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Abstract To assist industrial engine design processes, 3-D computational fluid dy-
namics simulations are widely used, bringing a comprehension of the underlying
physics unattainable from experiments. However, the multiphase flow description
involving the liquid jet fuel injected into the chamber is still in its early stages
of development. There is a pressing need for a spray model that is time efficient
and accurately describes the cloud of fuel and droplet dynamics downstream of
the injector. Eulerian descriptions of the spray are well adapted to this highly un-
steady configuration. The challenge is then to capture accurately the evaporating
spray polydispersity in this framework. The Eulerian Multi-Size Moment model, a
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high-order (in size) moment model has proved to be well adapted for injection sim-
ulations with moving geometries. Moreover, it requires less computational effort
as compared to existing methods, with a single section for the size phase space.
Academic test cases have demonstrated its great potential for industrial applica-
tions using one-way coupling. In order to draw comparisons with experimental
data, a two-way coupling framework accounting for the droplet-gas turbulence in-
teractions is developed and validated through homogeneous test-cases under both
an academic framework and realistic internal combustion engine conditions.

Keywords Eulerian models · polydispersity · high-order moment methods ·
two-way coupling · ALE formalism · two-phase turbulence model

1 Introduction

In internal combustion engines (ICE), the direct injection of the liquid fuel jet in-
side the combustion chamber has a great influence on both fuel consumption and
pollutant production. The dynamics of the jet being very fast, one observes rapid
temporal and spatial variations of mass, momentum and energy of the flow inside
the chamber. Moreover, the phase change prompted by the evaporation of the fuel
along with the turbulent character of the flow further complicates the physics.
The liquid jet is composed of a dense zone near the injector and a dispersed zone
with a cloud of droplets, also called a spray, downstream of the injector. Many
previous works have addressed the modeling of the two-phase flow composed of
the gas and liquid droplets. For such simulations, Lagrangian methods have been
widely adopted since they provide high numerical efficiency [4]. Furthermore, their
implementation in computing software is also quite straightforward. However, the
high number of particles required for statistical convergence increases the simu-
lation cost. Lagrangian methods also introduce numerical difficulties related to
the coupling with the Eulerian grid used for the gas phase around the droplets
and the dense zone of the spray. Moreover, they face difficulties on parallel ar-
chitectures due to possible heterogeneous load balancing between the processors
[7]. Given these shortcomings of Lagrangian methods, the Eulerian description is
considered as a promising alternative. However, the precise description of the poly-
dispersity and of the two-way turbulent interaction of evaporating droplets with
the surrounding gas phase at a reasonable cost remain a challenge for Eulerian
methods. Moreover, satisfying the moment method stability constraints is compli-
cated due to the rapid variations occurring inside the flow domain. Nevertheless,
some pioneering work has been carried out in the context of one-way coupling [9,
15,12].

The Eulerian Multi-Size Moment (EMSM) method, derived from the Williams-
Boltzmann kinetic model [22] and developed in [9,15,12], has shown promising
potential for fuel-injection applications based on academic configurations [11]. Its
dedicated numerical scheme, respecting the moment stability constraints, treats
precisely the evaporating droplets and requires less computational effort as com-
pared to other methods [12]. Moreover, two major advances towards industrial
applications have been recently achieved [12,10]. The first is the adaptation of
EMSM method to an unstructured, staggered moving grid under the Arbitrary
Lagrangien Eulerian (ALE) numerical formalism. The second is the development



Title Suppressed Due to Excessive Length 3

of a stable and accurate numerical strategy for treating the polydisperse two-way
coupling of the evaporating spray with its surrounding gas, while respecting the
conservation of moment space, i.e., the stability requirement of the method. All
these developments have been integrated into the industrial computational fluid
dynamics (CFD) software IFP-C3D dedicated to compressible reactive flows under
ICE conditions. Verification tests between the Eulerian and Lagrangian descrip-
tions of the spray under injection conditions with a d2-constant evaporation law
and two-way coupled polydisperse droplets have been successfully carried out [10].
However, the issue of turbulent droplet dispersion and its impact on two-way cou-
pling dynamics still needs to be addressed to move towards more realistic engine
conditions. These topics are the focus of this work.

The reminder of this paper is organized by the following way. The second sec-
tion discusses the derivation of an Eulerian-Eulerian model, within the framework
of laminar two-phase flows composed of an evaporating polydisperse spray and a
compressible gas. The correct behavior of the energy partition in the spray phase
for the turbulence modeling requires taking into account the granular temperature
effect (also called uncorrelated motion), as highlighted first in [5]. This accounts
for considering a poly-kinetic velocity distribution at the kinetic level. Based on
this idea, first the original monokinetic EMSM model is extended to poly-kinetic
in the context of laminar flow, through a transport equation for the granular tem-
perature. The gas phase is modeled with the compressible Navier-Stokes equation.
The third section is devoted to a new Reynolds-averaged (RA) turbulence model
derived from the two-phase model presented in the second section. This is based
on the same philosophy introduced in [6] for two-way coupled monodisperse flows.
Here, one must deal with new terms and equations that arise due to size moment
equations of the polydisperse evaporating spray and the gas-phase internal energy
equation. To overcome this bottleneck, new closure models are provided and dis-
cussed. The fourth section is dedicated to homogeneous test cases. First, the new
model is qualitatively validated as compared to the test case of [5] for one-way cou-
pling and then the extension to two-way coupling is studied for both evaporating
and non-evaporating sprays. Next, the model is investigated under the conditions
typical of high-pressure direct injection in ICE applications. Finally, some relevant
conclusions along with several insights on future work are discussed in section five.

2 Modeling approach

A cloud of droplets undergoing Brownian motion (i.e., a spray) can be described
using the statistical formalism originally proposed by [22] for combustion and at-
omization applications. This formalism is appropriate for the disperse-flow regime
where inertial forces, leading to a nonzero relative velocity between a droplet and
the gas, are not very large compared to droplet surface-tension forces, characterized
by a small Weber number We < 12, and is appropriate for dilute sprays, which have
a large droplet mean free path with respect to the characteristic length of the flow
(i.e., Knudsen number Kn > 0.1). In this context, droplets can be assumed to be
roughly spherical, and their number concentration can be described using a number
density function (NDF). The NDF f is defined such that f(t,x,u, S, T )dxdudSdT
represents the number of droplets residing in the small volume [x,x+ dx] having
velocities between [u,u + du], sizes (i.e., surface area) between [S, S + dS], and
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temperatures between [T, T +dT ] at time t. The evolution equation for the NDF,
first introduced in [23], is

∂tf +∇x · (uf)− ∂S (RSf) +∇u · (F f) = 0 (1)

where F is the drag force per unit mass, and RS ≥ 0 is the drift velocity due
to evaporation. In this work, the spray is assumed to be collisionless at the far
downstream of the injector since the spray volume fraction is very small Φv < 10−3.
Moreover, the assumption of a d2-evaporation law makes the heat-exchange term
negligible. Therefore Eq. (1) contains no additional terms (e.g., for coalescence or
heat transfer). For the sake of simplicity, the drag term is assumed to obey Stokes
law:

F =
1

τd
(ug − u) with τd =

ρdS

18πµg
(2)

where τd is the dynamic time scale associated with droplets of size S, ug is the gas
velocity seen by droplets, ρd is the material density of the fuel droplets, which is
assumed constant, and µg is the gas dynamic viscosity.

As in [13], an assumption on the form of f for closure at the kinetic level must
be made. Here we assume, as done in [14,19] , that the velocity dispersion around
the mean velocity ud is independent of size such that f takes the following form:

f (t,x, S,u) = n (t,x, S)φ (u− ud (t,x)) (3)

where φ is an isotropic Gaussian distribution:

φ(u) =
1

(4πΘ/3)3/2
exp

(

−3u2

4Θ

)

. (4)

The macroscopic variable Θ(t,x), which describes isotropic velocity dispersion due
to the nonzero Stokes number of the droplets, is expressed as a function of the
droplet velocity as

Θ =
1

2

∫

u
2φ (u) du. (5)

We refer to Θ as the granular temperature of the droplets. In the framework of the
moment approach, semi-kinetic equations are derived, integrating the moments of
the NDF over droplet velocity phase space. Taking velocity moments of order 0, 1
and 2 of Eq. (1), the following system is obtained:

∂tn+∇x · nud = RS∂Sn, (6a)

∂tnud +∇x · n (ud ⊗ ud + PdI) = n
ug − ud

τd
+RS∂Snud, (6b)

∂tn

(

u
2

d

2
+Θ

)

+∇x · nud

(

u
2

d

2
+Θ + Pd

)

= n
ug · ud − 2Θ − u

2

d

τd
+RS∂Sn

(

u
2

d

2
+Θ

)

.

(6c)

The pressure tensor PdI is a second-order isotropic tensor, which is related to Θ

by

Pd =
2

3
Θ (7)

where the value of Θ is found from Eq. (6c).
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System (6) still contains terms that are functions of the size phase space vari-
able S. To retain information on the size distribution, we follow the classic ap-
proach of moment methods and establish conservation equations for the macro-
scopic quantities defined as

mk =

∫

Skn(t,x, S)dS for 0 ≤ k ≤ 3 (8)

where k is an integer and mk denotes moments of order k of the size distribution.
Through successive integrations in Sk of Eq. (6a) and in S of Eq. (6b), we can
obtain conservation equations for a polydisperse spray [9]. Note that the term Θ

can be closed by integrating in S over Eq. (6c). The final spray governing equations
are given by

∂tm0 +∇x ·m0ud = RSn(t,x, S = 0), (9a)

∂tm1 +∇x ·m1ud = M, (9b)

∂tm2 +∇x ·m2ud = −2RSm1, (9c)

∂tm3 +∇x ·m3ud = −3RSm2, (9d)

∂tm1ud +∇x ·
(

m1u
2

d +m1PdI
)

= A+Mud, (9e)

∂tm1E +∇x · (m1udE +m1Pdud) = E +ME (9f)

where total energy and the source terms on the right-hand side are defined by

E =
u
2

d

2
+Θ, (10a)

M = −RSm0, (10b)

A = m0

ug − ud

τ∗d
, (10c)

E = m0

ug · ud − 2E

τ∗d
. (10d)

where τ∗d = τd/S. Remark that Eq. (9f) represents the total energy including both
the kinetic energy and the granular temperature contributions. Also remark that a
separate equation for the granular temperature can be obtained after manipulating
system (9):

∂tm1Θ +∇x ·m1udΘ +m1Pd∇x · ud = U +MΘ (11)

with

U = −2Θm0

τ∗d
. (12)

In any case, system (9) represents a closed mesoscale description of the fuel spray
that is coupled to governing equations for the gas phase.

