequality |et − 1| ≤ |t|e|t|, valid for every t ∈ R, now entails

∀u ≥ 1, u−α−1 sup
y≥y1

∣∣∣∣ϕy(u)

∆(y)

∣∣∣∣ ≤ 2u−1−α/2Dρ+α/4(u). (39)

Because the right-hand side of this inequality defines an integrable function on [1, ∞), we may col-
lect (37), (38), (39) and apply the dominated convergence theorem to obtain

1

ψ(y)

∫ ∞
y

ψ(z)

z
dz =

1

α
+ ∆(y)

∫ ∞
1

u−αDρ(u)
du

u
(1 + o(1)) as y →∞.

The result is then a straightforward consequence of this equality.

Proof of Lemma 9. Note that

y
d

dy
logF ∗(y) = −yF

′(y)G(y)

pF ∗(y)
and t

d

dt
logG∗(t) = − tF (t)G′(t)

pG∗(t)
.

We start by controlling F ∗(y). Using (6) leads to

pF ∗(y)

yF ′(y)G(y)
=

1

1− γF∆F (y)
[I1(y) + I2(y)]

with

I1(y) =

∫ ∞
y

F (z)G(z)

F (y)G(y)

dz

z
and I2(y) = −γF∆F (y)

∫ ∞
y

∆F (z)F (z)G(z)

∆F (y)F (y)G(y)

dz

z
.

Lemma 8 leads to

I1(y) = γF∗ + [∆F (y) + ∆G(y)]
γ2
F∗

1− ρFG
(1 + o(1)) as y →∞. (40)

Further, using Theorem 0.6.(a) in [19], we obtain

I2(y) = −γF∆F (y)

[
1

γF∗
− ρF
γF

]−1

(1 + o(1)) as y →∞. (41)

Collect now (40), (41) and use a Taylor expansion to obtain

yF ′(y)G(y)

pF ∗(y)
= γF∗

[
1−∆F (y)

ρF γF∗(γF + γG)

γF + (1− ρF )γG
(1 + o(1)) + [∆F (y) + ∆G(y)]

γF∗

1− ρFG
(1 + o(1))

]
as y →∞. As a consequence, we get

y
d

dy
logF ∗(y) = − 1

γF∗
−∆F (y)

ρF (γF + γG)

γF + (1− ρF )γG
(1 + o(1)) + [∆F (y) + ∆G(y)]

1

1− ρFG
(1 + o(1))

as y → ∞, which completes the proof of the second statement. We now turn to the control of G∗(t).
Using (6) entails

pG∗(t)

tF (t)G′(t)
= J1(t) +

1

1− γG∆G(t)
[J2(t) + J3(t)]
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with

J1(t) =

∫ ∞
t

[
F (z)

F (t)
− 1

]
zG′(z)

tG′(t)

dz

z
, J2(t) =

∫ ∞
t

G(z)

G(t)

dz

z
and J3(t) = −γG∆G(t)

∫ ∞
t

∆G(z)

∆G(t)

G(z)

G(t)

dz

z
.

To control J1, note that

J1(t) =
F (t)

F (t)

∫ ∞
t

[
1− F (z)

F (t)

]
zG′(z)

tG′(t)

dz

z
;

we may then apply Theorem 0.6.(a) in [19] to obtain

J1(t) = F (t)
γ2
G

γF + γG
(1 + o(1)) as t→∞. (42)

The function J2 is controlled by using Lemma 8:

J2(t) = γG + ∆G(t)
γ2
G

1− ρG
(1 + o(1)) as t→∞. (43)

Finally, using once again Theorem 0.6.(a) in [19] yields

J3(t) = −∆G(t)
γ2
G

1− ρG
(1 + o(1)) as t→∞. (44)

Collecting (42), (43) and (44) we obtain

pG∗(t)

tF (t)G′(t)
= γG

[
1 + F (t)

γG
γF + γG

(1 + o(1)) + γG∆G(t)(1 + o(1))

]
as t→∞.

Hence the equality

t
d

dt
logG∗(t) = − 1

γG
+ F (t)

1

γF + γG
(1 + o(1)) + ∆G(t)(1 + o(1)) as t→∞

which completes the proof.

Proof of Lemma 10. We start by noting that if In = N∩ [un,∞) then P(N ∈ In)→ 1. To prove the
consistency statement, we write for all t > 0, P(|γ̂N (kN )− γ| > t) = r1,n + r2,n with

r1,n = P(|γ̂N (kN )− γ| > t, N /∈ In) and r2,n =
∑
q∈In

P(|γ̂N (kN )− γ| > t|N = q)P(N = q).

