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A new upper bound for the Dirac operator on

hypersurfaces

Nicolas Ginoux∗, Georges Habib†and Simon Raulot‡

February 5, 2014

Dedicated to Oussama Hijazi for his sixtieth birthday and to Sebastián Montiel

Abstract: We prove a new upper bound for the first eigenvalue of the Dirac

operator of a compact hypersurface in any Riemannian spin manifold carrying a

non-trivial twistor spinor without zeros on the hypersurface. The upper bound

is expressed as the first eigenvalue of a drifting Schrödinger operator on the

hypersurface. Moreover, using a recent approach developed by O. Hijazi and

S. Montiel, we completely characterize the equality case when the ambient

manifold is the standard hyperbolic space.

1 Introduction

Let Mn ι→֒ M̃n+1 be an oriented, compact (without boundary) and con-

nected hypersurface of an (n+1)-dimensional Riemannian manifold (M̃n+1, g)
equipped with the induced Riemannian metric also denoted by g.
It is by now a well-known approach to use the min-max characterization of
eigenvalues to derive upper bounds for the spectrum of differential operators
on M in terms of extrinsic geometric data. For example, if we consider the
first positive eigenvalue λ1(∆) of the Laplace operator ∆ := −trg(Hessg)
where Hessg denotes the Hessian of M , a famous result of R.C. Reilly [23]

states that if M̃ is the Euclidean space R
n+1 then

λ1(∆) ≤ n

Vol(M)

∫

M

H2dvg (1)
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France. E-mail: simon.raulot@univ-rouen.fr

1



where H denotes the normalized mean curvature of M . The proof of this re-
sult uses in an essential way the Rayleigh characterization of λ1(∆) by choos-
ing a modification of the coordinates functions as test functions. Moreover, it
is a straightforward observation to see that equality occurs if and only if M
is a totally umbilical round sphere. As observed in [8], this method directly
applies for hypersurfaces in the unit sphere Sn+1 leading to the counterpart
of (1) in this situation

λ1(∆) ≤ n

Vol(M)

∫

M

(
H2 + 1

)
dvg. (2)

If the ambient manifold M̃ is the standard hyperbolic space, there is also an
optimal upper bound proved by A. El Soufi and S. Ilias [8, Thm. 1] which
improves a previous result of E. Heintze [15] and which states that

λ1(∆) ≤ n

Vol(M)

∫

M

(
H2 − 1)dvg (3)

with equality if and only if M is a totally umbilical round sphere. All three
estimates above follow actually from a much more general one, valid for
submanifolds of any codimension and also proved by A. El Soufi and S. Ilias
in [8], assuming solely that the ambient manifold is conformally equivalent to
an open subset of the sphere of the same dimension: under that assumption,
they prove [8, Thm. 2]

λ1(∆) ≤ n

Vol(M)

∫

M

(
H2 +R(ι))dvg, (4)

where R(ι) is the normalized trace of the ambient sectional curvature on the
tangent planes, see precise definition below (15).

Now if we assume the existence of a spin structure on M̃ (which is the
case for most classical ambient spaces), it induces a spin structure on the
hypersurface M and so we can define the spinor bundle ΣM over M as
well as the associated Dirac operator DM (see Section 2 and the references

therein). When the ambient space M̃ is the space form of constant sectional
curvature κ ∈ {0, 1,−1}, C. Bär proved in [2] that

λ1(D
2
M ) ≤ n2

4Vol(M)

∫

M

(
H2 + κ

)
dvg (5)

if κ = 0, 1 and

λ1(D
2
M ) ≤ n2

4
sup
M

(
H2 + 1

)
(6)

for κ = −1. Here λ1(D
2
M ) denotes the first non-negative eigenvalue of the

square of the Dirac operatorDM of (M,g). Those estimates are consequences
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of the min-max characterization of λ1(D
2
M ) and the fact that the space forms

R
n+1, Sn+1 and H

n+1 carry respectively parallel spinors, real and imaginary
Killing spinors. In fact, taking the restriction of such a spinor field to the
hypersurface as a test section in the Rayleigh quotient of λ1(D

2
M ) gives im-

mediately the previous inequalities. Note that these upper bounds hold for
more general ambient manifolds since the proof only relies on the existence
of one of such particular fields. For example, Inequality (5) with κ = 0 holds
for compact oriented hypersurfaces in Calabi-Yau manifolds, hyper-Kähler
and some other 7− and 8−dimensional special Riemaniann manifolds. It also
appears that both inequalities in (5) are sharp since round geodesic spheres
in the Euclidean space Rn+1 and in the round sphere Sn+1 satisfy the equal-
ity case. If κ = 0, it has been recently proved by O. Hijazi and S. Montiel
[17] that those are the only hypersurfaces for which equality is achieved. The
limiting case for hypersurfaces in the sphere seems to be out of reach at this
time and could be considered as a spinorial analogue of the Yau conjecture
about the first eigenvalue of the Laplace operator of minimal hypersurfaces
in the unit sphere. However, let us mention that there are non-minimal hy-
persurfaces in the sphere that satisfy the limiting case in (5), see e.g. [13, 14].

Regarding the proof of Inequality (6), it is not difficult to observe that
there are no hypersurfaces which satisfy the equality case. Modifying the
computation of the Rayleigh quotient for λ1(D

2
M ), the first named author

improved this estimate into (see [12, Thm. 1])

λ1(D
2
M ) ≤ n2

4
sup
M

(
H2 − 1

)
, (7)

where equality occurs for totally umbilical round spheres in H
n+1. As we

will see (Corollary 4.2), those are in fact the only hypersurfaces for which
Inequality (7) is an equality.

In this paper, we prove a new upper bound for the first eigenvalue of the
Dirac operator of M when the ambient manifold M̃ carries a twistor-spinor
(Theorem 3.3). This bound coincides with the first eigenvalue of an elliptic
differential operator of order two whose definition depends among others
on the norm of the twistor spinor along the hypersurface (see (15)) and
which belongs to a particular class of operators: the drifting Schrödinger
operators, that is, of the form drifting Laplacian plus potential (see Remark
3.2). It is important to note that this estimate contains all the (up to date)
known upper estimates à la Reilly (see Remark 3.4). In a second part, we
adapt the approach developed by O. Hijazi and S. Montiel [17] to prove
that, assuming the existence of imaginary Killing spinors for two opposite
constants on M̃ , the only hypersurfaces satisfying the equality case in our
previous estimate are the totally umbilical ones (Theorem 4.1). In particular,
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only the geodesic hyperspheres satisfy that limiting case in the hyperbolic
space (Corollary 4.2). We also examine the setting of pseudo-hyperbolic
spaces (see Corollary 4.7).

2 Preliminaries and notations

In this section, we briefly introduce the geometric setting and fix the no-
tations of this paper. For more details on those preliminaries we refer for
example to [21], [9] or [10, Ch. 1].