Let us recall that assuming Θ = 0 in system (9) yields the conservation equa-
tions for the classical monokinetic EMSM model [9] with a single unclosed term
n(S = 0) in Eq. (9a). This flux term represents the disappearance of droplets due
to evaporation. For an accurate evaluation of this flux, a continuous representa-
tion of n(S) must be found from data for the integer moments. Reconstructing this
profile requires solving the finite Hausdorff moment problem on the interval [0, 1],
i.e., finding a positive NDF n belonging to the moment sequence (m0, . . . ,mk)

t [3].
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The existence of such an NDF is called the realizability condition. Otherwise the
moments of the NDF are said to be corrupted leading to the immediate crash of
the simulation. Although the set of all possible moments, called moment space,
has a complex geometry in R

N , a solution of this problem, preserving the mo-
ment space, has been developed in [15]. This solution is based on reconstructing
the NDF ñ(m0, . . . ,mk, S) using entropy maximisation of the moment sequence
(m0, . . . ,mk)

t and an associated numerical scheme for the evaporation. Using this
method, Eq. (9a) is closed and the evaporative flux of a polydisperse spray can be
evaluated using a kinetic scheme that preserves the moment space.

The description of the gas phase in the context of compressible, multi-species
reactive flows is given by the classical Navier-Stokes conservation equations for
mass, species, momentum and total energy [17]:

∂tρg +∇x · ρgug =S
ρ (13a)

∂tρgug +∇x · (ρgug ⊗ ug + PgI) =∇x · ρgτ +S
ρu (13b)

∂tρgEg +∇x · (ρgEgug + Pgug) =∇x · ρgτ · ug −∇x · q+S
ρE (13c)

where ρg is the gas density, Eg the total energy of the gas, Pg the gas pressure,
τ the gas viscous-stress tensor, and q the energy flux. System (13) is closed using
the equation of state for an ideal gas:

Pg = ρgRTg. (14)

The viscous-stess tensor is closed in the context of the Navier-Stokes equation for
Newtonian fluids using

τ = νg

[

∇xug + (∇xug)
t
]

− 2

3
νg (∇x · ug) I (15)

where νg is the kinematic viscosity of the gas. The energy flux is given by

q = λg∇xTg + ρg

ns
∑

k=1

hkDk∇xYk (16)

where ns is the number of chemical species, λg the thermal conductivity, hk the
specific enthalpy associated with species k, and Dk the gas mass diffusion coeffi-
cient. The internal energy evolution of the gas is governed by

∂tρgeg +∇x · ρgegug = −Pg∇x · ug + ρgτ : ∇xug −∇x · q+S
ρe (17)

where eg = Eg − 1

2
u
2
g + Pg/ρg is the internal energy of the gas. In the literature,

the tensor τ is shown to contain the gas velocity fluctuations due to droplet wakes
leading to a pseudo-turbulent kinematic viscosity [21]. However, we assume the
latter to be null in this work since we deal with a linear Stokes drag law that does
not take into account wakes created by droplets. This assumption is appropriate
for small droplets and is consistent with our treatment of velocity dispersion.

System (13) and Eq. (17) are written in the framework of a two-phase flow
in the presence of a cloud of droplets. The disperse phase is assumed to be di-
lute enough such that its influence on the gas phase can be described by source
terms in the gas-phase governing equations. Indeed, the kinetic model in Eq. (1)
provides these source terms, which represent the variation of mass density due to
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evaporation, variation of momentum of the spray due to evaporation and the drag
force, and the variation of the total/internal energy due to spray evaporation with
uniform droplet temperature. These source terms are given, respectively, by

S
ρ =

3

2
RSm1/2, (18a)

S
ρu = −m1/2

ug − ud

τ∗d
+

3

2
RSm1/2ud, (18b)

S
ρE = −m1/2

ug · ud − 2E

τ∗d
+

3

2
RSm1/2E, (18c)

from which (using Eqs. (13a) and (13b)) the internal energy source term is found
to be

S
ρe =

(

2

τ∗d
+

3

2
RS

)

m1/2Θg (19)

where the gas-phase velocity dispersion is defined by

Θg =
1

2
(ud − ug)

2 +Θ. (20)

Note that Sρe ≥ 0 so that internal energy is transferred from the droplet phase to
the gas phase due both to a nonzero relative velocity and to velocity dispersion.
Once in the gas phase, this internal energy contributes directly to increasing the gas
temperature, as opposed to generating gas-phase turbulent kinetic energy (TKE).

Systems (9) and (13), along with the coupling terms in (18), provide a complete
mesoscale description of the two-phase flow. In practice, the solution to these
systems under ICE conditions will be highly turbulent and thus the computational
cost of solving the mesoscale model will be very high. Therefore, to make the model
tractable for realistic ICE conditions, it will be necessary to introduce a turbulence
model, which is the topic of the next section.

3 Turbulence models for spray and gas phases

The aim of this section is to apply the Reynolds-averaging (RA) philosophy, origi-
nally introduced for the two-way coupled monodisperse flow in [6], to the two-way
coupled polydisperse flow [10]. The exact derivation of RA transport equations
both for the compressible Navier-Stokes equation and the moment equations will
be given below. As done in [6], let us define the following RA and phase-average
(PA) quantities appearing in the RA equations.

– RA moments: 〈m0〉 , 〈m1〉 , 〈m2〉 , 〈m3〉.
– RA number of disappearing droplets: 〈n(t,x, 0)〉.
– PA velocities: 〈m1ud〉 = 〈m1〉 〈ud〉d and 〈ρgug〉 = 〈ρg〉 〈ug〉g.
– Spray-phase PA granular temperature: 〈m1Θ〉 = 〈m1〉 〈Θ〉d.
– Gas-phase PA internal energy: 〈ρgeg〉 = 〈ρg〉 〈eg〉g.
– Spray-phase PA Reynolds-stress tensor:

〈

m1u
′′

du
′′

d

〉

= 〈m1〉
〈

u
′′

du
′′

d

〉

d
.

– Gas-phase PA Reynolds-stress tensor:
〈

ρgu
′′′

g u
′′′

g

〉

= 〈ρg〉
〈

u
′′′

g u
′′′

g

〉

g
.
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– Spray-phase PA total granular energy:

〈m1E〉d = 〈m1〉 〈E〉d = 〈m1〉
(

1

2
〈ud · ud〉d + 〈Θ〉d

)

= 〈m1〉
(

K + kd + 〈Θ〉d
)

(21)
with K = 1

2
〈ud〉d · 〈ud〉d the mean kinetic energy and kd = 1

2

〈

u
′′

d · u′′

d

〉

d
the

spray-phase TKE.
– Gas-phase PA total energy:

〈ρgEg〉 = 〈ρg〉 〈Eg〉g = 〈ρg〉
(

1

2
〈ug · ug〉g + 〈eg〉g

)

= 〈ρg〉
(

Kg + kg + 〈eg〉g
)

(22)
with Kg = 1

2
〈ug〉g · 〈ug〉g the mean kinetic energy and kg = 1

2

〈

u
′′′

g · u′′′

g

〉

g
the

gas-phase TKE.

The next step is consider the RA versions of systems (9) and (13) with appropriate
turbulence closures.

3.1 Reynolds-average equations for the spray

3.1.1 RA moment equations

The RA moment equations are found by applying the RA to Eqs. (9a), (9b), (9c)
and (9d). Let us state at the outset that the modeling of physical phenomena re-
lated to turbulent diffusive fluxes coming from size-velocity correlations is beyond
the scope of this work. Thus, we assume that the following relation holds for the
size moments:

〈

m′

kA
〉

〈mk〉
=

〈

m′

1A
〉

〈m1〉
(23)

with A is any random quantity belonging to either the gas or spray phase. In words,
this assumption means that whatever the index k, the correlation can expressed
in terms of m1. This assumption implies that the size-velocity correlations leading
to turbulent diffusive fluxes appearing in the RA moment equations (see Eq. (105)
in the appendix) are null. Therefore, the RA moment equations reduce to

∂t 〈m0〉+∇x · 〈m0〉 〈ud〉d = RS 〈n(t,x, 0)〉 , (24a)

∂t 〈m1〉+∇x · 〈m1〉 〈ud〉d = 〈M〉 , (24b)

∂t 〈m2〉+∇x · 〈m2〉 〈ud〉d = −2RS 〈m1〉 , (24c)

∂t 〈m3〉+∇x · 〈m3〉 〈ud〉d = −3RS 〈m2〉 , (24d)

and thus the spatial fluxes of the RA moments depend only on the spray-phase
PA velocity 〈ud〉d.

3.1.2 Spray-phase mean momentum equation

Taking the RA of (9e) yields

∂t 〈m1〉 〈ud〉d +∇x · 〈m1〉
(

〈ud〉d ⊗ 〈ud〉d +
〈

u
′′

du
′′

d

〉

d
+

2

3
〈Θ〉d I

)

= 〈A〉+ 〈Mud〉 .

