
HAL Id: hal-00941653
https://hal.science/hal-00941653

Submitted on 4 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breaking a monad-comonad symmetry between
computational effects

Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Breaking a monad-comonad sym-
metry between computational effects. [Research Report] arXiV. 2014. �hal-00941653�

https://hal.science/hal-00941653
https://hal.archives-ouvertes.fr

Breaking a monad-comonad symmetry between

computational effects

Jean-Guillaume Dumas

Laboratoire Jean Kuntzmann, University of Grenoble, France

Dominique Duval

Laboratoire Jean Kuntzmann, University of Grenoble, France

Jean-Claude Reynaud

Reynaud Consulting, Claix, France

February 4., 2014

Abstract

Computational effects may often be interpreted in the Kleisli category
of a monad or in the coKleisli category of a comonad. The duality between
monads and comonads corresponds, in general, to a symmetry between
construction and observation, for instance between raising an exception
and looking up a state. Thanks to the properties of adjunction one may go
one step further: the coKleisli-on-Kleisli category of a monad provides a
kind of observation with respect to a given construction, while dually the
Kleisli-on-coKleisli category of a comonad provides a kind of construction
with respect to a given observation. In the previous examples this gives
rise to catching an exception and updating a state. However, the inter-
pretation of computational effects is usually based on a category which
is not self-dual, like the category of sets. This leads to a breaking of
the monad-comonad duality. For instance, in a distributive category the
state effect has much better properties than the exception effect. This re-
mark provides a novel point of view on the usual mechanism for handling
exceptions. The aim of this paper is to build an equational semantics
for handling exceptions based on the coKleisli-on-Kleisli category of the
monad of exceptions. We focus on n-ary functions and conditionals. We
propose a programmer’s language for exceptions and we prove that it has
the required behaviour with respect to n-ary functions and conditionals.

Keywords. Computational effects; monads and comonads; duality;
decorated logics.

1 Introduction

Categorical semantics for programming languages interprets types as objects
and terms as morphisms; in this setting, substitution is composition, categorical

1

products are used for dealing with n-ary operations and coproducts for condi-
tionals. The most famous result in this direction is the Curry-Howard-Lambek
correspondence which relates intuitionistic logic, simply typed lambda calculus
and cartesian closed categories. The algebraic effects challenge is the search for
some extension of this correspondence to a categorical framework correspond-
ing to computational effects, which means, roughly, to non-functional features
of programming languages. Moggi proposed to use the categorical notion of
monad for this purpose [18], then monads were popularized by Wadler [28] and
implemented in Haskell and F♯. Related categorical notions like Freyd cate-
gories, arrows, Lawvere theories, were also proposed [25, 10, 22, 12]. Moreover,
the dual notion of comonad can also be used for dealing with computational
effects [27, 4, 20]. This gives rise to a three-tier classification of terms which is
similar to the one in [29]. Some effects, like the state effect, can be seen both as
monads and as comonads [18, 4]. Other effects, like the handling of exceptions,
do not fit easily in the monad approach [23, 24, 1]. However the use of the co-
Eilenberg-Moore-on-Eilenberg-Moore category of the monad of exceptions was
successfully used by Levy for adapting the monad approach to the handling of
exceptions [15]; in this paper we follow a similar line.

The aim of this paper is to build an equational semantics for handling ex-
ceptions based on the coKleisli-on-Kleisli category of the monad of exceptions.
We focus on n-ary functions and conditionals because they correspond to the
dual categorical notions of products and coproducts, although their behaviour
with respect to effects is quite different: in general there is no ambiguity in us-
ing conditionals with effects, whereas the value of an expression involving n-ary
functions may depend on the order of evaluation of the arguments. The equa-
tional semantics we use are decorated : the terms and equations are annotated,
in a way similar to the type-and-effect systems [16], in order to classify them ac-
cording to their interaction with the effect. Typically, for exceptions, terms are
classified as pure, propagators (which must propagate exceptions) and catchers
(which may recover from exceptions); thus, there is no need for an explicit “type
of exceptions”, and we get a clear dictinction between a coproduct type A+B in
the syntax and a coproduct A+E (where E is the “object of exceptions”) which
may be used for interpreting terms involving the type A. In the equational se-
mantics we use coproduct types A+B but we never use coproducts involving E.
In order to get an equational semantics for exceptions, we start from two facts:
first, the Kleisli-on-coKleisli category of a comonad can be used for building an
equational semantics for states [4]; secondly, there is a duality between the deno-
tational semantics of the state effect and the denotational semantics of the core
operations for the exception effect [5]. We adapt this duality to the equational
level, then we build the programmer’s language for exceptions by adding some
control to the core operations. Finally we propose a programmer’s language for
exceptions, built from categorical products and coproducts, and we prove that
it satisfies equations providing the required behaviour (as explained above) with
respect to n-ary functions and conditionals. The equational semantics for states
is implemented in Coq [8] and the one for exceptions is in progress.

The duality between monads and comonads corresponds, in general, to a

2

symmetry between construction and observation: raising an exception is a con-
struction, reading the value of a location is an observation. As recalled in
Section 2, thanks to the properties of adjunction one may go one step further:
the coKleisli-on-Kleisli category of a monad provides a kind of observation with
respect to a given construction, while dually the Kleisli-on-coKleisli category of
a comonad provides a kind of construction with respect to a given observation.
In the previous examples this gives rise to catching an exception and updating a
state, respectively. The coKleisli-on-Kleisli category of a monad, as well as the
Kleisli-on-coKleisli category of a comonad, provide a classification of terms and
equations. In Section 3 we define variants of the equational logic for dealing
with this classification. These variants are called decorated logics: there is a
decorated logic Lmon for a monad and dually a decorated logic Lcomon for a
comonad. When the monad is the exception monad, we can add to the deco-
rated logic Lmon the core operations for exceptions: the tagging operations for
encapsulating an ordinary value into an exception, and the untagging opera-
tions for recovering the ordinary value which has been previously encapsulated
in an exception. Dually, When the comonad is the state comonad, we can add
the basic operations for states: the lookup operations which observe the state
and the update operations which modify it. In Section 4 we assume that the
category C has some distributivity or extensivity property, like for instance the
category of sets. This breaks the monad-comonad duality: the state effect gets
better properties with respect to coproducts, while the exception effect does
not get better properties with respect to products. On the comonad side, we
check that the side-effects due to the evolution of state do not perturb the
case-distinction features, and we provide decorated equations for imposing an
order on the interpretation of the arguments of multivariate functions. On the
monad side, we check that the properties of operations for catching exceptions
are quite poor. This is circumvented by encapsulating the catching operations
in try-catch blocks. This provides a novel point of view on the formalization of
the usual mechanism for handling exceptions. We get a programmer’s language
for exceptions which has the required behaviour with respect to n-ary functions
and conditionals.