We consider Mn ι→֒ M̃n+1 an oriented n-dimensional Riemannian hyper-
surface with n ≥ 2, isometrically immersed into an (n + 1)-dimensional

Riemannian spin manifold (M̃n+1, g) with a fixed spin structure. We denote
by ν the unit inner normal vector field induced by both orientations, that
is, such that (E1, · · · , En, νx) is an oriented basis of TxM̃|M if and only if
(E1, · · · , En) is an oriented basis of TxM for x ∈ M . We endow M with

the spin structure induced by the one on M̃ and let ΣM →M denotes the
associated spinor bundle. Setting

Σ :=

{
ΣM if n is even
ΣM ⊕ ΣM if n is odd,

the bundles Σ and the restriction ΣM̃|M to M of the spinor bundle of M̃
can be identified such that

• both natural Hermitian inner products – that we hence denote by 〈· , ·〉
– coincide,

• the Clifford multiplication “ · ” on M̃ and “ ·
M
” on M are related by

X ·
Σ
:= X · ν· ≃

{
X ·

M
if n is even

X ·
M

⊕−X ·
M

if n is odd,
(8)

for all X ∈ TM ,

• the spin Levi-Civita connections ∇̃ on ΣM̃ and ∇ on Σ are related by
the spin Gauß formula

∇̃Xϕ = ∇Xϕ+
A(X)

2
· ν · ϕ, (9)

for all X ∈ Γ(TM) and ϕ ∈ Γ(Σ). Here A := −∇̃ν denotes the
Weingarten map of the immersion.
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The extrinsic Dirac operator of M is the first order elliptic differential op-
erator of order one acting on sections of Σ locally given by

D :=

n∑

j=1

ej · ν · ∇ej .

It is a well-known fact that it defines an essentially self-adjoint operator
with respect to the L2-scalar product on Σ so that if M is compact, its
spectrum is an unbounded sequence of real numbers. By convention and in
the whole article, the spectrum spec(P ) with multiplicities of a given elliptic
self-adjoint operator P will be denoted by a sequence (λk(P ))k≥1, with the
convention that λ1(P ) is the smallest eigenvalue if spec(P ) is bounded below
and is the smallest nonnegative eigenvalue otherwise.

With respect to the previous identifications, the Dirac operator D is nothing
but the Dirac operator DM of (M,g) if n is even and DM ⊕ −DM if n is
odd, so that studying the spectrum of the intrinsic Dirac operator DM for
the spin Riemannian structure induced on the hypersurfaceM is equivalent
to study the spectrum of the extrinsic Dirac operator D on the hypersurface
M . It is also relevant here to recall that the commutator of D and D2 with
functions are given by

D(fϕ) = fDϕ+∇f · ν · ϕ (10)

and
D2(fϕ) = fD2ϕ− 2∇∇fϕ+ (∆f)ϕ, (11)

for all f ∈ C∞(M) and ϕ ∈ Γ(Σ). Here H := (1/n)tr(A) denotes the mean

curvature function of M in M̃ .
Another operator of particular interest in this work is the Dirac-Witten
operator D̂ on M . It is also a first order elliptic operator acting on the
restricted spinor bundle Σ and locally defined by D̂ :=

∑n
j=1 ej · ∇̃ej . It is

related to the extrinsic Dirac operator by the following formula

Dϕ = −ν · D̂ϕ+
nH

2
ϕ (12)

and to its squared by

D2ϕ = D̂2ϕ+
n2H2

4
ϕ+

n

2
∇H · ν · ϕ, (13)

for every ϕ ∈ Γ(Σ).
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3 Upper bounds in terms of a Laplace-type oper-

ator

In this section, we prove a new upper bound for the smallest eigenvalue of
the squared Dirac operator D2 when the ambient manifold M̃ is endowed
with a twistor spinor. Recall that a twistor spinor on a Riemannian spin
manifold (M̃n+1, g) is a section ψ ∈ Γ(ΣM̃) satisfying

∇̃Xψ = − 1

n+ 1
X ·̃

M

D
M̃
ψ (14)

for all X ∈ Γ(TM̃). Here D
M̃

represents the Dirac operator of M̃ . Non-zero
twistor-spinors have a discrete vanishing set and only exist for particular
conformal classes (see for example the standard reference [6] or [10, App.
A] for a short account). It should also be pointed out that parallel spinors,
real and imaginary Killing spinors are twistor spinors which are, in addi-
tion, eigensections for the Dirac operator D

M̃
respectively associated to the

eigenvalue zero, or to real or purely imaginary eigenvalues. They exist on
each simply connected complete space form of constant curvature. Assume
now that such a spinor field ψ is given on M̃ and also assume that it has no
zero on the hypersurface M . We define the differential operator Lψ acting
on smooth functions on M by

Lψf := ∆f − 2g(∇ ln |ψ|,∇f) + n2

4
(H2 +R(ι))f. (15)

for f ∈ C∞(M). Here R(ι) := 1
n(n−1)

(
S̃ − 2 r̃ic(ν, ν)

)
, S̃ and r̃ic are re-

spectively the scalar curvature and the Ricci tensor (seen as a symmetric

2-tensor) of the manifold M̃ . Although this operator is not symmetric with
respect to the L2-scalar product on (Mn, g), we observe that it has the
following interesting analytic properties:

Proposition 3.1 The operator Lψ is elliptic and if M is closed, it is self-

adjoint with respect to the L2-scalar product on (Mn, g := |ψ| 4n g).
Proof: Since Lψ is of second order and its leading part is the scalar Laplacian,

it is clearly elliptic. Because of g = |ψ| 4n g, we have dvg = |ψ|2 dvg and we
can write for any f, h ∈ C∞(M):
∫

M

(Lψf)hdvg =

∫

M

(
∆f − 2g(∇ ln |ψ|,∇f) + n2

4

(
H2 +R(ι)

)
f

)
h|ψ|2dvg.

Performing a partial integration, we have for the first term
∫

M

(∆f)h|ψ|2dvg =

∫

M

g(∇f,∇h)|ψ|2 + g(∇f,∇(|ψ|2))hdvg

=

∫

M

g(∇f,∇h)|ψ|2 + 2g(∇f,∇ ln |ψ|)h|ψ|2dvg.

6



Therefore, the first-order term in ∇ ln |ψ| simplifies and we obtain
∫

M

(Lψf)hdvg =

∫

M

(
g(∇f,∇h) + n2

4

(
H2 +R(ι)

)
fh

)
|ψ|2dvg,

which is clearly symmetric in (f, h). This implies that Lψ is formally self-
adjoint with respect to the metric g. SinceM is closed, we conclude that Lψ
is essentially self-adjoint in L2(M). �

Remarks 3.2

1. The operator Lψ defined in (15) is of the form drifting Laplacian (also
called Laplacian with drift, Bakry-Emery Laplacian, weighted Lapla-
cian or Witten Laplacian in the literature) plus potential, this is the
reason we refer to these operators as drifting Schrödinger operators.
Indeed, a drifting Laplacian is an operator of the form

C∞(M)
Lh−→ C∞(M)

f 7→ ∆f − g(∇h,∇f)

for some function h ∈ C∞(M). It is elliptic and self-adjoint with re-
spect to the measure ehdµg. Actually, a drifting Laplacian is always
unitarily equivalent to a Schrödinger operator: in the notations above,
the operator Lh is unitarily equivalent to ∆ − 1

2∆h+ 1
4 |∇h|2g (see for

example [24, p.28]).