(25)
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The spray-phase Reynolds-stress tensor is closed using a turbulent-viscosity model:

〈

u
′′

du
′′

d

〉

d
= −2νd,t

(

Sd − 1

3
∇x · 〈ud〉d I

)

+
2

3
kdI (26)

where

Sd =
1

2

[

∇x 〈ud〉d + (∇x 〈ud〉d)
t
]

. (27)

For later use, we also define

S̄d = Sd − 1

3
∇x · 〈ud〉d I. (28)

The turbulent viscosity of the spray phase is defined by

νd,t = Cd,µ
k2d
εd

. (29)

Models for the spray-phase TKE kd and TKE dissipation rate εd will be described
below.

The full expression for the source terms on the right-hand side of Eq. (25) is
given in Eqs. (107) and (108). Note that correlations containing the turbulent drag
term (1/τ∗d )

′ can be neglected in the framework of Stokes drag with a small relative
velocity between the phases. Moreover, the use of the model in (23) reduces the
RA momentum source terms to the following expressions:

〈A〉 = 〈m0〉
〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d +
〈

m′

1u
′

g

〉

〈m1〉
−
〈

ρ′gu
′

g

〉

〈ρg〉

)

(30)

and
〈Mud〉 = −RS 〈m0〉 〈ud〉d . (31)

Remark that further simplifications can be introduced to reduce the number of un-
closed correlations in (30). The term

〈

ρ′gu
′

g

〉

/ 〈ρg〉, referred to as the turbulent gas
density flux, can be rewritten by adopting the low-Mach-number flow approxima-
tion, i.e., neglecting correlations between the compressibility and the turbulence
in the gas phase:

〈

α′

du
′

g

〉

〈1− αd〉
= −

〈

ρ′gu
′

g

〉

〈ρg〉
. (32)

Combining relations (30) and (32), replacing m1 by the moment of order 3/2
through expression (23) to get the spray volume fraction αd, the following relation
results

〈

m′

1u
′

g

〉

〈m1〉
−
〈

ρ′gu
′

g

〉

〈ρg〉
=

〈

α′

du
′

g

〉

〈1− αd〉 〈αd〉
. (33)

The term
〈

α′

du
′

g

〉

, referred to as the turbulent drift due to preferential segregation
of droplets, can be closed through a turbulent-flux model:

〈

α′

du
′

g

〉

= − νg,t
Scg,d

∇x 〈αd〉+ Cg 〈αd〉 〈1− αd〉
(

〈ud〉d − 〈ug〉g
)

(34)

where νg,t is the turbulent viscosity of the gas, defined by

νg,t = Cg,µ
k2g
εg

, (35)
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and Scg,d the turbulent Schmidt number of the spray in the presence of the gas
phase, taken as a constant in the case of small droplets but depending on the
Stokes number for inertia droplets. Models for the gas-phase TKE kg and TKE
dissipation rate εg will be described below. Equation (30) can then be rewritten
in closed form as

〈A〉 = 〈m0〉
〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

(36)

where the drift velocity is defined by

uc = Cg

(

〈ud〉d − 〈ug〉g
)

− νg,t∇x 〈αd〉
Scg,d 〈αd〉 〈1− αd〉

. (37)

Note that since 0 ≤ Cg < 1, the mean drag is lower due to preferential concentra-
tion in a turbulent flow.

The final form for the RA spray momentum equation is

∂t 〈m1〉 〈ud〉d +∇x · 〈m1〉
[

〈ud〉d ⊗ 〈ud〉d − 2νd,tS̄d +
2

3
(kd + 〈Θ〉d) I

]

=

〈m0〉
〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

−RS 〈m0〉 〈ud〉d (38)

where we have used the equality 〈Pd〉d = 2 〈Θ〉d /3. Note that turbulence intro-
duces the diffusive flux with coefficient νd,t on the left-hand side, and modifies
the momentum exchange terms of the right-hand side of Eq. (38). Likewise, in a
turbulent flow, the total effective pressure in the droplet phase is proportional to
(〈Θ〉d + kd).

3.1.3 Spray-phase granular temperature equation

The RA granular temperature equation is

∂t 〈m1〉 〈Θ〉d+∇x·〈m1〉
(

〈Θ〉d 〈ud〉d +
〈

Θ′′
u
′′

d

〉

d

)

= −〈m1〉
2

3
〈Θ〉d ∇x·〈ud〉d−〈m1〉

〈

Pd∇x · u′′

d

〉

d
+SΘ.

(39)
where the source term is given by

SΘ = 〈U〉+ 〈MΘ〉 . (40)

The term
〈

Pd∇x · u′′

d

〉

d
, which corresponds to the spray TKE dissipation, leads to

〈

Pd∇x · u′′

d

〉

d
= −εd (41)

where εd is the spray-phase TKE dissipation rate. Following the modeling con-
siderations introduced above, the source term for the granular temperature SΘ

becomes

〈U〉 = −2 〈m0〉
〈

1

τ∗d

〉

〈Θ〉d (42)

and

〈MΘ〉 = −RS 〈m0〉 〈Θ〉d . (43)
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The term
〈

Θ′′
u
′′

d

〉

d
in Eq. (39) is the turbulent granular-temperature flux. Its

closure can be achieved using a gradient-diffusion model:

〈

Θ′′
u
′′

d

〉

d
= − νd,t

Prd,t
∇x 〈Θ〉d (44)

where Prd,t is the turbulent Prandtl number.
The first term on the right-hand side of (39) is the production term due to

mean velocity gradients whereas the second term is the production term coming
from TKE dissipation. The final equation for the granular temperature is

∂t 〈m1〉 〈Θ〉d +∇x · 〈m1〉
(

〈Θ〉d 〈ud〉d − νd,t
Prd,t

∇x 〈Θ〉d
)

=

− 〈m1〉
2

3
〈Θ〉d ∇x · 〈ud〉d + 〈m1〉 εd − 2 〈m0〉

〈

1

τ∗d

〉

〈Θ〉d −RS 〈m0〉 〈Θ〉d . (45)

Note that in a turbulent flow the principal production term for PA granular tem-
perature is the one involving εd, which increases with increasing Reynolds number.

3.1.4 Spray-phase total granular energy equation

The RA total granular equation found from (9f) is

∂t 〈m1〉 〈E〉d+∇x·〈m1〉
(

〈E〉d 〈ud〉d +
〈

Eu
′′

d

〉

d
+

2

3
〈Θ〉d 〈ud〉d

)

= −∇x·〈m1〉
2

3

〈

Θu
′′

d

〉

d
+
〈

SE
〉

(46)

where
〈

SE
〉

is the RA source term. There are several unclosed term in this ex-

pression, such as the turbulent total granular energy flux
〈

Eu
′′

d

〉

d
. Note that using

the properties of PA, this term can be rewritten as

〈

Eu
′′

d

〉

d
=
〈

u
′′

du
′′

d

〉

d
· 〈ud〉d +

1

2

〈

u
′′

du
′′

d · u′′

d

〉

d
+
〈

Θ′′
u
′′

d

〉

d
. (47)

Terms
〈

u
′′

du
′′

d · u′′

d

〉

d
and

〈

Θu
′′

d

〉

d
together account for the spray-phase energy flux

whose closure model needs to be consistent with the spray-phase Reynolds-stress
tensor:

1

2

〈

u
′′

du
′′

d · u′′

d

〉

d
+

2

3

〈

Θu
′′

d

〉

d
= − νd,t

σd,t
∇xkd − 2νd,t

3Prd,t
∇x 〈Θ〉d (48)

where σd,t = 5/3 is a model constant (Rumsey 2009).
The source term contributions due to drag and evaporation on the right-hand

side of Eq. (46) lead to

〈

SE
〉

= 〈m0〉
〈

1

τ∗d

〉

(〈

u
′′′

g · u′′

d

〉

d
− 2kd

)

+〈U〉+〈A〉·〈ud〉d−RS 〈m0〉 (K + kd)+〈MΘ〉 .

(49)
The covariance term

〈

u
′′′

g · u′′

d

〉

d
appearing in the drag term is important for cap-

turing the TKE exchange between phases. In the case of point particles, Fox [6]
proposes the following model (in agreement with the DNS of Fevrier et al. [5]):

〈

u
′′′

g · u′′

d

〉

d
= 2β(St) (kgkd)

1/2 (50)
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where β ≈ 1 in the case of low to moderate Stokes number droplets.
The final RA total granular energy equation is

∂t 〈m1〉 〈E〉d +∇x · 〈m1〉
[

〈E〉d 〈ud〉d +
2

3
(〈Θ〉d + kd) 〈ud〉d − 〈ud〉d · 2νd,tS̄d

]

=

∇x · 〈m1〉
(

5νd,t
3Prd,t

∇x 〈Θ〉d +
νd,t
σd,t

∇xkd

)

−RS 〈m0〉 (K + kd + 〈Θ〉d)

+〈m0〉
〈

2

τ∗d

〉

[

β (kgkd)
1/2 − kd − 〈Θ〉d

]

+〈m0〉
〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

·〈ud〉d .

(51)

Note that the TKE dissipation rate does not appear on the right-hand side of this
expression because the total granular energy includes the sum of the TKE and the
granular energy and the role of TKE dissipation rate is to transform spray-phase
TKE into 〈Θ〉d.

