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Abstract. The dynamics of towed objects in a fluid environment is of interest
for many practical situations. We investigate experimentally the equilibrium
and stability of the trajectory of a sphere towed at constant velocity at the
tip of a cable with an unprecedented large length-to-diameter aspect ratio,
exceeding 104. The towing configuration is artificially obtained by considering
a steady cable (with one fixed end and a free end to which a sphere is
eventually attached) in a low-turbulence wind tunnel. We consider three different
configurations: (i) the cable towed by itself; (ii) a light millimetric towed
sphere made of expanded polystyrene; and (iii) a denser millimetric towed
sphere made of lead. The trajectory of the cable tip is monitored using
high-speed Lagrangian tracking, which allows one to characterize the average
position and the dynamical fluctuations of the towed object. We show that the
mean equilibrium position is well predicted by a simple model including the
aerodynamical forces acting along the cable and on the towed sphere (when
present). Concerning stability issues, we find that the heavy lead particle is
always towed in stable conditions (within the accessible range of velocities)
with only very low energy oscillations related to a weak pendulum-like motion.
In contrast, the free end and light sphere cases are shown to become unstable
when the towing velocity exceeds a certain threshold. Spectral analysis shows a
flutter-type instability for the sphere, with a dominant oscillatory motion, while
the cable alone develops a divergence-type instability with random fluctuations.
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1. Introduction

The dynamics of towed objects in a fluid environment is of interest for many practical situations.
For instance, acoustic streamers, where a sonar array is towed at the tip of a long cable attached
to a ship or a submarine, are commonly used to detect and analyze sonic signals in the ocean [1].
Aerial systems towed by aircrafts were used for express mail delivery in the first half of the
20th century, and applications are still considered for precision payload delivery or snatch pick-
up [2–4], aerial refueling (see figure 1) and low-altitude atmospheric research [5, 6], among
others.

In the context of these applications, it is of crucial importance to warrant the stability of
the trajectory of the towed object (at the tip of the cable), which turns to be an interesting and
complex fluid dynamics problem. The dynamics of the towed object indeed results from several
contributions: (i) the aero/hydro-dynamic forces exerted by the surrounding fluid (including
primarily drag and lift but possibly also added mass effects and pressure gradients when the
environment is turbulent, etc) directly on the object itself, (ii) the tension of the towing cable
(which itself is subjected to aero/hydro-dynamic forces) and (iii) gravity. As a consequence, the
towed object is coupled to the fluid both directly and also indirectly via the cable. Investigation
of the coupling between the cable and the fluid is, therefore, also of crucial importance.

Existing investigations on towed systems are essentially numerical and investigate the
stability of the system using lumped mass models for the cable [4, 7, 8], but a few systematic
experimental investigations are available [9, 10]. The problem is also closely related to that
of cylinders or elongated filaments in axial flows, which has been extensively investigated
theoretically, numerically and experimentally [1, 11–17]. Most studies concern, however,
cylinders with a moderate length-to-diameter ratio, for which it is now well established that
in axial flows, the free end of the cylinder becomes unstable above a certain threshold of
wind velocity. Several types of instability have been reported, including mainly divergence
(which corresponds to a non-oscillatory motion with growing amplitude) and flutter (oscillatory
motion) [11, 18]. Recently, Schouveiler et al [15] also reported flutter instability for a cylinder
inclined in a flow. In both cases (a short cylinder in an axial or inclined flow), the instability is
relatively well predicted numerically from the coupling between the fluid and the cylinder (via
inviscid terms and friction) [19]. A more detailed review on the dynamics of flexible cylinders
in flows can be found in [20].
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Figure 1. Aerial refueling is an example of a towed cable system for which
stability issues are crucial for connecting maneuvers. The picture shows the first
aerial refueling on 27 June 1923. (Source: US Air Force.)

The case of very long cylinders is of particular interest because most of the mentioned
practical applications of towed systems do use long cables where the length-to-diameter ratio is
large (cables towing acoustic streamers in the ocean can be kilometers long for a few centimeters
in diameter). However, the study of the stability of such long cylinders in a flow remains an open
field of theoretical and numerical research. The problem of long cylinders is particularly difficult
to tackle theoretically and numerically due to the important scale separation related to the
large length-to-diameter ratio and also to small-scale deformations induced by bending stiffness
effects. A detailed discussion on this subject may be found in Langre and Paidoussis [16]. Using
a string model, which neglects flexural rigidity, Triantafyllou and Chryssostomidis [21] found
that a cable will always remain stable above a certain finite length-to-diameter ratio. Dowling [1]
developed a different analysis, based on asymptotic expansion, and including flexural rigidity
when necessary, but also concluded that long cylinders in axial flows should remain always
stable. More recently, de Langre and Paidoussis [16] performed a finite element numerical
resolution of the governing equation for long cables in axial flow, including effects of bending
stiffness. Their results suggest that both divergence and flutter instability are possible for long
cylinders. Flutter is found to develop as a secondary instability following divergence and its
appearance is found to depend on the base drag at the free end of the cable. On the experimental
side, characterization of the dynamics of long cylinders remains scarce, probably due to the
difficulty of achieving appropriate conditions in laboratory facilities. The main works available
are those realized by Ni and Hansen [14] and by Sudarsan et al [9] (with a length-to-diameter
ratio of the cable of 500 and 150, respectively) for cylinders submerged in water. Both studies
report divergence and flutter of the cylinders.

In this paper, we consider a towed system where the length-to-diameter ratio of the cable
is 5 × 104, hence several orders of magnitude higher than in previous studies. The focus is put
on analysis of the Lagrangian dynamics of the tip of the cable. The towing configuration is
artificially obtained by considering a steady cable (with one fixed end and a free tip end to
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Figure 2. Sketch of the experimental setup. The inset shows an example of
the fluctuating trajectory of the tip of the cable, recorded using a high-speed
camera. The amplitude of the transverse motion is a few centimeters at most,
and remains small compared to the length of the cable (2.08 m), so that the tip
moves practically in a transverse plane (x Oy), located around 2.1 m downstream
of the entrance of the wind tunnel measurement section.

which a sphere is eventually attached) in a horizontal low-turbulence wind tunnel (see figure 2).
This reproduces the situation of an object towed horizontally at constant speed (therefore we
will indifferently use the terminology wind velocity or towing velocity in the subsequent). We
consider three different configurations of a cable tip: (i) just the free end by itself (without any
sphere attached); (ii) a light millimetric sphere made of expanded polystyrene; and (iii) a denser
millimetric towed sphere made of lead. For each situation, a systematic study of the influence
of the towing velocity on the equilibrium and stability of the cable extremity is conducted.