2. Note that if |ψ| is constant on M (which is the case if ψ is either a

parallel or a real Killing spinor on M̃), then the operator

Lψ = ∆+
n2

4
(H2 +R(ι))

does not depend on ψ.

Proposition 3.1 implies that the spectrum of Lψ is purely discrete. We will
denote by λ1(Lψ) its first eigenvalue, which satisfies the following min-max
characterization

λ1(Lψ) = inf
f∈C∞(M)\{0}

(∫
M
f(Lψf)dvg∫
M
f2dvg

)
. (16)

We are now ready to give the precise statement of the first main result of
this paper, namely:

Theorem 3.3 Assume M is a closed oriented hypersurface isometrically
immersed in a Riemannian spin manifold (M̃n+1, g). If there exists a non

trivial twistor-spinor ψ on M̃ with ψx 6= 0 for all x ∈M then we have

λ1(D
2
M ) ≤ λ1(Lψ). (17)
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Proof: We apply the min-max characterization of λ1(D
2
M ) = λ1(D

2) using
fψ as a test-section, where Lψf = λ1(Lψ)f . The following computations
rely on a large extent on those in the proof of [10, Thm. 5.2.3].
First, if f ∈ C∞(M) is an arbitrary smooth function on M , then using (11),

(13), (9) and the fact that ψ is a twistor-spinor on M̃ , one obtains

D2(fψ)
(11)
= fD2ψ − 2∇∇fψ + (∆f)ψ

(13)
= f

(
D̂2ψ +

n2H2

4
ψ +

n

2
∇H · ν · ψ

)
− 2∇∇fψ + (∆f)ψ

(9)
= f(D̂2ψ +

n2H2

4
ψ +

n

2
∇H · ν · ψ)

−2(∇̃∇fψ − A(∇f)
2

· ν · ψ) + (∆f)ψ

= f
(
D̂2ψ +

n2H2

4
ψ +

n

2
∇H · ν · ψ

)
+

2

n+ 1
∇f ·D

M̃
ψ

+A(∇f) · ν · ψ + (∆f)ψ. (18)

Next we compute D̂2ψ, using again the fact that ψ is a twistor-spinor, fact
which implies in particular the following identity (see e.g. [10, Prop. A.2.1]):

∇̃X(DM̃
ψ) =

n+ 1

n− 1

(
− 1

2
R̃ic(X) · ψ +

S̃

4n
X · ψ

)
, (19)

for every X ∈ Γ(TM̃) and where R̃ic denotes the Ricci tensor of (M̃n+1, g)

(seen as an endomorphism of the tangent bundle of M̃). Thus we have

D̂2ψ = D̂(

n∑

j=1

ej · ∇̃ejψ)

(14)
=

n

n+ 1
D̂(D

M̃
ψ)

(19)
=

n

n− 1

n∑

j=1

(
− 1

2
ej · R̃ic(ej) · ψ +

S̃

4n
ej · ej · ψ

)

=
n

n− 1

( S̃
2
ψ +

1

2
ν · R̃ic(ν) · ψ − S̃

4
ψ
)

=
n

n− 1

(n(n− 1)

4
R(ι)ψ +

1

2
ν · R̃ic(ν)T · ψ

)

=
n2

4
R(ι)ψ +

n

2(n − 1)
ν · R̃ic(ν)T · ψ, (20)
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where R̃ic(ν)T :=
∑n

j=1 r̃ic(ν, ej)ej denotes the tangential projection of

R̃ic(ν) on TM . Combining (18) with (20), we deduce that

D2(fψ) =
n2

4

(
H2 +R(ι)

)
fψ +

nf

2
∇H · ν · ψ +

nf

2(n− 1)
ν · R̃ic(ν)T · ψ

+
2

n+ 1
∇f ·D

M̃
ψ +A

(
∇f
)
· ν · ψ + (∆f)ψ. (21)

Using again that ψ is a twistor-spinor on (M̃n+1, g), we obtain that for every
f ∈ C∞(M),

ℜe
(
〈D2(fψ), fψ〉

) (21)
=

n2

4

(
H2 +R(ι)

)
f2|ψ|2 + 2f

n+ 1
ℜe
(
〈∇f ·D

M̃
ψ,ψ〉

)

+f(∆f)|ψ|2

=
n2

4

(
H2 +R(ι)

)
f2|ψ|2 − g

(
f∇f,∇(|ψ|2)

)

+f(∆f)|ψ|2

= f
(
∆f − 2g(∇f,∇ ln |ψ|) + n2

4

(
H2 +R(ι)

)
f
)
|ψ|2

= f(Lψf)|ψ|2.

The min-max principle for λ1(D
2) implies that, for any f ∈ C∞(M) \ {0},

λ1(D
2) ≤

∫
M

ℜe
(
〈D2(fψ), fψ〉

)
dvg∫

M
|fψ|2dvg

=

∫
M
f(Lψf)dvg∫
M
f2dvg

,

therefore,

λ1(D
2) ≤ inf

f∈C∞(M,R)\{0}

(∫
M
f(Lψf)dvg∫
M
f2dvg

)

which from (16) gives the inequality (17). �

Remarks 3.4

1. The estimate (17) contains all known upper estimates à la Reilly for
λ1(D

2
M ). Indeed, we observe that by taking f = 1 in the Rayleigh

quotient of Lψ, we have

λ1(Lψ) ≤
n2

4Vol(M)

∫

M

(
H2 +R(ι)

)
dvg

if |ψ| is constant and

λ1(Lψ) ≤
n2

4
sup
M

(
H2 +R(ι)

)

9



otherwise. Those give exactly the inequalities (5) by C. Bär in [2] and
(7) in [12] by the first named author. On the other hand, for f = |ψ|−1

(w.r.t. the metric g defined above) we deduce that

λ1(Lψ) ≤
n2

4Vol(M)

∫

M

(
H2 +R(ι)

)
dvg +

1

Vol(M)

∫

M

∣∣d ln |ψ|
∣∣2dvg

which was proved by the first-named author [11, Thm. 1].

2. It is interesting to compare (17) with (4). On the one hand, we do

not obtain in the spinorial setting the exact analogue of (4) for M̃
conformally equivalent to an open subset of the sphere Sn+1. Of course,
this must be expected since otherwise in dimension 2 this would mean
that the Willmore functional bounds λ1(D

2
M )·Area(M2, g) from above;

but there is no conformal upper bound for the smallest positive Dirac
eigenvalue on unit-area-metrics, as shown in [1, Thm. 1.1]. Note that
this does not prevent the analogue of (3) to possibly hold true for the
Dirac operator, which is still an open question. On the other hand, our
assumption on M̃ in Theorem 3.3 is much more general since not only
open subsets of spheres with conformal metrics allow twistor-spinors.
We refer to [20] for the classification of Riemannian spin manifolds
with twistor-spinors.

