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ON COVARIANT DERIVATIVES AND THEIR APPLICATIONS TO
IMAGE REGULARIZATION *

THOMAS BATARD AND MARCELO BERTALMIO T

Abstract. We present a generalization of the Euclidean and Riemannian gradient operators to a
vector bundle, a geometric structure generalizing the concept of manifold. One of the key ideas is to
replace the standard differentiation of a function by the covariant differentiation of a section. Dealing
with covariant derivatives satisfying the property of compatibility with vector bundle metrics, we
construct generalizations of existing mathematical models for image regularization that involve the
Euclidean gradient operator, namely the linear scale-space and the Rudin-Osher-Fatemi denoising
model. For well-chosen covariant derivatives, we show that our denoising model outperforms state-
of-the-art variational denoising methods of the same type both in terms of PSNR and Q-index [45].

Key words. Denoising, total variation, scale-space, generalized Laplacian, Riemannian mani-
fold, vector bundle.

1. Introduction. We first give a motivation to the use of covariation differ-
entiation for image processing. Then, we focus in a more detailed manner on how
covariant differentiation can be incorporated into variational techniques for image
regularization.

1.1. Covariant differentiation for image processing. The notion of covari-
ant differentiation is at the core of the differential geometry of fibre bundles [29],[43].
Whereas covariant differentiation is involved in many mathematical models in theo-
retical physics, as in general relativity and Gauge fields theories [27], it is involved
in very few works in image processing: besides previous work of one of the author
[3],]4],[5],[6],[8] we may refer to the work of Duits et al. with applications to crossing-
preserving smoothing [19] as well as contour enhancement and completion [17],[18].

Most of the techniques used to perform image processing compare, at some stage,
intensity values of neighboring pixels by computing their difference, and this opera-
tion can be viewed as a discretization of the standard differentiation of functions. As
covariant differentiation of sections of a vector bundle is a generalization of standard
differentiation of functions, we claim that image processing techniques can be gener-
alized and hopefully improved by considering an image as a section of a vector bundle
and replacing the standard differentiation by covariant differentiation. Then, it raises
the problem of the choice of the covariant derivative used to compare intensity of im-
age pixels. In previous works of one of the authors, covariant derivatives were used as
parameters that can be tuned to obtain some desirable properties on edge detection
[3] and anisotropic diffusion [5],[6]. In [8] and in the current paper, we focus on image
denoising, and covariant derivatives are used as parameters too.

Georgiev [21] proposed a theoretical interpretation of the concept of covariant
differentiation for images. He argues that covariant differentiation can be used to en-
code properties of the human visual system, like adaptation which makes the intensity
difference perceived between two pixels depending of their surroundings. However the
existence and the construction of a covariant derivative that would be theoretically
consistent with human perception and will be used to outperform the existing image
processing techniques are still open, and non trivial, problems.

*This work was supported by European Research Council, Starting Grant ref. 306337. The
authors have published a preliminary version of this work in [8].

fDepartment of Information and Communication Technologies, University Pompeu Fabra,
Barcelona, Spain(thomas.batard@upf.edu, marcelo.bertalmio@upf.edu).

1



2 T. BATARD AND M. BERTALMIO

Whereas the use of covariant differentiation as a model for comparing neighbor-
ing pixels of natural grey-level and color images is not straightforward, there exist
some types of fields where it seems more obvious, like flow fields and manifold-valued
fields. Indeed, flow fields can be considered as tangent vector fields over a well-chosen
manifold, i.e. sections of a tangent bundle, which makes covariant differentiation on
tangent bundle be a tool to compare vectors at difference positions. In particular, if
the manifold where the flow is defined is a Riemannian manifold, e.g. a surface in R3,
then the field can be differentiated through the Levi-Civita covariant derivative (see
an application in [4]). One can also envisage to process manifold-valued fields through
the fields (not necessarily unique) of their infinitesimal generators, which take values
in the tangent bundle of the manifold, and make use of covariant differentiation on
the tangent bundle. This technique was used in [4] for regularizing S!-valued fields.
We refer to the recent work of Rosman et al. [39] and references therein for others
techniques dedicated to manifold-valued fields regularization.

1.2. A short overview on variational methods for image regularization.
Variational techniques have been successfully employed in various image processing
tasks, e.g. regularization, contrast enhancement, optimal flow estimation. Regarding
the problem of image regularization, the seminal techniques involved norms of the
Fuclidean gradient operator. More precisely, the L2 norm is related with the linear
scale-space (see e.g.[34]) and the L1 norm (also called Total Variation and denoted by
TV) is used in the Rudin-Osher-Fatemi (ROF) denoising model [41]. However, it is
well-known that these techniques provide some undesirable effects. Indeed, the linear
scale-space does not preserve the edges of the initial condition and the ROF model
tends to produce stair-casing effects, over-smoothing and the numerical scheme in [41]
does not converge towards the solution of the variational problem. Since then, many
techniques have been developed in order to overcome these issues.

In [14], Chambolle extended the ROF denoising model by extending the TV of
differentiable functions to functions of bounded variations (BV), and obtained an
algorithm for reaching the unique solution of the original ROF model. We refer
to Chambolle et al. [15] for a complete introduction to TV and its applications
in image analysis. Since then, the approach of Chambolle has been extended in
several ways. Bresson and Chan [11] make use of the Vectorial Total Variation (VIV)
introduced in [1] to extend Chambolle’s algorithm for color image denoising. Based on
geometric measure theory, Goldluecke et al. [25] proposed an alternative extension of
TV to vector-valued functions. Let us also mention that a Total Generalized Variation
(TGV) that involves higher order derivatives of the image has been defined by Bredies
et al. [10] in order to take more into account the local geometry of the image in the
denoising process.

Many variational techniques for image regularization involve spatial adaptivity in
order to take into account the contours and textures of the image to regularize. Some
of these techniques make use of the structure tensor of the image (see for instance
[40],[42],[44],[46] for anisotropic diffusion and [33],[38] for denoising). In particular,
the approaches in [38],[42] are based on a generalization of the gradient operator to
Riemannian manifolds. Let us also cite the recent work of Lenzen et al. [32] who
introduced spatial adaptivity in the TGV for denoising purposes. Another denoising
method based on second order derivatives of the image is the approach of Zhu and
Chan [47] where the TV in the ROF denoising model is replaced by the absolute value
of the Mean Curvature of the image surface.

Some recent techniques perform image denoising through the denoising of a field
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attached to the image. For instance, Lysaker et al. [35] first denoise the directions
field of the (Euclidean) gradient of the image, and then obtain the denoised image as
an image whose directions field of the gradient match with the smoothed directions.
Such an approach motivated the Bregman iterations-based denoising algorithm of
Osher et al. [26],[36]. More recently, Bertalmio and Levine [9] adopted a similar
approach but dealing with the curvature of the level-lines.

Since the seminal works of Awate and Whitaker [2], and Buades et al. [13], non-
local techniques for image denoising have been developed and turn out to provide much
better results than those of state-of-the-art local methods. A non-local variational
approach for denoising has been proposed by Gilboa and Osher [24], defining a non-
local gradient operator and the corresponding non-local ROF denoising model. A
non-local extension of the TV based on measure theory has also been proposed more
recently by Jin et al. [28].

1.3. Previous work and contribution. In the aforementioned denoising meth-
ods that use spatial adaptivity or a field attached to the image, the data involved were
directions and strengths of edges, curvature of level-lines, or Gaussian curvature of
the image surface. In order to be able to carry more information, we introduced in
[8] a generalization of the Euclidean and Riemannian gradient operators. This new
gradient operator acts on a section of a vector bundle and is determined by three ge-
ometric data: a Riemannian metric on the base manifold, a covariant derivative and
a positive definite metric on the vector bundle. In particular, we showed that if the
covariant derivative satisfies the property of compatibility with the metric, then the
gradient descent flow related with the L2 norm minimization of the gradient operator
corresponds to the heat equation of some generalized Laplacian. We also proposed
a vector bundle extension of the ROF denoising model based on a regularized L1
norm of such gradients, where the solution can be reached through a gradient descent
algorithm. For a well-chosen generalized gradient of color images, we showed that
the denoising model outperforms the split Bregman algorithm [22], both in terms of
PSNR and Q-index measures [45].

In this paper, we extend the results in [8] in several ways.