2 Preliminaries

We present some well-known results about monads and comonads in Section 2.1)
and (independently) about equational logic with conditionals in Section 2.2.

2.1 CoKleisli-on-Kleisli category

This Section relies on [17]. A similar construction is used in [15, 14], with
“Kleisli” replaced by “Eilenberg-Moore”. Let C be a category and (M, η, µ)
a monad on C. Let C(1) be the Kleisli category of this monad and F0 ⊣
G0 : C

(1) → C the corresponding adjunction. Then M = G0 ◦ F0 : C → C. Let
D = F0 ◦G0 : C

(1) → C(1), it is the endofunctor of a comonad (D, ε, δ) on C(1).

3

Let C(2) be the coKleisli category of this comonad and F1 ⊣ G1 : C
(1) → C(2)

the corresponding adjunction. Then D = F1 ◦ G1 : C
(1) → C(1). In such a

situation, there is a unique functor K : C(2) → C such that K ◦ G1 = G0 and
F0 ◦K = F1.

C

M

��
F0

,,
C(1)

D

		

G0

kk ⊥

G1

,,
⊤ C(2)

F1

ll

K

jj

The three categories C, C(1) and C(2) have the same objects. There is a mor-
phism g(1) : A → B in C(1) for each morphism g1 : A → MB in C, and there is
a morphism h(2) : A → B in C(2) for each morphism h2 : MA → MB in C. The
functor K maps A to MA and h(2) : A → B to h2 : MA → MB. We are mainly
interested in the functors F0 and G1. They are the identity on objects, F0 maps
f0 : A → B inC to f (1) : A → B inC(1) corresponding to f1 = ηB◦f0 : A → MB
in C, and G1 maps g(1) : A → B in C(1) corresponding to g1 : A → MB in C

to g(2) : A → B in C(2) corresponding to g2 = µB ◦ Mg1 : MA → MB in C.
Thus, G1 ◦ F0 maps f0 : A → B in C to f (2) : A → B in C(2) corresponding to
f2 = Mf0 : MA → MB in C.

2.2 Equational logic with conditionals

We choose a categorical presentation of logic as for instance in [21], in a bi-
cartesian category (i.e., a category with finite products and coproducts). In a
functional programming language, from this point of view, types are objects,
terms are morphisms and substitution is composition. Each term f has a source
type A and a target type B, this is denoted f : A → B. A term has precisely
one source type, which can be a product type or the unit type 1. A n-ary op-
eration f : A1, . . . , An → B corresponds to a morphism f : A1 × · · · ×An → B
(this holds for every n ≥ 0, with f : 1 → B when n = 0). Typically, when
n = 2, the substitution of terms a1 : A → A1, a2 : A → A2 for the variables
x1, x2 in f(x1, x2) is the composition of the pair 〈a1, a2〉 : A → A1 × A2 with
f : A1 ×A2 → B.

A1

A

a1
22eeeeeeeeeeeeeeeeeee

a2 ,,YYY
YYY

YYY
YYY

YYY
YYY

Y 〈a1,a2〉 // A1 × A2

OO

��

=

=

f
// B

A2

Conditionals corresponds to copairs: a command like if b then f else g corre-
sponds to the morphism [f |g] ◦ b, where [f |g] is the copair of f : 1 → B and
g : 1 → B, i.e., the unique morphism h : 1 + 1 → B such that h ◦ true = f and

4

h ◦ false = g.
1

true ��

f

,,YYY
YYY

YYY
YYY

YYY
YYY

A
b // 1 + 1 [f |g] //

=

=
B

1

false
OO

g

22eeeeeeeeeeeeeeeeee

The grammar and the rules of the equational logic with conditionals are recalled
in Fig. 1. For short, rules with the same premisses may be grouped together:
H1...Hn

C1
, ..., H1...Hn

Cp
may be written H1...Hn

C1...Cp
.

3 The duality

In Sections 3.1 and 3.2 we define decorated logics Lmon and Lcomon , together
with their interpretation in a category with a monad and with a comonad,
respectively. Then in Sections 3.3 and 3.4 we extend Lmon and Lcomon into
Lexc and Lst which are dedicated to the monad of exception and to the comonad
of states, respectively. The interpretations of these logics provide the duality
between the denotational semantics of states and exceptions mentioned in [5].
All these logics are called decorated logics because their grammar and inference
rules are essentially the grammar and inference rules for the logic Leq (from
Section 2.2) together with decorations for the terms and for the equations. The
decorations for the terms are similar to the annotations of the types and effects
systems [16]. Decorated logics are introduced in [3] in an abstract categorical
framework which will not be explicitly used in this paper.

3.1 A decorated logic for a monad

In the logic Lmon for monads, each term has a decoration which is denoted as
a superscript (0), (1) or (2): a term is pure when its decoration is (0), it is
a constructor when its decoration is (1) and a modifier when its decoration is
(2). Each equation has a decoration which is denoted by replacing the symbol
≡ either by ∼= or by ∼: an equation with ∼= is called strong, with ∼ it is called
weak. In order to give a meaning to the logic Lmon , let us consider a bicartesian
categoryC with a monad (M, η, µ). The categoriesC(0) = C, C(1), C(2) and the
functors F0 : C(0) → C(1) and G1 : C(1) → C(2) are defined as in Section 2.1.
Then we get an interpretation CM of the grammar and the conversion rules of
Lmon as follows.

• A type A is interpreted as an object A of C.

• A term f (d) : A→ B is interpreted as a morphism f : A→ B in C(2); if
d = 0 then f must be in the image of C(0) by G1 ◦ F0, and if d = 1 then
f must be in the image of C(1) by G1. This means that all terms are
interpreted as morphisms of C: a pure term f (0) : A→B as a morphism
f0 : A→B in C; a constructor g(1) :A→B as a morphism g1 :A→MB
in C; and a modifier h(2) : A→B as a morphism h2 : MA→MB in C.

5

• A strong equation f (d) ∼= g(d) : A → B is interpreted as an equality f =
g : A → B in C(2), i.e., as an equality f2 = g2 : MA → MB in C.

• A weak equation f (d) ∼ g(d) : A → B is interpreted as an equality f2◦ηA =
g2 ◦ ηA : A → MB in C.

Example 3.1. Let us consider the monad of lists (or words), and its interpre-
tation in the category of sets. Then a term f : A → B is interpreted as a code,
i.e., as a map f : A∗ → B∗ from the words on A to the words on B. The clas-
sification of the terms provided by the decorations corresponds to a well-known
classification of the codes: if f is constructor then for each word u = x1 . . . xn

on A the word f(u) = f(x1) . . . f(xn) is the concatenation of the images of the
letters in u, and if f is pure then in addition for each letter x in A the word
f(x) is a letter in B.