This paper is organized as follows. Section 1 describes the experimental setup (wind tunnel,
cable characteristics, towed particles and the Lagrangian tracking technique); section 2 focuses
on the investigation of the equilibrium position of the cable tip for the three cases (free end,
polystyrene sphere and lead sphere); in section 3, we investigate fluctuations of the cable tip
and address the problem of stability of its dynamics. Finally, a brief discussion of the observed
behaviors is presented.

2. Experimental setup

The experiment has been run in a low-turbulence wind tunnel (figure 2), with a measurement
section of 0.75 m × 0.75 m × 4 m. The mean wind velocity, U , was varied in the range of
4–15 m s−1, in which the tunnel operates in stable conditions with a fluctuation level below 5‰.

The towing cable is a thin polyamide–nylon fiber, with a lineal density of the order of
17 mg m−1, made of three stranded filaments with a diameter of 25 µm each. The resulting
equivalent diameter for the stranded cable is of the order of ac =

√
3 × 25 ' 43 µm. Table 1

summarizes the main physical properties of the cable. One extremity of the cable is fixed at
the entrance of the test section at the center of the tunnel, while the other end is free to move.
The fixed extremity of the cable is attached at the middle of a transverse horizontal support
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Table 1. The main physical properties of the towed cable investigated.

Length Lineal Elastic Elastic Flexural
(L) density tensiona (Et) flexion (Ef) rigidity (E I ) Poisson Friction

Material (m) (mg m−1) (GPa) (GPa) (Nm2) coeff. (ν) coeff.

Polyamide nylon 6,6 2.08 1.7 3.3 2.8 4.9 × 10−10 0.41 0.2–0.3

a The corresponding global elastic stiffness for the considered cable, made up of three filaments of diameter
d = 25 µm and length L = 2.08 m, is k = 3Et (πd2/4)/L ' 2.3.

Table 2. Characteristics of the towed spheres investigated.

Material Diameter (mm) Density (kg m−3) Rep (min, max)

Free end (nylon) ∼0.09 1140 ∼(10, 45)

Expanded polystyrene 6.3 13.35 (1680, 6300)
Lead 1.7 9130 (450, 1700)

cable tensed across the tunnel at mid-height and located at the entrance of the test section (see
figure 2). The support cable must be as thin as possible in order to minimize perturbations of
the flow; we use the same fiber with 43 µm of equivalent diameter and we have checked that no
measurable increase of the natural fluctuation level of the flow in the wind tunnel was detected
downstream due to the presence of the support cable. The fixed point is nearly at the center of
the test section. The length of the towing cable is L = 2.08 m, which places the free tip nearly
at mid-distance between the entrance and the exit of the 4 m long test section. Considering
this length, which is significantly longer than the maximum transverse displacement of the tip
(which does not exceed a few centimeters), the motion of the moving extremity of the cable is
essentially two dimensional (2D), in a transverse x Oy plane.

Three configurations were investigated for the moving end of the cable: a free end, an
expanded polystyrene sphere and a lead sphere. For the case of the free end, a small single
knot (with effective diameter dk ' 2ac), colored with red varnish, was made at the tip of the
cable to improve its visualization. Note that in the following, we shall generically use the
terminology cable tip or cable end although for the cases where a sphere is towed, this should
be understood as the sphere at the cable tip. The parameters of the towed spheres are shown in
table 2. We define the particle Reynolds number as Rep = Udp/ν, with dp the sphere diameter
and ν the kinematic viscosity of air (for the free end case, Rep is estimated based on the cable
equivalent diameter of 43 µm). The table also gives the range of Rep spanned in each case
as the wind velocity is varied from 4 to 15 m s−1. We note at this point that due to the very
small diameter of the cable (which is required to achieve the large aimed length-to-density
ratio), the Reynolds number based on the cable diameter is orders of magnitude below that of
most previous works and is below that of applications mentioned in the introduction. The main
impact of this results in a necessity to consider non-trivial Reynolds number dependences of
the several drag coefficients involved in modeling the cable–fluid interaction. This point will be
further discussed in section 3.1.

The motion of the moving extremity of the cable is recorded using a Phantom V12 high-
speed camera from Vision Research Inc. (New Jersey, USA). The spatial resolution used was of
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768 × 600 pixels, with a repetition rate of 1000 fps. We recorded sequences of 18 500 images
(corresponding to 18.5 s of continuous recording after which the 8 Gb on-board memory of the
camera was full). To improve statistical accuracy 40 such acquisitions were taken for each mean
velocity and each of the three towed systems investigated.

3. Results

3.1. Mean height

We first investigate the average equilibrium position of the cable tip as a function of the wind
velocity for each configuration (a free end, a light towed sphere and a heavy towed sphere). The
picture is qualitatively trivial: at zero velocity the tip lies on the floor of the tunnel test section;
the tip takes off when the aerodynamic forces on the cable and towed object are sufficient
to produce a vertical component surpassing the weight of the system; then as the velocity is
increased, the cable tends to align with the main stream. Figure 4(a) shows the height y of the
cable tip as a function of the wind speed U for the three configurations (y = 0 m corresponds
to the particle being on the floor of the tunnel). As we will see in the next subsection, for large
wind velocities the dynamics of the cable end may become highly fluctuating. In this section,
we investigate the average vertical position of the cable tip. For the free end and for the light
polystyrene particle, it can be seen that as the velocity increases the average height reaches an
asymptotic value corresponding to the height of the fixed end of the cable (y0 ' 0.4 m), which is
then aligned with the horizontal mean stream. For these light towed objects, the tip of the cable
has already taken off even for the lowest wind velocities investigated. The heavy lead particle,
in contrast, is found to take off only when the wind velocity exceeds a threshold of the order of
6 m s−1. We also note that for this heavy towed particle, the highest velocity investigated is not
sufficient to reach the asymptotic horizontal cable limit.