1. From a theoretical viewpoint, we establish more results upon heat equations of
generalized Laplacians. Moreover, we introduce a Vector Bundle-valued Total Varia-
tion (VBTV) that generalizes the TV and VTV to sections of a vector bundle, from
which we derive a ROF denoising model without regularization of the L1 norm.
We provide the expression of the solutions of this variational problem by showing
that the analysis of Chambolle in [14] extends in a straightforward way to a vector
bundle provided that the covariant derivative is compatible with the metric. We also
introduce an algorithm for reaching the solutions of this denoising model.

2. The generalized gradient we were using in the experiments was determined by
an orthonormal moving frame chosen arbitrarily. In this paper, we show empirically
that our results are invariant with respect to the choice of the orthonormal moving
frame, provided that the moving frame satisfies certain properties.

3. New and extensive quantitative experiments show that the denoising models
associated with this approach outperform state-of-the-art variational denoising meth-
ods of the same type.

This paper is organized as follows. In Sect. 2, we first review the main properties of
covariant derivatives compatible with the metric. Sect. 3 is devoted to the theoretical
study of the vector bundle extensions of the linear scale-space and ROF denoising
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model. In particular, we give expressions of the solutions. Finally, in Sect. 4, we
provide experiments of our denoising model on both grey-level and color images.

2. On covariant derivatives compatibles with the metric. The main aim
of this Section is to show that covariant derivatives that are compatible with the metric
share many properties with the Euclidean gradient operator. We also establish a link
between the parallel sections associated with such covariant derivatives and harmonic
maps between Riemannian manifolds.

2.1. On the concept of covariant derivatives on a vector bundle.

2.1.1. Definitions and examples. In this Section, we give the definitions and
some examples of the concepts of differential geometry we will use throughout this
paper. We refer for instance to [43] for more details on differential geometry of vector
bundles.

DEFINITION 2.1. A smooth vector bundle of rank n is a triplet (E, 7, M)
where M and E are two C* manifolds, and w: E — M is a surjective map such
that the preimage 7~ (x) of x € M is endowed with a structure of vector space of
dimension n. M is called the base manifold and E the total space of the vector
bundle. The set 7~ (x) is called the fiber over x, and is denoted by E,.

The vector bundle is said to be locally trivial if the following conditions hold:
for each x € M |, there is a neighborhood U of x and a diffeomorphism ¢: U x R —
7Y (U) satisfying o ¢(z, f) =  Vf € R", and such that the map ¢,: R" — E, is
a vector space isomorphism. The couple (U, @) is called a local trivialization.

The vector bundle is said to be trivial if there exists a diffeomorphism ®: M X
R™ — E satisfying wo ®(x, f) =« Vf € R"™, and such that the map ®,: R" — E,
is a vector space isomorphism.

Ezxample 1. Let M be a C* manifold of dimension m. The disjoint union of
tangent spaces TM = | |T, M, for v € M, is the total space of a vector bundle
(TM,n, M) of rank m called the tangent bundle of M.

DEFINITION 2.2. A metric h on a vector bundle is the assigment of a scalar
product h, on each fiber 7= (x).

Example 2. A Riemannian metric on a manifold is a positive definite metric on
its tangent bundle.

DEFINITION 2.3. A section of a smooth vector bundle (E,m, M) is a differen-
tiable map S: M — E such that mo S = Id);.

Let (f1,---, fn) be a basis of R™. In a local trivialization (U, @) of (E,m, M),
any section may be written

n

S(x) = Z si(z)o(x, fi)

i=1

for some functions s; € C*°(U).
The set {o(-, f1), -, (-, fn)} is called a local frame of (E,m, M).
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In this paper, we will denote by I'(E) the set of smooth sections of (E, 7, M).

Example 3. The tangent vector fields on M are the sections of the tangent bundle
(TM,m,M).

DEFINITION 2.4. A covariant derivative (or connection) on (E,m,M) is a
map VE: T(TM) x (M) — T'(M) satisfying the following azioms:

—Vie+v¢)=VEie+VEy
-Vl fo=dxfe+ fVEip
- V¥ ye=Vxo+Vyp

- Vo= fV&ep

VX,Y € I(TM), f,g € C=(M), ¢,¢ € I'(E).
It follows from the axioms above that VF can also written as
(2.1) Vi =dxe+w?(X)p

where d stands for the differential operator acting on the components of the sections
and W € T(T*M ® End(E)) is called a connection 1-form.

Hence, a covariant derivative is completely determined by a connection 1-form.

Ezample 4 (trivial covariant derivative). The set of smooth functions C°° (M) on
a manifold M can be viewed as a (trivial) vector bundle of rank 1 over M. Then, the
covariant derivative determined by the connection 1-form w® =0 corresponds to the
standard differential operator d, that is also called trivial covariant derivative.

Ezample 5 (Levi-Civita connection). Let (M, g) be a Riemannian manifold. The
Levi-Civita connection is the covariant derivative on its tangent bundle defined by the
following connection 1-form

1 .. .
wh (0/0z): = 59“(8;‘9“ +0igij — O019i5), i, 5, k=1,---,dim M

2.1.2. Covariant derivative and gradient operator. The duality between
the trivial covariant derivative and the gradient operator of functions on a Riemannian
manifold (and Euclidean space in particular) can be used to construct a new class of
regularizers based on covariant derivatives.

The vector bundle T*M of differential 1-forms on a Riemannian manifold (M, g)
of dimension m is naturally equipped with the Riemannian metric g—!. The musical
isomorphism f: T*M +—— TM maps df onto the Riemannian gradient Vf of f, of
components g 9 f /Ox; in the frame {9/0z;}. Moreover the norm of df coincides with
the norm of V f since we have

(2'2) dellg’l = \/ <dfa df>g—1 =
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As a consequence, the standard regularizers of the form
(23) | welp i,

for p € C>®°(M), ®: R — R* and p > 0, can be replaced by

| elldely .
M

Let E be a vector bundle over a Riemannian manifold (M, g) of dimension m
equipped with a covariant derivative V¥ and a positive definite metric h. The metrics
g on TM and h on E induce the positive definite metric ¢! ® h on T*M ® E. In
particular, for ¢, € I'(E), we have

(2.4) (VEQ,VEW) g = > g9 (VE 5, 0 V3 0u, V)
ij=1

This leads to a generalization of the standard regularizers (2.3) given by

(2.5) / S(|VEp|?, ) dM
M g

2.2. Properties of covariant derivatives compatibles with the metric.
2.2.1. Definition and examples. Let F be a vector bundle over a Riemannian

manifold (M, g) equipped with a positive definite metric h.

DEFINITION 2.5. A covariant derivative VE on E is compatible with the metric
h if it satisfies

(2.6) dh(p,v) = MV, %) + h(p, VE)
for any ¢, € T(E).

Ezample 6. Assuming that E is the vector bundle of smooth functions on (M, g)
and h is nothing but the scalar multiplication in the fibers, the trivial covariant deriva-
tive d is compatible with the metric h.

Ezample 7. Assuming that E is the tangent bundle of (M,g), the Levi-Civita
connection on E is compatible with the Riemannian metric g.

PROPOSITION 2.6. There is a one-one correspondence between connection 1-
forms w¥ that are so(h)-valued i.e. w¥ € T(T*M ® so(h)) and covariant derivatives
VE that are compatible with the metric.

We refer to Lawson and Michelson [19, Prop. 4.4 p.103] for a proof.

2.2.2. Adjoint and Laplacian operators. Let VI M®F pe the covariant
derivative on T*M ® E defined by

VITMOE (o) = VI Me@p+ e VP
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where V™M is the covariant derivative on T*M induced by the Levi-Civita covari-
ant derivative on (T'M, g) and V¥ is a covariant derivative on E compatible with a
positive definite metric h. The adjoint VZ*: T'(T*M ® E) — T'(E) of the operator
VE:T(E) — I'(T*M ® E) is the operator

(2.7) VE' = —p v MOE

where Tr denotes the contraction with respect to the metric g. In others words, the
following equality is satisfied

(2.8) / (0, VE M dM = | (VPp,n) 10 dM
M M

assuming that one of ¢ or n has compact support.