It is clear that r1,n ≤ P(N /∈ In)→ 0. Besides

r2,n ≤ sup
q∈In

P(|γ̃q(kq)− γ| > t)→ 0

since γ̃n(kn)
P−→ γ, see Theorem 3.2.2 p.70 in [6]. To show the asymptotic normality of γ̂N (kN ), we let

ϕ be the cumulative distribution function of a centered Gaussian distribution with variance γ2 and we
write for all t ∈ R, P(

√
kN (γ̂N (kN )− γ) ≤ t)− ϕ(t) = r3,n + r4,n with

r3,n = P(
√
kN (γ̂N (kN )− γ) ≤ t, N /∈ In)− ϕ(t)P(N /∈ In)

and r4,n =
∑
q∈In

[
P(
√
kN (γ̂N (kN )− γ) ≤ t|N = q)− ϕ(t)

]
P(N = q).

Again, clearly r3,n ≤ 2P(N /∈ In)→ 0. Moreover

r4,n ≤ sup
q∈In

∣∣∣P(
√
kq(γ̃q(kq)− γ) ≤ t)− ϕ(t)

∣∣∣
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so that it is enough to show that γ̃n(kn) converges in distribution to a centered Gaussian distribution
with variance γ2. To this end first note that

∀t > 0,
1

H(t)
= t1/γc−1

H exp

(∫ t

1

−∆(v)

v
dv

)
⇒ ∀y ≥ 1, log y =

1

γ
logU(y)− log cH −

∫ U(y)

1

∆(v)

v
dv.

It is then straightforward that ∀y ≥ 1, U(y)/(yU ′(y)) = γ−1 −∆ ◦ U(y) which entails that ∀y ≥ 1,

U(y) = y1/γ

{
c exp

(∫ y

1

δ(v)

v
dv

)}
where c is a positive constant and δ = −∆ ◦ U is a bounded measurable function converging to 0 at
infinity. Consequently, U (resp. |δ|) is regularly varying at infinity with index γ (resp. with index ρ).
Since (Z1, . . . , Zn) has the same distribution as (U(X1), . . . , U(Xn)) where (X1, . . . , Xn) is a sample of
independent copies of standard Pareto random variables, we may then write γ̃n(kn)

d
= Sn,1 + Sn,2 with

Sn,1 =
γ

kn

kn∑
i=1

[logXn−i+1,n − logXn−kn,n] and Sn,2 =
1

kn

kn∑
i=1

∫ Xn−i+1,n

Xn−kn,n

δ(v)

v
dv.

Rényi’s representation and Paul Lévy’s central limit theorem entail

√
kn(Sn,1 − γ)

d
= γ

√
kn

[
1

kn

kn∑
i=1

log(Xi)− 1

]
d−→ N (0, γ2).

Moreover, since (n/kn)Xn−kn,n
P−→ 1 (see Corollary 2.2.2 p.41 in [6]) and |δ| is regularly varying, we get√

kn|Sn,2| ≤
√
kn|δ(Xn−kn,n)|Sn,1 =

√
kn|δ(n/kn)|(1 + oP(1))

P−→ 0. Using Slutsky’s lemma completes
the proof of Lemma 10.
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Estimator q̂(r(θ))
N

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.08 0.10 0.16 0.07 0.08 0.12 0.06 0.07 0.10 0.05 0.06 0.08
γF = 1/2 0.31 0.38 0.60 0.26 0.31 0.45 0.23 0.27 0.36 0.21 0.25 0.32
γF = 1 1.22 1.53 2.27 1.05 1.28 1.82 0.91 1.08 1.49 0.85 0.99 1.29

Estimator q̂W,(s(θ))N (.|α(s(θ))
opt )

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.004 0.03 0.22 0.003 0.02 0.10 0.002 0.01 0.06 0.002 0.01 0.04
γF = 1/2 0.01 0.10 0.50 0.007 0.05 0.27 0.004 0.03 0.16 0.004 0.03 0.12
γF = 1 0.04 0.39 1.71 0.03 0.25 1.15 0.02 0.13 0.61 0.01 0.09 0.39

Table 1: Errors associated with the estimators q̂(r(θ))
N and q̂W,(s(θ))N (.|α(s(θ))

opt ) for δ = 1/3.

Estimator q̂(r(θ))
N

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.11 0.17 0.36 0.09 0.12 0.25 0.07 0.1 0.16 0.07 0.09 0.13
γF = 1/2 0.34 0.46 0.85 0.28 0.36 0.55 0.24 0.29 0.43 0.22 0.27 0.37
γF = 1 1.22 1.55 2.46 1.05 1.29 1.9 0.92 1.09 1.46 0.86 1.01 1.33

Estimator q̂W,(s(θ))N (.|α(s(θ))
opt )

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.05 0.22 2.84 0.04 0.17 1.00 0.03 0.12 0.49 0.03 0.10 0.30
γF = 1/2 0.04 0.24 2.43 0.03 0.14 0.85 0.02 0.09 0.42 0.02 0.07 0.27
γF = 1 0.05 0.46 2.65 0.03 0.25 1.42 0.02 0.15 0.66 0.02 0.11 0.53

Table 2: Errors associated with the estimators q̂(r(θ))
N and q̂W,(s(θ))N (.|α(s(θ))

opt ) for δ = 1.
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