As already mentioned, the take off of the towed objects results from mainly two
contributions: (i) the aerodynamic drag acting on the cable, which tends to rise globally the
cable and the object at its tip, and (ii) the aerodynamic drag acting on the towed sphere (when
present), whose reaction on the cable tends to enhance the horizontal component of the tension
at the tip and hence to flatten the cable horizontally. Dowling [1] has derived the system of
equations governing the average cable position, based on the tension average amplitude T (l)
and on its local average angle θ(l) (defined with respect to the mean stream) along the cable
length. By considering the tangential and perpendicular equation of motion of an elementary
element of cable (see figure 3 for a schematic representation of the forces acting on the cable at
equilibrium), the following system of equations can be obtained for the equilibrium tension and
local angle (details of the derivation of these equations can be found in [1]):

∂T

∂l
= −ρ0(σ − 1)πa2

c g sin(θ) − ρ0U 2πacCT cos(θ),

T
∂θ

∂l
= −ρ0(σ − 1)πa2

c g cos(θ) + ρ0U 2ac(CD sin(θ) + πCN) sin(θ),

(1)

where l denotes the curvilinear coordinate along the cable (l = 0 corresponds to the fixed end
and l = L to the cable tip), ρ0 is the density of air, σ is the specific density of the cable, ac

is the equivalent cable diameter (here taken as ac = 43.3 µm), CT is the tangential frictional
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Figure 3. Schematic representation of the forces acting on an elementary
element of a cable of length dl. T (l) is the tension along the cable; FN(l) =

1/2ρ0acU 2(CD sin2 θ(l) + πCN sin θ(l)) is the normal lineal aerodynamic force
(frictional+pressure drag) [1]; FT(l) = 1/2ρ0πacU 2 cos θ(l) is the tangential
lineal aerodynamic force (frictional drag) [1]; EW = ρ0(σ − 1)π/4 a2

c Eg is the
lineal net weight of the element. Note that for the stationary equilibrium analysis,
where no acceleration of the cable relative to the fluid is considered, added mass
effects are not included.

drag coefficient, CN is the normal frictional drag coefficient and CD is the pressure drag
coefficient [22].

This system of equations has then to be completed with an appropriate set of boundary
conditions to be applied at the extremity of the cable. When the cable is towed by itself (with
no object trailed at its end), this condition is simply T tip = 0 (as the tension vanishes then at
the free end of the cable). It can be shown in this case that the shape of the cable is a straight
line, with the angle θ(l) remaining constant along the cable length ( ∂θ

∂l = 0) at a critical value
θc [1, 23]. Then the critical angle can be simply obtained from the boundary condition T tip = 0,
applied to the transverse equation in system (1), as the root of the equation

−ρ0(σ − 1)πa2
c g cos(θ c) + ρ0U 2ac(CD sin(θ c) + πCN) sin(θ c) = 0. (2)

When the cable does tow an object at its end, the appropriate boundary condition is given
by the balance of the forces acting on the towed particle at the tip (this boundary condition
accounts for the contributions coming from the aerodynamic forces acting on the particle):T tip cos θ tip =

π

8
d2

p CpU 2,

T tip sin θ tip = mpg
(3)

with dp the diameter of the towed particle, mp its mass and Cp its drag coefficient.
We have solved the system of equations (1) with the appropriate boundary conditions

for the three towing configurations, for mean wind velocities U varying within the accessible
experimental range. The height of the cable is then derived from the resulting calculated profile
of the cable shape. Note that solving these equations requires knowledge of several parameters,
in particular, the drag coefficients of the particle Cp and of the cable CT, CN and CD. The
drag coefficient for spherical particles is well tabulated (see, for instance, [22, 24]), so we
have used the commonly accepted values according to the particulate Reynolds number of
our particles. In the range of velocities explored, this coefficient is essentially constant and
equal to Cp ' 0.5; however, for each velocity and particle diameter, we estimate the drag
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Figure 4. (a) The mean height for the wire cable tip measured for the three
configurations of the towed object. The dashed lines correspond to the best
simultaneous adjustment of the drag coefficients CD, CN and CT acting on
the cable in equations (1). (b) Global shape of the cable calculated from the
resolution of equations (1).

coefficient precisely according to well-established empirical formulae [24]. Concerning the
cable coefficients, it should be noted that the Reynolds number based on the equivalent diameter
of the cable varies in the range 10 < Rec = acU/ν < 45 when the mean wind velocity U
is varied between 4 and 15 m s−1. In this relatively low Reynolds number regime, the drag
coefficients of the cable have a non-trivial dependence on Reynolds number [22]. The behaviors
of CT and CD are relatively well documented for cylinders, cables and wires [22, 25]. In the
present range of interest the Reynolds number dependence of CT and CD is well approximated
by power laws

CT,D ' AT,D ReαT,D
p , (4)

where we have determined AT = 10, αT = −0.76, AD = 7.6 and αD = −0.43, based on the
data in [25]. Values for CN are much less documented, although it is generally accepted that
0 < CN < CT [1, 26]. Therefore, CN is used as a fitting parameter to adjust the theoretically
calculated height and the experimental measurements. More precisely, a power-law dependence
CN = AN ReαN

p is also assumed and we use the two fitting parameters AN and αN. We stress
that these two parameters are simultaneously fitted, at once from the experimental data shown
in figure 4(a) for the three configurations (a free end, a polystyrene sphere and a lead sphere).
The solid lines represented in figure 4(a) show the corresponding best fit, which is obtained
for AN = 0.8 and αN = −0.12. We found very good agreement between the simple theoretical
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approach and our measurements. Besides, we note that being able to simultaneously fit the three
configurations with a single set of fitting parameters is particularly satisfactory with regard to the
relevance of the model and of the estimation of the various parameters involved (in particular,
Cp, CT and CD).

As an example, figure 4(b) illustrates the corresponding shape of the cable calculated
from the solution of equations (1) using these best fitting parameters for a towing velocity
U = 7 m s−1. Although we do not have at present the possibility of accurately measuring in
our experiment the global shape of the cable, the calculated profiles shown in figure 4(b)
are qualitatively consistent with the visual inspection of the cable. In particular, the cable
is observed to be nearly straight for the case with no sphere at the end and when the light
polystyrene sphere is towed, while it is clearly curved for the heavy sphere case.

3.2. Dynamical fluctuations and stability

In this section, we report on the statistics of velocity fluctuations of the towed bodies. We first
describe the dependence on experimental parameters of velocity standard deviation of the cable
tip motion, before discussing its spectral properties.

3.2.1. Velocity fluctuations. Figure 5 shows the standard deviations of the cable tip velocity for
each towing configuration. Figure 5(a) corresponds to the free end case, figure 5(b) to the light
polystyrene particle and figure 5(c) to the heavy lead particle. For each configuration the plot
shows the dependence of the standard deviations of horizontal and vertical velocity components
(σvx and σvy ) on the towing velocity U . For comparison purposes, the range of the vertical axis
has been kept identical for the three plots.