Ezxample 8. On the vector bundle of smooth functions on a Riemannian mani-
fold (M, g), the adjoint d*: T(T*M) — C°(M) of the trivial covariant derivative
d: C®(M) — T'(T*M) is the operator

a'n=—-3 <g"jazm<a/axj> -y n(a/axw)
i, k
where Fi’; are the Christoffel symbols of the Levi-Civita connection of (M, g).
Assuming that g is Fuclidean and under the identification between 1-forms and
vector fields, we obtain the divergence operator (up to a sign).

DEFINITION 2.7. The connection Laplacian AP associated to the covariant
derivative VE is the second order differential operator defined by AF = VE"VE.

In the frame (8/0xy,- -+ ,0/0xy) of (TM,g), we have

(2.9) AP = — Zgij (Vg/azng/axj - ZFiI;VOE/E)a:k>
k

ij

Ezample 9. The Laplace-Beltrami operator A, is the connection Laplacian
(up to a sign) associated to the trivial covariant derivative d on the vector bundle of
smooth functions on a Riemannian manifold (M,g), i.e.

A=Y g¥ (axiamj -y rk 8“)
i k

2.2.3. On the corresponding parallel sections. The aim of this Section is
to establish a relation between the geometric framework we introduce in this paper
and the Beltrami framework of Sochen et al. [42] which deals with harmonic mapping
between Riemannian manifolds.
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Construction of parallel sections. Given a covariant derivative VE (not neces-
sarily compatible with the metric) on a vector bundle E, the sections ¢ satisfying
V¥ =0 are called parallel.

In the following Proposition, we show that, under the assumption that the co-
variant derivative is compatible with the metric, parallel sections can be constructed
from heat equations of connection Laplacians.

PropoOSITION 2.8. Let E be a vector bundle over a compact Riemannian mani-
fold (M, g) equipped with a positive definite metric h and a covariant derivative VE
compatible with h. The gradient descent algorithm for reaching a solution of the vari-
ational problem

(2.10) argmin  J(y): :/ ||VE<PH371®hdM
@ET(E) M

is the Fuler scheme associated to the (generalized) heat equation

o E
(2.11) E+A p=0

Proof. Let 1 be a smooth section with compact support. We have

d
%J(@+t¢)|t:0:/ (VEo, VEY) jm1gp, dM
M

Then, as V¥ is compatible with the metric, we have

(2.12) /M<v%, VEY) g-1n dM = /M<AE90, V) dM

See for instance [19, Prop. 8.1 p.154] for a proof of (2.12).
Hence, we have

d
S+ im0 =0 = [ (AP uhnddd =0
M

Finally, from a straightforward generalization of the Euclidean case
/ AfgdM=0= Af=0
M
where A is the Euclidean Laplacian, f € C°°(M) and g € C°(M), we deduce that
d
7P+ t)m0 =0 = ATp =0

Finally, as the functional J is convex, the gradient descent associated to the variational
problem (2.10)

Prrar = r — dtAF g

converges towards a global minimum. 0

As the parallel sections are the solutions of the variational problem (2.10), we
deduce that the solutions of the heat equation (2.11) converge towards parallel sec-
tions when ¢t — +oc.
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Parallel sections and harmonic maps. Let (M, g) and (N, Q) be two smooth Rie-
mannian manifolds. The Dirichlet energy of a map o: (M,g9) — (N, Q) is defined
by

(2.13) E(o) = /M ldo]?-+ g dM
The critical points of (2.13) are called harmonic maps.

DEFINITION 2.9 (Sasaki metric). Let E be a vector bundle over a compact Rie-
mannian manifold (M, g) equipped with a metric h and a covariant derivative V¥
compatible with h. Let H: TM — TE and V: E — TE be respectively the hori-
zontal and vertical lift maps induced by VE, and K: TE — E be the map defined

by
KXTy=0 K@)=¢, VXecI(TM),pcT(E)

The Sasaki metric h is the Riemannian metric on E defined by

hMX,Y) =g(mX,m.Y) + h(KX, KY)

Taking the Sasaki metric h on E induced (h, VE | g), the Dirichlet energy (2.13)

of ¢ € I'(E), seen as a map ¢: (M,g) — (E,h), is

n 1
B(g) = 5 VolM) + 5 [ V561210 dM
2 2
It follows the theorem that relates harmonic maps and parallel sections

THEOREM 2.10 (Konderak [30]). Let E be a vector bundle over a compact Rie-
mannian manifold (M,g) equipped with a metric h and a covariant derivative vE
compatible with h. Let h be the Sasaki metric on E associated to (h, VE g). Then
¢ € T(E) is a harmonic map ¢: (M,g) — (E,h) if and only if it is parallel, i.e.
VEp =0.

3. Vector bundle extension of image regularization methods. From the
properties of a covariant derivative compatible with the metric given in Sect. 2, we
show in this Section that the linear scale-space and the ROF denoising model, which
are standard image regularization techniques, can be generalized in straightforward
way by replacing the Euclidean gradient operator by a covariant derivative compatible
with the metric.

3.1. Functional spaces on vector bundles. Let E be a smooth vector bundle
over a compact Riemannian manifold (M, g), equipped with a positive definite metric
h and a covariant derivative VZ. Let || ||¥ be the norm defined for ¢ € I'(E) by

k
3.1 o|?: = / VEVE...VE o|P_
(3.1) el ;MII ||gl®

J times

L od

j times

The equivalence class of this norm is independent of the choice of the connection
V¥ and metrics g, h.
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DEFINITION 3.1. The completion of T'(E) in this norm is the Sobolev space
WkP(E). We denote by LP(E) the spaces WOP(E).

DEFINITION 3.2. The Vector Bundle-valued Total Variation (VBTV) of
pe Ll (E)is

loc

(3.2)
VBTV (p): =sup (/ (@, VZ m)ndM;n € To(T*M @ E), |n(z)|g-10n <1 Va € M)
M

DEFINITION 3.3 (Bounded variations section). A section ¢ € L}, (E) is said to

loc

have a Bounded Variation if VBTV (p) < +oo. We denote by BV (E) the space
of sections having a bounded variation.

PROPOSITION 3.4. Let us assume that V¥ is compatible with h. If p € WHL(E),
we have

(3.3) VBTV(p) = /M IV ndM

Proof. As V¥ is compatible with the metric and n € T'.(T*M ® E), we have

/<<P7VE*77>hdM:/ (VE@,n)g-1gn dM
M M

See for instance [19, Prop. 8.1 p.154] for a proof of the equality.
Then, as the metric ¢! ® h is positive definite,

| ol ronddt < [ 1950l sonlall o d
M M

Moreover, we get

/ IV 0l-sn 7]l -1 0m M < / IV 1AM
M M

since ||1]|4-1gn < 1V2 € M. Hence

(3.4)
sup ([ (0. mpnaMin € C(TM © B). @), o0 <1 Vo €M) < [ [Vl gnaM
M M
Let
vEe . E
) %l —gr T ¥ #70
(3.5) n: =

0 otherwise

and (ne) € TH(T*M ® E), ||ne(x)||;-1n <1 Vo € M such that 7. = 7. We claim
e—

that such a sequence can be constructed using generalizations of Lusin’s theorem and
the mollification technique to vector-valued measurable functions.

Then we have

lim [ (o, VE o), dM:lim/ <VE‘Pa77€>g*1®hdM:/ (VEQ, ) g-1gn dM
e—0 M e—0 M M
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E VESD E
:/ <V Y oE > dM:/ IVZollg-1n dM
{VEp£0} ”v (p||g*1®h g-1®h M

Hence, we have constructed a sequence f M (p,VE *77€>h dM converging towards
Lo IVE@llg-10n dM. Moreover

/ (6 VE ) dM < / IV ]yt M Ve
M M

since |[e(2)]|g-10n <1 Vo € M. Together with (3.4), it shows that

llg

sup ([ (0. VE uhdM iy € DT M & B), (@) -0 < 1% € 0) = [ [Vl sgndd
M M

0

3.2. Scale-space on vector bundles. In this Section, we show that some prop-
erties of the Fuclidean scale-space extend in a straightforward way to vector bundles.

Let us first note that a differential operator H: I'(E) — I'(E) of order m extends to
a bounded linear map H: W} — W/ _  for all k > m.