The inference rules of Lmon are decorated versions of the rules of the equational
logic with conditionals. The main rules are given in Fig. 2, and all rules in
Appendix A. When a decoration is clear from the context, it is often omitted.

• The conversion rules are decorated versions of rules of the form H
H
.

• All rules of Leq are decorated with (0) for terms and ∼= for equations: the
pure terms with the strong equations form a sublogic of Lmon , which is
the same as Leq . Thus, the structural operations like id , pr , 〈 〉, in , [],
are pure.

• The congruence rules for equations are decorated with all decorations for
terms and for equations, with one notable exception: the substitution rule
holds only when the substituted term is pure.

• The categorical rules hold for all decorations and the decoration of a com-
posed term is the maximum of the decorations of its components.

• The product rules are decorated only as pure.

• For the coproduct rules, the terms in rules (copair) and (copair-u) can be
decorated as pure or constructors, and the decoration of a copair is the
maximum of the decorations of its components. Thus, conditionals can
be built from constructors, but not from modifiers. The decorated rule
(initial-u) states that []B is the unique term from 0 to B, up to weak
equality.

It is easy to check that these rules are satisfied by the interpretation CM of
Lmon . Each f (0) may be converted to f (1) = F0f

(0) and to f (2) = G1F0f
(0),

and each g(1) to g(2) = G1g
(1). Each strong equality f = g gives rise to an

equality f2 ◦ ηA = g2 ◦ ηA, and both equalities are equivalent when f and g
are in C(1). Products and coproducts in Lmon are interpreted as products and
coproducts in C. For instance, the pair of two constructors f (1) : A → B1 and
g(1) : A → B2 is interpreted as the pair 〈f1, g1〉 : MA → B1 ×B2 in C.

6

3.2 A decorated logic for a comonad

The dual of the decorated logic Lmon for a monad is the decorated logic Lcomon

for a comonad. Thus, the grammar of Lcomon is the same as the grammar of
Lmon , but a term with decoration (1) is now called an accessor (or an observer).
The conversion rules are the same as those in Lmon . Let C be a bicartesian
category with a comonad (D, ε, δ). The categories C(0) = C, C(1), C(2) and
the functors F0 : C(0) → C(1) and G1 : C(1) → C(2) are defined dually to
Section 2.1. Then we get an interpretation CD of the grammar of Lcomon as
follows.

• A type A is interpreted as an object A of C.

• A term f (d) : A → B is interpreted as a morphism f : A → B in C(2),
which can be expressed as a morphism in C: a pure term f (0) : A→ B
as a morphism f0 : A→B in C; an accessor g(1) :A→B as a morphism
g1 :DA→B in C; and a modifier h(2) : A→B as a morphism h2 : DA→
DB in C.

• A strong equation f (d) ∼= g(d) : A → B is interpreted as an equality f2 =
g2 : DA → DB in C.

• A weak equation f (d) ∼ g(d) : A → B is interpreted as an equality εB◦f2 =
εB ◦ g2 : A → DB in C.

The rules for Lcomon are nearly the same as the corresponding rules for Lmon ,
except that for weak equations the substitution rule always holds while the
replacement rule holds only when the replaced term is pure, and in the rules
for products and coproducts the decorations are permuted, see Fig. 3 for the
main rules. The logic Lcomon can be interpreted dually to Lmon . Let C be
a bicartesian category and (D, ε, δ) a comonad on C. Then we get a model
CD of the decorated logic Lcomon , where an accessor f (1) :A→B is interpreted
as a morphism f1 : DA → B in C, a weak equation f (2) ∼ g(2) : A → B as
an equality εB ◦ f2 = εB ◦ g2 : DA → B in C and a copair of two accessors
f (1) : A1 → B and g(1) : A2 → B as the copair [f1|g1] : A1 +A2 → DB in C.

3.3 A decorated logic for the monad of exceptions

Let us assume that there is in C a distinguished object E called the object
of exceptions. The monad of exceptions on C is the monad (M, η, µ) with
endofunctor MX = X + E, its unit η is made of the coprojections ηX : X →
X+E and its multiplication µ is defined by µX = [idX+E |inX] : (X+E)+E →
X+E where inX : E → X+E is the coprojection. As in Section 3.1, the category
C with the monad of exceptions provides a model CM of the decorated logic
Lmon . The name of the decorations can be adapted to the monad of exceptions:
a constructor is called a propagator : it may raise an exception but cannot recover
from an exception, so that it has to propagate all exceptions; a modifier is called
a catcher.

7

For this specific monad, it is possible to extend the logic Lmon as Lexc , called
the decorated logic for exceptions, so that CM can be extended as a model Cexc

of Lexc. First, we get copairs of a propagator and a modifier, as in the first part
of Fig. 4 for the left copairs (the rules for the right copairs are symmetric). The

interpretation of the left copair [f |g]
(2)
l : A1 + A2 → B of f (1) : A1 → B and

g(2) : A2 → B is the copair [f1|g2] : A1+A2+E → B+E of f1 : A1 → B+E and
g2 : A2+E → B+E in C. This is possible because (A1+A2)+E is canonically
isomorphic to A1 + (A2 + E), whereas for a monad generally M(A1 + A2) is
not isomorphic to A1 +MA2. For instance, the coproduct of A ∼= A + 0, with

coprojections id
(0)
A : A → A and []

(0)
A : 0 → A, gives rise to the left copair

[f |g]
(2)
l : A → B of any propagator f (1) : A → B with any modifier g(2) : 0 → B,

which is characterized up to strong equations by [f |g]l ∼ f and [f |g]l ∼= g. The

construction of [f |g]
(2)
l and its interpretation can be illustrated as follows:

A f(1)

,,YYY
YYY

YYY
YYY

YYY
YYY

id(0) ��

A [f |g]
(2)
l

//
∼

∼=
B

0

[](0)
OO

g(2)

22eeeeeeeeeeeeeeeeee

A f1

,,YYY
YYY

YYY
YYY

YYY
YY

��

A+ E ([f |g]l)2 //
=

=
B + E

E

OO

g2

22eeeeeeeeeeeeeeeee

Moreover, the rule (effect) expresses the fact that, when MX = X + E, two
modifiers coincide as soon as they coincide on ordinary values and on exceptions,
whereas for a monad generally the morphisms ηX : X → MX andM []X : M0 →
MX do not form a coproduct. For each set Exn of exception names, additional
grammar and rules for the logic Lexc are given in Fig. 4. We extend the grammar

with a type VT , a propagator tag
(1)
T : VT → 0 and a catcher untag

(2)
T : 0 → VT

for each exception name T , and we also extend its rules. The logic Lexc obtained
performs the core operations on exceptions: the tagging operations encapsulate
an ordinary value into an exception, and the untagging operations recover the
ordinary value which has been encapsulated in an exception. This may be
generalized by assuming a hierarchy of exception names [7]. In Fig. 4, the rule
(exc-coprod-u) is a decorated rule for coproducts. It asserts that two functions
without argument coincide as soon as they coincide on each exception. Together
with the rule (effect) this implies that two functions coincide as soon as they
coincide on their argument and on each exception. For each family of objects
(VT)T∈Exn in C such that E ∼=