3.1.5 Spray-phase mean kinetic energy

Multiplying Eq. (38) by the mean spray velocity 〈ud〉d gives rise to the following
mean kinetic energy equation after some manupulations:

∂t 〈m1〉K +∇x · 〈m1〉
[

K 〈ud〉d +
2

3
(〈Θ〉d + kd) 〈ud〉d − 〈ud〉d · 2νd,tS̄d

]

=

−ΠK −RS 〈m0〉K + 〈m0〉
〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

· 〈ud〉d (52)

where the spray-phase fluctuating energy production due to the mean spray ve-
locity is defined by

ΠK = 〈m1〉
[

2νd,tS̄d : S̄d − 2

3
(〈Θ〉d + kd)∇x · 〈ud〉d

]

. (53)

Equation (52) can be used to find the transport equation for the spray-phase TKE.

3.1.6 Spray-phase fluctuating energy

As pointed out above, both the velocity dispersion and the uncorrelated motion of
droplets contribute to the fluctuations around the mean velocity. The fluctuating
energy is thus the sum of the spray-phase TKE and granular energy:

κ = 〈Θ〉d + kd. (54)

The expression for the fluctuating energy transport is straightforward. Subtracting
(52) from (51) gives rise to the fluctuating energy equation:

∂t 〈m1〉κ+∇x · 〈m1〉
(

κ 〈ud〉d − 5νd,t
3Prd,t

∇x 〈Θ〉d − νd,t
σd,t

∇xkd

)

=

ΠK −RS 〈m0〉κ+ 〈m0〉
〈

2

τ∗d

〉

[

β (kgkd)
1/2 − κ

]

. (55)

The right-hand side of this expression has production due to the mean flow and
exchange terms with the gas phase due to evaporation and drag.
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3.1.7 Spray-phase turbulent kinetic energy

As noted above, the spray-phase fluctuating energy has two contributions. We
therefore obtain the spray-phase TKE equation by subtracting (45) from (55):

∂t 〈m1〉 kd +∇x · 〈m1〉 kd
(

〈ud〉d − νd,t
σd,t

∇x ln kd − νd,t
Prd,t

Md∇x ln 〈Θ〉d
)

=

Πk
d − 〈m1〉 εd −RS 〈m0〉 kd + 〈m0〉

〈

2

τ∗d

〉

[

β (kgkd)
1/2 − kd

]

(56)

where

Md =
2 〈Θ〉d
3kd

, (57)

and the spray-phase TKE production due to the mean spray velocity is

Πk
d = 〈m1〉

(

2νd,tS̄d : S̄d − 2

3
kd∇x · 〈ud〉d

)

. (58)

Note that the spray-phase TKE dissipation rate now appears with the correct sign
on the right-hand side of (56). The remaining terms represent exchanges with the
gas phase due to evaporation and drag. As discussed in [6], there are no TKE
production terms for the spray phase due to drag or evaporation. The ratio Md

will be small at high-Reynolds numbers for small-Stokes-number droplets, and can
often be neglected.

3.1.8 Spray-phase turbulent kinetic energy dissipation

In the model for εd, empirical constants originated from DNS and experimental
studies on classical single-phase flows need to be carefully modified in the case
of two-phase flows. The reason is that the turbulence associated with each phase
is produced at different integral scales. For example, the spray-phase TKE is not
only produced by the gradient of the mean velocity but also through the coupling
term

〈

u
′′′

g · u′′

d

〉

d
. This implies that the spray-phase TKE dissipation rate can be

either higher or lower compared to the gas-phase turbulent scales. It is therefore
important to choose reasonable values for the constants in the model for εd. By
analogy with Eq. (56), we model the TKE dissipation using

∂t 〈m1〉 εd +∇x · 〈m1〉 εd
(

〈ud〉d − νd,t
σd,ǫ

∇x ln εd − νd,t
Prd,t

Md∇x 〈Θ〉d
)

=

C1

d,ǫ
εd
kd

Πk
d − C2

d,ǫ 〈m1〉
ε2d
kd

− C5

d,ǫRS 〈m0〉 εd + C3

d,ǫ 〈m0〉
〈

2

τ∗d

〉

[

βǫ (εgεd)
1/2 − εd

]

(59)

where C1

d,ǫ, C
2

d,ǫ, C
3

d,ǫ, C
5

d,ǫ, βǫ and σd,ǫ are constants. Note that in this model,
the evaporation and drag terms are written in terms of the TKE dissipation rates,
and not as source terms. This modification from the classical two-phase turbulence
model leads to a more robust formulation [6].
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3.2 Reynolds-average equations for gas phase

The RA source terms seen by the gas phase contain numerous correlations that
can lead to confusion when deriving RA gas equations. We thus prefer to work
with some new expressions for these source terms given in (18). Let us first define

Mg =
3

2
RSm1/2, Ag = −m1/2

ug − ud

τ∗d
, (60)

and then we rewrite the gas-phase governing equations using these definitions.
Given the assumptions made concerning the velocity-size correlations in (23),
working with (60) is entirely equivalent to working with the original moments.

3.2.1 Gas-phase continuity equation

Applying the RA to Eq. (13a) yields

∂t 〈ρg〉+∇x · 〈ρg〉 〈ug〉g = 〈Mg〉 . (61)

This equation is closed.

3.2.2 Gas-phase momentum equation

The gas-phase PA momentum equation is found from (13b):

∂t 〈ρg〉 〈ug〉g+∇x·
[

〈ρg〉
(

〈ug〉g ⊗ 〈ug〉g +
〈

u
′′′

g u
′′′

g

〉

g

)

+ 〈Pg〉 I
]

= ∇x·〈ρg〉 〈τ 〉g+
〈

S
ρu〉

(62)
with

〈

S
ρu〉 = 〈Mgud〉+ 〈Ag〉 . (63)

The RA viscous-stress tensor is

〈τ 〉g = 〈νg〉g
[

∇x 〈ug〉g +
(

∇x 〈ug〉g
)t

− 2

3
∇x · 〈ug〉g I

]

+

〈

ν′′′g

[

∇xu
′′′

g +
(

∇xu
′′′

g

)t
]

− 2

3
ν′′′g ∇x · u′′′

g I

〉

g

(64)

where the second contribution is neglected in compressible turbulence models. For

the sake of simplicity, we define S̄g = Sg−1

3
(∇x·〈ug〉g)I and Sg = 1

2

[

∇x 〈ug〉g + (∇x 〈ug〉g)t
]

.

In the literature, it is common to combine the RA viscous-stress tensor with the
gas-phase Reynolds-stress tensor

〈

u
′′′

g u
′′′

g

〉

g
, for which closure is achieved through

a turbulent-viscosity model. Therefore, it is convenient to express the total stress
tensor as

〈

u
′′′

g u
′′′

g

〉

g
− 〈τ 〉g = −2

(

〈νg〉g + νg,t

)

Sg +
2

3
kgI. (65)

The source terms accounting for drag and evaporation are, respectively,

〈Ag〉 = −
〈

m1/2

〉

〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

(66)
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and

〈Mgud〉 = RS

〈

m1/2

〉

〈ud〉d . (67)

The final form for the gas-phase RA momentum equation is

∂t 〈ρg〉 〈ug〉g+∇x·〈ρg〉
[

〈ug〉g ⊗ 〈ug〉g +
(

2

3
kg +R 〈Tg〉g

)

I − 2
(

〈νg〉g + νg,t

)

S̄g

]

=

3

2
RS

〈

m1/2

〉

〈ud〉d −
〈

m1/2

〉

〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

. (68)

Note that the exchange terms on the right-hand side have the opposite sign as the
corresponding terms in the spray-phase momentum equation. By construction, the
total mean momentum of the two-phase system is conserved.

3.2.3 Gas-phase total energy equation

Reynolds averaging the total energy equation for the gas phase (13c) yields the
following expression:

∂t 〈ρg〉 〈Eg〉g +∇x ·
[

〈ρg〉
(

〈Eg〉g 〈ug〉g +
〈

Egu
′′′

g

〉

g

)

+ 〈Pg〉 〈ug〉g +
〈

Pgu
′′′

g

〉

]

=

+∇x · 〈ρg〉
(

〈τ 〉g 〈ug〉g +
〈

τ
′′′
u
′′′

g

〉

g

)

−∇x · 〈q〉+
〈

S
ρE
〉

. (69)

The turbulent total energy flux can be decomposed as follows:

〈

Egu
′′′

g

〉

g
= 〈ug〉g ·

〈

u
′′′

g u
′′′

g

〉

g
+

1

2

〈

u
′′′

g u
′′′

g · u′′′

g

〉

g
+
〈

e′′′g u
′′′

g

〉

g
−
〈

Pgu
′′′

g

〉

〈ρg〉
. (70)

Consistent with the velocity flux, the turbulent fluxes can be grouped together
and modeled as

1

2

〈

u
′′′

g u
′′′

g · u′′′

g

〉

g
−
〈

τ
′′′
u
′′′

g

〉

g
= −

(

νg +
νg,t
σg,t

)

∇xkg (71)

where σg,t is a constant whose value depends on the turbulence model.
The final expression for the gas-phase PA total energy is

∂t 〈ρg〉 〈Eg〉g +∇x · 〈ρg〉
[

〈Eg〉g 〈ug〉g − νg,t
Prg,t

∇x 〈eg〉g −
(

νg +
νg,t
σg,t

)

∇xkg

]

+∇x · 〈ρg〉
[(

R 〈Tg〉g +
2

3
kg

)

〈ug〉g − 2
(

νg,t + 〈νg〉g
)

S̄g · 〈ug〉g
]

+∇x · 〈q〉 =

3

2
RS

〈

m1/2

〉

(K + kd + 〈Θ〉d)−
〈

m1/2

〉

〈

2

τ∗d

〉

[

β (kgkd)
1/2 − kd − 〈Θ〉d

]

−
〈

m1/2

〉

〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

· 〈ud〉d . (72)

As with the mean momentum, the total energy of the two-phase system is con-
served by the exchange terms.
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3.2.4 Gas-phase internal energy equation

Taking the RA of Eq. (17) leads to

∂t 〈ρg〉 〈eg〉g+∇x·〈ρg〉
(

〈eg〉g 〈ug〉g +
〈

e′′′g u
′′′

g

〉

g

)

= −〈Pg〉∇x·
(

〈ug〉g −
〈

ρ′gu
′

g

〉

〈ρg〉

)

−
〈

P ′

g∇x · u′

g

〉

+ 〈ρg〉
(

〈τ 〉g : ∇x 〈ug〉g +
〈

τ
′′′ : ∇xu

′′′

g

〉

g

)

−∇x · 〈q〉+
〈

S
ρe〉 .