PROPOSITION 3.5. Let E be a vector bundle over a compact Riemannian mani-
fold (M, g) equipped with a positive definite metric h and a covariant derivative V¥

compatible with h. The solution e_tAEgoo of the heat equation
0
(3.6) 5‘7(5 +APp =0, Plt=0 = o
18
E
(3.7) e o= e M Py, g
k

where P denotes the L2 projection operator and Ey, is the space of eigensections
of A for its kth smallest eigenvalue .

Proof. If the covariant derivative V¥ is compatible with the metric of the vec-
tor bundle, the elliptic operator AF is positive and self-adjoint. As a consequence,
the eigenvalues )\, of AP are real, the corresponding eigenspaces Ej, are finite-
dimensional and furnish a complete orthonormal system for L?(E), i.e. there is a
Hilbert space direct sum decomposition

L? (E) = ®AkE)\k

(see [19, Cor.5.9 p.198]). Given a complete orthonormal basis {uy;}2, of L?(E)
consisting of eigensections of AF with AEukj = Ajug;, it is easy to see that the
solution of (3.6) is given by

A7 o (1) /M K, (2, 5)p0(y) dy

where K is called the heat kernel of the connection Laplacian AF and is given by

dim Ey

Ki(z,y) =Y > e Mug(z) @ uj,(y)
k j=1
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where v* € E; denotes the element such that v*(u) = (u,v)p, for all u € E,,.

Hence

dim Ej,

e % g (iU):Ek:e_A"t/M jz::l upj () @ uk; " (Y)po(y) dy

dim Es,

Z (oY), ur; (Y))n, uk; () dy

j=1

— E e—)\kt
k

S~

dim Ey
e Akt Z (0, Ukj) L2 (B) Ukj (T)
j=1

I
=[]

- Z e”"“tPEAk wo(x)
k

E

Note that we showed in Sect. 2.2.3 that the sequence (e ™'
towards a parallel section.

©0)1>0 converges

The following result shows that heat equations of connections Laplacians where
the covariant derivative is compatible with the metric satisfy some kind of maximum
principle.

COROLLARY 3.6. The sequence || e~t8% o ll2(B), t > 0 is strictly decreasing.

Proof.
_UAE
lle™" 2" @l p2(m) : :\/<67tAE900767tAE900>L2(E)
dim E dim Ejy,
= Z Z 67’\’“t<sﬁoaukj>L2(E)Ukj,Z Z e~ N0, wir) L2 (B) Wil
k=1 i 1=1

L2(E)

Then, as the {uy;} and {u;} form orthonormal systems, we deduce that

dim Ey
AE
||€ 4 @OHLQ(E) = E § 6_2>\kt<<pOaukj>%2(E)
ko j=1

which is clearly strictly decreasing. O
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3.3. ROF denoising model on vector bundles. Let E be a vector bundle
over a compact Riemannian manifold (M, g) equipped with a positive definite metric
h and a covariant derivative V¥ compatible with h.

PROPOSITION 3.7. Let f € L?(E) and A € R. The unique solution of

1
3.8 argmin —
(38 @EBVNL2(E) 2A

e = fllcz(my + VBTV (),

is defined by

(3.9) po=f—-Pxf

where Py denotes the orthogonal projection on NK for K being the closure of the set
(V7" € To(T*M @ E), |In(@)llg-10n <1 Yz € M}

Moreover, if we define the iterative sequence

€n +TVE(VEE, — f/N)
14+ 7| VE(VE"S, — f/M)lg-10n

(310) §n+1 =

then the sequence \VE" " converges to Pyk(f) as n — oo assuming that the time
step T < W.

Proof. The proof is straightforward since the Proposition is a particular case of
the Generalized Projection Algorithm of Chambolle (see e.g. [8, Th. 3.4] for more
details). O

3.4. Geometric triplets that lead to existing regularization methods.
The scale-space and denoising model on vector bundles we have presented in the pre-
vious Sections are completely determined by three geometric data:

- a positive definite metric h on a vector bundle (E, 7, M)
- a covariant derivative V¥ on E compatible with A
- a Riemannian metric g on the base manifold M.

In this Section, we show that we obtain some existing regularization methods
for some particular choice of h, V¥, g.

3.4.1. Batard and Sochen’s model. Let E be a trivial vector bundle of rank
3 over the domain Q C R? of a color image I = (I',1%,I?), and equipped with the
metric h acting as the Euclidean scalar product in the fibers. According to Prop. 2.6.
in Sect. 2.2.1, a covariant derivative compatible with the metric h is determined by a
connection 1-form w? € T(T*Q x s0(3)), where s0(3) is the Lie algebra of SO(3) i.e.
the set of 3x3 skew-symmetric matrices. In [6], Batard and Sochen constructed an
optimal covariant derivative compatible with h as solution of a minimization problem.
The corresponding connection 1-form w® is determined by the matrix coefficients

2
wh=-%" M((be—dc)(I;ﬁ—I;"l 12)+(bc—ae)(1;ll3—li’lIl)—&—(ad—bQ)(I;LIQ—IglIl))dml
k=1
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a=06+k[(I*?+ (%% b=ksI'I* c=—kI'T

d=0+r[(IN?+(I*)?  e=rI*I*  f=064+r[(I")?+ (I*)?
and

1
A =
2cbe + fad — ae? — fb2 — c2d

for some k,§ > 0.

Then, taking g as
1 +/€Zi:1(ffl)2 KY ket Iy 17,

B her IEIE, 14 R YR (1)

in the frame (9/0z1,0/0x2), they considered the heat equation of the corresponding
connection Laplacian A®. They obtained an anisotropic scale-space preserving bet-
ter the contours of the initial condition than the Beltrami flow [42] associated to the
metric (3.11).

(3.11) g=

3.4.2. Trivial covariant derivative. Let Iy:  C R2 — R™ be a m-channels
image. Let E be the vector bundle of R™-valued functions over 2 equipped with a
Riemannian metric g. Let us assume that F is equipped with the metric h acting as
the Euclidean metric in the fibers and the trivial covariant derivative d.

Beltrami framework. Taking g as the m-channel extension of the structure tensor
(3.11), the heat equation of the subsequent connection Laplacian A,

o1

ot

corresponds to the regularization method in [42].

= Agl, Lo = Io

Moreover, the denoising model

) 1
arg min / 5H1—10||2+ ||dl||g*1®|| ll2 ds
IEBVNL2(E) JQ

where the regularizing term is the L1 norm of the gradient associated to this geometric
triplet is the denoising model of Rosman et al. [38].
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Bresson and Chan denoising model. Considering the VBTV associated to this
geometric triplet, the denoising model of Bresson and Chan [11] on Riemannian man-
ifolds reads

1
(3.12) arg min / —||I = Ip||2dQ2+ VBTV (I)
IeBVNL2(E)JQ 27

Moreover, taking g as the Euclidean metric and m = 1, we obtain the denoising
model of Chambolle [14].

4. A new denoising model for multi-channel images. In this Section, we
show that, for a well-chosen class of covariant derivatives compatible with the met-
ric, the denoising model described in Sect. 3.3 outperforms state-of-the-art denoising
methods of same type. In Sect. 4.1 we remind the reader of the geometric framework
introduced in [7] for edge-preserving scale-space, and also used in [8] for denoising.
Then, a modification of these approaches is presented in Sect. 4.2. In Sect. 4.3, we
show that this new approach can be viewed as a particular case of the ROF model on
vector bundle introduced in Sect. 3.3. We discuss in more details the parameters of
our approach in Sect. 4.4. Finally, experiments regarding the choice of the parameters
and comparisons with other denoising methods are presented in Sect. 4.5.

4.1. The geometric framework. One of the key ideas of our previous ap-
proaches for image regularization is to embed an image in a higher dimensional space.

Let Iy = (I}, ,Ii") be a m-channel image defined on a domain Q of R%. We
construct a surface S embedded in (R™%2 || ||2) parametrized by

(41) w: (.’171,])2)’—>(.T1,$2,//6101(.’I}1,.’I}2),"' 7“16n(xl7x2))7 ,LL>O

and equip (R™*2,|||2) with an orthonormal frame (e, -+ ,€m,12) such that

m

Y(wr, w2) = w1y + Taeg + Y p I (1, 22) ekt
k=1

Note that for u = 1, the surface S is the graph of the function Ij.