∑

T∈Exn VT we build a modelCexc of Lexc, which
extends the model CM of Lmon with functions for tagging and untagging the
exceptions. The types VT are interpreted as the objects VT and the propagators

tag
(1)
T : VT → 0 as the coprojections from VT to E. Then the interpretation of

each catcher untag
(2)
T : 0 → VT is the function untagT : E → VT +E defined as

the cotuple (or case distinction) of the functions fT,R : VR → VT +E where fT,T

is the coprojection of VT in VT +E and fT,R is made of tagR : VT → E followed
by the coprojection of E in VT +E when R 6= T . This can be illustrated, in an
informal way, as follows: tagT encloses its argument a in a box with name T ,
while untagT opens every box with name T to recover its argument and returns

8

every box with name R 6= T without opening it:

a
tagT // a

T
a

T

untagT // a

a
R

untagT // a
R

3.4 A decorated logic for the comonad of states

Let us assume that there is in C a distinguished object S called the object of
states. The comonad of states on C is the comonad (D, ε, δ) with endofunctor
DX = X × S, its counit ε is made of the projections εX : X × S → X and
its comultiplication δ is defined by δX = 〈idX×S , prX〉 : X × S → (X × S)× S
where prX : X × S → S is the projection. This comonad is sometimes called
the product comonad ; it is different from the costate comonad or store comonad
with endofuntor DA = S × AS [9]. As in Section 3.2, the category C with the
comonad of states provides a model CD of the decorated logic Lcomon .

For this specific comonad, it is possible to extend the logic Lcomon as Lst ,
called the decorated logic for states, so that CD can be extended as a model
Cst of Lst . In Fig. 5, the rule (st-prod-u) is a decorated rule for coproducts. It
asserts that two functions without result coincide as soon as they coincide when
observed at each location. Together with the rule (st-effect) this implies that two
functions coincide as soon as they return the same value and coincide on each
location. For each family of objects (VT)T∈Loc inC such that S ∼=

∏

T∈Loc VT we
build a model Cst of Lst , which extends the model CD of Lcomon with functions
for looking up and updating the locations. The types VT are interpreted as the

objects VT and the accessors lookup
(1)
T : 1 → VT as the projections from S to

VT . Then the interpretation of each modifier update
(2)
T : VT → 1 is the function

updateT : VT ×S → S defined as the tuple of the functions fT,R : VT ×S → VR

where fT,T is the projection of VT ×S to VT and fT,R is made of the projection
of VT × S to S followed by lookupR : S → VR when R 6= T .

4 Breaking the duality

In Section 4.1 we discuss the behaviour of conditionals and n-ary operations
with respect to effects. In Section 4.2 the decorated logic for states is extended
under the assumption that C is distributive, and we easily get Theorem 4.3
about conditionals and sequential pairs. In Section 4.3 the decorated logic
for exceptions is extended, in a way which is not dual to the extension for
states. It happens that catchers do not have “good” properties with respect to
conditionals and sequential pairs. Thus, we define a new language, called the
programmer’s language for exceptions, in order to encapsulate the catchers in
try-catch blocks. This corresponds to the usual way to deal with exceptions in
a computer language. Then, under the assumption that C satisfies a limited
form of extensivity, we get Theorem 4.9 about conditionals and sequential pairs
for the programmer’s language for exceptions. Note that distributivity and

9

extensivity are related notions [2], and that each of them breaks the duality
between products and coproducts.

4.1 Effects: conditionals and sequential pairs

When there are effects, for a binary operation f : A1 × A2 → B, the fact that
the substitution of terms a1, a2 in f is f ◦ 〈a1, a2〉 is no more valid: indeed,
because of the effects, the result of applying f to a1, a2 may depend on the
evaluation order of a1 and a2. This means that there is no “good” pair 〈a1, a2〉.
However, it is usually possible to give a meaning to “f(a1, a2) with a1 evaluated
before a2”, or symmetrically to “f(a1, a2) with a2 evaluated before a1”. This
means that there are “good” tuples 〈a1 ◦ v1, v2〉 and 〈w1, a2 ◦ v2〉 when v1, v2,
w1 and w2 are either identities or projections. Then, for “a1 before a2” one can
use 〈pr 1, a2 ◦ pr 2〉 ◦ 〈a1, idA〉 (which coincides with 〈a1, a2〉 when this pair does
exist). Such a notion of sequential pair is studied in [6], where several effects are
considered. There are other ways to formalize the fact of first evaluating a1 then
a2: for instance by using a strong monad [18] or productors [26]; a comparison
with strong monads is done in [6].

A1 A1

A

a1
22eeeeeeeeeeeeeeeeee

idA ,,YYY
YYY

YYY
YYY

YYY
YYY

Y 〈a1,idA〉 // A1 ×A

OO

��

pr1
22eeeeeeeeeeeeeeeeeee

a2◦pr2 ,,YYY
YYY

YYY
YYY

YYY
YYY

Y 〈pr1,a2◦pr2〉 //
=

=
A1 ×A2

OO

��

=

=

f
// B

A A2

For conditionals, the fact that if b then f else g corresponds to [f |g] ◦ b
usually remains valid when there are effects.

In this paper, we consider a language with effects as a language with (at least)
two levels of terms, similar to the values and computations in [18]: the pure
terms form the morphisms of a category C with finite products and coproducts
and the general terms form a larger category C(g) with the same objects as C.

Definition 4.1. A language with effects is compatible with conditionals when
the category C has finite coproducts and when the copairs of general terms

are defined: for each f
(g)
1 : A1 → B and f

(g)
2 : A2 → B there exists a unique

[f1|f2]
(g) : A1+A2 → B such that [f1|f2]◦ in1 = f1 and [f1|f2]◦ in2 = f2 (where

in
(0)
1 : A1 → A1 +A2 and in

(0)
2 : A2 → A1 +A2 are the coprojections).

Definition 4.2. Let ≫ be a relation between pure terms and general terms
which is the equality when both terms are pure. A language with effects is
compatible with sequential pairs, with respect to ≫, when the category C has
finite products and when the left and right pairs of a pure term and a general

term are defined, in the following sense: for each f
(0)
1 : A → B1 and f

(g)
2 : A →

B2 there exists a unique 〈f1, f2〉
(g)
l : A → B1 ×B2 such that pr 1 ◦ 〈f1, f2〉l ≫ f1

and pr2 ◦ 〈f1, f2〉l = f2 (where pr
(0)
1 : B1 ×B2 → B1 and pr

(0)
2 : B1 ×B2 → B2

are the projections), and symmetrically for 〈f
(g)
1 , f

(0)
2 〉

(g)
r .