The free end case. We first analyze the results of the velocity of the tip of the cable alone,
without any sphere attached. Interestingly, the level of fluctuations remains almost null below
a threshold of wind velocity of the order of U ∗

' 6–7 m s−1. Above this threshold the tip of
the cable becomes unstable and fluctuations of velocity are observed to grow as the mean
wind speed is increased. It can be argued, based on the data reported on this plot, that the
instability threshold might be slightly lower for the vertical component than for the horizontal
one. Moreover, fluctuations of velocity exhibit a small (but measurable) anisotropy with higher
fluctuations in the horizontal component far above threshold. It is also enlightening to compare
the level of fluctuation of the cable tip with the natural small fluctuations of the flow itself. This
is shown in the inset in figure 5(a), which represents the ratio of standard deviation of the cable
tip velocity to that of the streamwise velocity of the flow itself σvx ,vy/σU . As can be seen in
this graph, the level of fluctuations of the cable tip velocity is about six times larger than the
ambient fluctuations of the flow at the highest mean velocities investigated. This indicates that
the instability of the tip dynamics is not related to possible reminiscent fluctuations of the flow
(we recall that the turbulence level of our tunnel is very small and of the order of a few per
thousand only).

Polystyrene sphere. The light sphere exhibits a similar dynamical behavior compared to the
free end case just described: the fluctuation level is low as soon as the mean wind velocity
remains below 5–6 m s−1 and increases above that threshold. The typical amplitude of velocity
fluctuations is slightly larger than that of the free end, but remains of the same order of
magnitude. A clear difference concerns the almost perfect isotropy of the fluctuations of the
sphere compared to the free end.
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(a)

(b)

(c)

Figure 5. Experimental values of the standard deviations of the horizontal
(blue circles) and vertical (red triangles) components of the cable tip for three
configurations: (a) a free end, (b) a polystyrene sphere and (c) a lead sphere.
The inset in panel (a) shows the same data as the main graph, with the velocity
standard deviations of the cable tip normalized by that of the carrier flow itself.

Heavy sphere. The dynamical behavior of the heavy sphere is clearly different from the
previous cases. The fluctuation level is about two orders of magnitude lower than that of the
polystyrene sphere or the free end. It is also one order of magnitude below the natural fluctuation
level of the flow. It is therefore concluded that the heavy sphere is always towed in stable
conditions.

3.2.2. Spectral analysis. Further insight can be obtained into the dynamics of the towed
system by exploring the Lagrangian power spectral density (PSD) of the velocity as a function
of the frequency component f for each configuration.
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(a)

(b)

Figure 6. (a) PSD of the velocity fluctuations measured for a cable tip with
no towed sphere (only the horizontal component is shown). The color codes
the mean wind velocity, with the lowest in blue and the highest in red. (b)
Interpolated representation of the previous PSDs in the velocity–frequency
(U– f ) plane. The color codes the amplitude of the spectra in a logarithmic scale.

The free end case. Figure 6(a) shows the PSDs of horizontal velocity for the free end case at
the different mean wind velocities investigated (vertical component exhibits almost identical
spectral features). All the spectra naturally vanish at zero frequency, which reflects the absence
of any mean drift velocity of the tip of the cable that simply wiggles around its average position.
The low-frequency regime shows a clear f 2 law, consistent with a flat spectra for the long-term
uncorrelated random displacement of the tip (note that the PSD of the displacement x is simply
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related to that of velocity vx by a factor of 1/(2π f )2). A remarkable feature of figure 6(a) is the
trend of the spectra to exhibit a clear maximum as the wind velocity U increases. The amplitude
and the peak frequency fpk increase with U . It can be observed that the first hint of emergence of
the spectral peak appears for a mean wind velocity between 6 and 7 m s−1, which is comparable
with the threshold velocity U ∗ for which the standard deviation of velocity for the free end was
previously noted to start growing. The low frequency f 2 regime holds all the way below the
maximum ( f < fpk). Above the peak ( f > fpk), the spectral power density decreases rapidly as
f −4, indicating an efficient dissipative mechanism of high-frequency fluctuations (very likely
due to internal viscoelasticity [27], which is known to be important in polymer filaments). We
stress that this broad spectral peak does not correspond to an oscillatory mode of the cable tip.
Indeed, the corresponding spectra for the particle displacement remain flat for ( f < fpk) and
are damped as f −6 for ( f > fpk). Hence at the instability onset, the cable tip simply wiggles
randomly with no characteristic frequency and the peak frequency fpk is simply related to the
high-frequency dissipative cut-off.

The onset of the instability of the cable tip is better observed in figure 6(b) where we show a
2D interpolation of the spectra in figure 6(a) in the (U– f ) plane (20 measurements for different
values of the mean wind speed, between 4 and 15 m s−1 were used to obtain this interpolation).
This representation clearly shows that the tip of the cable becomes unstable for U & 7 m s−1,
with a dominant frequency fpk which increases with U as qualitatively illustrated by the dashed
line in figure 6(b).

Polystyrene sphere. The same spectral analysis for the velocity of the light towed sphere shows
some similarities but also clear distinctions compared the free end case. Figure 7(a) shows
the PSDs for the light sphere towed at different mean velocities. As for the free end, at low
frequencies, the velocity PSDs follow a f 2 regime, again consistent with a fully uncorrelated
long-term dynamics of the sphere displacement. At high frequencies, a steep f −4 damping
regime is also observed for the highest towing velocities U (although the damping is slightly
less steep for the lowest towing velocities). As for the free end case, we observe the growth of a
clear peak above a threshold mean wind velocity of the order of 5–6 m s−1. However, the peak is
much sharper and clearly defines a resonant frequency fpk. The first hint of such a resonant peak,
identifiable by the appearance of an inflection point prior to the spectral maximum, occurs for
a wind velocity around U ∗

' 5.7 m s−1. This threshold is consistent with the growth of velocity
standard deviation reported previously. We also note that above this threshold the amplitude of
the resonant peak starts to exceed the maximum amplitude of the low velocity spectrum. The
sharpness of the resonant peak can be quantified by its quality factor Q = fpk/δ f , where δ f is
the 3 dB bandwidth. This is shown in the inset of figure 7(a), which shows that Q exceeds
1 and grows sharply above U ∗ until it saturates around Q ' 3.5 for the highest velocities
explored. These observations indicate that the instability of the towed sphere operates via an
oscillatory mode. The amplitude and frequency of the unstable mode increase with the mean
velocity U . We also note that above threshold, the spectral signature of the dynamics of the
sphere for frequencies slightly below the resonant peak is much richer than that of the free end
case. The resonance is indeed preceded by a plateau of random velocity fluctuations and the f 2

regime is only recovered at the very lowest frequencies (typically for slow fluctuations below
1 Hz). Finally, we note that as for the free end case, the growth of the sphere instability is well
illustrated by the interpolated data in the (U– f ) plane, shown in figure 7(b).
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(a)

(b)

Figure 7. (a) PSD measured for the velocity fluctuations for the towed
polystyrene sphere at different towing speeds (only the horizontal component
is shown). The color codes the mean wind velocity, with the lowest in blue and
the highest in red. The inset shows the quality factor Q of the resonant peak
above the threshold instability. (b) Interpolated representation of the previous
PSDs in the velocity–frequency (U– f ) plane. The color codes the amplitude of
the spectra.