We construct an orthonormal frame field (Z1, Za, N1,--+, Ny,) of (R™T2 /|| ]2)
over Q, where 71,75 € T'(T'S), i.e. Z1,Z5 are tangent vector fields of the surface S.
It follows that Ny,---, N,, are normal to the surface.

Denoting by P the frame change matrix field from (e1, - - , em42) to (Z1, Za, Ny, - - -
we denote by Jo = (J§, -+ - ,J6"+2) the components of I in the new frame, i.e. we get
It 0
Jg 0
(4.2) T —pt I

Jyt? g

The idea developed in [7],[8] is first to apply a regularization method on Jy, then
to compute the components of the result J in the fixed frame (eq, -+ , ep42) through
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the inverse transform

I J!

2 J?

(4.3) I —p J?
I’rn.-‘rQ J77;+2

The final output of the algorithm is the m-channel image (I3,--- , I™*2).
In [7], the regularization method performed on the function Jy is an Euclidean
heat diffusion

oJ

4.4 — =AJ, Jy—=J

( ) ot l [t=0 0

and it produces an edge-preserving scale-space of the original image Iy for a right
choice of the moving frame (7, Zo, N1, -+ , N,,) and scalar p.

In [8], using the same moving frame as in [7] but different value for p1, we performed
a vectorial extension of the ROF denoising model with regularized L1 norm of the
gradient operator

. 1
(4.5) arngln/Q ST = dolla 4 IVIIE+6 do,  0<p<<i

and showed that this denoising model outperforms the Split Bregman method [26] in
both PSNR and Q-index [45] measures.

4.2. The proposed algorithm. Our proposal in this paper is to replace the
denoising model (4.5) by the use of the (non regularized) L1 norm of the gradient
operator. We obtain the variational problem

1

(4.6) arg min /—||Jf Toll dQ + VTV (J)

JEBVAL2(QRm+2) Jo 2A
where Jj is defined by formula (4.2) and VTV is the Vectorial Total Variation defined
by
(4.7) VTV(J) =sup ( / (J,V*€)2, £ € CZ(QR™) st [|E(x)]2 < 1 Va € Q)

Q

where V*¢ = (divéy, -+ ,divE,).

Note that the variational problems of the form (4.6) are the restrictions to func-
tions defined on Euclidean spaces of the denoising model (3.12). Then, according to
[11], the solution of (4.6) is given by

J=Jo— PxJo

where Py is the orthogonal projection onto the convex set AK, K being the closure
of the set

{V*e: € e CHQ R l¢(a)]|2 < 1V € O,
and the algorithm

w1 §THAV(VIE" — Jy/A)
(4.8) S =TV = do /N

converges towards £°P! such that AV*£Pt = Py Jj.
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4.3. The corresponding geometric triplet. In this Section we show that the
variational problem (4.6) is equivalent to the following denoising model of the original
function Ip = (0,0, 13, , I7")

1
(4.9) arg min / — || — Io||2 A2+ VBTV (I)
reBVnL2(E) Jo 2A

for some VBTV (3.2) on a well-chosen vector bundle E.

Let E be the vector bundle of R™*2-valued functions over 2. We deduce from
Sect. 4.2 that the geometric triplet leading to our denoising model is given, in the
frames (Z1, Z2, N1, -+ , Ny,) of E and (9/0x1,0/0x3) of TQ, by

- h is the Euclidean metric in the fibers
- VE is the trivial covariant derivative d
- g is the Euclidean metric

In the frame (e1, -+ ,emi2) of E, the expression of VE is modified since the
corresponding connection 1-form w? writes

(4.10) wf = PpPap~!

The covariant derivative V¥ is also compatible with the metric A is the frame
(€1, -+ ,emy2) since w¥ is so(n)-valued according to formula (4.10) and Prop. 2.6.
Hence, the geometric triplet leading to our denoising model (4.9) is the following

- h is the Euclidean metric in the fibers
- V¥ is associated to the connection 1-form (4.10)
- g is the Euclidean metric

Note that the attached data term in (4.9) is invariant under the frame change
matrix field P. Indeed, since the moving frame (Z1, Za, N1, -+ , N,,) is orthonormal,
we have

I —Iollz: =[PJ— PJollz2 = ||J = Joll2

Remark 1. The scale-space (4.4) writes

oI
5 API Iy—og=1o

in the frames (e1,- -+ ,emi2) of E and (0/0x1,0/0x3) of TQ, where A is the con-
nection Laplacian (2.9) induced by the geometric triplet given above.

4.4. Selection of parameters. According to the construction in Sect. 4.1., the
denoising method proposed in this paper is parametrized by a scalar p that determines
a surface S and an orthonormal moving frame (Z1, Za, Ny, -+ , Ny, ) of R™2 over the
image domain € where (77, Z2) is an orthonormal moving frame of S. In this Section,
we introduce a moving frame (21, Za, N1, - -+ , N;,) that is intuitively more sound than
the one used in our previous approaches [7],[8]. We also discuss the role of the scalar p.
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Previous approaches. In [7],[8], the moving frame (Z, Z5, Ny, -+, N,,) was con-
structed as follows. The vector field Z; chosen was 1, /||, ||2 (see formula 4.1 for
the definition of ©) and Zs was consequently the unique orthonormal (up to a sign)
of Z1 in T'S. The normal vectors Ny, --- , N,, were then constructed from the Gram-
Schmidt orthonormalization process applied to the vectors (Z1, Za, €3, -+ , ém42). By
its construction, this moving frame tends to privilege the x; direction and it might
affect the result of the regularization method. This observation leads us to consider
the following moving frame.

Metric frame. The structure tensor is a fundamental tool in image processing
and computer vision, and has been employed for many tasks, like edge detection [16],
anisotropic diffusion [44], [46] as well as corner detection and optical flow estimation
[12].

A straightforward computation shows that the unit eigenvectors fields (e, es) of
the first fundamental form g of the surface S defined by

14 p? Z$:1(151)2 Ty Igllfz
T Sy I;fllfz 1+ p? 221:1(152)2

in the frame (8/0x1,0/0x2) coincide with the unit eigenvectors fields of the structure
tensor of the image ul, these latters indicating the directions of the highest and lowest
variations of the image at each point. Then, the couple

o dp(er) dip(ez)
(4.12) (21, 25): = (|d¢(61)2’ ||d¢(62)|2>

forms an orthonormal moving frame of T'S, and an orthonormal moving frame
(Z1,Z9,N1,-- ,Ny,) of (R™F2|||l2) over Q can be constructed from the Gram-
Schmidt orthonormalization process applied to the frame (Z1, Za, €3, , €m42)-

(4.11) g=

Dealing with a grey-level image I, the explicit expression of the frame change
matrix field P from (eq, e, e3) to (Z1, Z2, N) is

(4.13)
Iﬂfl _1332 —H le
V2 +2) (14 p2(12, + 12,)) 2412, 12+ 12)
P I.’L'Q I’El 7,u‘ I.’EQ
V@ ) (12, + 1) 2oz, 123+ 1) |
iz, +1z,) 0 1
V2 +2) (1 + p2(12, + 12,)) 1+ p2(12, +12,)

Note that P is not defined when I, = I, = 0. In the experiments, we define P as
the Identity matrix I3 when I, = I, = 0.

Fig. 4.1 illustrates the moving frame (Z1, Zs, N) associated to the grey-level image
I of size 512 x 512 defined by

1(i,5) = 255 — \/(i — 512) + (j — 512)2.



On covariant derivatives and their applications to image regularization 19

FIG. 4.1. Orthonormal frame field of (R3] ||2) over Q. Left: Original image. Right: moving
frame (Z1,Z2, N) induced by the metric tensor of the image at two points x,y of Q.

Fig. 4.1 (left) shows the image I, Fig. 4.1 (right) shows the graph S of the function
I, which is a cone, and how (Z, Z3, N) looks like at two points x and y of Q. As
expected, we observe that Z; indicates the directions of the gradient, Z5 the directions
of the level-lines and N the normal to S.

Then, according to the algorithm described above, we apply the denoising model
(4.6) to the function J: = (J,J2, J?) defined by

pl(I7, +17,)

Jt 0
\/(131 +12,)(1 4+ p2(12, +12))
J? s =p! 0 = 0
I
3
J I I+ (12, +12)

Fig. 4.2 shows the components J' and .J? of the image 'Barbara’ for x = 0.01.
We observe that the component J' encodes the gradient’s norm of the original image
I, and the component J? appears as the original image to which the gradient’s norm
has been subtracted, making the components J' and J> be complementary.