We now look at the equality case of the previous estimate in the case of
the twistor spinor is also an eigenspinor for the Dirac operator of M̃ . More
precisely, we prove:

Proposition 3.5 Under the same assumptions as in Theorem 3.3, assume
moreover that equality is achieved in (17). Then

1. if ψ is a parallel spinor on M̃n+1, one has

A(∇ ln |f |) = −n
2
∇H

for any eigenfunction f of Lψ associated with λ1(Lψ);

2. if ψ is a real (resp. imaginary) Killing spinor on M̃ = S
n+1 (resp. M̃ =

H
n+1), the mean curvature H is constant and in particular λ1(D

2
M ) =

n2

4

(
H2 + κ

)
.

Proof:

1. If (17) is an equality and ψ is a parallel spinor, then the min-max
principle yields D2(fψ) = λ1(D

2)fψ for any eigenfunction f of Lψ

10



associated with λ1(Lψ) = λ1(D
2). But (21) together with R̃ic = 0 and

D
M̃
ψ = 0 (both provided by ∇̃ψ = 0) implies

λ1(D
2)fψ =

n2H2

4
fψ +

nf

2
∇H · ν · ψ +A

(
∇f
)
· ν · ψ + (∆f)ψ

= (Lψf)ψ +
(
A
(
∇f
)
+
nf

2
∇H

)
· ν · ψ.

With λ1(D
2) = λ1(Lψ), we deduce that

(
A
(
∇f
)
+
nf

2
∇H

)
· ν · ψ = 0

which, since ψ 6= 0, gives A
(
∇f
)
+ nf

2 ∇H = 0. Since any eigenfunc-
tion for Lψ associated with the eigenvalue λ1(Lψ) is either positive or
negative, we easily conclude.

2. Assume first M̃n+1 carries real Killing spinors and let ψ be a non-zero
(ε/2)-Killing spinor for some ε ∈ {±1}, that is, ∇̃Xψ = (ε/2)X · ψ
for all X ∈ Γ(TM̃). Again, one obtains D2(fψ) = λ1(D

2)fψ for any
eigenfunctions f ∈ C∞(M) associated to λ1(Lψ). Fixing such an f ,
the identity (21) yields

λ1(D
2)fψ = (Lψf)ψ +

(
A
(
∇f
)
+
nf

2
∇H

)
· ν · ψ − ε∇f · ψ.

With λ1(D
2) = λ1(Lψ), we deduce that

(
A
(
∇f
)
+
nf

2
∇H

)
· ν · ψ − ε∇f · ψ = 0.

In particular, denoting Yε := −ε∇f and X := A(∇f) + nf
2 ∇H, we

have (Yε +X ∧ ν) · ψ = 0. At this point, we need the following claim:

Claim: Let α ∈ Λ∗
R
n+1⊗C. If n is odd, then δn+1(α) = 0 if and only

if α = 0. If n is even, then the same equivalence holds for α ∈ Λ∗
R
n⊗C.

Proof of Claim: Recall that the spinor representation δk : Clk −→
EndC(Σk) of the complex Clifford algebra in dimension k is a complex-
linear isomorphism for k even (but obviously not for k odd). So if
n is odd, the claim follows directly from this fact. If n is even and
α ∈ Λ∗

R
n ⊗ C, then Σn ∼= Σn+1 and it is a simple trick to rewrite

δn+1(α) under the form δn(α̌) for a form α̌ ∈ Λ∗
R
n ⊗ C having the

same coefficients as α in the canonical basis of Λ∗
R
n ⊗ C up to sign

and some power of i. Namely, write

α =
∑

1≤j1<...<jk≤n

αj1,...,jke
∗
j1
∧ . . . ∧ e∗jk ,

11



where (e1, . . . , en, en+1) is the canonical basis of R
n+1. Let ωC

n denotes
the complex volume form on R

n as defined in the proof of Proposition
3.5, which acts on Σn via δn(ω

C
n ) = IdΣ+

n
⊕−IdΣ−

n
. Since δn+1(ien+1) =

δn(ω
C
n ) and δn(v) = δn+1(v) ◦ δn+1(en+1) for all v ∈ R

n, we have after
some calculations

δn+1(α) =
∑

1≤j1<...<jk≤n

k even

αj1,...,jkδn(ej1) ◦ . . . ◦ δn(ejk)

+i
∑

1≤j1<...<jk≤n

k odd

αj1,...,jkδn(ej1) ◦ . . . ◦ δn(ejk) ◦ δn(ωC
n ).

Now it is an elementary computation to show that, for any β ∈ ΛkRn,

one has δn(β)◦ δn(e∗1∧ . . .∧ e∗n) = (−1)
k(k+1)

2 δn(∗β), where ∗ : Λ∗
R
n →

Λ∗
R
n is the Hodge-star operator. Therefore, we obtain

δn+1(α) =
∑

1≤j1<...<jk≤n

k even

αj1,...,jkδn(ej1) ◦ . . . ◦ δn(ejk)

+cn,k
∑

1≤j1<...<jk≤n

k odd

αj1,...,jkδn(∗(e∗j1 ∧ . . . ∧ e
∗
jk
))

= δn(α̌),

where we let cn,k := i
n
2
+1(−1)

k(k+1)
2 and

α̌ :=
∑

1≤j1<...<jk≤n

k even

αj1,...,jke
∗
j1
∧. . .∧e∗jk+cn,k

∑

1≤j1<...<jk≤n

k odd

αj1,...,jk∗(e∗j1∧. . .∧e
∗
jk
).

As a consequence, if δn+1(α)σ = 0 for all σ ∈ Σn+1
∼= Σn, then

δn(α̌) = 0 and the fact mentioned above implies α̌ = 0; since n is
even, each form ∗(e∗j1 ∧ . . . ∧ e∗jk) is of odd degree when k is odd and
therefore αj1,...,jk = 0 for all 1 ≤ j1 < . . . < jk ≤ n, that is, α = 0.
This concludes the proof of the claim.

√

If M̃n+1 is isometric to the standard round sphere Sn+1, then it carries

amaximal number (that is 2[
n+1
2

]) of linearly independent (ε/2)-Killing

spinors, then (Yε+X ∧ ν) ·ψ = 0 holds pointwise for every ψ ∈ ΣxM̃ .
If n is odd, then the claim yields Yε + X ∧ ν = 0, which implies
X = Yε = 0, that is, f and H are constant. If n is even, one may
rewrite

Yε · ψ +X · ν · ψ = iYε · iν · ν · ψ +X · ν · ψ = (X − iYεyω
C
M ) · ν · ψ,

where ωC
M := i[

n+1
2

]e∗1 ∧ . . . ∧ e∗n ∈ Γ(ΛnT ∗M ⊗ C) is the complex
volume form on M . Again, the claim yields X − iYεyω

C
M = 0. If

12



n > 2, then comparing the degrees yields X = Yε = 0, that is, f
and H are constant. If n = 2, then an elementary computation gives
ZyωC

M = iJ(Z) for every Z ∈ Γ(TM), where J is the Kähler structure
associated to the metric and the orientation on (M2, g). In that case,
one obtains X + J(Yε) = 0. However on the standard sphere S

3, both
spaces of 1

2 - and −1
2 -Killing spinors have maximal dimension 2, there-

fore X + J(Yε) = 0 for both ε ∈ {±1}, which implies X = Yε = 0 and
hence f and H are constant.