Heavy sphere. The spectral analysis of the velocity of the heavy sphere reveals a completely
different landscape. Figure 8(a) shows the spectra of the horizontal dynamics for the heavy
towed sphere (again, the vertical component exhibits a similar behavior). This dynamics is
clearly dominated by slow fluctuations with a resonant frequency peak fpk around 1 Hz, which
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(a)

(b)

Figure 8. (a) PSD of the velocity fluctuations for the heavy sphere at different
towing speeds (only the horizontal component is shown). (b) Interpolated
representation of the previous PSDs in the velocity–frequency (U– f ) plane. The
color codes the amplitude of the spectra.

increases with the mean towing velocity U . At low frequencies the spectra follow an f 2 regime,
although our measurements barely resolve the slowest fluctuations in this case (this is limited
by the on-board memory of the camera, which limits the total length of the recorded trajectories
to slightly less than 20 s). The high-frequency damping seems to be less steep than for the
free end and light sphere case and roughly follows an f −3 regime. Several narrow peaks are
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also observed for frequencies above fpk, which are probably related to spurious noise (we
point out that for consistency reasons, we used the same optical magnification for imaging the
three configurations; hence the lesser amplitude of fluctuations of the heavy particle inevitably
decreases the signal to noise ratio).

To finish the spectral analysis description, we show in figure 9(a) the power spectral
densities at a given towing velocity (here U ' 11 m s−1) for the three configurations. This graph
is instructive in comparing the dynamics of the three situations:

• Although the standard deviations of the velocity of the free end and the light particle were
found to be of the same order of magnitude in figure 5, the PSDs in figure 9 show that
this results from a spurious compensation effect: slow fluctuations are orders of magnitude
larger for the light sphere, while rapid fluctuations are stronger for the free end. For the
towed light sphere case, more than 50% of the fluctuating energy comes from the narrow
3 dB bandwidth around the resonant peak (which corresponds to a band δ f ∈ [22; 29] Hz
for the data shown in figure 9).

• The global amplitude of PSD is orders of magnitude lower for the heaviest sphere, which
was already illustrated by the standard deviations of velocity, σv, previously discussed (we
recall that the variance σ 2

v of the velocity is simply given by the integral of the PSD).

• The peak frequency of the heavy particle appears to be much lower than that of the free
end and the light sphere.

Finally, figure 9(b) shows the dependence of the frequency peaks on the towing velocity U
for each case. The free end case and the heavy particle case are well described by a linear law
where fpk ∝ U , whereas the resonant frequency for the polystyrene particle increases slightly
faster and is better described by a power law fpk ∝ U 1.2.

3.3. Discussion

The previous observations show that the dynamics of the free end and that of the light towed
sphere become unstable above a certain threshold (which is comparable for both situations and
of the order of 6 m s−1). However, while the simple analysis of velocity standard deviations
may have suggested similar dynamics for both cases, the spectral analysis has revealed clearly
different dynamical landscapes. The heavy particle is, in contrast, found to be always towed in
stable conditions. In the following paragraphs, we briefly discuss some of these observations.

3.3.1. Pendular motion of the heavy sphere case. Let us first discuss the case of the heavy
particle. During the experiment, a pendular motion of the sphere, with a relatively short effective
pendulum length (compared to the cable length) can be visually observed in the tip region of the
cable. We argue here that the peak observed in the spectrum of the heavy particle is reminiscent
of this slow pendulum-like motion. The order of magnitude of the pendular oscillation frequency
can be estimated based on a very crude model illustrated as shown in figure 10. The profile of the
cable is qualitatively approximated by two linear pieces obtained from the tangents at the fixed
point and at the tip of the cable, estimated from the calculated equilibrium profile (as shown, for
instance, in figure 4(b)). As shown in figure 10, in this crude approximation, the effective length
leff of the pendular motion of the sphere at the tip of the cable represents a fraction of (y0 − ys),
where ys is the height of the sphere and y0 ' 0.4 m is the vertical ordinate of the cable fixed end.
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(a)

(b)

Figure 9. (a) Comparison of the spectral densities for the three towed
configurations (a free end, a light particle and a heavy particle) at a given towing
velocity U ' 11 m s−1. (b) Dependence of the peak frequency on mean towing
velocity U for the three configurations: a free end (blue circles), a polystyrene
sphere (red squares) and a lead sphere (green diamond). The lines indicate the
best power-law fit whose parameters are given in the legend (note that linear
fit indeed corresponds to a power-law fit for which the best fitting exponent
was found to be almost 1). Magenta crosses indicate the estimation of the peak
frequency for the heavy lead particle based on a simple pendular model discussed
in section 3.3.

New Journal of Physics 15 (2013) 043019 (http://www.njp.org/)

http://www.njp.org/


17

Figure 10. Simple pendulum model for the heavy particle, where the profile
shown in figure 4(b) is crudely approximated by the two tangents (at the fixed
end and at the tip of the cable). The pivot of the pendular motion at the tip of the
cable is taken at the intersection of these two lines.

For the sake of simplicity in estimating the order of magnitude of the oscillation frequency, we
approximate leff ' (y0 − ys)/2. The expected frequency for the pendular motion at the tip of the
cable can then be estimated as

f0 =
1

2π

√
g

leff
'

1

2π

√
2g

y0 − ys
(5)

with g the gravity acceleration. The green crosses in figure 9(b) present the corresponding
estimate based on the actual measurement of the sphere height ys shown in figure 4(a). In
spite of the crudeness of the model, very good agreement is found. The model can certainly
be improved by a better piecewise decomposition of the cable, but this simple analysis seems to
confirm the pendular origin of the observed spectral peak.

We point out, however, that except for this pendular motion, the dynamics of the heavy
particle remains stable with a level of fluctuation much lower than the free end and polystyrene
sphere cases, as shown in figure 4(a). The stabilizing effect of a heavy mass on the dynamics of
towed cables is a well-known property in the underwater community. Adding a weight depressor
in two-part towing system has become a common strategy to reduce the instability of underwater
towed systems [28].