(73)

The internal energy turbulent flux is closed through a gradient-diffusion model:

〈

e′′′g u
′′′

g

〉

g
= − νg,t

Prg,t
∇x 〈eg〉g (74)

where Prg,t is the gas-phase turbulent Prandtl number. The gas-phase TKE dis-
sipation rate produces a source term in the internal energy equation. This is due
to
〈

P ′

g∇x · u′

g

〉

− 〈ρg〉
〈

τ
′′′ : ∇xu

′′′

g

〉

g
whose closure is achieved by the following

equality
〈

P ′

g∇x · u′

g

〉

− 〈ρg〉
〈

τ
′′′ : ∇xu

′′′

g

〉

g
= −〈ρg〉 εg (75)

where εg is the TKE dissipation rate in the gas phase. The RA source term is

〈

S
ρe〉 =

(〈

2

τ∗d

〉

+
3

2
RS

)

〈

m1/2

〉

(

K − 〈ug〉g · 〈ud〉d +Kg + kd −
〈

u
′′′

g · u′′

d

〉

d
+ kg + 〈Θ〉d

)

−
(〈

2

τ∗d

〉

+
3

2
RS

)

〈

m1/2

〉

[

〈

α′

du
′′′

g

〉

〈αd〉 〈1− αd〉
·
(

〈ud〉d − 〈ug〉g
)

− 1

2

〈

α′

du
′′′

g · u′′′

g

〉

〈αd〉 〈1− αd〉

]

.

(76)

The triple correlation
〈

α′

du
′′′

g · u′′′

g

〉

in (76) represents correlations between the
spray volume fraction and the gas-phase TKE. This term is likely to be negative
(i.e., the more inertial the droplets, the faster they segregate away from regions of
high gas vorticity), but we will assume it is small and neglect it.

Introducing the turbulence models gives rise to final gas-phase RA internal
energy equation:

∂t 〈ρg〉 〈eg〉g +∇x · 〈ρg〉
(

〈eg〉g 〈ug〉g − νg,t
Prg,t

∇x 〈eg〉g +
〈q〉
〈ρg〉

)

= Πe
g + 〈ρg〉 εg

+

(〈

2

τ∗d

〉

+
3

2
RS

)

〈

m1/2

〉

[

K − 〈ug〉g · 〈ud〉d +Kg + kd − 2β (kgkd)
1/2 + kg + 〈Θ〉d

]

−
(〈

2

τ∗d

〉

+
3

2
RS

)

〈

m1/2

〉

uc ·
(

〈ud〉d − 〈ug〉g
)

(77)

where

Πe
g = −Π̃e

g − 〈ρg〉R 〈Tg〉g ∇x · 〈ug〉g + 2 〈ρg〉 〈νg〉g S̄g : S̄g (78)

is the production of gas-phase internal energy through the mean velocity, and

Π̃e
g = −〈ρg〉R 〈Tg〉g ∇x · 〈αd〉uc (79)
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is the contribution due to the drift velocity generated by preferential concentration.
Note that the contribution of the mean velocities in the exchange term can be
rewritten as

K − 〈ug〉g · 〈ud〉d +Kg =
1

2

(

〈ug〉g − 〈ud〉d
)2

, (80)

which is strictly positive. Likewise, the TKE contributions can be rewritten as

(k
1/2
d − k

1/2
d )2 + 2(1 − β)(kdkd)

1/2 with β ≤ 1. Thus, the exchange terms act to
increase the gas-phase PA internal energy.

3.2.5 Gas-phase mean kinetic energy equation

The gas-phase mean kinetic energy is known from the gas-phase PA velocity. It
can be found by multiplying the gas-phase PA momentum equation (68) by 〈ug〉g:

∂t 〈ρg〉Kg+∇x·〈ρg〉
[(

Kg +R 〈Tg〉g +
2

3
kg

)

〈ug〉g − 2
(

νg,t + 〈νg〉g
)

S̄g · 〈ug〉g
]

=

〈ρg〉
[(

R 〈Tg〉g +
2

3
kg

)

I − 2
(

νg,t + 〈νg〉g
)

S̄g

]

: ∇x 〈ug〉g

−
〈

m1/2

〉

〈

1

τ∗d

〉

(

〈ug〉g − 〈ud〉d + uc

)

·〈ug〉g+
3

2
RS

〈

m1/2

〉

(

〈ud〉d · 〈ug〉g −Kg

)

.

(81)

This expression can now be used to find the equation for the gas-phase TKE.

3.2.6 Gas-phase turbulent kinetic energy equation

Using the equality 〈Eg〉g = 〈eg〉g+Kg+kg, the gas-phase TKE can be easily found
by subtracting the gas-phase internal energy equation (77) and the gas-phase mean
kinetic energy equation (81) from the total energy equation (72):

∂t 〈ρg〉 kg +∇x · 〈ρg〉 kg
[

〈ug〉g −
(

νg +
νg,t
σg,t

)

∇x ln kg

]

=

Πk
g+Π̃e

g+Πk
c −〈ρg〉 εg+

〈

m1/2

〉

(〈

2

τ∗d

〉

+ 3RS

)

[

β (kgkd)
1/2 − kg

]

+
3

2
RS

〈

m1/2

〉

kg

(82)

where

Πk
g = 〈ρg〉 νg,tS̄g : S̄g − 2

3
〈ρg〉 kg∇x · 〈ug〉g (83)

is the gas-phase TKE production due to mean velocity gradients, and

Πk
c =

〈

m1/2

〉

(〈

1

τ∗d

〉

+
3

2
RS

)

max
[

0,uc ·
(

〈ud〉d − 〈ug〉g
)]

(84)

is a TKE production term due to two-way coupling and the preferential concen-
tration of droplets in a turbulent flow. Note that the coupling terms in (82) are
asymmetric with respect to those in (56) for the spray phase. This is caused by the
preferential concentration of droplets: under such circumstances the gas seen by
droplets has different statistics than the gas itself [6]. Nevertheless, in shear-driven
flows such as fuel jets in ICE injectors, the main TKE production term will be
Πk

g .
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3.2.7 Gas-phase turbulent kinetic energy dissipation equation

By analogy with Eq. (82), the gas-phase TKE dissipation rate is found from

∂t 〈ρg〉 εg +∇x · 〈ρg〉 εg
[

〈ug〉g −
(

νg +
νg,t
σg,ǫ

)

∇x ln εg

]

=

εg
kg

(

C1

g,ǫΠ
k
g + C6

g,ǫΠ̃
e
g

)

+
εd
kd

C4

g,ǫΠ
k
c − C2

g,ǫ 〈ρg〉
ε2g
kg

+ C3

g,ǫ

〈

m1/2

〉

(〈

2

τ∗d

〉

+ 3RS

)

[

βǫ (εgεd)
1/2 − εg

]

+ C5

g,ǫ
3

2
RS

〈

m1/2

〉

εg (85)

where σg,ǫ, C
1
g,ǫ, C

2
g,ǫ, C

3
g,ǫ, C

4
g,ǫ, C

5
g,ǫ and C6

g,ǫ are model constants.

3.3 Final remarks

The variables and the corresponding transport equations solved for each phase in
the CFD code are as follows.

– Spray phase:
1. RA moments 〈mk〉 for k ∈ (0, 1, 2, 3) – (24).
2. PA velocity 〈ud〉d – (38).
3. PA fluctuating energy κ – (55).
4. TKE kd – (56).
5. TKE dissipation rate εd – (59).

– Gas phase:
1. RA density 〈ρg〉 – (61).
2. PA velocity 〈ug〉g – (68).
3. PA internal energy 〈eg〉g – (77).
4. TKE kg – (82).
5. TKE dissipation rate εg – (85).

As in the case of laminar flow, the RA moments are used to reconstruct the RA
droplet-size NDF 〈n(t,x, S)〉, which is needed to close the phase-space flux term
in (24a) and to find other moments such as

〈

m1/2

〉

. In the turbulence models, the
model constants are set at the standard values used in free-shear flows such as
turbulent jets.

4 Homogeneous turbulence of two-phase polydisperse flows

The this section we apply the multiphase turbulence model derived in Sec. 2 to a
simple test case, namely, homogeneous two-phase turbulence. The most important
point is to capture the correct behavior of the total energy partition between the
evaporating spray and the compressible gas in the context of two-way coupling.
In [6] the effectiveness of the closures proposed for the turbulent velocity corre-
lations between phases

〈

u
′′′

g · u′′

d

〉

d
= 2β(kgkd)

1/2 has been shown in the context
of one-way and two-way coupling of collisionless monodisperse droplets with an
incompressible gas. The model showed good agreement with the total fluctuating
energy expression first given in [20], and provided results comparable with [5] for
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the partition between the spray-phase TKE kd and the granular temperature 〈Θ〉d.
Here we focus on the extension of these results to a more complicated framework
with a polydisperse spray and two-way coupling. In order to simplify the anal-
ysis of the different flow regimes, we first present a dimensionless homogeneous
system of equations. We then focus on selected test cases, which highlight the
turbulence model predictions for different flow conditions relevant to ICE sprays.
In the first case, we are interested in the energy partition for a polydisperse, non-
evaporating spray with frozen gas turbulence, similar to [6,5]. The second case
considers two-way coupling effects on the energy partition for both evaporating
and non-evaporating sprays. After these preliminary studies, the third case con-
siders conditions relevant to direct-injection ICE applications.