10

4.2 States

Let us assume that the categoryC is distributive. This means that the canonical
morphism from A×B+A×C to A× (B+C) is an isomorphism. Then we get
new decorations for the coproduct rules, because the copair of two modifiers now
exists, see Fig. 6. The interpretation of the modifier [f |g](2), when both f (2) and
g(2) are modifiers, is the composition of the inverse of the canonical morphism
(A1×S)+(A2×S) → (A1+A2)×S with [f2|g2] : (A1×S)+(A2×S) → B×S.

Theorem 4.3. Let us consider the language for states with modifiers as general
terms (decoration g = 2). When the category C is distributive, the language for
states is compatible with conditionals and sequential pairs with respect to ∼.

Proof. The left and right pairs of an accessor and a modifier in the logic Lst

(Fig. 5) provide sequential pairs. The rules for copairs in the logic L+
st (Fig. 6)

provide conditionals.

Remark 4.4. An advantage of using the comonad of states X × S rather than
the usual monad of states (X×S)S is that sequential pairs for states are defined
without any new ingredient: no kind of strength, in contrast with the approach
using the strong monad of states (A × S)S [18], and no “external” decoration
for equations, in contrast with [6].

4.3 Exceptions

Since we do not assume that the category C is codistributive we do not get
pairs of catchers in a way dual to the copairs of modifiers for states. In fact the
decorated logic Lexc for exceptions, with the core operations for tagging and
untagging, remains private, while there is a programmer’s language, which is
public, with no direct access to the catchers. The programmer’s language for
exceptions provides the operations for raising and handling exceptions, which
are defined in terms of the core operations. This language does not include the
private tagging and untagging operations, but the public throw and try/catch
constructions, which are defined in terms of tag and untag. It has no catcher:
the only way to catch an exception is by using a try/catch expression, which
itself propagates exceptions. This corresponds to the usual mechanism of ex-
ceptions in programming languages. For the sake of simplicity we assume that
only one type of exception is handled in a try/catch expression, the general
case is treated in Appendix B.

The main ingredients for building the programmer’s language from the core
language are the coproducts A ∼= A + 0 and the fact of decorating the com-
position: in addition to the basic composition “◦” we introduce a second com-
position, called the propagator composition and denoted “⊙”, subject to the
rules in Fig. 8. Both compositions “◦” and “⊙” coincide on propagators, but
they are interpreted differently when a propagator is composed with a modifier.
This is an instance of the two ways to compose oblique morphisms related to
an adjunction [19].

11

Remark 4.5. In fact, this new composition can be defined for any monad, but
until now it has not been needed: Let f (1) : A → B and k(2) : B → C then
(k ⊙ f)(1) : A → C is interpreted as k2 ◦ f1 : A → MC; then it can be checked
that f ∼ g if and only if id ⊙ f ∼= id ⊙ g. In contrast, (k ◦ f)(2) : A → C
is interpreted as k2 ◦ f2 = k2 ◦ µB ◦ Mf1 : MA → MC. Dually, such a new
composition could be defined for any comonad.

Now, we come back to exceptions and we define the throw and try/catch
constructions.

Definition 4.6. For each type B and each exception name T , the propagator

throw
(1)
B,T is:

throw
(1)
B,T = []

(0)
B ◦ tag

(1)
T : VT → B

For each each propagator f (1) : A → B, each exception name T and each prop-
agator g(1) : VT → B, the propagator try(f)catch(T ⇒ g)(1) is defined as
follows, in two steps:

catch(T ⇒ g)(2) = [g(1) | []
(0)
B](1) ◦ untag

(2)
T : 0 → B

try(f)catch(T ⇒ g)(1) = [idB | catch(T ⇒ g)]
(2)
l ⊙ f (1) : A → B

This means that raising an exception with name T in a type B consists in
tagging the given ordinary value (in VT) as an exception and coerce it to B. For
handling an exception, the intermediate expression catch(T ⇒ g) is a private
catcher while the expression try(f)catch(T ⇒ g) is a public propagator: the
propagator composition “⊙” prevents this expression from catching exceptions
with name T which might have been raised before the try(f)catch(T ⇒ g)
block is considered. The definition of try(f)catch(T ⇒ g) corresponds to the
Java mechanism for exceptions [11, 13], which may be described by the control
flow in Fig. 7, where “exc?” means “is this value an exception?”, an abrupt
termination returns an uncaught exception and a normal termination returns an
ordinary value. Now, let us assume that the category C is extensive with respect
to E, by which we mean that the pullbacks of the coprojections in1 : B → B+E
and in2 : E → B + E along an arbitrary morphism f : A → B + E exist and
form a coproduct A = Df + Ef :

Df

if
��

fnormal
// B

in1��

A
f1

// B + E

Ef

jf

OO

fabrupt
// E

in2

OO

Informally, this implies that any morphism f1 : A → B + E can be seen as a
partial morphism form A to B with domain of definition the vertex Df of the
pullback on in1 and f1. We get a decorated logic L+

exc by extending Lexc with
the propagator composition and with left pairs (and right ones, omitted here)

12

as in Fig. 8. We define a relation ≫ between pure terms and propagators, which
can be seen as (a restriction of) the usual order between partial functions.

Definition 4.7. Let v(0) : A → B be a pure term and f (1) : A → B a propaga-
tor, corresponding respectively to v0 : A → B and f1 : A → B + E in C. Then
v(0) ≫ f (1) if and only if the restrictions of v0 and f1 to the domain of definition
of f1 coincide, which means, if and only if v0 ◦ if = fnormal : Df → B.

Now we can interpret the left pair of a pure term and a propagator.

Definition 4.8. Let v(0) : A → B1 be a pure term and f (1) : A → B2 a prop-
agator, corresponding respectively to v0 : A → B1 and f1 : A → B2 + E in C.
Let hnormal = 〈v ◦ if , fnormal〉 : Dg → B1 × B2 and habrupt = fabrupt : Eg → E,
then let h = hnormal + habrupt : A → (B1 × B2) + E in C. The morphism h in
C corresponds to a propagator h(1) : A → B1 × B2, which is the interpretation

of the left pair 〈v, f〉
(1)
l of v(0) and f (1).

It is easy to check that indeed h(1) satisfies the properties required of left
pairs in Fig. 8. The right pair of a propagator and a pure term is defined in
a symmetric way. It can easily be checked that the core language for excep-
tions with catchers as general terms (decoration g = 2) is not compatible with
conditionals and sequential pairs (with respect to any relation ≫).

Theorem 4.9. Let us consider the programmer’s language for exceptions with
propagators as general terms (decoration g = 1). When the category C is exten-
sive with respect to E, the programmer’s language for exceptions is compatible
with conditionals and sequential pairs with respect to ≫ as in Definition 4.7.