3.3.2. Divergence instability of the towed cable. Concerning the free end case, where the
cable is towed by itself, our results are worth discussing in comparison with recent numerical
simulations of long cylinders in axial flow by Langre and Paı̈doussis [16], which we briefly
summarize first. Their simulations are the first to show that, contrary to previous predictions
[1, 21], long cylinders may become unstable. The existence of the instability for such long
cylinders requires bending stiffness effects to be correctly included in the model. It is indeed
directly related to the presence of a neutral point in the cable at which base drag, axial
compressive forces and tangential friction balance. Upstream of the neutral point, the cable is in
tension due to the frictional drag along its length, which plays a stabilizing role. Downstream of
the neutral point, the cable is in compression, and no stiffness exists other than flexural rigidity,
which then needs to be correctly modeled. The position of the neutral point along the cable is
xc = L − Lc, with [1, 16]

Lc =
ac

2CT
(π − 2Cb), (6)
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where Cb is the base drag coefficient at the tip of the cable (defined such that FBD =

1/2ρD2U 2CB is the base drag force). A necessary condition for the instability to appear is that
xc < L (so that the neutral point is actually in the cable), which requires Cb < π/2 ( i.e. the cable
tip must be sufficiently streamlined). More precisely, de Langre and Paı̈doussis have shown that
the instability diagram (see, for instance, figure 6 of [16]) depends mainly on two parameters:
(i) the shape of the downstream end of the cable (characterized by a parameter f ∈ [0; 1] related
to base drag and lift coefficients at the tip of the cable (de Langre and Paı̈doussis use the ad hoc
empirical relation f = 1 − 4Cb/π ); it is such that f = 0 for blunt cylinder tips and f = 1 for
perfectly streamlined tips) and (ii) the ratio CN/CT (the range of CN/CT investigated by de
Langre and Paı̈doussis is [0.5 ; 1.5]). They find that long blunt cables ( f → 0) remain always
stable. Above a certain threshold of f (which depends on CN/CT, but which is typically of
the order of f ∼ 0.5), i.e. for sufficiently well-streamlined cable tips, a divergence instability
appears. The typical predicted velocity threshold U ∗

d for divergence is of the order of some
meters per second in the range of parameters they investigated. If f is further increased (the
tip becoming even more streamlined) a secondary bifurcation may develop, from divergence to
flutter (the motion of the cable then becomes oscillatory). Results of de Langre and Paı̈doussis
also show that for long cylinders stability analysis becomes independent of the cable length, and
only a short portion at the downstream end of the cable is concerned. The length of the unstable
portion is given by Lc.

A direct quantitative comparison of these numerical results with our experiments is difficult
due to the impossibility to exactly match the parameters of the simulation to that of the
experiment. The ratio CN/CT in the experiment can be estimated from the fitted Reynolds
number dependence for CN and CT discussed in section 3.1. We find it to vary from 0.2 to 1.1 as
the flow velocity increases from 4 to 20 m s−1 typically. It is therefore in a comparable range to
that explored by de Langre and Paı̈doussis. Estimation of parameters f and Cb (characteristic
of the tip shape of the cable) in the experiment are more subtle and will be discussed below. It
is first interesting to note that several results of de Langre and Paı̈doussis are in good qualitative
agreement with our experiment.

1. We do observe in the experiment a transition toward a divergence, non-oscillatory
instability. The instability appears above a velocity threshold of the order of 6–7 m s−1.

2. Visual inspection of the cable shows that only a short portion (a few centimeters long) at
the downstream end of the cable is destabilized.

3. We have carried out a few extra experiments, identical to what was presented above but
increasing the length of the cable up to 3.5 m. These measurements confirm that the
dynamics of the cable tip is independent of the cable length. In particular, instability
threshold and PSDs of the cable tip motion are indistinguishable for the two lengths.

A more quantitative discussion requires us to estimate the base drag coefficient Cb (which
controls the position of the neutral point on the cable). The presence of the small knot used to
visualize the cable tip makes this estimation non-trivial. When examined under a magnification
lens, the knot appears as a deformed sphere with diameter of the order of dk ' 2ac. The base
drag coefficient Cb can be related to the knot drag coefficient Ck by Cb = π/4(dk/ac)

2Ck

(approximating the projected area of the knot as πd2
k/4). Considering the low value of the

Reynolds number Rek = Udk/ν and approximating Ck by the drag coefficient of a sphere of
diameter dk, we can estimate Ck ' 24/Rek. Hence, the base drag coefficient can be estimated as
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Cb '
6πν

Udk
(dk/ac)

2. The condition Cb < π/2 for the neutral point to be in the cable then requires

U > U ∗
=

12ν

a2
c

dk. (7)

Using the values ac = 43 µm and dk = 2ac leads to U ∗
' 8 m s. Considering the several

approximations (in particular, regarding the spherical shape of the knot and the estimation of
Ck) this value is in good agreement with the measured threshold (6–7 m s−1). It suggests that
the appearance of divergence in our experiment is concomitant with the appearance of a neutral
point in the vicinity of the downstream end of the cable.

Finally, we note that we do not observe in our experiment any secondary bifurcation toward
flutter when the cable is towed without any sphere attached. A possible explanation for that may
be also related to the small knot at the tip of the cable. This tends to make the tip of the cable
not very well streamlined and hence not suitable for flutter according to the de Langre and
Paı̈doussis results.

3.3.3. Oscillatory instability of the light towed sphere. An oscillatory instability is, however,
found when a light sphere is towed at the tip of the cable. The frequency of the observed
oscillations increases from 10 Hz to about 40 Hz in the range of wind velocities explored
above the instability threshold (from 5 to 15 m s). It is enlightening to note that this range of
frequencies is inconsistent with simple mechanisms such as vortex shedding, pendular motion
of the sphere, vibrating eigenfrequencies or elastic oscillations:

• Vortex shedding. In the range of Reynolds number considered for the sphere (Rep =

dpU/ν > 2000, above the instability threshold), its Strouhal number can be considered
as constant and of the order of St ' 0.2. The vortex shedding frequency f shed

p = St U/dp

should therefore exceed 120 Hz for wind velocities above 4 m s−1. Such high frequencies
are in the damped region of the spectra of the particle motion (see figure 7(a)), and have
not been detected in the experiment. Note that vortex shedding has also been shown to be
inconsistent with instabilities observed in underwater systems [29].