4.1 Dimensionless equations for homogeneous turbulent flow

A summary of the equations needed for the two-phase turbulence model with
polydisperse evaporating sprays is given in Sec. 3.3. By neglecting all terms rep-
resenting spatial transport, a simplified set of equation suitable for time-evolving
homogeneous flow is found. We can define the following reference quantities: tur-
bulent kinetic energy k∞, material density of the liquid inside the droplets ρl,∞,
material density of the gas ρl,∞, kinematic viscosity of the gas νg,∞, maximum
droplet size S0, number per volume of droplets n0, and the integral time scale of
the gas-phase turbulence τg = k∞/εg(0) where εg(0) is the value the gas-phase
TKE dissipation rate at time zero. The dimensionless quantities appearing in the
homogeneous model are as follows:

kg =
kg
k∞

, kd =
kd
k∞

, εg =
εgτg
k∞

, εd =
εdτg
k∞

, ρg =
〈ρg〉
ρg,∞

,

x =
x√

k∞τg
, t =

t

τg
, ug =

〈ug〉g√
k∞

, ud =
〈ud〉d√
k∞

, S =
S

S0

,

RS =
RSτg
S0

, νg =
νg

νg,∞
, S̄d =τgS̄d, S̄g =τgS̄g, eg =

〈eg〉g
k∞

,

νg,t =
νg,t

νg,∞Re
, νd,t =

νd,t
νg,∞Re

, ρd =
〈ρd〉
ρd,∞

, mk =
〈mk〉
Sk
0
n0

, n =
〈n〉S0

n0

(86)
where Re = k∞τg/νg,∞ is the turbulence Reynolds number [18].

In the following, we work with dimensionless RA equations, omitting the bars
on variables of the mean two-phase flow as well as the RA and PA brackets (e.g.,
mk = 〈mk〉) for clarity. The dimensionless RA moment equations are given by

dtm0 =− n(t,x, 0)RS , (87a)

dtm1 =−m0RS , (87b)

dtm2 =−m1RS , (87c)

dtm3 =−m2RS . (87d)

The dimensionless continuity equation for the gas phase is

dtρg =
3

2
Φmm1/2RS (88)
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with the dimensionless mass loading Φm = ρd,∞S
3/2
0

n0/ρg,∞. The dimensionless
RA mean momentum equations are

dtΦmm3/2ud =
Φmm1/2

St
(1− Cg) (ug − ud)−

3

2
Φmm1/2RSud, (89a)

dtρgug =−
Φmm1/2

St
(1− Cg) (ug − ud) +

3

2
Φmm1/2RSud (89b)

where St is the Stokes number relative to the droplet size S0. The reader can
note that the total mean momentum of the two-phase system is constant. The
dimensionless RA internal-energy equation for the gas phase is

dtρgeg =
Πe

g

Re
+ρgεg+

(

2

St
+

3

2
RS

)

Φmm1/2

[(

1

2
− Cg

)

(ug − ud)
2 + kg − 2β (kgkd)

1/2 + κ

]

(90)

where the production term due to molecular dissipation of mean shear Πe
g will be

non-zero for free-shear flow but otherwise is null. Note that the right-hand side
of this equation should always non-negative since the gas-phase internal energy
never decreases, which implies that Cg ≤ 1/2.

The dimensionless system of conserved quantities representing fluctuations in
the spray phase is

dtm3/2κ =ΠK +
2

St
m1/2

[

β (kgkd)
1/2 − κ

]

− 3

2
RSm1/2κ (91a)

dtm3/2kd =Πk
d −m3/2εd +

2

St
m1/2

[

β (kgkd)
1/2 − kd

]

− 3

2
RSm1/2kd (91b)

dtm3/2εd =C1

d,ǫ
εd
kd

Πk
d − C2

d,ǫm3/2
ε2d
kd

+ C3

d,ǫ
2

St
m1/2

[

βǫ (εgεd)
1/2 − εd

]

− C5

d,ǫ
3

2
RSm1/2εd

(91c)

where ΠK = Πk
d are the dimensionless production terms due to turbulent dissi-

pation of mean shear in the spray phase. The dimensionless system of conserved
quantities representing the turbulent fluctuations in the gas phase is

dtρgkg =Πk
g − ρgεg +

(

2

St
+ 3RS

)

Φmm1/2

[

β (kgkd)
1/2 − kg

]

+

(

1

St
+

3

2
RS

)

Φmm1/2Cg (ug − ud)
2 +

3

2
RSΦmm1/2kg (92a)

dtρgεg =C1

g,ǫ
εg
kg

Πk
g − C2

g,ǫρg
ε2g
kg

+ C3

g,ǫ

(

2

St
+ 3RS

)

Φmm1/2

[

βǫ (εgεd)
1/2 − εg

]

+ C4

g,ǫ
εd
kd

(

1

St
+

3

2
RS

)

Φmm1/2Cg (ug − ud)
2 + C5

g,ǫ
3

2
RSΦmm1/2εg

(92b)

where Πk
g is the dimensionless production term due to turbulent dissipation of

mean shear in the gas phase. In the following, we consider C1
g,ǫ = C1

d,ǫ = 1.44,

C2
g,ǫ = C2

d,ǫ = 1.92, C3
g,ǫ = C3

d,ǫ = 1.55, C4
g,ǫ = 2.11, C5

g,ǫ = C5

d,ǫ = 1.55, and
Cg = 0.3. The values of the remaining production terms are set equal to zero
unless noted otherwise.
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4.2 Example results for fluctuating energy partition with decaying turbulence

In order to validate the spray-phase energy partition for polydisperse droplets, we
use the three one-way-coupling cases in [5], originally conducted for monodisperse
droplets. These cases use three sets of initial conditions: (i) κ(0) = 1, kd(0) = 1;
(ii) κ(0) = 0, kd(0) = 0; and (iii) κ(0) = 0.83, kd(0) = 0. The gas-phase turbulence
is frozen and set as kg = 1. The mean velocities are equal ug = ud, and remain so
for all time due to the abscence of gravity. For the case with initial value kd(0) = 1,
we use the initial value εd(0) = 2. Otherwise we use εd(0) = 0 when kd(0) = 0 for
the sake of consistency. For monodisperse droplets in [5], a Stokes number equal
to Stm = 0.81 is employed. This value corresponds to the Stokes number to the
time scale relative to the mean droplet size of the polydisperse distribution over
the (constant) gas integral time scale τg. For convenience, we set τg = 1, leading
to a gas-phase turbulence energy dissipation of εg = 1.

For the following simulations, the values for β and βǫ are fixed to 0.8, as sug-
gested in [6], since this provides the correct steady-state results for κ as compared
to [20] and the correct energy partition as found in [5]. Moreover, the following
Rosin-Rammler function is used to characterize the droplet size distribution in the
spray:

n (S) =
1

2
qrr16

qrr/2S
qrr

2
−1 exp

[

− (16S)qrr/2
]

(93)

with the constant qrr = 3.5 determining the sharpness of the distribution and the
dimensionless size phase variable S ∈ [0, 1]. According to this distribution, the
largest droplet size is equal to S0 = 16Smean where Smean is the mean droplet
size. This yields a characteristic Stokes number of St = 16Stm.

Recall that for one-way coupling of polydisperse droplets with a frozen gas
phase, only the system (91) with ΠK = Πk

d = 0 is solved. Results are plotted in
Fig. 1. The spray energy partition is a good agreement with Fig. 3 in [6], and the
small differences in the steady-state values are due to the polydispersity of the
droplets in Fig. 1. In summary, the turbulence model proposed in [6] has been
successfully extended to the Eulerian high-order moment method for polydisperse
droplets.

Two-way coupled interactions require the complete turbulence model given
by (91) and (92) for a non-evaporating spray and (91), and (92) and (87) for
an evaporating spray. As with one-way coupling, production terms involving mean
gradients are set to zero, i.e., ΠK = Πk

d = Πk
g = 0. The mass loading number is set

to Φm = 0.4 for both non-evaporating and evaporating cases, and the evaporation
velocity is taken as RS = 10St for the evaporating case.

Results for a non-evaporating spray are plotted in Figs. 2 and 3. In contrast to
the spray energy partition observed for one-way coupling, the normalized values
in Fig. 2 show that the granular energy decreases towards zero while the spray-
phase TKE moves towards the total fluctuating energy. Moreover, the gas-phase
turbulence dissipates into gas-phase internal energy since no production term due
to the mean flow are considered. Furthermore, the spray mass is not high enough
to generate significant turbulence inside the gas phase. However, let us underline
the small effect of initial spray fluctuating energy on the gas phase as observed
in the internal energy profiles, which are not the same for different spray initial
conditions and increase with κ.
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Fig. 1 Dynamics of the dimensionless non-evaporating spray-phase energy components with
frozen gas-phase turbulence (one-way coupling). Curves correspond to three initial conditions:
(i) solid lines, (ii) dashed lines, and (iii) stars. Curves corresponding to the fluctuating energy
κ, the spray-phase kinetic energy kd and the granular temperature Θ are respectively denoted
through circle, square and triangle symbols.
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Fig. 2 Dynamics of the normalized non-evaporating spray-phase energy components with two-
way coupling. Curves correspond to three initial conditions: (i) solid black lines, (ii) dashed
blue lines, (iii) red dots. Curves corresponding to the fluctuating energy κ, the spray-phase
kinetic energy kd and the granular temperature Θ are respectively denoted through circle,
square and triangle symbols.