The moving frame (Zy,Z, N1, Np,). The two orthonormal moving frames
aforementioned are both constructed from a Gram-Schmidt procedure applied to the
moving frame (Z1, Za, €3, - , €m+t2), where (Z1, Z3) forms an orthonormal frame field
of the tangent bundle of the surface S. Taking (Z;, Z3) in the tangent bundle of the
surface makes the moving frame (71, Zs, N1, - - - N, ) encode the local geometry of the
image. Note that we choose the vectors es, - - - , 5,42 for initializing the Gram-Schmidt
process because Z7, Z5 (and more generally any tangent vector field to the surface) do
not belong to the subspace (es, - - , em+2), which makes the Gram-Schmidt procedure
be well-defined onto the frame (Z7, Za, €3, , €mi2).

Experiments in Sect. 4.5.1 will show that the proposed denoising method satis-
fies an invariance property with respect to the choice of the vectors Z7, Z; assuming
that they are tangent to the surface. Note also that preliminary tests that we do not
present in this paper show that the results are very bad if Z;, Z5 are chosen randomly
in Rm+2,
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Fic. 4.2. Components of a grey-level image in a moving frame induced by its metric tensor.
From left to right: grey-level image “Barbara”, component J', component J3.

The parameter p. The scalar p plays a fundamental role in our denoising method
since it determines the surface S from which we construct the orthonormal moving
frame. It is a smoothing parameter for S since it determines the weight of intensities
distance with respect to spatial distances (see details in Sect. 4.1). As a consequence,
it can be viewed as a smoothing parameter for the moving frame too. Experiments
in Sect. 4.5.1 will determine the range of values for p that provides the best results
for denoising.

For 1 = 0, our denoising method corresponds to Bresson and Chan’s method
[11]. Indeed, as mentioned in Sect. 4.2, our denoising method consists in applying
Bresson and Chan’s algorithm on the components (J¢, - ,J(’)”H) of a noisy image
(0,0,1%,--+ , I5*) in an orthonormal moving frame. Then, for x4 = 0, the surface S is
nothing but the plane generated by (eq, e2) and the moving frame (Z7, Zo, N1, -+ , N;,)
is then the fixed frame (e, -+ ,€;,12). It follows that the frame change matrix field
P is the Identity and the components we denoise are the image itself.

4.5. Experiments. We test our denoising model (4.9) on the Kodak database
(http://rOk.us/graphics/kodak/) to which we have added Gaussian noise of vari-
ance o. For the sake of clarity, we remind the reader of the different steps composing
our denoising method in the case of a m-channel noisy image I = (I, -+, I}"):

1. Consider the (discrete) surface S parametrized by

2. Estimate the derivatives of I using central differences (preliminary tests showed
that using others derivative filters does not affect the denoising result in a significant
extent). Then, construct an orthonormal moving frame (Z3, Zy, N1, -+, N,,) where
71, Zy are tangent to S, and (Ny,- -, Np,) are constructed using the Gram-Schmidt
process applied to (Z1, Za, €3, , €my2). Denote by P the frame change matrix field
from (e1,- -+ ,emi2) to (Z1,Za, N1, , Np).

3. Embed Ij into the canonical frame (e1, - -« , emi2): (Id,-++, I5*) — (0,0, 1%, -, I).
4. Compute the components of Iy in the frame (Zy, Za, N1, -+ , Ny ):
(g, I .= P=10,0,13, -, 17T

5. Perform the algorithm (4.8) on (Jg,- - ,J5"+2)T with stopping criteria

™ e = 1€z, | < 01



On covariant derivatives and their applications to image regularization 21

TABLE 4.1
Increase of PSNR for different moving frames and parameters p tested on the grey-level image
?Kodim03” for different noise levels. From top to bottom: o = 5,15, 25.

. Parameter po| 0.1 | 0.01 | 0.007 | 0.001 | 0
Moving frame

Metric frame -2.11 | -0.04 | 4.13 | 4.32 | 3.40 | 3.29
Previous approach -2.07 | -0.02 | 4.13 | 4.32 | 3.40 | 3.29
Random frame -1.88 | 0.01 | 4.09 | 4.30 | 3.41 | 3.29

. Parameter p1 | 0.1 | 0.01|0.004 | 0001 ]| 0
Moving frame

Metric frame -1.97 | -0.80 | 6.22 | 8.19 | 7.76 | 7.64
Previous approach -1.74 | -0.73 | 6.21 | 8.18 7.76 | 7.64
Random frame -1.46 | -0.57 | 6.19 | 8.16 7.76 | 7.64

. Parameter 1o/ 1 001 | 0.003 | 0.001 | 0
Moving frame

Metric frame -1.65 | -0.90 | 6.72 | 10.47 | 9.96 | 9.75
Previous approach -1.36 | -0.76 | 6.71 | 10.46 | 9.96 | 9.75
Random frame -1.13 | -0.61 | 6.74 | 10.46 | 9.96 | 9.75

where the scalar A in (4.9) is considered as a Lagrange multiplier, updated at each
iteration by

(4.14) VAL

—Iveen|,

as suggested in [14] in the scalar case.

As it is usually done in the scalar case, the operators V and its adjoint V* in
(4.8) are respectively computed using forward and backward differences.

6. Compute the components of the result J in the canonical frame (eq,- - , epp2):
(I, I tHT = p(JL .. [ J™2)T and return the function (I3,---, 1™ +2).

4.5.1. Selection of parameters. In this Section, we test our denoising method
for several values of y and three different orthonormal moving frames: the two ones
detailed in Sect. 4.4, as well as a moving frame where Z; is chosen randomly in
the tangent bundle, and Z; is its unique orthonormal (up to a sign) in the tangent

bundle. As for the two others moving frames, the vector fields Ny, --- , N, complet-
ing the moving frame are then constructed from the Gram-Schmidt process applied
to (Z1,Zs,e3, - ,em+2). As well as the standard PSNR measure, we evaluate our

method by computing the Q-Index [45], an image quality measure having higher per-
ceptual correlation than PSNR and SNR-based metrics [37].

From Table 4.1 to Table 4.4, we report the increases of PSNR and Q-Index
when testing our method on the grey-level and color image "kodim03” of the Kodak
database for the noise levels o = 5,15, 25 and different values of u: 1,0.1,0.01,0.001,0.
We also provide the best results for each moving frame (the ”optimal” parameters
u were found empirically). The tables show that the "optimal” values of u are the
same for all the moving frames and are always in the range [0.001,0.01]. Moreover,
we observe that the results are very bad when p gets too high, and the results are
similar for all the moving frames when p is small enough. The best results are always
obtained when the moving frame we deal with is the metric frame but in a very small
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TABLE 4.2

Increase of Q-Index (in %) for different moving frames and parameters p tested on the grey-level

image "Kodim03” for different noise levels. From top to bo

ttom: o = 5,15,25.

. Parameter 44| g1 | 001 | 0.006 | 0.001 | 0
Moving frame
Metric frame 0.16 | 4.53 | 23.05 | 25.20 | 21.29 | 20.77
Previous approach 0.84 | 4.59 | 23.09 | 25.20 | 21.28 | 20.77
Random frame 1.52 | 4.86 | 22.78 | 25.12 | 21.34 | 20.77
. Parameter 111 | 001 | 0.004 | 0.001 | 0
Moving frame
Metric frame 3.34 | 8.05 | 49.50 | 68.82 | 61.67 | 59.38
Previous approach 5.22 1 9.30 | 49.25 | 68.70 | 61.67 | 59.38
Random frame 6.92 | 9.88 | 49.01 | 68.53 | 61.73 | 59.38
. Parameter yt | 4| g1 | 0.01 | 0.003 | 0001 | 0
Moving frame
Metric frame 7.42 | 12.59 | 70.35 | 112.50 | 95.17 | 90.03
Previous approach 10.25 | 15.37 | 70.23 | 112.40 | 95.17 | 90.03
Random frame 12.59 | 15.93 | 70.45 | 112.44 | 95.21 | 90.03
TABLE 4.3

Increase of PSNR for different moving frames and parameters p tested on the color image
7Kodim03” for different noise levels. From top to bottom: o = 5,15,25.