Proof. The left and right pairs of a pure term and a propagator in the logic
L+
exc (Fig. 8) provide sequential pairs. The rules for copairs in the logic Lmon

(Fig. 2) provide conditionals.

References

[1] Andrej Bauer, Matija Pretnar. An Effect System for Algebraic Effects and
Handlers. CALCO 2013: 1-16

[2] Aurelio Carboni, Steve Lack, R.F.C. Walters. Introduction to extensive and
distributive categories. Journal of Pure and Applied Algebra 84(2):145-158,
1993.

[3] César Domı́nguez, Dominique Duval. Diagrammatic logic applied to a pa-
rameterization process. Mathematical Structures in Computer Science 20,
p. 639-654 (2010).

[4] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude
Reynaud. Decorated proofs for computational effects: States. ACCAT
2012. Electronic Proceedings in Theoretical Computer Science 93, p. 45-59
(2012).

13

[5] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude
Reynaud. A duality between exceptions and states. Mathematical Struc-
tures in Computer Science 22, p. 719-722 (2012).

[6] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Carte-
sian effect categories are Freyd-categories. Journal of Symbolic Computa-
tion 46, p. 272-293 (2011).

[7] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. A dec-
orated proof system for exceptions. arXiv:1310.2338 (2013).

[8] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous. For-
mal verification in Coq of program properties involving the global state
effect. JFLA’2014: Journes Francophones des Langages Applicatifs, Frjus,
France, Janvier 2014. arXiv:1310.0794.

[9] Jeremy Gibbons, Michael Johnson. Relating Algebraic and Coalgebraic De-
scriptions of Lenses BX 2012. ECEASST 49 (2012).

[10] Hughes, J.. Generalising monads to arrows. Sci. of Comput. Program.
37(13) (2000), pp. 67111.

[11] James Gosling, Bill Joy, Guy Steele, Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley Longman (2005).

[12] Martin Hyland, Gordon D. Plotkin, John Power. Combining effects: Sum
and tensor. Theor. Comput. Sci. 357(1-3): 70-99 (2006)

[13] Bart Jacobs. A Formalisation of Java’s Exception Mechanism. ESOP 2001.
LNCS, Vol. 2028, p. 284-301 Springer (2001).

[14] Bart Jacobs. Bases as Coalgebras. Logical Methods in Computer Science
9(3) (2013).

[15] Paul Blain Levy. Monads and adjunctions for global exceptions. MFPS
2006. Electronic Notes in Theoretical Computer Science 158, p. 261-287
(2006).

[16] John M. Lucassen, David K. Gifford. Polymorphic effect systems. POPL
1988. ACM Press, p. 47-57.

[17] Saunders Mac Lane. Categories for the Working Mathematician. Springer,
2nd ed. 1978.

[18] Eugenio Moggi. Notions of Computation and Monads. Information and
Computation 93(1), p. 55-92 (1991).

[19] Guillaume Munch. Models of a Non-Associative Composition. To appear
in Proc. FoSSaCS 2014.

14

[20] Tomas Petricek, Dominic A. Orchard, Alan Mycroft: Coeffects: Unified
Static Analysis of Context-Dependence. ICALP (2) 2013: 385-397

[21] Andrew M. Pitts. Categorical Logic. Chapter 2 of S. Abramsky and D.
M. Gabbay and T. S. E. Maibaum (Eds) Handbook of Logic in Computer
Science, Volume 5. Algebraic and Logical Structures, Oxford University
Press, 2000.

[22] Gordon D. Plotkin, John Power. Notions of Computation Determine Mon-
ads. FoSSaCS 2002. LNCS, Vol. 2620, p. 342-356, Springer (2002).

[23] Gordon D. Plotkin, John Power: Algebraic Operations and Generic Effects.
Applied Categorical Structures 11(1): 69-94 (2003)

[24] Gordon D. Plotkin, Matija Pretnar. Handlers of Algebraic Effects. ESOP
2009. LNCS, Vol. 5502, p. 80-94, Mpringer (2009).

[25] Power, J. and E. Robinson. Premonoidal categories and notions of compu-
tation. Math. Structures in Comput. Sci. 7(5) (1997), pp. 453468.

[26] Ross Tate. The sequential semantics of producer effect systems. POPL 2013.
ACM Press, p. 15-26 (2013).

[27] Tarmo Uustalu, Varmo Vene. Comonadic Notions of Computation. CMCS
2008. ENTCS 203, p. 263-284 (2008).

[28] Philip Wadler. The essence of functional programming. POPL 1992. ACM
Press, p. 1-14 (1992).

[29] Philip Wadler. Call-by-Value Is Dual to Call-by-Name - Reloaded. RTA
2005: 185-203

15

A The decorated logic for a monad

The decorated logic Lmon for a monad when C is bicartesian.

Grammar
Types: t ::= A | B | · · · | t× t | 1 | t+ t | 0
Terms: f ::= idt | f ◦ f | 〈f, f〉 | pr t,t,1 | pr t,t,2 | 〈 〉t | [f |f] | int,t,1 | int,t,2 | []t
Decoration for terms: (d) ::= (0) | (1) | (2)
Equations: e ::= f ∼= f | f ∼ f

Conversion rules

f (0)

f (1)

f (1)

f (2)

f (d) ∼= g(d
′)

f ∼ g

f (d) ∼ g(d
′)

f ∼= g
if d, d′ ≤ 1

Equivalence rules

(s-refl)
f (d)

f ∼= f
(s-sym)

f (d) ∼= g(d
′)

g ∼= f
(s-trans)

f (d) ∼= g(d
′) g(d

′) ∼= h(d′′)

f ∼= h

(w-refl)
f (d)

f ∼ f
(w-sym)

f (d) ∼ g(d
′)

g(d
′) ∼ f

(w-trans)
f (d) ∼ g(d

′) g(d
′) ∼ h(d′′)

f ∼ h
Categorical rules

(id)
A

id
(0)
A : A → A

(comp)
f (d) : A → B g(d

′) : B → C

(g ◦ f)(max(d,d′)) : A → C

(id-source)
f (d) : A → B

f ◦ idA
∼= f

(id-target)
f (d) : A → B

idB ◦ f ∼= f

(assoc)
f (d) : A → B g(d

′) : B → C h(d′′) : C → D

h ◦ (g ◦ f) ∼= (h ◦ g) ◦ f
Congruence rules

(s-repl)
f
(d1)
1

∼= f
(d2)
2 : A → B g(d) : B → C

g ◦ f1 ∼= g ◦ f2
(s-subs)