Results for an evaporating spray are plotted in Figs. 4, 5 and 6. In this case,
time t = 8 corresponds to the characteristic evaporation time for the mean droplet
radius of the distribution. The spray-phase energy partition displayed in Fig. 5 is
very similar to the case with a non-evaporating spray despite some small differ-
ences. When it comes to the gas phase, although the internal energy profiles do not
change much, the final values decrease for each initial condition, since the spray
evaporation heats the gas phase. Moreover, it is observed that the gas-phase TKE
remains the same as compared to the non-evaporating case. This proves that the
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Fig. 3 Dynamics of the gas-phase energy components for non-evaporating droplets with two-
way coupling. Curves correspond to gas-phase TKE (top) and gas-phase internal energy (bot-
tom) for three initial conditions: (i) solid black lines, (ii) dashed blue lines, (iii) red dots.
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Fig. 4 Gas-phase density evolution (top) and spray density concentration (bottom) with
polydisperse evaporating droplets.

turbulence generation in the gas due to the droplet presence is going down since
droplets are disappearing but the evaporation creates some turbulence in the gas,
counterbalancing the former.

In summary, the test cases without turbulence source terms due to mean ve-
locity gradients but with different initial energy distributions illustrate that the
two-phase turbulence model with evaporating droplets behaves as might be ex-
pected from the behavior observed with frozen gas-phase turbulence. In general,
the turbulence decay observed for the gas phase is only slightly altered by the
presence of the spray. Nevertheless, the numerical method used to reconstruct the
NDF from the RA moments works equally well as it did for the laminar cases in
our earlier work.
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Fig. 5 Dynamics of the normalized evaporating spray-phase energy components. Curves cor-
respond to three initial conditions: (i) solid black lines, (ii) dashed blue lines, (iii) red dots.
Curves corresponding to the fluctuating energy κ, the spray-phase kinetic energy kd and the
granular temperature Θ are respectively denoted through circle, square and triangle symbols.
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Fig. 6 Dynamics of the gas-phase energy components with evaporating droplets. Curves cor-
respond to gas-phase TKE (top) and gas-phase internal energy (bottom) for three initial
conditions: (i) solid black lines, (ii) dashed blue lines, (iii) red dots.

4.3 Example results for typical ICE flow conditions

The complete turbulence model will eventually be implemented in an industrial
CFD code [2] and validated for high-pressure direct injection simulations of ICE
applications. The scope of this section is to verify the feasibility of using the
turbulence model under typical ICE operating conditions [8]. In the combustion
chamber of a typical diesel engine, the gas-phase turbulence is mainly produced
by the high-speed direct injection of the fuel spray. Due to the significant velocity
difference between the gas and the injected liquid fuel, the spray phase is nearly
laminar near the nozzle and the associated spray-phase TKE is very small. How-
ever, the droplet flow regime, having strong interactions with the turbulent gas
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Table 1 Parameters characterizing the dense zone of the disperse phase under ICE conditions.
Values for inlet velocity u, TKE k, TKE dissipation rate ε, and the volume fraction α are given
for each phase whereas rsmr denotes the Sauter mean radius (SMR) of the spray and νg is the
gas-phase viscosity.

u (m/s) k (m2/s2) ε (m2/s3) α rsmr (µm) νg (m2/s)
gas 71 111 2× 106 1 - 4.15× 10−5

spray 156 1 10 5× 10−3 25 -

Table 2 Characteristic inflow values for turbulent disperse-phase flow under ICE conditions.
τS,smr and τd,smr are the evaporation and drag times, respectively, based on the spray Sauter

mean radius (SMR). τη = (νg/εg)1/2 and Stη = τd,smr/τη are the Kolmogorov time scale and
Stokes number, respectively. StS = τS,smr/τg is the evaporation number. All values are based
on the initial conditions give in Table 1.

τS,smr (s) τd,smr (s) τg (s) τη (s) Re St Stη StS

3× 10−3 4× 10−5 5.55× 10−5 4.56× 10−6 148 0.721 8.77 54.1

phase, becomes turbulent farther from the injector nozzle. Therefore, we will focus
on a two-phase flow regime composed of a fully-developed gas-phase turbulent jet
interacting with a nearly laminar spray phase composed of polydisperse droplets.
Injection velocities for each phase and other relevant quantities needed to initialize
the time-evolving simulations are representative of ICE conditions.

To obtain the characteristic initial data for ICE conditions, an injection test
case, representing Spray-H conditions in [1], has been computed using the IFP-
C3D software [2], adopting a Lagrangian description of polydisperse droplets [16].
The relevant characteristic values are the gas-phase TKE kg, gas-phase TKE dis-
sipation εg, the spray-phase volume fraction αd, the mean droplet radius rsmr,
characteristic evaporation time scale τS,smr and the drag time scale τd,smr asso-
ciated with the spray. These are obtained from the IFP-C3D simulation results
and are used as initial conditions for our time-evolving homogeneous simulation.
Table 1 provides the relevant data. These values are employed to compute the
dimensionless numbers given in Table 2 characterizing the disperse-flow regime.
Note that the drag and integral time scales are comparable, while the evaporation
time scale is two orders of magnitude larger. Also note that the Stokes number
St is nearly unity, indicating that particle trajectory crossing (represented by Θ

in our model) will be important at the turbulence integral scale. In a self-similar
turbulent jet, the turbulence Reynolds number (Re = k2g/(νgεg)) is constant and
τg increases along the centerline (i.e., with time in our model). Thus, with one-way
coupling, the Stokes numbers would decrease in the non-evaporating case due to
the change in τg. Obviously, the decrease in Stokes number will be more rapid
with evaporating droplets due to the decrease in τd,smr.

The conceptual difference between the Lagrangian description of the droplets
used to characterize the turbulent disperse-phase flow and the Eulerian turbulent
model developed in this work do not allow us to extract directly the values for
spray-phase TKE kd and its dissipation rate εd from the IFP-C3D simulation
results. Nevertheless, the integral time scale associated with the spray-phase TKE
should be comparable to the gas-phase integral time scale τg in the injection zone
where the velocity difference between phases is significant. Therefore, we set kd =
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κ = 1 and εd = 10 as the initial state of the spray-phase turbulence. Note that
these values are much smaller than in the gas phase, and correspond to nearly
laminar flow. The initial polydisperse droplet size distribution follows the function
defined by Eq. (93).

Although we are considering a homogeneous case, energy production terms due
to mean velocity gradients in the gas phase need to be taken into consideration
since the direct injection process is modeled as a free-shear flow for the gas-phase
turbulence [18]. It is therefore appropriate to provide closures for these production
terms, considering a constant turbulence Reynolds number as is observed for single-
phase turbulent jets [18]. For this purpose, we deduce an analytical expression for
Πk

g in Eq. (92) and Eq. (91), respectively, corresponding to a self-similar turbulent
jet:

Πk
g =

(

2− C2
g,ǫ

2− C1
g,ǫ

)

ρgεg, Πk
d =

(

2− C2

d,ǫ

2− C1

d,ǫ

)

m3/2εd. (94)

In the absence of two-way coupling, this expression for Πk
g will yield a constant

turbulence Reynolds number as expected for a turbulent jet [18]. However, due
to two-way coupling, the turbulence Reynolds number under ICE conditions will
vary with time (or distance from the nozzle). The model for Πk

d is taken in analogy
to the gas phase.

In the following, three time-dependent homogeneous cases are considered, based
on the following initial conditions: (i) single-phase gas flow, (ii) two-phase flow of
a compressible gas and a non-evaporating polydisperse spray and (iii) two-phase
flow composed of a compressible gas and an evaporating polydisperse spray. Case
(i) is a reference case for a self-similar turbulent jet where the data corresponds
to the centerline turbulence statistics moving with the mean velocity. Case (ii)
uses the same initial conditions as case (i) but with RS = 0, and thus illustrates
the effect of two-way coupling due to drag on the turbulence statistics. Finally,
case (iii) shows the additional effect of droplet evaporation on two-way coupling.
For reference, the mean velocities and the spray density concentration are shown
in Fig. 7 as a function of dimensionless time. (In all figures, the time is made
dimensionless by the initial gas-phase integral time scale.) Note that the mean
momentum equations (see, e.g., Eq. (89)) do not contain terms corresponding to
the spread of the turbulent jet, which would lower the mean velocities. Thus, the
mean velocities plotted in Fig. 7 can be thought of as normalized values relative
to the centerline jet velocity. In any case, from Fig. 7 we can observe that for the
two spray cases the mean velocities are nearly equal for t ≥ 4τg. The fact that the
two spray cases have nearly the same velocity profiles is due to the relatively slow
evaporation rate for case (iii) as seen from the slow decrease in the spray density
concentration.

Figures 8 and 9 present the evolution of the turbulence Reynolds number and
gas-phase energies, respectively, for each case. As expected due to the modeling
assumptions for Πk

g and Πk
d , in case (i) the turbulence Reynolds number remains

constant although the gas-phase TKE decreases with time. For cases (ii) and
(iii), the turbulence Reynolds number first increases and decreases sharply at the
beginning of the simulation and then slowly decreases. This behavior comes from
the fact that the presence of droplets increases significantly the gas-phase TKE kg
due to two-way coupling (i.e., the source terms in Eq. (92) involving Cg). It can
also be remarked that the gas-phase internal energy increases up to ∼ 8 from 0.5
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Fig. 7 Mean velocities versus time (top) for cases (ii) (solid black lines) and (iii) (dashed red
lines). Spray density concentration m3/2 versus time for case (iii) (dashed red lines).
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Fig. 8 Turbulence Reynolds number Re versus time. Cases (i) solid black lines, (ii) dashed
red lines, and (iii) blue dots.

for cases (ii) and (iii), whereas it remains quite low for case (i). This difference
comes from the two-way coupling source terms, especially due to the mean velocity
difference between the two phases shown in Fig. 7, which has a significant effect
on the gas-phase turbulence.