The case of imaginary Killing spinors is much the same up to replacing
ε by iε. One obtains at the end (iYε + X ∧ ν) · ψ = 0 for all (iε/2)-

Killing spinors ψ on M̃n+1. The same arguments as above lead to
X = Yε = 0. Remark that in the case n = 2, one does not need the
existence of maximal spaces of iε

2 -Killing spinors for both ε ∈ {±1}
since X and Yε are real vector fields on M .

�

Remark 3.6 It is quite surprising that in the case where ψ is a parallel
spinor we cannot conclude that the mean curvature of M must be constant.
In fact, we are left to prove that if there exists a smooth positive function
f ∈ C∞(M) such that

∆f +
n2H2

4
f = λ1(D)2f and A(∇ ln f) = −n

2
∇H

then f (or, equivalently, H) is constant on M .

4 Equality case in presence of imaginary Killing

spinors

In this section, we focus on the equality case of our estimate (17) when

the ambient manifold M̃ carries an imaginary Killing spinor. According to
Proposition 3.5, it also corresponds to the equality case of the inequality (7).
It is obvious to check that totally umbilical round spheres in the hyperbolic
space Hn+1 satisfy the equality in this estimate, however, it is still unknown
if they are the only ones. In fact, if the hypersurface is embedded, this
result easily follows from the Alexandrov theorem in the hyperbolic space
(see [22]). However, if the hypersurface is only assumed to be immersed the
question is still open. In order to settle this problem, we adopt a method
introduced by O. Hijazi and S. Montiel in [17] which relies on the fact that
such hypersurfaces are critical points for some eigenvalue functional asso-
ciated to some Dirac-type operator on M . The main result of this section

13



concerns the case when M̃ = H
n+1 but actually we will prove the following

more general statement:

Theorem 4.1 Let Mn be an oriented, compact and connected hypersurface
immersed into a Riemannian spin manifold (M̃n+1, g). If M̃ carries a (iε/2)-
Killing spinor for some ε ∈ {±1}, then (7) (as well as (17)) holds and if

equality holds then the mean curvature H is constant. Moreover, if M̃ also
carries a (−iε/2)-Killing spinor, then equality holds if and only if M is
totally umbilical with constant mean curvature.

Since the standard hyperbolic space Hn+1 has both (i/2)- and (−i/2)-Killing
spinors (see e.g. [5]), the previous result immediately implies

Corollary 4.2 The only oriented, compact and connected hypersurfaces im-
mersed into the hyperbolic space H

n+1 satisfying λ1(D
2
M ) = (n2/4)(H2 − 1)

are the totally umbilical round spheres.

In Section 4.4, we will discuss the case of pseudo-hyperbolic spaces.

4.1 The Hijazi-Montiel approach in presence of imaginary

Killing spinors

Assume that the ambient manifold M̃ carries a (i/2)-Killing spinor Ψ ∈
Γ(ΣM̃). After restriction to M , it is a straightforward computation to show
that Ψ satisfies the modified Dirac equation

D+Ψ =
n

2
HΨ (22)

where D+ is a zero order modification of the extrinsic Dirac operator defined
by

D+ϕ := Dϕ− n

2
iν · ϕ (23)

for ϕ ∈ Γ(Σ). Note that we do not assume that the mean curvature H is
constant for the moment. Suppose however that H is positive everywhere
on M and consider the metric conformally related to g on M defined by
g := H2g. It is a well-known fact (see [18, 16]) that under a conformal change
of the metric, there exists a bundle isometry ϕ 7→ ϕ, Σ → Σ, between the
two extrinsic spinor bundles Σ and Σ over (Mn, g) and (Mn, g). Under this
identification, the extrinsic Dirac operators D and DH associated to g and
g and acting respectively on Σ and Σ are related by

DHϕ = H−n+1
2 D(H

n−1
2 ϕ) (24)

for all ϕ ∈ Γ(Σ). Now consider on Σ the zero order modification of the
extrinsic Dirac operator DH given by

DH
+ϕ := DHϕ− n

2
H−1Iνϕ

14



where Iν is the Hermitian endomorphism of Σ defined by Iνϕ := iν · ϕ
for all ϕ ∈ Γ(Σ). Notice that DH

+ is an elliptic and self-adjoint differential
operator of order one which, since M is assumed to be compact, has a
discrete spectrum. In the following, we will denote by λ1(D

H
+ ) the first non-

negative eigenvalue of DH
+ . Now for every ϕ ∈ Γ(Σ), consider the spinor field

ϕH := H−n−1
2 ϕ ∈ Γ(Σ) which is easily seen to satisfy

DH
+ϕH = H−n+1

2 D+ϕ

using the conformal covariance (24) of D. Taking the (i/2)-Killing spinor

Ψ ∈ Γ(ΣM̃) in the previous identity and using (22) give that DH
+ΨH =

n
2ΨH . This immediately implies that λ1(D

H
+ ) ≤ n

2 . Furthermore, if the mean
curvatureH is constant, it is an easy computation using {D, iν·} = 0 to show
that

Spec
(
(DH

+ )2
)
=
{
λk
(
(DH

+ )2
)
= H−2

(
λk(D)2+(n2/4)

)
/λk(D) ∈ Spec(D)

}
,

so that λ1(D
H
+ ) = n

2 if and only if λ1(D
2) = n2

4

(
H2 − 1

)
. Thus we have

proved

Proposition 4.3 Let M be an orientable, compact and connected hyper-
surface immersed in a Riemannian spin manifold (M̃n+1, g) admitting a
(i/2)-Killing spinor and suppose that the mean curvature of M , after a suit-
able choice of the unit normal, satisfies H > 0. Then the first non-negative
eigenvalue of DH

+ satisfies λ1(D
H
+ ) ≤ n

2 . Moreover, if H is constant, equality
occurs if and only if equality occurs in (7).

From this proposition, we deduce that any immersion for which (7) (or
equivalently (17)) is an equality realizes a maximum for the map

F+
1 : ι ∈ Imm+(M,M̃ ) 7→ λ1(D

Hι
+ ) ∈ R

where Imm+(M,M̃ ) denotes the space of isometric immersions of M in M̃
with non-vanishing mean curvature Hι. This characterization of hypersur-
faces satisfying the equality case in (7) leads to the study of the critical
points of the functional F+

1 .

Remark 4.4 It is important to note that if the manifold M̃ carries a (−i/2)-
Killing spinor, then Proposition 4.3 is true with the operators D+ and DH

+

replaced respectively by

D− := D +
n

2
iν· : Γ(Σ) → Γ(Σ)

and

DH
− := DH +

n

2
H−1Iν : Γ(Σ) → Γ(Σ). (25)
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In this situation, the corresponding functional is defined by

F−
1 : ι 7→ λ−1 (D

Hι
− )

where λ−1 (D
Hι
− ) is the first non-negative eigenvalue of DHι

− .