• Pendulum oscillations. When it is aligned with the main stream, a pendulum motion of the
sphere can be expected to appear with a characteristic frequency f pend

p = 1/2π
√

Ttip/mpL ,
where Ttip = π/8d2CpU 2 is the aerodynamic drag exerted on the sphere and mp ' 1.8 mg is
the mass of the sphere. In the range of particle Reynolds number considered here, the drag
coefficient Cp is almost constant and of the order of 0.7. Hence f pend

p can be estimated to
increase almost linearly from 2 Hz to about 4 Hz when the wind speed is increased from 5
to 15 m s−1. Such a low-frequency peak is not visible in the spectra in figure 7(a). Besides,
the frequency peak would be expected to be modified when the cable length is changed.
The few experiments we carried out with the longer cable show that the spectral peak
reported in the previous section is not affected by the length of the cable.

• Vibrating string frequencies. One may also expect frequencies resulting from vibration
modes of the tensed cable to appear. In the present case, where the cable has one fixed end
and one free end, vibrating modes would have wavelengths λn = 4L/(2n + 1) (with n > 0).
The corresponding eigenfrequencies are f n

p = (2n + 1)/4L
√

Ttip/µ, where µ = 1.7 mg m
is the lineal density of the cable and Ttip is the main tensioning force due to aerodynamic
drag on the sphere. We note that the given expression for f n

p assumes the tension to be
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constant along the cable and of the order of Ttip. This is not exactly the case, as frictional
drag imposes a linear increase of the tension from the fixed upstream end of the cable to
the downstream end (where tension is maximal and equal to Ttip). Hence, the estimation
given here should be taken as an upper bound of the eigenfrequencies. Let us consider
the case U = 10 m s−1 as an example for discussion. Using Cp ' 0.7, we estimate that
T 10m s−1

tip ' 1.3 × 10−3 N. The first ten vibrating eigenfrequencies are therefore expected
to be f n=0→9

p [0.11; 0.32; 0.53; 0.74; 0.94; 1.2; 1.5; 1.6; 1.8; 2.0] Hz, and are much lower
than the resonant peak observed in figure 7(a). Figure 9(b) shows that the experimental
resonant peak for U = 10 m s−1 appears at a frequency fpk & 20 Hz. In the vibrating string
scenario, this would correspond to a high-order mode ( f 100

p ' 21 Hz). Besides, in such a
scenario, a whole set of eigenfrequencies should be visible in the spectra, which is not the
case here. Finally, in this scenario, a length dependence would also be expected.

• Elastic oscillation of the cable. Another simple possible oscillatory mechanism would
result from the elasticity of the cable. This would generate a natural oscillating frequency
f elast
p = 1/2π

√
k/mp, where k is the elastic constant of the cable. The constant k can be

estimated from the elastic properties of nylon 6,6 given in table 1; it is of the order of
k = 2.3 N m−1. The elastic frequency is therefore expected to be of the order of 5 Hz. It
is again much lower than the observed resonant peak. Besides, the elastic frequency is
expected to remain independent of wind velocity, while figure 9(a) shows a clear increase
of the resonant frequency fpk as U increases. However, the order of magnitude of the
elastic frequency may be consistent with the low-frequency plateau observed in figure 7(a)
and this seems to be independent of U .

As a consequence, none of these simple mechanisms can explain the observed spectral peak.
Our interpretation is that these oscillations are related to a flutter instability of the cable tip.
This is also supported by the visual inspection that only a short section, a few centimeters
long, in the vicinity of the downstream end of the cable is unstable. At first sight, flutter may
appear contradictory to the qualitative conclusions of de Langre and Paı̈doussis concerning the
requirement of a very well streamlined tip. However, the results of de Langre and Paı̈doussis
cannot be directly extrapolated to the present case as the characteristic physical parameters
differ by orders of magnitude. The base drag coefficient Cb, estimated from the aerodynamic
drag on the sphere as Cb = π/4(dp/D)2Cp, exceeds for instance 104 in the experiment, while
it is of order of at most 1 in simulations of de Langre and Paı̈doussis. We also note that in our
experiment no divergence is observed prior to the oscillatory instability of the towed sphere.

4. Conclusion

We have reported our experimental investigation of the equilibrium and stability of a cable
hanging in a uniform flow of air with one fixed end and three configurations for the free
extremity: a free cable, a light polystyrene sphere and a heavy lead sphere. The system mimics
the situation of a long towed cable at constant velocity in a steady environment. An important
aspect of this work is the length-to-diameter ratio considered for the cable, which to our
knowledge is the highest ever reported in experimental studies.

The average equilibrium position of the system is found to be consistently described by
equations for the local average tension and angle of the cable given by Dowling [1] and estimates
of drag coefficients for cables [25] and spheres [24] in the literature.
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The stability analysis turned out to be an interesting fluid–structure coupling problem.
Depending on the situation, we observed that the system could remain always stable (heavy
towed particle) or could become unstable with either a divergence instability (when the cable is
towed alone) or an oscillatory motion (when a light sphere is towed).

For the heavy particle, only small oscillations consistent with a pendular motion are
observed. We note, however, that we could not reach velocities high enough for the cable to even
approach an axial flow condition and the question of a possible instability at higher velocities is
not excluded.

The case of the cable alone is found be qualitatively consistent with recent simulations of
long cylinders in axial flows by de Langre and Paı̈doussis [16]. The threshold of the instability
is found to coincide with the appearance of a neutral point at the downstream end of the cable.
No secondary instability toward flutter was observed.

The instability for the light sphere exhibits oscillations with a clear resonant frequency
which is inconsistent with simple mechanisms such as vortex shedding, pendular motion, string
vibrations or elastic oscillations. We therefore interpret it as a flutter instability. This should be
confirmed by further simulations of the cable stability, accounting for the particular boundary
conditions associated with the presence of the sphere at the downstream tip.

From a practical point of view, our results may also be relevant for strategies of stabilization
of towed systems, such as the use of weight depressors. Our experiment shows indeed that
depending on the size and/or density of the added weight, the system can be stabilized or, in
contrast, oscillations can be promoted.

Although much remains to be done to obtain a complete and reliable description of
such long towed systems, we hope that this work will offer valuable experimental data to be
confronted with future theoretical and numerical models. Experiments have also been carried
out at present in turbulent conditions in order to explore the possible impact of turbulence on
the reported instabilities and, more generally, on the dynamics of the towed object.

Acknowledgment

We thank Christophe Baudet, Yves Gagne and Nicolas Mordant for fruitful discussions.