f (d) : A → B g
(d1)
1

∼= g
(d2)
2 : B → C

g1 ◦ f ∼= g2 ◦ f

(w-repl)
f
(d1)
1 ∼ f

(d2)
2 : A → B g(d) : B → C

g ◦ f1 ∼ g ◦ f2
(w-subs)

f (0) : A → B g
(d1)
1 ∼ g

(d2)
2 : B → C

g1 ◦ f ∼ g2 ◦ f
Product rules

(prod)
B1 B2

pr
(0)
1 : B1×B2 → B1 pr

(0)
2 : B1×B2 → B2

(pair)
f
(0)
1 : A → B1 f

(0)
2 : A → B2

〈f1, f2〉(0) : A → B1×B2 pr1 ◦ 〈f1, f2〉
∼= f1 pr2 ◦ 〈f1, f2〉

∼= f2

(pair-u)
f
(0)
1 :A→B1 f

(0)
2 :A→B2 g(0):A→B1×B2 pr1 ◦ g

∼= f1 pr2 ◦ g
∼= f2

g ∼= 〈f1, f2〉

(final)
A

〈 〉
(0)
A : A → 1

(final-u)
f (0) : A → 1

f ∼= 〈 〉A

Coproduct rules

(coprod)
A1 A2

in
(0)
1 : A1 → A1+A2 in

(0)
2 : A2 → A1+A2

(copair)
f
(d1)
1 : A1 → B f

(d2)
2 : A2 → B

[f1|f2](max(d1,d2)) : A1+A2 → B [f1|f2] ◦ in1
∼= f1 [f1|f2] ◦ in2

∼= f2
(d1, d2 ≤ 1)

(copair-u)
f
(d1)
1 :A1→B f

(d2)
2 :A2→B g(d):A1+A2→B g◦in1

∼=f1 g◦in2
∼=f2

g∼=[f1|f2]
(d1, d2, d≤1)

(initial)
B

[]
(0)
B : 0→ B

(initial-u)
f (d) : 0→ B

f ∼ []B

16

B Catching several exception names

The handling process is easily extended to several exception names, as follows.
The index Ti is simplified as i: Vi = VTi

, tagi = tagTi
, untagi = untagTi

.

Definition B.1. For each each propagator f (1) : A → B, each list of exception

names (T1, . . . , Tn) and each propagators g
(1)
j : Vi → B for i = 1, . . . , n, the

propagator try(f)catch (T1⇒g1| . . . |Tn⇒gn)
(1) : A → B is defined as follows,

in two steps:

• the catcher catch (T1⇒g1| . . . |Tn⇒gn)
(2) : 0 → B is obtained by setting

i = 1 in the family of catchers k
(2)
i = catch (Ti⇒gi| . . . |Tn⇒gn) : 0 → B

(for i = 1, . . . , n) which are defined recursively by:

k
(2)
i =

{

[g
(1)
n | []

(0)
B](1) ◦ untag

(2)
n when i = n

[g
(1)
i | k

(2)
i+1]

(2)
l ◦ untag

(2)
i when i < n

• then the required propagator is:

try(f)catch (T1⇒g1| . . . |Tn⇒gn)
(1) =

[idB | catch (T1⇒g1| . . . |Tn⇒gn)]
(2)
l ⊙ f (1) : A → B

The handling process is also easily extended to all exception names. This
catch-all construction is similar to catch(...) in C++ or to (except, else)

in Python. We add a catcher untag
(2)
all : 0 → 1 with the equations

untagall ◦ tagT ∼ 〈 〉T

for every exception name T , which means that untagall catches exceptions of
the form tagT (a) for every T and forgets the value a.

Definition B.2. For each propagators f (1) : A → B and g(1) : 1 → B, the
propagator try(f)catch(all ⇒ g)(1) : A → B is:

try(f)catch(all ⇒ g)(1) = [idB | g ◦ untagall]
(2)
l ⊙ f (1) : A → B

The interpretation of try(f)catch(all ⇒ g) is “handle the exception e
raised in f , if any, with g”. This may be combined with other catchers, and
every catcher following a catch-all is syntactically allowed, but never executed.

17

Grammar

Types: t ::= A | B | · · · | t× t | 1 | t+ t | 0

Terms: f ::= id t | f ◦ f | 〈f, f〉 | pr t,t,1 | pr t,t,2 | 〈 〉t | [f |f] | int,t,1 | int,t,2 | []t

Equations: e ::= f ≡ f

Equivalence rules

(refl)
f

f ≡ f
(sym)

f ≡ g

g ≡ f
(trans)

f ≡ g g ≡ h

f ≡ h

Categorical rules

(id)
A

idA : A → A
(comp)

f : A → B g : B → C

(g ◦ f) : A → C

(id-source)
f : A → B

f ◦ idA ≡ f
(id-target)

f : A → B

idB ◦ f ≡ f

(assoc)
f : A → B g : B → C h : C → D

h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f

Congruence rules

(repl)
f1 ≡ f2 : A → B g : B → C

g ◦ f1 ≡ g ◦ f2
(subs)

f : A → B g1 ≡ g2 : B → C

g1 ◦ f ≡ g2 ◦ f

Product rules

(prod)
B1 B2

pr 1 : B1×B2 → B1 pr2 : B1×B2 → B2

(pair)
f1 : A → B1 f2 : A → B2

〈f1, f2〉 : A → B1×B2 pr1 ◦ 〈f1, f2〉 ≡ f1 pr2 ◦ 〈f1, f2〉 ≡ f2

(pair-u)
f1:A→B1 f2:A→B2 g:A→B1×B2 pr 1 ◦ g ≡ f1 pr2 ◦ g ≡ f2

g ≡ 〈f1, f2〉

(final)
A

〈 〉A : A → 1
(final-u)

f : A → 1

f ≡ 〈 〉A

Coproduct rules

(coprod)
A1 A2

in1 : A1 → A1+A2 in2 : A2 → A1+A2

(copair)
f1 : A1 → B f2 : A2 → B

[f1|f2] : A1+A2 → B [f1|f2] ◦ in1 ≡ f1 [f1|f2] ◦ in2 ≡ f2

(copair-u)
f1:A1→B f2:A2→B g:A1+A2→B g ◦ in1 ≡ f1 g ◦ in2 ≡ f2

g ≡ [f1|f2]

(initial)
B

[]B : 0 → B
(initial-u)

f : 0 → B

f ≡ []B

Figure 1: Leq : the equational logic with conditionals

18

Conversion rules

(pure-acc)
f (0)

f (1)
(acc-mod)

f (1)

f (2)

(strong-weak)
f (d) ∼= g(d

′)

f ∼ g
(weak-strong)

f (d) ∼ g(d
′)

f ∼= g
(d, d′ ≤ 1)