4.2 Derivatives of the functional F±
1

As explained in the previous section we are led to study the first derivatives
of the functional F±

1 at least in a particular situation. As above, we start

with an immersion ι = ι0 : M → M̃ with positive mean curvature (not
necessarily constant) and such that λ1(D

H
+ ) = n

2 . Note that here we do not

assume the existence of imaginary Killing spinor fields on M̃ .
Now we deform the immersion ι along normal geodesics, that is, we con-
sider, for ε > 0 sufficiently small, the map F :] − ε, ε[×M → M̃ , (t, x) 7→
expι(x)(tνx). Note that, choosing ε > 0 sufficiently small, the map F is

smooth and F (t, ·) :M → M̃ is an immersion such that F (0, ·) = ι. In fact,
the map t 7→ F (t, x) is the geodesic starting from ι(x) with speed vector νx,
and so it is analytic. For each t ∈] − ε, ε[, we denote by gt := F (t, ·)∗g the
induced metric on M , by νt the unit normal field inducing the orientation
of M , by Ht := −(1/n)tr(∇̃νt) the mean curvature of F (t, ·) – which, up to
making ε > 0 smaller, may be assumed to be positive onM for all t ∈]−ε, ε[
– and by gt := H2

t gt. We also denote by DHt the Dirac operator associated
to the metric gt and let DHt

+ := DHt − n
2H

−1
t Iνt : Γ(Σt) → Γ(Σt), where

Iνt is the Hermitian endomorphism of Σt defined by Iνtϕ := iνt · ϕ. Here Σt
denotes the extrinsic spinor bundle over M endowed with the spin structure
induced by M̃ and the Riemannian metric gt. Since we perturb the im-
mersion analytically, the family (DHt

+ ) with t ∈]− ε, ε[ is an analytic family
of unbounded closed self-adjoint operators with compact resolvent, there-
fore the spectrum of DHt

+ can be written as a sequence (µ+k (t))k∈N, where
each eigenvalue µ+k (t) depends analytically on t and where corresponding
eigenvectors can be found to also depend analytically on t (see [19]). We
denote by λ+1 (t) any branch of that spectrum with λ+1 (0) = λ1(D

H
+ ), the

smallest non-negative eigenvalue of DH
+ = DH0

+ . Following [3], we denote by
τ t0 : Σ0 = Σ → Σt the parallel transport along the curves s 7→ (s, x) in the
so-called generalized cylinder

(
]− ε, ε[×M,dt2 ⊕ gt

)
, for all t ∈]−ε, ε[. Then

for any analytic family (Φt)t of eigenvectors associated to λ+1 (t), differenti-
ating the identity

λ+1 (t)

∫

M

|Φt|2dvgt =
∫

M

ℜe〈DHt
+ Φt,Φt〉dvgt

at t = 0 yields

dλ+1
dt

(0)

∫

M

|Φ0|2dvg0 =

∫

M

ℜe〈 d
dt

∣∣∣
t=0

(
τ0t D

Ht
+ τ t0Φ0

)
,Φ0〉dvg0 .
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Now we have τ0t D
Ht
+ τ t0 = τ0t D

Htτ t0 − n
2H

−1
t τ0t Iνtτ t0 and, since the variation

of ι is a geodesic normal one, the vector field νt =
∂
∂t

is parallel along the
curves s 7→ (s, x), so that τ0t Iνtτ t0 = Iν0 = Iν for all t ∈] − ε, ε[. With the
formula for the first variation of the Dirac operator by J.-P. Bourguignon
and P. Gauduchon [7] (see also [3]), we deduce that

dλ+1
dt

(0)

∫

M

|Φ0|2dvg0 = −1

2

∫

M

g0

(
TΦ0

,
∂gt
∂t

(0)

)
dvg0

+
n

2

∫

M

H−2∂Ht

∂t

∣∣∣
t=0

ℜe〈IνΦ0,Φ0〉dvg0 ,

where

TΦ0
(X,Y ) :=

1

2
ℜe〈X ·

Σ
∇YΦ0 + Y ·

Σ
∇XΦ0,Φ0〉

is the so-called energy-momentum tensor associated to Φ0. Here ·
Σ

is the

Clifford multiplication on Σ defined by (8) and ∇ is the spin Levi-Civita
connection with respect to the metric g0. Note that we kept the same nota-
tions for the Hermitian scalar products on Σ and Σ. Now fix an eigenvector
Φ0 ∈ Γ(Σ) for the Dirac-type operator DH

+ associated with λ1(D
H
+ ) and let

Ψ0 := H
n−1
2 Φ0. We compute

dλ+1
dt

(0) in terms of Ψ0 ∈ Γ(Σ) and of geometric

quantities attached to ι. First, since ∂F
∂t

(0, ·) = ν, we have on the one hand
(see e.g. [22])

∂gt
∂t

(0) =
∂

∂t

∣∣∣
t=0

(
H2
t gt
)
=

2H

n

(
|A|2 + r̃ic(ν, ν)

)
g − 2H2g(A·, ·).

On the other hand, using the isomorphism Σ → Σ, we may write (see e.g.
[10, Sec. 1.3])

TΦ0
(X,Y ) = H−n+2TΨ0(X,Y ),

for all X,Y ∈ Γ(TM), where TΨ0 is the energy-momentum tensor associated
to Ψ0 defined by

TΨ0(X,Y ) :=
1

2
ℜe〈X ·

Σ
∇YΨ0 + Y ·

Σ
∇XΨ0,Ψ0〉.

Therefore, assuming without loss of generalities that
∫
M

|Φ0|2dvg0 = 1, we
compute:

dλ+1
dt

(0) =
1

n

∫

M

H−1
(
|A|2 + r̃ic(ν, ν)

)(n
2
ℜe〈iν ·Ψ0,Ψ0〉 − g(TΨ0 , g)

)
dvg

+

∫

M

g(TΨ0 , A)dvg .
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But since g(TΨ0 , g) = trg(TΨ0) = ℜe〈DΨ0,Ψ0〉, we obtain

dλ+1
dt

(0) = − 1

n

∫

M

H−1
(
|A|2 + r̃ic(ν, ν)

)
ℜe〈D+Ψ0,Ψ0〉dvg +

∫

M

g(TΨ0 , A)dvg .