References

[1] Dowling A P 1988 The dynamics of towed flexible cylinders: 1 and 2 J. Fluid Mech. 187 507–71
[2] Jun Y W, Hall K R, Bennett A G and Bridges P D 1984 Optimal guidance for airborne cable pickup system

Proc. Guidance and Control Conf. (Seattle, WA) pp 379–84
[3] Sgarioto D, Williams P and Trivailo P M 2006 Remote payload transportation using an aircraft-towed flexible

cable system ANZIAM J. 47 231–44
[4] Williams P, Sgarioto D and Trivailo P M 2008 Constrained path-planning for an aerial-towed cable system

Aerospace Sci. Technol. 12 347–54
[5] Quisenberry J E and Arena A S 2004 Dynamic simulation of low altitude aerial tow system AIAA Atmospheric

Flight Mechanics Conf. and Exhibit (Providence, RI) p 4813
[6] Siebert H, Gerashchenko S, Gylfason A, Lehmann K, Collins L R, Shaw R A and Warhaft Z 2010 Towards

understanding the role of turbulence on droplets in clouds: in situ and laboratory measurements Atmos.
Res. 97 426–37

[7] Choo Y I and Casarella M J 1973 A survey of analytical methods for dynamic simulation of cable-body
systems J. Hydronaut. 7 137–44

New Journal of Physics 15 (2013) 043019 (http://www.njp.org/)

http://dx.doi.org/10.1017/S0022112088000540
http://dx.doi.org/10.1016/j.ast.2007.08.006
http://dx.doi.org/10.1016/j.atmosres.2010.05.007
http://dx.doi.org/10.2514/3.62948
http://www.njp.org/


22

[8] Kamman J W, Nguyen T C and Crane J W 1990 Modeling towed cable systems dynamics Technical Report
(Panama City, FL: Naval Coastal Systems Center)

[9] Sudarsan K, Bhattacharyya S K and Vendhan C P 1997 An experimental study of hydroelastic instability
of flexible towed underwater cylindrical structures Proc. 16th Offshore Mechanics and Arctic Engineering
Conf. (OMAE ’97) (Yokohama, Japan, 13–18 April 1997) pp 73–80

[10] Theodoracatos V E and Calkins D E 1986 An experimental study of elastohydrodynamics of towed flexible
cylinders aided by video image processing Ocean Eng. 13 587–619

[11] Paidoussis M P 1966 Dynamics of flexible slender cylinders in axial flow: 1. Theory J. Fluid Mech. 26 717–36
[12] Ortloff C R and Ives J 1969 On the dynamic motion of a thin flexible cylinder in a viscous stream J. Fluid

Mech. 38 713–20
[13] Paı̈doussis M P 1973 Dynamics of cylindrical structures subjected to axial flow J. Sound Vib. 29 365–85
[14] Ni C C and Hansen R J 1978 An experimental study of the flow-induced motions of a flexible cylinder in

axial flow J. Fluids Eng. 100 389–95
[15] Schouveiler L, Eloy C and le Gal P 2005 Flow-induced vibrations of high mass ratio flexible filaments freely

hanging in a flow Phys. Fluids 17 047104
[16] de Langre E and Paidoussis M P 2007 Flutter of long flexible cylinders in axial flow J. Fluid Mech.

571 371–89
[17] Bhattacharyya S K, Vendhan C P and Sudarsan K 2000 The finite element method for hydroelastic instability

of underwater towed cylindrical structures J. Sound Vib. 237 119–43
[18] Paı̈doussis M P, Grinevich E, Adamovic D and Semler C 2002 Linear and nonlinear dynamics of cantilevered

cylinders in axial flow: 1. Physical dynamics J. Fluids Struct. 16 691–713
[19] Semler C, Lopes J L, Augu N and Paı̈doussis M P 2002 Linear and nonlinear dynamics of cantilevered

cylinders in axial flow: 3. Nonlinear dynamics J. Fluids Struct. 16 739–59
[20] Paidoussis M P 2003 Fluid–Structure Interactions: Slender Structures and Axial Flows vol 2 (Amsterdam:

Elsevier)
[21] Triantafyllou G S and Chryssostomidis C 1985 Stability of a string in axial flow ASME J. Energy Resour.

Technol. 107 421–5
[22] Hoerner S F 1965 Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic

Resistance (Bricktown, NJ: Hoerner Fluid Dynamics)
[23] Pode L 1951 Tables for computing the equilibrium configuration of a flexible cable in a uniform stream

Technical Report No. DTMB-687 (Washington, DC: David Taylor Model Basin)
[24] Brown P P and Lawler D F 2003 Sphere drag and settling velocity revisited J. Environ. Eng. 129 222–31
[25] Tritton D J 1959 Experiments on the flow past a circular cylinder at low Reynolds numbers J. Fluid Mech.

6 547–67
[26] Taylor G 1952 Analysis of the swimming of long and narrow animals Proc. R. Soc. Lond. A 214 158–83
[27] Wei C Y and Kukureka S N 2000 Evaluation of damping and elastic properties of composites and composite

structures by the resonance technique J. Mater. Sci. 35 3785–92
[28] Lalu P P 2011 Effect of bending rigidity of marine cables on the dynamic stability of two-part underwater

towing system Int. J. Eng. Sci. Technol. 3 5599–608
[29] Bandyopadhyay P R, Leinhos H A, Hrubes J D, Toplosky N and Hansen J 2011 Turning of a short-length

cable using flapping fin propulsion IEEE J. Ocean. Eng. 36 571–85

New Journal of Physics 15 (2013) 043019 (http://www.njp.org/)

http://dx.doi.org/10.1016/0029-8018(86)90041-7
http://dx.doi.org/10.1017/S0022112066001484
http://dx.doi.org/10.1017/S0022112069002552
http://dx.doi.org/10.1016/S0022-460X(73)80291-3
http://dx.doi.org/10.1115/1.3448697
http://dx.doi.org/10.1063/1.1878292
http://dx.doi.org/10.1017/S002211200600317X
http://dx.doi.org/10.1006/jsvi.2000.3023
http://dx.doi.org/10.1006/jfls.2002.0447
http://dx.doi.org/10.1006/jfls.2002.0445
http://dx.doi.org/10.1115/1.3231213
http://dx.doi.org/10.1061/(ASCE)0733-9372(2003)129:3(222)
http://dx.doi.org/10.1017/S0022112059000829
http://dx.doi.org/10.1098/rspa.1952.0159
http://dx.doi.org/10.1023/A:1004817011240
http://dx.doi.org/10.1109/JOE.2011.2164956
http://www.njp.org/

	1. Introduction
	2. Experimental setup
	3. Results
	3.1. Mean height
	3.2. Dynamical fluctuations and stability
	3.3. Discussion

	4. Conclusion
	Acknowledgment
	References

