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ABSTRACT 

The low-k1 domain of immersion lithography tends to result in much smaller depths of focus (DoF) compared to prior 

technology nodes. For 28 nm technology and beyond it is a challenge since (metal) layers have to deal with a wide range 

of structures. Beside the high variety of features, the reticle induced (mask 3D) effects became non-negligible. These 

mask 3D effects lead to best focus shift. In order to enhance the overlapping DoF, so called usable DoF (uDoF), 

alignment of each individual features best focus is required. So means the mitigation of the best focus shift. 

This study investigates the impact of mask 3D effects and the ability to correct the wavefront in order to extend the 

uDoF. The generation of the wavefront correction map is possible by using computational lithographic such Tachyon 

simulations software (from Brion). And inside the scanner the wavefront optimization is feasible by applying a 

projection lens modulator, FlexWaveTM (by ASML). This study explores both the computational lithography and scanner 

wavefront correction capabilities.  

In the first part of this work, simulations are conducted based on the determination and mitigation of best focus shift 

(coming from mask 3D effects) so as to improve the uDoF. In order to validate the feasibility of best focus shift decrease 

by wavefront tuning and mitigation results, the wavefront optimization provided correction maps are introduced into a 

rigorous simulator. Finally these results on best focus shift and uDoF are compared to wafers exposed using FlexWave 

then measured by scanning electron microscopy (SEM).  

Keywords: Best Focus Shift, Depth of Focus, Tachyon SMO-FW, FlexWave™, Scanning Electron Microscopy (SEM) 

1. INTRODUCTION

In order to fulfill the increasing demand for 28 nm design rule devices, a number of new and existing lithography 

techniques have been developed and put on production. In this low k1 domain, the DoF is limited compared to prior 

technology nodes. This limitation turns out to be more problematic when there is a wide range of different 1D and 2D 

structures, as is the case for metal layers. For these layers the uDoF is further constrained due to mask effects and the 

structure dependence of the best focus. So the mitigation of the best focus shift due to mask topology enables uDoF 

improvement. 

RET (Resolution Enhancement Techniques) can be a solution to extend the uDoF. They allow a high fidelity mask-to 

silicon transfer thus an extension of optical lithography in the low-k1 domain. These techniques most usually include off-

axis illumination, phase-shifting masks (PSM) and OPC (Optical proximity Correction). OPC is widely used to 

compensate for lithography process proximity effects – modification of the shapes at the mask level by applying models 

that have the capability of predicting printing at the wafer level. 

1



Within the frame of RET optical simulations, the computational process time duration for mask simulation is a challenge. 

Therefore to reduce the process time, approximation methods are applied in a production flow for simulations near the 

mask. The most commonly used method is the thin-mask model, also called the Kirchhoff approximation, which 

considers the mask thickness to be negligible and infinitely thin. This approximation has the advantage of mathematical 

simplicity in terms of implementation into OPC simulations. However because it is a scalar method, it has limitations 

compared to rigorous methods which apply vectorial calculations [1].  

The Kirchhoff approximation correctly works until the features size of the mask approaches the 193 nm optical 

wavelength of the exposure system. For printable feature sizes needed at the 2x nm node the mask thickness cannot be 

ignored anymore. The so called mask 3D (M3D) effect, which leads to best focus shift, contrast degradation, difference 

of the diffraction intensity comes in to play.  

This paper focuses on diminution of best focus shift with the aim to find a way to improve the uDoF. The used approach 

includes RET/OPC solutions using computational lithographic and the FlexWave lens modulator within the scanner. This 

paper includes a short description of the theoretical M3D effects on best focus and FlexWave. This is then followed by 

experiment methods and results which are split into two main parts: simulation related work and validation by process: 

In the first section, based on computational lithography/RET; an approach is investigated for best focus shift 

mitigation by correcting the wavefront in order to compensate for the mask 3D effects with Brion Tachyon 

software. This work consists of three steps: a) simulation of the focus shift b) mitigation by wavefront 

modification and c) feasibility by using rigorous lithographic simulation with Panoramic® software. 

In the second section, based on exposed wafer analysis, simulation data is compared with scanning electron 

microscopy (SEM) measurements on proceeded wafers using FlexWave.

2. EFFECTS OF THREE-DIMENSIONAL MASK TOPOLOGY ON FOCUS

Light diffraction rigorous modeling of the mask was introduced by A. Wong by illustrating and explaining important 

mask 3D effects [2]. Since then numerous studies were accomplished; particularly with high NA lithography. 

The basis of M3D is to recognize that masks have a non-negligible thickness or topography. This topography can be 

described by a set of parameters (optical index; thickness of the absorber etc.). These mask 3D effects are approached or 

determined by mask diffraction analysis as they are mainly caused by light diffractions [3][4], which occur at the edge of 

structures at mask level. 

These topological effects are responsible for the difference in phase of the diffracted orders due to asymmetry between 

them [5]. This fact implies the delta best focus difference of the variety of structures. Further investigation of the delta 

phase assignment on line-versus-pitch structures has already showed that the phase difference of the diffracted orders 

have a corresponding phenomenon to the one induced by wavefront aberrations of the projection optics [3]. The mask 3D 

effects can thus be compensated for by wavefront optimization. 

3. THE FLEXWAVE MANIPULATOR

A possible solution to handle some of the mask 3D effects can be the application of the FlexWave lens manipulator 

available in ASML scanners. 