Weak substitution rule

(w-subs)
f (0) : A → B g

(d)
1 ∼ g

(d′)
2 : B → C

g1 ◦ f ∼ g2 ◦ f

Coproduct rules

(coprod)
A1 A2

in
(0)
1 : A1 → A1+A2 in

(0)
2 : A2 → A1+A2

(copair)
f
(d1)
1 : A1 → B f

(d2)
2 : A2 → B

[f1|f2](max(d1,d2)) : A1+A2 → B [f1|f2] ◦ in1
∼= f1 [f1|f2] ◦ in2

∼= f2
(d1, d2 ≤ 1)

(copair-u)
f
(d1)
1 :A1→B f

(d2)
2 :A2→B g(d):A1+A2→B g◦in1

∼=f1 g◦in2
∼=f2

g∼=[f1|f2]
(d1, d2, d≤1)

(initial)
B

[]
(0)
B : 0 → B

(initial-u)
f (2) : 0 → B

f ∼ []B

Figure 2: Lmon : some decorated rules for a monad

19

Conversion rules

f (0)

f (1)

f (1)

f (2)

f (d) ∼= g(d
′)

f ∼ g
for all d, d′

f (d) ∼ g(d
′)

f ∼= g
for all d, d′ ≤ 1

Weak replacement rule

(w-repl)
f
(d)
1 ∼ f

(d′)
2 : A → B g(0) : B → C

g ◦ f1 ∼ g ◦ f2

Product rules

(prod)
B1 B2

pr
(0)
1 : B1×B2 → B1 pr

(0)
2 : B1×B2 → B2

(pair)
f
(d1)
1 : A → B1 f

(d2)
2 : A → B2

〈f1, f2〉(max(d1,d2)) : A → B1×B2 pr1 ◦ 〈f1, f2〉
∼= f1 pr2 ◦ 〈f1, f2〉

∼= f2
(d1, d2 ≤ 1)

(pair-u)
f
(d1)
1 :A→B1 f

(d2)
2 :A→B2 g(d):A→B1×B2 pr 1 ◦ g

∼= f1 pr2 ◦ g
∼= f2

g ∼= 〈f1, f2〉
(d1, d2, d≤1)

(final)
A

〈 〉
(0)
A : A → 1

(final-u)
f (2) : A → 1

f ∼ 〈 〉A

Figure 3: Lcomon : some decorated rules for a comonad

20

Additional (left) coproduct rules

(l-copair)
f
(1)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2]
(2)
l : A1+A2 → B [f1|f2]l ◦ in1 ∼ f1 [f1|f2]l ◦ in2

∼= f2

(l-copair-u)
g(2):A1+A2→B f

(1)
1 :A1→B f

(2)
2 :A2→B g ◦ in1 ∼ f1 g ◦ in2

∼= f2
g ∼= [f1|f2]l

Effect rule

(effect)
f, g : A → B f ∼ g f ◦ []A ∼= g ◦ []A

f ∼= g

Additional grammar (for each T ∈ Exn)

Types: VT

Terms: tag
(1)
T : VT → 0 | untag

(2)
T : 0 → VT

Axioms (for each T ∈ Exn)

untagT ◦ tagT ∼ idVT

untagT ◦ tagR ∼ []VT
◦ tagR for each R 6= T, R ∈ Exn

A specific coproduct rule

(exc-coprod-u)
f, g : 0 → B for all T ∈Exn f ◦ tagT ∼ g ◦ tagT

f ∼= g

Figure 4: From Lmon to Lexc: additional features for the monad of exceptions

21

Additional (left) product rules

(l-pair)
f
(1)
1 : A → B1 f

(2)
2 : A → B2

〈f1, f2〉
(2)
l : A → B1×B2 pr1 ◦ 〈f1, f2〉l ∼ f1 pr 2 ◦ 〈f1, f2〉l

∼= f2

(l-pair-u)
g(2):A → B1×B2 f

(1)
1 :A→B1 f

(2)
2 :A→B2 pr 1 ◦ g ∼ f1 pr2 ◦ g

∼= f2
g ∼= 〈f1, f2〉l

Effect rule

(st-effect-u)
f, g : A → B f ∼ g 〈 〉A ◦ f ∼= 〈 〉A ◦ g

f ∼= g

Additional grammar (for each T ∈ Loc)

Types: VT

Terms: lookup
(1)
T : 1 → VT | update

(2)
T : VT → 1

Axioms (for each T ∈ Loc)

lookupT ◦ updateT ∼ idVT

lookupR ◦ updateT ∼ lookupR ◦ 〈 〉VT
for each R 6= T, R ∈ Loc

A specific product rule

(st-prod-u)
f, g : A → 1 for all T ∈Loc lookupT ◦ f ∼ lookupT ◦ g

f ∼= g

Figure 5: From Lcomon to Lst : additional features for the comonad of states

Additional coproduct rules

(copair)
f
(2)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2](2) : A1+A2 → B [f1|f2] ◦ in1
∼= f1 [f1|f2] ◦ in2

∼= f2

(copair-u)
f
(2)
1 :A1→B f

(2)
2 :A2→B g(2):A1+A2→B g ◦ in1

∼= f1 g ◦ in2
∼= f2

g ∼= [f1|f2]

Figure 6: From Lst to L+
st : additional rules for states, when C is distributive

22

��

exc?
Y
vvnn
nn
n N

**UU
UU

UU
UU

UU
UU

abrupt f (1)

��

exc?
Y

ttiii
ii
ii
ii N

**UU
UU

UU
UU

U

untag
(2)
T

��

normal

exc?
Y
vvnn
nn
n N

**UU
UU

UU
UU

UU
UU

abrupt g(1)

��

normal or abrupt

Figure 7: The control flow for try(f)catch(T ⇒ g)

Propagator composition

(prop-comp)
f (1) : A → B g(2) : B → C

(g ⊙ f)(1) : A → C g ⊙ f ∼ g ◦ f

Additional (left) product rules

(l-pair)
f
(0)
1 : A → B1 f

(1)
2 : A → B2

〈f1, f2〉
(1)
l : A → B1×B2 pr1 ◦ 〈f1, f2〉l ≪ f1 pr2 ◦ 〈f1, f2〉l ∼ f2

(l-pair-u)
f
(0)
1 :A→B1 f

(1)
2 :A→B2 g(1):A→B1×B2 pr1 ◦ g ≪ f1 pr2 ◦ g

∼= f2
g ∼= 〈f1, f2〉l

Figure 8: From Lexc to L
+
exc: additional rules for exceptions, whenC is extensive

wrt E

23

	Introduction
	Preliminaries
	CoKleisli-on-Kleisli category
	Equational logic with conditionals

	The duality
	A decorated logic for a monad
	A decorated logic for a comonad
	A decorated logic for the monad of exceptions
	A decorated logic for the comonad of states

	Breaking the duality
	Effects: conditionals and sequential pairs
	States
	Exceptions

	The decorated logic for a monad
	Catching several exception names