In Fig. 10, the spray-phase energy partition and the TKE dissipation rates
are given for cases (ii) and (iii). It can be observed that the complete relaxation
between the gas and spray does not take place since the the normalized spray-phase
TKE kd remains below one. Nonetheless, the energy partition seems reasonable
since the granular temperature Θ tends to diminish while the spray-phase TKE kd
and the total fluctuating energy κ become closer and approach kg with time. Note
the differences between cases (ii) and (iii) are minimal due to the relatively slow
evaporation of droplets in case (iii). Overall, the spray-phase turbulence is driven
by the energy exchange terms from the gas phase due to drag, although as seen
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versus time. Cases (i) solid black lines, (ii) dashed red lines, and (iii) blue dots.
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granular temperature Θ (top, triangle) and spray-phase TKE dissipation εd (bottom) versus
time. Cases (ii) (solid black lines) and (iii) (dashed red lines).

in Fig. 9 the presence of droplets significantly increases the gas-phase turbulence
and, hence, leads to turbulence in the spray phase.

5 Conclusions

Within the context of two-phase turbulence modeling for ICE applications, the
main purpose of the present contribution is to apply the Reynolds-averaging (RA)
philosophy, originally introduced for two-way coupled monodisperse flows in [6], to
two-way coupled polydisperse flows with evaporating droplets and a compressible
gas [10]. For clarity, we have considered only the simplest forms for drag model
through Stokes law and d2-constant evaporation law for the droplets. However,
the generalization to more complex models should be straightforward.
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In the context of homogeneous two-phase turbulence, the new model has been
investigated for polydispere droplets with both one-way and two-way coupling.
The realizability condition of EMSM method has been successfully respected, val-
idating the adequacy of the new turbulence modeling approach with high-order
moment methods in the presence of spray evaporation. Moreover, it has been
qualitatively validated as compared to work done in [5] within the framework of
one-way coupling. The correct behavior of the energy partition in the two-phase
flow has been also observed for two-way coupled evaporating and non-evaporating
sprays. As far as industrial applications are concerned, the model has been studied
under realistic characteristic scales and values provided from the data of 3D injec-
tion simulations (spray-h conditions [1]) in the industrial CFD code IFP-C3D [2].
The latter work gave some significant insights on the underlying physics although
it lacks of quantitative validations.

Given these achievements, the model is now ready to be implemented in an
industrial software (i.e. IFP-C3D [2]). However, further effort is required for its
numerical resolution using the ALE formalism for moving geometries. Let us recall
that for laminar two-phase flows, the two-way coupled EMSM method had been
successfully implemented in [10] using a pressure-less gas formalism for its resolu-
tion. However, the fact that there are many gradients arising from the turbulence
model renders the task more complicated. As soon as the numerical implementa-
tion is complete, the turbulence model should be tested under realistic injection
conditions and quantitatively validated against experimental data.
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A Reynolds and Phase averaging

A.1 Reynolds average

The RA of a product can be decomposed:

〈AB〉 =
〈

(A′ + 〈A〉)(B′ + 〈B〉)
〉

=
〈

A′B′ +A′ 〈B〉+B′ 〈A〉+ 〈A〉 〈B〉
〉

=
〈

A′B′
〉

+
〈

A′
〉

〈B〉+
〈

B′
〉

〈A〉+ 〈A〉 〈B〉

=
〈

A′B′
〉

+ 〈A〉 〈B〉 (95)

and

〈ABC〉 =
〈

(A′B′ +A′ 〈B〉+B′ 〈A〉+ 〈A〉 〈B〉)(C′ + 〈C〉)
〉

=
〈

A′B′C′ +A′C′ 〈B〉+B′C′ 〈A〉+ C′ 〈A〉 〈B〉+A′B′ 〈C〉+A′ 〈B〉 〈C〉+B′ 〈A〉 〈C〉+ 〈A〉 〈B〉 〈C〉
〉

=
〈

A′B′C′
〉

+
〈

A′C′
〉

〈B〉+
〈

B′C′
〉

〈A〉+
〈

C′
〉

〈A〉 〈B〉+
〈

A′B′
〉

〈C〉+
〈

A′
〉

〈B〉 〈C〉

+
〈

B′
〉

〈A〉 〈C〉+ 〈A〉 〈B〉 〈C〉

= 〈A〉 〈B〉 〈C〉+ 〈A〉
〈

B′C′
〉

+ 〈B〉
〈

A′C′
〉

+ 〈C〉
〈

A′B′
〉

+
〈

A′B′C′
〉

(96)

A.2 Phase average

In the context of dilute disperse flows where the gas phase is modeled through compressible
Navier-Stokes equation and polydisperse droplets by a moment method, both the gas density
ρg and the spray density concentration denoted by the moment m3/2 play an important role
for the averaging procedure. Therefore, the relation between RA and the PA of an arbitrary
variable A for

– the gas phase is
〈ρgA〉 = 〈ρg〉 〈A〉g , (97)

– the polydispersed phase is
〈m1A〉 = 〈m1〉 〈A〉d . (98)

A useful identity relating the PA of the quantity A to its covariances with respect to the gas
density and the moment m1 can be also derived. Adding Eq. (97) to (98), one can obtain the
following relation:

〈A〉d = 〈A〉g +

〈(

ρg +m1

)

A
〉

− 〈ρg +m1〉 〈A〉g

〈m1〉
(99)

multiplying by 〈ρg〉 both the numerator and the denominator of the second term at the right-
hand side in Eq. (99) and using the relation, one can easily obtain the following expression:

〈A〉d = 〈A〉g +

〈

m′

1
A′

〉

〈m1〉
−

〈

ρ′gA
′
〉

〈ρg〉
(100)

Deriving Reynolds averaged moment equations requires a density-weighted statistics of terms
〈mkA〉 where mk is the moment of order k with k is different from 3/2. This accounts for
leading the following operation:

〈mkA〉 =
〈m1〉 〈mkA〉

〈m1〉
=

〈m1〉
[

〈A〉 〈mk〉+
〈

A′m′

k

〉 ]

〈m1〉
=

〈m1A〉 −
〈

m′

1
A′

〉

〈m1〉
〈mk〉+

〈

m′

kA
′
〉

(101)
therefore,

〈mkA〉 = 〈mk〉 〈A〉d −
〈mk〉

〈m1〉

〈

m′

1A
′
〉

+
〈

m′

kA
′
〉

(102)



Title Suppressed Due to Excessive Length 31

An other difficulty encountered during the derivation phase of RA equations is observed when
the RA of a variable 〈A〉 is obtained. The latter need to be defined in function of a density-
weighted statistics. This can be done either with respect to the gas phase,

〈A〉 = 〈A〉g −

〈

ρ′gA
′
〉

〈ρg〉
(103)

or the spray phase,

〈A〉 = 〈A〉d −

〈

m′

1
A′

〉

〈m1〉
. (104)

B Full RA equations

The aim of this part is to give further details in the derivation of full coupled RA two-phase
flow equations. Some source terms contain third-order correlations, which need to be carefully
explicated for modeling issues. Let us then focus on each RA equation in the reminder.

B.1 RA moment equations

∂t 〈m0〉+∇x ·

(

〈m0〉 〈ud〉d −
〈m0〉

〈m1〉

〈

m′

1u
′

d

〉

+
〈

m′

0u
′

d

〉

)

= RS 〈n(t,x, 0)〉 , (105a)

∂t 〈m1〉+∇x ·

(

〈m1〉 〈ud〉d

)

= 〈M〉 , (105b)

∂t 〈m2〉+∇x ·

(

〈m2〉 〈ud〉d −
〈m2〉

〈m1〉

〈

m′

1u
′

d

〉

+
〈

m′

2u
′

d

〉

)

= −2RS 〈m1〉 , (105c)

∂t 〈m3〉+∇x ·

(

〈m3〉 〈ud〉d −
〈m3〉

〈m1〉

〈

m′

1u
′

d

〉

+
〈

m′

3u
′

d

〉

)

= −3RS 〈m2〉 . (105d)

B.2 RA spray momentum equation

Taking the RA of (9e) yields

∂t 〈m1〉 〈ud〉d +∇x ·

[

〈m1〉

(

〈ud〉
2

d +
〈

u
′′

du
′′

d

〉

d
+ 〈Pd〉d

)]

= 〈A〉+ 〈Mud〉 (106)

The source term at the right hand side of Eq. (106) still needs to be developed. Through the
formulas (102) and (96) given in A, the mean source term due to drag force can be developed
as

〈A〉 =

(

〈m0〉

〈

1

τ∗d

〉

+

〈

m′

0(
1

τ∗d
)′

〉

)(

〈ug〉g − 〈ud〉d +

〈

m′

1
u
′

d

〉

〈m1〉
−

〈

ρ′gu
′

g

〉

〈ρg〉

)

+

〈

1

τ∗d

〉

(

〈

m′

0u
′

g

〉

−
〈

m′

0u
′

d

〉

)

+ 〈m0〉

(

〈

u
′

g(
1

τ∗d
)′

〉

−

〈

u
′

d(
1

τ∗d
)′

〉

)

+

〈

m′

0u
′

g(
1

τ∗d
)′

〉

−

〈

m′

0u
′

d(
1

τ∗d
)′

〉

, (107)

whereas the mean momentum exchange created by the evaporating spray is given through the
expression

〈Mud〉 =−RS

(

〈m0〉 〈ud〉d −
〈m0〉

〈

m′

1
u
′

d

〉

〈m1〉
+

〈

m′

0u
′

d

〉

)

. (108)
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