However, since Φ0 ∈ Γ(Σ) is an eigenspinor for DH
+ associated with the

eigenvalue λ+1 (0) =
n
2 and from the equivalence

DH
+Φ0 =

n

2
Φ0 ⇐⇒ D+Ψ0 =

n

2
HΨ0, (26)

one concludes that

dλ+1
dt

(0) = −1

2

∫

M

(
|A|2 + r̃ic(ν, ν)

)
|Ψ0|2dvg +

∫

M

g(TΨ0 , A)dvg . (27)

To compute the remaining term g(TΨ0 , A), we define a new covariant deriva-
tive by ∇̂+

X := ∇̃X − (i/2)X· on Σ. Then a lengthy but direct calculation
using the spin Gauß formula (9) yields that for any ϕ ∈ Γ(Σ),

|∇̂+ϕ|2 :=
n∑

j=1

|∇̂+
ej
ϕ|2

=

n∑

j=1

|∇ejϕ+
A(ej)

2
· ν · ϕ− i

2
ej · ϕ|2

= |∇ϕ|2 +
( |A|2 + n

4

)
|ϕ|2 − g(Tϕ, A)−ℜe〈iν · (Dϕ− nH

2
ϕ), ϕ〉.

For ϕ = Ψ0, we deduce using the right-hand side of (26) that

g(TΨ0 , A) = |∇Ψ0|2 − |∇̂+Ψ0|2 +
( |A|2 − n

4

)
|Ψ0|2.

Now integrating overM this identity with the help of the famous Schrödinger-
Lichnerowicz-formula

D2 = ∇∗∇+
S

4

gives

∫

M

g(TΨ0 , A)dvg =

∫

M

(
ℜe〈D2Ψ0,Ψ0〉 −

S

4
|Ψ0|2 − |∇̂+Ψ0|2 +

( |A|2 − n

4

)
|Ψ0|2

)
dvg.

Here S stands for the scalar curvature of (Mn, g). On the other hand, from
(10), (26) and the anti-commutativity rule {D, iν·} = 0+, we check that

D2Ψ0 =
n2

4
(H2 − 1)Ψ0 +

n

2
∇H · ν ·Ψ0,

18



so that ℜe〈D2Ψ0,Ψ0〉 = n2

4 (H2 − 1)|Ψ0|2 and hence

∫

M

g(TΨ0 , A)dvg =

∫

M

(
1

4

(
n2(H2 − 1)− S + |A|2 − n

)
|Ψ0|2 − |∇̂+Ψ0|2

)
dvg.

The Gauß formula for the scalar curvature provides

S = S̃ − 2r̃ic(ν, ν) + n2H2 − |A|2,

from which
∫

M

g(TΨ0 , A)dvg = −
∫

M

(
1

4

(
S̃ + n(n+ 1)

)
− 1

2

(
|A|2 + r̃ic(ν, ν)

))
|Ψ0|2dvg

−
∫

M

|∇̂+Ψ0|2dvg

follows. Inserting this identity in (27), we finally deduce that

dλ+1
dt

(0) = −
∫

M

(
|∇̂+Ψ0|2 +

S̃ + n(n+ 1)

4
|Ψ0|2

)
dvg.

It is worth noticing that this formula holds if we assume that it is the
first non-negative eigenvalue λ1(D

H
− ) of DH

− which satisfies λ1(D
H
− ) = n

2

instead of λ1(D
H
+ ); in this situation, ∇̂+ has to be replaced with the covariant

derivative defined by ∇̂−
X := ∇̃X + (i/2)X·.

From this computation, it is now straightforward to give a necessary condi-
tion for an immersion ι to be a critical point of F±

1 :

Theorem 4.5 Let M be an oriented, compact and connected hypersurface
isometrically immersed in a Riemannian spin manifold (M̃n+1, g). Assume

that the scalar curvature S̃ of M̃ is greater or equal to −n(n+ 1) and that
the mean curvature H of M with respect to a suitable choice of the normal
is positive. If λ1(D

H
ε ) = n

2 for some ε ∈ {±1} and it is critical for all the

variations of the hypersurface M in M̃ , then S̃ = −n(n + 1) and ∇̃XΨ =
(iε/2)X ·Ψ for all X ∈ Γ(TM) for all Ψ ∈ Γ(Σ) satisfying

DεΨ =
n

2
HΨ.

4.3 Proof of Theorem 4.1

If M̃ carries a (iε/2)-Killing spinor for some ε ∈ {±1}, then from Theorem
3.3 and Remark 3.4 the inequalities (17) and (7) hold. Moreover, if equality
holds in (17), Proposition 3.5 implies that the mean curvature is constant

and then λ1(D)2 = n2

4 (H2 − 1).

Assume now that M̃ carries a (i/2)- as well as a (−i/2)-Killing spinor. From
Proposition 4.3, we deduce that such an immersion is a maximum for the
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functional F+
1 and thus

dλ+1
dt

(0) = 0. Let Φ be a non-zero (−i/2)-Killing

spinor on M̃ so that D−Φ = n
2HΦ. From this equation and since H is

constant, a direct computation shows that the spinor Φ̃ := HΦ − iν · Φ
satisfies D+Φ̃ = n

2HΦ̃. On the other hand, since the existence of an (±i/2)-
Killing spinor on M̃ implies that M̃ is an Einstein manifold with scalar
curvature S̃ = −n(n+ 1) (see [6] for example), Theorem 4.5 applies and we
get that ∇̃X Φ̃ = (i/2)X · Φ̃ for all X ∈ Γ(TM), that is

i

2
X · (HΦ− iν · Φ) = ∇̃X (HΦ− iν · Φ)

= H

(
− i

2
X · Φ

)
+ iA(X) · Φ− iν ·

(
− i

2
X · Φ

)

= iA(X) · Φ− iH

2
X · Φ− i

2
X · iν · Φ.

This implies that (A(X)−HX) ·Φ = 0 for all X ∈ Γ(TM), and since Φ has
no zero, M is totally umbilical. This concludes the proof of Theorem 4.1.

4.4 The case of pseudo-hyperbolic spaces

In this section, we examine the case of other complete ambient manifolds M̃
carrying imaginary Killing spinors. These manifolds have been classified by
H. Baum [4, 5] and are known as pseudo-hyperbolic spaces. For the sake of
completeness and since we need an additional argument for our purpose, we
recall the result of [4, 5] and give a sketch of the proof:

Proposition 4.6 Let (M̃n+1, g) be a complete Riemannian spin manifold

admitting a non-zero (iε/2)-Killing spinor for some ε ∈ {±1}. Then (M̃n+1, g)
is isometric to either the real hyperbolic space of constant sectional curva-
ture −1 or to the warped product (R×N, dt2 ⊕ e2tgN ), where (Nn, gN ) is a
complete non-flat Riemannian spin manifold carrying at least one non-zero
parallel spinor. In the latter case, denoting by K0(N, gN ) (resp. Kε

0(N, gN ))
the space of parallel spinors on (Nn, gN ) for the induced metric and spin
structure (resp. its projection onto the half-spinors bundle ΣεN if n is even),
the map

Kε
0(N, gN ) if n is even

K0(N, gN ) if n is odd

∣∣∣∣ −→
{
iε

2
−Killing spinors on M̃

}

ϕ 7−→
∣∣∣∣∣
e

t
2ϕ if n is even

e
t
2 (ϕ⊕ εi ∂

∂t
· ϕ) if n is odd,

is a well-defined monomorphism. If moreover N is compact, then this is
actually an isomorphism.
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Proof: Let ϕ be a non-zero (iε/2)-Killing spinor on the manifold (M̃n+1, g).