. Parameter p| 41 o1 .01 | 0.005 | 0.001 | 0
Moving frame
Metric frame -2.49 | -0.56 | 4.55 | 5.08 | 4.27 | 4.12
Previous approach -2.45 | -0.46 | 4.56 | 5.05 4.28 | 4.12
Random frame -2.47 | -0.52 | 4.47 | 5.06 | 4.29 | 4.12
. Parameter 4|1 o1 | .01 | 0.004 | 0.001 | 0
Moving frame
Metric frame -2.17 | -0.98 | 6.53 | 8.99 8.41 | 8.24
Previous approach -2.10 | -0.85 | 6.59 | 8.96 8.40 | 8.24
Random frame -2.13 | -0.90 | 6.51 | 8.94 8.41 | 8.24
. Parameter y| 41 o1 1 g1 | 0.003 | 0.001 | 0
Moving frame
Metric frame -1.75 | -0.85 | 6.90 | 11.11 | 9.54 | 9.46
Previous approach -1.66 | -0.72 | 6.98 | 11.10 | 10.36 | 9.46
Random frame -1.71 | -0.78 | 6.94 | 11.10 | 9.54 | 9.46

extent since the corresponding p has a small value
decrease when the noise level increases.
For the sake of shortness, we only provide the

. Finally, ”the optimal” p tend to

results on a single image, but we

would like to point out that we observe the same properties when testing our method

on other images.

We then report on Table 4.5 and Table 4.6 the means over the whole database
of both increases of PSNR and Q-Index for our method tested with the metric frame
and the range of values [0.001,0.01] for the parameter p. Indeed, there is no need to
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TABLE 4.4
Increase of Q-Index (in %) for different moving frames and parameters p tested on the color
image "Kodim03” for different noise levels. From top to bottom: o = 5,15,25.

. Parameter | o051 001 | 0.007 | 0.001 | 0
Moving frame

Metric frame -4.13 | 1.76 | 30.46 | 32.63 | 23.13 | 22.07
Previous approach -3.98 | 2.55 | 30.48 | 32.50 | 23.17 | 22.07
Random frame -4.06 | 2.21 | 30.04 | 32.49 | 23.39 | 22.07

. Parameter | o4 | 001 | 0.004 | 0.001 | 0
Moving frame

Metric frame -1.77 | 3.56 | 61.38 | 87.48 | 67.23 | 62.99
Previous approach -1.25 | 4.88 | 61.53 | 87.08 | 67.22 | 62.99
Random frame -1.86 | 4.06 | 60.99 | 87.07 | 67.38 | 62.99

. Parameter pu | 0.1 | 001 | 0.004 |0.001]| 0
Moving frame

Metric frame 2.14 | 8.45 | 80.81 | 131.08 | 96.06 | 94.03
Previous approach 2.97 | 10.07 | 81.05 | 130.63 | 89.41 | 94.03
Random frame 2.00 | 8.77 | 80.55 | 130.41 | 96.08 | 94.03

test the three moving frames since the results are similar according to the previous
experiment, neither to test higher or lower values of p since [0.001,0.01] is the range
of ”optimal” values. The results confirm that the "optimal” u tend to decrease when
the noise level increases.

At last, Fig. 4.3 shows the output image of our algorithm tested on the color
image ”"Kodim03” with the metric frame and o = 25 for different values of u. We
test the values y = 0.1, 4 = 0.004 which is the value that provides the best result in
terms of Q-Index, and g = 0 which corresponds to the result of Bresson and Chan’s
method as mentioned in Sect. 4.4. In the previous Section, we were pointing out that
1 can be viewed as a smoothing parameter for the moving frame. By observing the
three images, it turns out that p can also be viewed as a smoothing parameter for the
output of our denoising method. More precisely, high values of y make the result pre-
serve the details of the original noisy image including the noise, whereas small values
of p remove all the noise but tend to produce over-smoothed results. The fact that
w is actually a smoothing parameter for the output image explains why the values
of p that provide the best results tend to decrease when the noise level increases as
reported in the Tables.

We claim that our method is independent to the chosen orthonormal frame field
(Z1,Z5,N1,- -+, Ny,), provided that Z1, Zy are tangent vector fields to the surface S,
in the sense that our best results are almost equivalent for the three moving frames
tested, even for the one where the orthonormal moving frame (Z;, Z) of T'S is chosen
randomly.

Even if we are not able to prove theoretically this invariance, we intuit that
this is due to the fact that the best results are obtained for very small values of .
Indeed, assuming that Z;, Zs are tangent vector fields to the surface S, the mov-
ing frame (Z1, Za, N1, -+, N,,) tends to the original frame (e, eq, -, emiy2) when p
tends to 0 and consequently the components (J¢,-- -, J[)"H) of the original noisy im-
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TABLE 4.5
Average increase of PSNR (top) and Q-Index (in %) (bottom) over the Kodak database for our
method tested with the metric frame for different values of p and noise levels o: the grey case.

- H10.01 | 0.009 | 0.008 | 0.007 | 0.006 | 0.005 | 0.004 | 0.003 | 0.002 | 0.001

) 222 | 2.25 | 2.25 | 2.24 2.20 2.11 1.98 1.79 1.57 1.37

15 448 | 4.69 | 490 | 5.08 | 523 | 5.33 | 532 | 5.12 | 491 | 4.67

25 530 | 5.65 | 6.01 | 638 | 6.72 | 7.00 | 7.12 | 7.08 | 6.81 | 6.53

- H 0.01 | 0.009 | 0.008 | 0.007 | 0.006 | 0.005 | 0.004 | 0..003 | 0.002 | 0.001

c=25 10 10.30 | 10.60 | 10.87 | 11.08 | 11.19 | 11.10 | 10.69 | 10.00 | 9.30

o=15129.25 | 30.33 | 31.42 | 32.49 | 33.46 | 34.27 | 34.51 | 33.32 | 29.37 | 27.66

o =251 48.14 | 50.30 | 52.60 | 54.68 | 56.71 | 58.33 | 58.39 | 55.62 | 48.60 | 43.90
TABLE 4.6

Average increase of PSNR (top) and Q-Index (in %) (bottom) over the Kodak database for our
method tested with the metric frame for different values of u and noise levels o: the color case.

I
o

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003 | 0.002

0.001

o=25 | 267 | 277 | 286 | 293 | 2.97 | 297 | 290 | 2.74 | 2.51 2.26

oc=15|4.80 | 511 5.42 | 5.72 | 6.01 6.23 | 6.35 | 6.29 | 6.06 | 5.76

oc=25|544| 588 | 635 | 684 | 732 | 7.74 | 802 | 8.02 | 7.72 | 7.31

p 1 0.01 | 0.009 | 0.008 | 0.007 | 0.006 | 0.005 | 0.004 | 0..003 | 0.002 | 0.001

oc=>5 | 1237 | 12.67 | 12.89 | 12.95 | 12.78 | 12.23 | 11.18 9.63 7.87 6.36

o=15| 36.98 | 38.89 | 40.82 | 42.69 | 44.28 | 45.18 | 44.52 | 41.31 | 35.83 | 30.28

o =25 | 56.03 | 59.55 | 63.20 | 66.87 | 70.21 | 72.47 | 71.85 | 66.27 | 55.92 | 45.33
age (0,0,1%,--- ,I7") in the moving frame tend to the image itself. As a consequence,

for small values of u, the frames and the components in the frames are close to each
other making the results be close to each others. Note that in the case of a grey-level
image, the uniqueness of the unit normal to the surface S make the components J3
of the image in the different moving frames be the same for any value of p.

Preliminary tests that we do not present in this paper show that we obtain very
bad results when the whole orthonormal moving frame is chosen randomly. We can
then deduce that it is crucial that the moving frame we deal with encodes the local
geometry of the image. In this paper, the moving frames encoding the local geometry
of the image are satisfying the decomposition T'S@ N, where T'S is the tangent bundle
of S and N the normal bundle to S, but we would like to point out that other choices,
that we do not discuss in this paper, are possible.