The latest generation NXT: 1950i systems have the FlexWave optical element manipulator (see Figure 1). This advanced 

actuator allows the adjustment of the wavefront to compensate for process induced effects, like M3D effects, which can 

be responsible for focus and pattern shifts. This module is composed of two optical elements placed near the projection 

lens pupil plane. They consist of individually heated segments translating into a change in optical path length as a 

function of the position. It allows the adjustment of higher order aberration terms and tuning the phase of the wavefront. 

This phase wavefront change in the projection pupil can thus mitigate M3D effects. 
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In this evaluation on processed wafers, the SEM measurement data are split into:  

1. Evaluation of the simulation on calibration structures

2. Evaluation on non-calibration structures

The SEM measurements analyses consisted mainly of process windows (PW) and Bossung curves analysis. 

5.1 SEM measurements analysis on calibration features 

As a starting point, to combine simulated and measured results, the calibration structures are analyzed by full-map SEM 

measurements. The table below shows the study on calibration features with the difference in best focus dispersion 

before and after optimization:  

Table 5: SEM analysis results on proceeded wafers 

Illumination 

mode 

Calibration structure 

type for correction 

map generation 

ΔBF [nm]

without FW 

ΔBF [nm]

 with FW 

C-Quad 1D 28.9 10.1

2D 16.6 3.5

Annular 1D 27.7 6.7

2D 14.3 11.1

Table 5 clearly shows an impact in best focus shift for the calibration features: a noticeable decrease can be observed. 

The best focus of each calibration structure demonstrates improvements on alignment, which also have uDoF impact as 

follows: 

1. At C-Quad Illumination mode; an augmentation of uDoF approximately from 60 nm to 110 nm (with the

wavefront correction map generated on the 1D calibration features) ; from 60 nm to 90nm (with the wavefront

correction map generated on the 2D calibration features)

2. At Annular Illumination mode; an extension of uDoF approximately from 80 nm to 120 nm (with the wavefront

correction map generated on the 1D calibration features); from 80 nm to 110 nm (with the wavefront correction

map generated on the 2D calibration features)

These results show tight correlation with Tachyon SMO-FW simulation results. 

5.2 SEM measurements analysis on non-calibration features 

Within this section, the goal is the inspection of the impact on additional set of features (beyond the calibration 

structures) that were not served to optimize the wavefront; therefore to explore the validity of the optimization. Beside 

the validation of the optimization the objective of this analysis is the choice of calibration structures. 

This analysis includes a set of 21 features. A similar trend can be observed: the best focus of each individual structure is 

re-centered reducing the overall dispersion of best focus (Table 6 below).  

Table 6: SEM analysis results on proceeded wafers 

Illumination 

mode 

Calibration structure type 

for correction map 

generation 

ΔBF [nm]

without FW 

ΔBF [nm]

 with FW 

C-Quad 1D 47.10 26

2D 47.10 30.2

Annular 1D 41.60 12.7

2D 41.60 31.5
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Table 6 clearly shows the impact of the application of wavefront tuning using FlexWave, reducing the best focus 

dispersion. Along the best focus mitigation a noticeable augmentation can be observed in uDoF: 

1. At C-Quad Illumination mode, an augmentation of uDoF approximately from 80 nm up to 110 nm (for both the

generated wavefront maps on the 1D and 2D calibration structures)

2. At Annular Illumination mode, an extension of uDoF approximately from 60 to 110 nm (for the wavefront map

generated on 1D calibration structures) and nearly from 60 to 90 nm (for the wavefront map generated on 2D

calibration structures)

With the aim of investigation on calibration structures selection, the validation on additional features is completed by 

checking the possible penalties derived from the application of wavefront tuning. Along the SEM measurements 

analysis, no remarkable degradation can be observed. Furthermore the application of the correction map, generated on 

1D calibration structures, shows more significant reduction in delta best focus. So means that for further improvements 

on calibration structure selection: the focus is on 1D features regarding measurement feasibility/complexity aspect. 

5.3 SEM measurements analysis on hotspots 

Finally, in order to explore the impact of wavefront tuning by FlexWave on metal 28 nm hotspots, a set of hotspots 

structures is chosen from production full-chip verification using Tachyon Lithographic Manufacturing Check (LMC) 

simulations. Tachyon LMC is a RET verification software solution that can provide the most critical spots including 

bridging and necking defects. Note that these LMC simulations are not the same for Annular and C-Quad illumination 

sources, thus different hotspots are checked for the two different illumination sources. These experiments consist of 

bridging and necking defects with overall about ten hotspots for each case. At the chip level measurements are performed 

by SEM on the whole wafer. Focus shift analysis is addressed first to assess whether applying the correction map using 

FlexWave re-centers best focus. In parallel the impact on uDoF improvement is investigated. 

The study of these critical defects is not obvious; the extraction of the results is complex: a reliable determination of the 

best focus and uDoF cannot be made automatically. A commonly applied method is visual analysis – these results are 

handled this way. As such there might be an offset between SEM measured and simulated data due to measurement data 

quality (which can always be the case for all SEM measurements). 

These results corroborate the computational wavefront optimization in that the overlapping process window is improved: 

the position of the best focuses is re-centered (Figure 5 below) for checked hotspots thus uDoF is extended: 

1. At C-Quad Illumination mode, the best focus dispersion on the chosen hotpots decreased from around 30 nm to

10 nm (same as for both the applied wavefront map generated on 1D and 2D calibration structures); and an

augmentation of uDoF from 60 nm up to 90 nm

2. Using Annular Illumination, best focus mitigation of 60 nm to 30 nm is achieved (using the wavefront map

generated on 1D calibration structures) and to 20 nm (with the wavefront map generated on 2D calibration

structures) ; and an extension of uDoF approximately from 60 to 80 nm
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