As H. Baum showed (see [4] and references therein), if (M̃ , g) is not isometric
to the hyperbolic space, then there must exist an unit smooth vector field ξ
on M̃ with iξ · ϕ = εϕ on M̃ . From this relationship, the foliated structure
of M̃ can be elementary deduced as follows. First note that ξ = (εV )/|V |,
where g(V,X) := i〈X ·ϕ,ϕ〉 for all X ∈ Γ(TM̃) and in particular V = ε∇|ϕ|2
has no zeros on M̃ . Since ∇̃XV = ε|ϕ|2X (that is V is a closed conformal

vector field on M̃), one deduces that ∇̃Xξ = X−g(X, ξ)ξ for all X ∈ Γ(TM̃)
and as a consequence, the flow of ξ, which is well-defined and complete since
(M̃, g) is complete, preserves the level hypersurfaces of |ϕ|2 = |V |. On the
other hand, the second fundamental form of each such hypersurface with
respect to ξ is −Id, the Lie derivative of the metric in the direction of ξ is
given by Lξg = 2g|

ξ⊥×ξ⊥
and hence, setting

N :=
{
x ∈ M̃ , |ϕ|2(x) = 1

}
⊂ M̃,

the flow of ξ provides a diffeomorphism R × N → M̃ identifying ξ with
∂
∂t

and pulling back the metric g onto dt2 ⊕ e2tgN , where gN is the metric
induced from g onto N . This done, the spin Gauß formula (9) implies that,
for any X ∈ Γ(TN),

iε

2
X · ϕ = ∇̃Xϕ = ∇ΣN

X ϕ− X

2
· ξ · ϕ = ∇ΣN

X ϕ+
iε

2
X · ϕ,

from which ∇ΣNϕ|N = 0 follows: the restriction of ϕ onto any level hyper-

surface of |ϕ|2 is a parallel spinor. Here ∇ΣN stands for the spin Levi-Civita

connection on Σ := ΣM̃|N . In case n is even, the condition iξ · ϕ = εϕ
actually imposes ϕ ∈ Γ(ΣεN) since iξ· coincides with the Clifford action of
the complex volume form of (N, gN ). In case n is odd, the spinor ϕ|N can

be rewritten in the form ϕ|N = ϕ0 ⊕ εi ∂∂t ·ϕ0, where ϕ0 ∈ Γ(ΣN) is parallel.
The dependence in t of ϕ is easily computed thanks to

∂ϕ

∂t
= ∇̃ ∂

∂t
ϕ =

iε

2

∂

∂t
· ϕ =

1

2
ϕ,

from which ϕ(t, ·) = e
t
2ϕ(0, ·) follows. This gives the formulas for the above

map, which is obviously a right inverse to the “restriction” map

{
iε

2
−Killing spinors on M̃

}
−→

∣∣∣∣
Kε

0(N, gN ) if n is even
K0(N, gN ) if n is odd

ϕ 7−→
∣∣∣∣
ϕ|{0}×N

if n is even

ϕ+|{0}×N if n is odd.

In case N is compact, this restriction map is surjective, a remark missing
in [5]. To show this, let ψ be any further non-zero (iε/2)-Killing spinor
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on (M̃n+1, g). Then, again, ψ splits (M̃n+1, g) as a warped product (R ×
Pn, ds2 ⊕ e2sgΣ), where (Pn, gP ) is complete, spin and carries a non-zero
parallel spinor. Now, using the work [22] of S. Montiel, the latter split-
ting must “coincide” (in a sense that is made precise below) with the for-
mer. Namely, for all t ∈ R the hypersurface {t} × N is a totally umbili-

cal compact hypersurface of M̃ with constant mean curvature. Therefore,
by applying [22, Lemma 4] to the foliation of M̃ induced by ψ (whose
leaves are not assumed to be compact), we easily conclude that for each
t ∈ R, there exists an s ∈ R such that {t} × N = {s} × P ; in partic-
ular, P itself must be compact. The same argument shows that, for each
s ∈ R, there exists a t ∈ R with {s} × P = {t} × N . This yields that,
if Φ : R × P −→ R × N , (s, x) 7→ (φ1(s, x), φN (s, x)), is the isometry
induced by both splittings, then the component map φ1 already only de-
pends on s. By Φ∗(dt2 ⊕ e2tgN ) = ds2 ⊕ e2sgP and the existence of an
inverse map for Φ of a similar form, one deduces on the one hand that
∂φN
∂s

(s, x) = 0 and hence (φ′1(s))
2 = 1 for all s ∈ R, and on the other hand

that e2sgP = e2φ1(s)(φN )
∗gN holds for all s ∈ R. This in turn implies the

existence of an s0 ∈ R with φ1(s) = s − s0 and gP = e−2s0(φN )
∗gN . Thus,

up to homotheties on the metrics gP and gN , the Riemannian manifolds
(P, gP ) and (N, gN ) are isometric and, up to translations in s, the splittings
R×P and R×N coincide. By the first part of the proof, ψ must come from
a parallel spinor on N and hence lie in the image of the map of Proposition
4.6. This concludes the proof. �

From the previous result, we deduce a characterization of hypersurfaces for
which Inequality (17) is an equality when M̃ is a pseudo-hyperbolic space in
several situations. In fact, as we will see, we are left with the case n is even,
the manifold (Nn, gN ) has only positive (or only negative) non-zero parallel

spinors and M is only immersed in M̃ . Indeed, we prove

Corollary 4.7 Let (M̃n+1, g) := (R×N, dt2 ⊕ e2tgN ), where (Nn, gN ) is a
closed non-flat Riemannian spin manifold endowed with at least one non-
zero parallel spinor and assume that M̃ carries the induced spin structure
(in particular, (M̃, g) admits an imaginary Killing spinor for at least one

of the constants (±i/2)). Let Mn →֒ M̃ be any immersed closed orientable
hypersurface carrying the induced metric and spin structure and suppose that
one of the following supplementary conditions is fulfilled:

a) n is odd;

b) n is even and (Nn, gN ) has non-zero positive as well as negative pa-
rallel spinors;

c) n is even and Mn bounds a domain in M̃ .
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Then M satisfies the equality case in (17) (and so in (7)) if and only if
M = {t} ×N for some t ∈ R.

Proof: From Proposition 3.5, we have that ifMn →֒ M̃n+1 satisfies the equal-
ity case in (17) then its mean curvature H must be constant. If either a) or

b) is fulfilled, then by Proposition 4.6, the manifold (M̃, g) admits non-zero
imaginary Killing spinors for both constants (±i/2), therefore Theorem 3.5
implies that M is totally umbilical which, combined with [22, Lemma 4],
yields M = {t} ×N for some t ∈ R. If c) is fulfilled, this time [22, Theorem
10] applies and yields again M = {t} × N for some t ∈ R. This shows the
“only if” part of the corollary. The “if” part is easy to see since λ1(DM ) = 0
because of parallel spinors on N , and on the other hand |H| = 1 by the
explicit form of the metric. This concludes the proof. �
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