4.5.2. Comparison with state-of-the-art methods. As our denoising method
belongs to the category of local variational methods, we compare our results with
state-of-the-art denoising methods in the same category. More precisely, we compute
and compare the means over the whole database of both increases of PSNR and Q-
Index between the noisy and denoised images. The parameters of the methods we
compare with do not have necessarily the same nature as the ones of our method, but
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Fi1c. 4.3. Influence of the parameter p in our denoising method. Clockwise from top-left:
original noisy image, denoised image with p = 0.01, denoised image with n = 0, denoised image
with p = 0.004.

we tried to be as fair as possible in the comparisons by searching the values for the
different parameters that provide the best results in each method.

Dealing with grey-level images, we compare our method with three variational
denoising methods whose fidelity term, like our method, is not spatially adapted,
namely the curvature-based denoising method of Bertalmio and Levine applied to the
ROF model [9], Bregman iterations [36], and Chambolle’s algorithm [14]. We also
compare with the method of Gilboa et al. [23] that does contain a spatially adapted
fidelity term dedicated to take into account the texture information of the image.
Results for the noise levels o = 5,15, 25 are available in Table 4.7 (increase of PSNR)
and Table 4.8 (increase of Q-index).

The results for the curvature-based and Bregman iterations methods included in
the tables have already been represented in [9], Figure 4.2. We obtained the results
for Chambolle’s algorithm using the demo available in IPOL [20]. We tested the ap-
proach of Gilboa et al. using the code provided at http://visl.technion.ac.il/
~gilboa/PDE-filt/tv_denoising.html. The method is parametrized by the size of
the window used for computing the local variance of the image. Modifying the size of
the window has an effect on the smoothness of the output denoised image, meaning
that it has a similar role as the scalar g in our method. In the experiments, we keep
the default parameter for the window size which is 5x5. We compare these results
with our best results (according to Table 4.5).

We deduce from the results that our method performs well compared with similar
approaches whose fidelity term does not involve spatial adaptivity. However, when
the noise level increases, the results also show the limit of the methods that only
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TABLE 4.7

Comparison of different denoising methods. Average increase of PSNR over the Kodak database

for different noise levels: the grey-level case.

Noise level
Denoising method o=510=15)0=2
Chambolle’s algorithm (results from IPOL [20]) 1.28 4.77 6.80
Bregman iterations (results from [9]) 1.76 4.68 6.40
Curvature-based (results from [9]) 2.40 5.27 6.98
VBTV (metric frame) 2.25 5.33 7.12
Spatial adaptivity-based (code provided by the authors [23]) | 2.01 5.48 7.28

TABLE 4.8

Comparison of different denoising methods. Average increase of Q-Index (in %) over the Kodak

database for different noise levels: the grey-level case.

Noise level
Denoising method o=510=1510=25
Chambolle’s algorithm (results from IPOL [20]) 9.43 | 28.90 | 49.93
Bregman iterations (results from [9]) 11.32 | 31.35 | 50.17
Curvature-based (results from [9]) 10.79 | 35.02 | 60.43
VBTV (metric frame) 11.19 | 3451 | 58.39
Spatial adaptivity-based (code provided by the authors [23]) | 11.60 | 39.62 | 64.68

involve geometric information (gradient, curvature), compared to the methods that
involve features of higher level like texture for the method of Gilboa et al. or patches
for the non local methods (see e.g. [13]).

Dealing with color images, we compare our best results (according to Table 4.6)
with two denoising methods that use vectorial extensions of the Total Variation: the
Vectorial Total Variation of Bresson and Chan [11] using the demo available in IPOL
[20], as well as the Geometric Total Variation of Goldluecke et al. [25] whose code is
available at www.sourceforge.net/p/cocolib. We also compare our method with a
color extension of the Split Bregman algorithm [26] using the demo available in IPOL
[22], and we test an extension of the spatially adapted method of Gilboa et al. [23]
by applying it on each component of the color images. Note that the curvature-based
denoising method in [9] that we compared with in the case of grey-level images has
not been designed, as the method of Gilboa et al., for multi-channel images. Results
are available in Table 4.9 (increase of PSNR) and Table 4.10 (increase of Q-Index).

The method of Goldluecke et al. [25] is parametrized by a scalar § which is used as
a smoothing parameter and the number of iterations of the iterative scheme to reach
the solution. Fixing the number of iterations at 100 (which seems to be reasonable
according to the tests performed in [25]), we tested several values for S in order to
provide the best results in terms of PSNR and Q-index. The optimal values we get
are § = 0.02,0.06,0.12 corresponding respectively to o = 5,15,25 for the increase
of PSNR and = 0.02,0.06,0.11 corresponding respectively to ¢ = 5,15,25 for the
increase of Q-Index. As in the grey-level case, we test the spatially adapted denoising
method of Gilboa et al. with the default parameter for the window size.

We observe that our method outperforms the other methods in both PSNR and
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TABLE 4.9
Comparison of different denoising methods. Average increase of PSNR over the Kodak database
for different noise levels: the color case.

Noise level
Denoising method

Split Bregman (results from IPOL [22]) 1.52 5.73 7.65

Vectorial Total Variation (results from IPOL [20]) 2.11 5.73 7.58
Geometric Total Variation (code provided by the authors [25]) | 2.34 5.85 7.82
VBTV (metric frame) 297 | 6.35 8.02

Spatial adaptivity-based (code provided by the authors [23]) 2.34 6.06 7.79

TABLE 4.10
Comparison of different denoising methods. Average increase of Q-Index (in %) over the Kodak
database for different noise levels: the color case.

Noise level
Denoising method o=5|0=1510=25
Split Bregman (results from IPOL [22]) 2.59 31.36 | 54.61
Vectorial Total Variation (results from IPOL [20]) 8.27 34.08 | 54.36
Geometric Total Variation (code provided by the authors [25]) | 10.94 | 41.65 | 72.34
VBTV (metric frame) 12.95 | 45.18 | 72.47
Spatial adaptivity-based (code provided by the authors [23]) 8.32 38.61 59.85

Q-Index measures for any noise level. As expected, the channel-wise extension of the
spatially adapted denoising method does not provide as good results as it does in the
grey-level case.

On Fig. 4.4, we compare visually our denoising method with two of the four
methods listed in Tables 4.9 and 4.10, namely Bresson and Chan’s method, and
the channel-wise extension of Gilboa et al.’s method. We do not compare with the
method of Goldluecke et al. on purpose since we do not use the same noisy images
(their algorithm automatically generates a noisy image from the input clean image).
We compare the methods on a homogeneous region (top row), and regions containing
both contours and textures (middle and bottom row). Whereas Bresson and Chan’s
method tends to provide over-smoothed results, both our method and the method
based on spatial adaptivity preserve quite well the contours and textures of the original
clean images. However, the spatial adaptivity-based method tends to create artifacts.

Our method does not smooth enough on the homogeneous region because the
value of the smoothing parameter p is too high. On the other hand, decrease p will
produce an over-smoothed result that tends to the result of Bresson and Chan when
u tends to 0. Hence, in order to improve our method, we need at some point to
incorporate higher level information like texture at it is done in Gilboa et al.

5. Conclusion and further work. We have introduced a generalization of
the gradient operator to a vector bundle, from which we derived a generalization of
the Rudin-Osher-Fatemi (ROF) denoising model by extending the Total Variation
to a vector bundle. Assuming that the vector bundle is equipped with a positive
definite metric and a covariant derivative compatible with the metric, we showed that
Chambolle’s algorithm for reaching the solution of the original ROF model can be
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Fic. 4.4. Comparison of different denoising methods. From left to right: original patch, original
patch corrupted with additive Gaussian noise of standard deviation 25, result of Bresson and Chan’s
method, result of the component-wise extension of Gilboa et al.’s method, result of our method tested
with the metric frame.

extended to our denoising model.

For some particular covariant derivatives, we showed that our denoising model was
equivalent to applying Bresson and Chan’s [11] denoising model on the components
of the noisy image in some orthonormal moving frames. Experiments showed that
this approach outperforms state-of-the-art local denoising methods for color images.

We are currently investigating two non-local extensions of the denoising model
proposed in this paper.

1. We are constructing a non-local gradient operator on a vector bundle following the
way Gilboa and Osher [24] extended the Euclidean gradient operator to a non-local
operator.

2. In [7],[8] and in the current paper, the denoising techniques that were applied to
the components of the noisy image in some orthonormal moving frames were local
methods. However, it turns out that other denoising techniques can be applied to
these components, including the non-local ones.
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remarks and suggestions.
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